
Statistical Geometry Processing
Winter Semester 2011/2012

Linear Algebra, Function Spaces
& Inverse Problems

Vector and Function Spaces

 3

Vectors

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space

 4

Vector Operations

v

w

v + w

“Adding” Vectors:
Concatenation

 5

Vector Operations

v

Scalar Multiplication:
Scaling vectors (incl. mirroring)

1.5·v

2.0·v

-1.0·v

 6

You can combine it...

v

Linear Combinations:
This is basically all you can do.

w

2w + v





n

i
ii

1

vr 

 7

Vector Spaces

Vector space:

• Set of vectors V

• Based on field F (we use only F = )

• Two operations:

 Adding vectors u = v + w (u, v, w  V)

 Scaling vectors w = v (u  V,   F)

• Vector space axioms:

 8

Additional Tools

More concepts:
• Subspaces, linear spans, bases

• Scalar product
 Angle, length, orthogonality

 Gram-Schmidt orthogonalization

• Cross product (ℝ3)

• Linear maps
 Matrices

• Eigenvalues & eigenvectors

• Quadratic forms

(Check your old math books)

 9

Example Spaces

Function spaces:

• Space of all functions f:   

• Space of all smooth Ck functions f:   

• Space of all functions f: [0..1]5  8

• etc...

0 1 0 1 0 1

+ =

 10

Function Spaces

Intuition:

• Start with a finite dimensional vector

• Increase sampling density towards infinity

• Real numbers: uncountable amount of dimensions

0 1 0 1 0 1
d = 9 d = 18 d = 

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x)

 11

Dot Product on Function Spaces

Scalar products

• For square-integrable functions f, g:   n  , the
standard scalar product is defined as:

• It measures an abstract norm and “angle” between
function (not in a geometric sense)

• Orthogonal functions:

 Do not influence each other in linear combinations.

 Adding one to the other does not change the value in the other
ones direction.




 dxxgxfgf)()(:

 12

Approximation of Function Spaces

Finite dimensional subspaces:

• Function spaces with infinite dimension are hard to
represented on a computer

• For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

• Two basic approaches

 13

Approximation of Function Spaces

Task:

• Given: Infinite-dimensional function space V.

• Task: Find f  V with a certain property.

Recipe: “Finite Differences”

• Sample function f on discrete grid

• Approximate property discretely

 Derivatives => finite differences

 Integrals => Finite sums

• Optimization: Find best discrete function

 14

Recipe: “Finite Elements”

• Choose basis functions b1, ..., bd  V

• Find 𝑓 = 𝜆𝑖𝑏𝑖
𝑑
𝑖=1 that matches the property best

• 𝑓 is described by (1,...,d)

Approximation of Function Spaces

actual solution function space basis approximate solution

 15

Examples

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2

Monomial basis

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Fourier basis

0  2

B-spline basis,

Gaussian basis

 16

“Best Match”

Linear combination matches best

• Solution 1: Least squares minimization

 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

• Solution 2: Galerkin method

∀𝑖 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑖 = 0

• Both are equivalent

 17

Optimality Criterion

Given:

• Subspace W ⊆ V

• An element 𝐯 ∈ V

Then we get:

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2

(i.e. the Euclidean distance) if and only if:

• the residual w − 𝐯 is orthogonal to W

Least squares = minimal Euclidean distance

W

V
𝐯

𝐰

 18

Formal Derivation

Least-squares

E 𝑓 = 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥

ℝ

 = 𝑓2 𝑥 − 2 𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 + 𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

𝑑𝑥

ℝ

Setting derivatives to zero:

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

Result:

∀𝑗 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0

Linear Maps

 20

Linear Maps

A Function

• f: V  W between vector spaces V, W

is linear if and only if:

• v1,v2V: f (v1+v2) = f (v1) + f (v2)

• vV, F: f (v) = f (v)

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.

 21

Matrix Representation

Finite dimensional spaces

• Linear maps can be represented as matrices

• For each basis vector vi of V, we specify the mapped
vector wi.

• Then, the map f is given by:

nn

n

vv

v

v

ff wwv 
































 ...)(11

1



 22

Matrix Representation

This can be written as matrix-vector product:

The columns are the images of the basis vectors (for which the
coordinates of v are given)




































n

n

v

v

vf 
1

1

||

||

)(ww

 23

Linear Systems of Equations

Problem: Invert an affine map

• Given: Mx = b

• We know M, b

• Looking for x

Solution

• Set of solutions: always an affine subspace of n,
or the empty set.

 Point, line, plane, hyperplane...

• Innumerous algorithms for solving linear systems

 24

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

• Gaussian elimination: O(n3) operations for n  n matrices

• We can do better, in particular for special cases:

 Band matrices:
constant bandwidth

 Sparse matrices:
constant number of non-zero
entries per row

– Store only non-zero entries

– Instead of (3.5, 0, 0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]

 25

Solvers for Linear Systems

Algorithms for solving linear systems of n equations:

• Band matrices, O(1) bandwidth:
 Modified O(n) elimination algorithm.

• Iterative Gauss-Seidel solver
 converges for diagonally dominant matrices
 Typically: O(n) iterations, each costs O(n) for a sparse matrix.

• Conjugate Gradient solver
 Only symmetric, positive definite matrices
 Guaranteed: O(n) iterations
 Typically good solution after O(n) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.

 26

Eigenvectors & Eigenvalues

Definition:

• