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Linear Algebra, Function Spaces 
& Inverse Problems 



Vector and Function Spaces 
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Vectors 

vectors are arrows in space 
classically: 2 or 3 dim. Euclidian space 
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Vector Operations 

v 

w 

v + w 

“Adding” Vectors: 
Concatenation 
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Vector Operations 

v 

Scalar Multiplication: 
Scaling vectors (incl. mirroring) 

1.5·v 

2.0·v 

-1.0·v 
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You can combine it... 

v 

Linear Combinations: 
This is basically all you can do. 
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Vector Spaces 

Vector space: 

• Set of vectors V 

• Based on field F (we use only F = ) 

• Two operations: 

 Adding vectors u = v + w (u, v, w  V) 

 Scaling vectors w = v (u  V,   F) 

• Vector space axioms: 
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Additional Tools 

More concepts: 
• Subspaces, linear spans, bases 

• Scalar product 
 Angle, length, orthogonality 

 Gram-Schmidt orthogonalization 

• Cross product (ℝ3) 

• Linear maps 
 Matrices 

• Eigenvalues & eigenvectors 

• Quadratic forms 

(Check your old math books) 
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Example Spaces 

Function spaces: 

• Space of all functions f:    

• Space of all smooth Ck functions f:    

• Space of all functions f: [0..1]5  8 

• etc... 

0 1 0 1 0 1 

+ = 
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Function Spaces 

Intuition: 

• Start with a finite dimensional vector 

• Increase sampling density towards infinity 

• Real numbers: uncountable amount of dimensions 

0 1 0 1 0 1 
d = 9 d = 18 d =  

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x) 
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Dot Product on Function Spaces 

Scalar products 

• For square-integrable functions f, g:   n  , the 
standard scalar product is defined as: 

 

 

• It measures an abstract norm and “angle” between 
function (not in a geometric sense) 

• Orthogonal functions: 

 Do not influence each other in linear combinations. 

 Adding one to the other does not change the value in the other 
ones direction. 




 dxxgxfgf )()(:
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Approximation of Function Spaces 

Finite dimensional subspaces: 

• Function spaces with infinite dimension are hard to 
represented on a computer 

• For numerical purpose, finite-dimensional subspaces are 
used to approximate the larger space 

• Two basic approaches 
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Approximation of Function Spaces 

Task: 

• Given: Infinite-dimensional function space V. 

• Task: Find f  V with a certain property. 

Recipe: “Finite Differences” 

• Sample function f on discrete grid 

• Approximate property discretely 

 Derivatives => finite differences 

 Integrals => Finite sums 

• Optimization: Find best discrete function 
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Recipe: “Finite Elements” 

• Choose basis functions b1, ..., bd  V 

• Find 𝑓 =  𝜆𝑖𝑏𝑖
𝑑
𝑖=1  that matches the property best 

• 𝑓  is described by (1,...,d) 

Approximation of Function Spaces 

actual solution function space basis approximate solution 
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Examples 
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“Best Match” 

Linear combination matches best 

• Solution 1: Least squares minimization 

 𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

 

 

• Solution 2: Galerkin method 

∀𝑖 = 1. . 𝑛: 𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

,  𝑏𝑖 = 0 

• Both are equivalent 
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Optimality Criterion 

Given: 

• Subspace W ⊆ V 

• An element 𝐯 ∈ V 

Then we get: 

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2 

(i.e. the Euclidean distance) if and only if: 

• the residual w − 𝐯  is orthogonal to W 

Least squares = minimal Euclidean distance 

W 

V 
𝐯 

𝐰 
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Formal Derivation 

Least-squares 

E 𝑓 =  𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 

ℝ

 

          =  𝑓2 𝑥 − 2  𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 +   𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

𝑑𝑥 

ℝ

 

Setting derivatives to zero: 
 

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

 

Result: 

∀𝑗 = 1. . 𝑛:  𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0 

 



Linear Maps 
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Linear Maps 

A Function 

•  f: V  W between vector spaces V, W 

is linear if and only if: 

• v1,v2V: f (v1+v2) = f (v1) + f (v2) 

• vV, F: f (v) = f (v) 

Constructing linear mappings: 

A linear map is uniquely determined if we specify a mapping 
value for each basis vector of V. 

 



 21 

Matrix Representation 

Finite dimensional spaces 

• Linear maps can be represented as matrices 

• For each basis  vector vi of V, we specify the mapped 
vector wi. 

• Then, the map f is given by: 
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Matrix Representation 

This can be written as matrix-vector product: 

 

 

The columns are the images of the basis vectors (for which the 
coordinates of v are given) 
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Linear Systems of Equations 

Problem: Invert an affine map 

• Given: Mx = b 

• We know M, b 

• Looking for x 

Solution 

• Set of solutions: always an affine subspace of n, 
or the empty set. 

 Point, line, plane, hyperplane... 

• Innumerous algorithms for solving linear systems 
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Solvers for Linear Systems 

Algorithms for solving linear systems of equations: 

• Gaussian elimination: O(n3) operations for n  n matrices 

• We can do better, in particular for special cases: 

 Band matrices: 
constant bandwidth 
 

 Sparse matrices: 
constant number of non-zero 
entries per row 

– Store only non-zero entries 

– Instead of (3.5, 0, 0, 0, 7, 0, 0), 
store [(1:3.5), (5:7)] 
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Solvers for Linear Systems 

Algorithms for solving linear systems of n equations: 

• Band matrices, O(1) bandwidth: 
 Modified O(n) elimination algorithm. 

• Iterative Gauss-Seidel solver 
 converges for diagonally dominant matrices 
 Typically: O(n) iterations, each costs O(n) for a sparse matrix. 

• Conjugate Gradient solver 
 Only symmetric, positive definite matrices 
 Guaranteed: O(n) iterations 
 Typically good solution after O(  n) iterations. 

More details on iterative solvers: J. R. Shewchuk: An Introduction to the 
Conjugate Gradient Method Without the Agonizing Pain, 1994. 
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Eigenvectors & Eigenvalues 

Definition: 

• Linear map M, non-zero vector x with 

  Mx = x 

•  an is eigenvalue of M  

• x is the corresponding eigenvector. 
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Example 

Intuition: 

• In the direction of an eigenvector, the linear map acts like 
a scaling 

 

 

 

 

• Example: two eigenvalues (0.5 and 2) 

• Two eigenvectors 

• Standard basis contains no eigenvectors 

 
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Eigenvectors & Eigenvalues 

Diagonalization: 

In case an n  n matrix M has n linear independent 
eigenvectors, we can diagonalize M by transforming to this 
coordinate system: M = TDT-1. 
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Spectral Theorem 

Spectral Theorem: 

If M is a symmetric n  n matrix of real numbers 
(i.e. M = MT), there exists an orthogonal set of n 
eigenvectors. 

This means, every (real) symmetric matrix can be 
diagonalized: 

M = TDTT with an orthogonal matrix T. 
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Computation 

Simple algorithm 

• “Power iteration” for symmetric matrices 

• Computes largest eigenvalue even for large matrices 

• Algorithm: 

 Start with a random vector (maybe multiple tries) 

 Repeatedly multiply with matrix 

 Normalize vector after each step 

 Repeat until ration before / after normalization converges 
(this is the eigenvalue) 

• Intuition: 

 Largest eigenvalue = “dominant” component/direction 
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Powers of Matrices 

What happens: 

• A symmetric matrix can be written as: 

 

 

 

• Taking it to the k-th power yields: 

 

 

 

• Bottom line: Eigenvalue analysis key to understanding 
powers of matrices. 
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Improvements 

Improvements to the power method: 

• Find smallest?  – use inverse matrix. 

• Find all (for a symmetric matrix)? – run repeatedly, 
orthogonalize current estimate to already known 
eigenvectors in each iteration (Gram Schmidt) 

• How long does it take? – ratio to next smaller eigenvalue, 
gap increases exponentially. 

There are more sophisticated algorithms based on 
this idea. 
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Generalization: SVD 

Singular value decomposition: 

• Let M be an arbitrary real matrix (may be rectangular) 

• Then M can be written as: 

 M = U D VT  

 The matrices U, V are orthogonal 

 D is a diagonal matrix (might contain zeros) 

 The diagonal entries are called singular values. 

• U and V are different in general. For diagonalizable 
matrices, they are the same, and the singular values are 
the eigenvalues. 



 34 

M U D 

VT 

Singular Value Decomposition 

Singular value decomposition 

1 

2 

3 

4 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

0 0 

0 0 0 

= 


orthogonal 



orthogonal 
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Singular Value Decomposition 

Singular value decomposition 

• Can be used to solve linear systems of equations 

• For full rank, square M: 

  M = U D VT  

  M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT  

• Good numerical properties (numerically stable) 

• More expensive than iterative solvers 

• The OpenCV library provides a very good implementation 
of the SVD 



Linear Inverse Problems 
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Inverse Problems 

Settings 

• A (physical) process f takes place 

• It transforms the original input x into an output b 

• Task: recover x from b 

Examples: 

• 3D structure from photographs 

• Tomography: values from line integrals 

• 3D geometry from a noisy 3D scan 
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Linear Inverse Problems 

Assumption: f is linear and finite dimensional 

f (x) = b    Mf x = b 

Inversion of f is said to be an ill-posed problem, if one 
of the following three conditions hold: 

• There is no solution 

• There is more than one solution 

• There is exactly one solution, but the SVD contains very 
small singular values. 
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Ill posed Problems 

Ratio: Small singular values amplify errors 

• Assume inexact input  

 Measurement noise 

 Numerical noise 

• Reminder: M-1 = V D-1 UT 

 

 

 

• Orthogonal transforms preserve norm of x, 
so V and U do not cause problems 

does not hurt 
(orthogonal) 

does not hurt 
(orthogonal) 

this one is decisive 
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Ill posed Problems 

Ratio: Small singular values amplify errors 

• Reminder: x = M-1b = (V D-1 UT)b 

• Say D looks like that: 

 

 

• Any input noise in b in the direction of the fourth right 
singular vector will be amplified by 109. 

• If our measurement precision is less than that, the result 
will be unusable. 

• Does not depend on how we invert the matrix. 

• Condition number: max /min 

















000000001.0000

09.000

001.10

0005.2

:D



 41 

Ill Posed Problems 

Two problems: 

(1) Mapping destroys information 

 goes below noise level 

 cannot be recovered by any means 

(2) Inverse mapping amplifies noise 

 yields garbage solution 

 even remaining information not recovered 

 extremely large random solutions are obtained 

We can do something about problem #2 
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Regularization 

Regularization 

• Avoiding destructive noise caused by inversion 

 Various techniques 

 Goal: ignore the misleading information 

• Subspace inversion: 

 Ignore subspace with small singular values 

– needs an SVD, risk of ringing 

 Additional assumptions:  

– smoothness (or something similar) 

– make compound problem (f 
-1 + assumptions) well posed 

• We will look at this in detail later 
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Illustration of the Problem 

original function smoothed function 

f g f ⊗ g forward 
problem 
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Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

smoothed function reconstructed function 
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Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

regularized 
reconstructed function 

smoothed function 
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Illustration of the Problem 

original function 

f g 

Frequency Domain 

G 

Frequency Domain 

G-1 
regularization 
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Analysis 


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Digging Deeper... 

Let’s look at this example again: 

• Convolution operation: 

𝑓′(𝑥) =  𝑓(𝑡) ∙ 𝑔 𝑡 − 𝑥 𝑑𝑡

ℝ

 

• Shift-invariant linear operator 

f g 
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Convolution Theorem 

Fourier Transform 

• Function space: 

𝑓: 0. . 2π → ℝ (suff. smooth) 

• Fourier basis: 
1, cos 𝑘𝑥 , sin 𝑘𝑥|𝑘 = 1,2, …  

• Properties 

 The Fourier basis is an orthogonal basis (standard scalar prod.) 

 The Fourier basis diagonalizes all shift-invariant linear operators 
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Convolution Theorem 

This means: 

• Let 𝐹: ℕ → ℝ    be the Fourier transform (FT) of 

 𝑓: [0. . 2π] → ℝ 

• Then: 𝑓  ⨂ 𝑔 = 𝐹𝑇−1(𝐹 ⋅ 𝐺) 

Consequences 

• Fourier spectrum of convolution operator (“filter”) 
determines well-posedness of inverse operation 
(deconvolution) 

• Certain frequencies might be lost 

 In our example: high frequencies 

 



Quadratic Forms 
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Multivariate Polynomials 

A multi-variate polynomial of total degree d: 

• A function f: n  ,   x  f(x) 

• f is a polynomial in the components of x 

• Any 1D direction f(s + tr) is a polynomial of  
maximum degree d in t. 

Examples: 

• f(x, y) := x + xy + y  is of total degree 2. In diagonal 
direction, we obtain f(t[1/  2, 1/  2]T) = t2. 

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a 
quadratic polynomial in two variables 
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Quadratic Polynomials 

In general, any quadratic polynomial in n variables 
can be written as: 

• xTA x  +  bTx  + c 

• A is an n  n matrix, b is an n-dim. vector, c is a number 

• Matrix A can always be chosen to be symmetric 

• If it isn’t, we can substitute by 0.5·(A + AT), not changing 
the polynomial 
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Example 

Example: 
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Quadratic Polynomials 

Specifying quadratic polynomials: 

• xTA x  +  bTx  + c 

• b shifts the function in space (if A has full rank): 

 

 

 

 

• c is an additive constant 
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Some Properties 

Important properties 

• Multivariate polynomials form a vector space 

• We can add them component-wise: 

 2x2 + 3y2 + 4xy + 2x + 2y + 4 

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5 

= 5x2 + 5y2 + 5xy + 7x + 7y + 9 

• In vector notation: 

       xTA1 x  +  b1
Tx  + c1 

 + (xTA2x  +  b2
Tx  + c2) 

 = xT(A1 + A2)x  +  (b1 + b2)Tx  + (c1 + c2) 
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Quadratic Polynomials 

Quadrics 

• Zero level set of a quadratic polynomial: “quadric” 

• Shape depends on eigenvalues of A 

• b shifts the object in space 

• c sets the level 
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Shapes of Quadrics 

Shape analysis: 

• A is symmetric 

• A can be diagonalized with orthogonal eigenvectors 

 

 

 

 

• Q contains the principal axis of the quadric 

• The eigenvalues determine the quadratic growth 
(up, down, speed of growth) 
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Shapes of Quadratic Polynomials 

1 = 1, 2 = 1  1 = 1, 2 = -1  1 = 1, 2 = 0  
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The Iso-Lines: Quadrics 

1 > 0, 2 > 0  1 < 0, 2 > 0  

elliptic hyperbolic 

1 = 0, 2  0  

degenerate case 
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Quadratic Optimization 

Quadratic Optimization 

• Minimize quadratic objective function 

xTA x  +  bTx  + c 

• Required: A > 0 (only positive eigenvalues) 
 It’s a paraboloid with a unique minimum 

 The vertex (critical point) can be determined 
by simply solving a linear system 

• Necessary and sufficient condition 

2A x  = –b 
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Condition Number 

How stable is the solution? 

• Depends on Matrix A 

 

good bad 
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Regularization 

• Sums of positive semi-definite matrices are  
positive semi-definite 

• Add regularizing quadric 

 “Fill in the valleys” 

 Bias in the solution 

Example 

• Original: xTA x  +  bTx  + c 

• Regularized: xT(A + I )x  +  bTx  + c 

 

Regularization 

A   + I 
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Rayleigh Quotient 

Relation to eigenvalues: 

• Min/max eigenvalues of a symmetric A expressed as 
constraint quadratic optimization: 

 

 

 

• The other way round – eigenvalues solve a certain type of 
constrained, (non-convex) optimization problem. 
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Coordinate Transformations 

One more interesting property: 

• Given a positive definite symmetric (“SPD”) matrix M 
(all eigenvalues positive) 

• Such a matrix can always be written as square of another 
matrix: 
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SPD Quadrics 

Interpretation: 

• Start with a unit positive quadric xTx. 

• Scale the main axis (diagonal of D) 

• Rotate to a different coordinate system (columns of T) 

• Recovering main axis from M: Compute eigensystem 
(“principal component analysis”) 

 2
T DTTDTMI Identity

main axis 

xxT MxxT
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Why should I care? 

What are quadrics good for? 

• log-probability of Gaussian models 

• Estimation in Gaussian probabilistic 
models...  

 ...is quadratic optimization. 

 ...is solving of linear systems of equations. 

• Quadratic optimization 

 easy to use & solve 

 feasible :-) 

• Approximate more complex models locally 

Gaussian normal distribution 
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Groups and Transformations 



 71 

Groups 

Definition: 
A set G with operation ⊗ is called a group (G, ⊗), iff: 

• Closed: ⊗: 𝐺 × 𝐺 → 𝐺 (always maps back to G) 

• Associativity: (𝑓 ⊗ g) ⊗ ℎ = 𝑓 ⊗ (g ⊗ ℎ) 

• Neutral element: there exists 𝑖𝑑 ∈ 𝐺 such that for any 
 𝑔 ∈ 𝐺:  𝑔 ⊗ 𝑖𝑑 = 𝑔 

• Inverse element: For each 𝑔 ∈ 𝐺 there exists 𝑔−1 ∈ 𝐺 
 such that 𝑔 ⊗ 𝑔−1 = 𝑔−1 ⊗ 𝑔 = 𝑖𝑑 

Abelian Groups 

• The group is commutative iff always 𝑓 ⊗ g = 𝑔 ⊗ 𝑓 
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Examples of Groups 

Examples: 

• G = invertible matrices, ⊗ = composition (matrix mult.) 

• G = invertible affine transformation of ℝ𝑑, ⊗ = 
composition  
(matrix form: homogeneos coordinates) 

• G = bijections of a set S to itself, ⊗ = composition  

 G = smooth Ck bijections of a set S to itself, ⊗ = composition  

 G = global symmetry transforms of a shape, ⊗ = composition   

 G = permutation of a discrete set, ⊗ = composition  
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Examples of Groups 

Examples: 

• G = invertible matrices, ⊗ = composition (matrix mult.) 

• G = invertible affine transformation of ℝ𝑑 
Subgroups: 

 G = similarity transform (translation, rotation, mirroring, 
scaling ≠ 0) 

 E(d): G = rigid motions (translation, rotation, mirroring) 

 SE(d): G = rigid motions (translation, rotation) 

 O(d): G = orthogonal matrix (rotation, mirroring) 
(columns/rows orthonormal)  

 SO(d): G = orthogonal matrix (rotation) 
(columns/rows orthonormal, determinant 1) 

 G = translations (the only commutative group out of these) 
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Examples of Groups 

Examples: 

• G = global symmetry transforms of a 2D shape  
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Examples of Groups 

Examples: 

• G = global symmetry transforms of a 3D shape  

 

(extended to infinity) (extended to infinity) 
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Outlook 

More details on this later 

• Symmetry groups 

• Structural regularity 

• Crystalographic groups and regular lattices 


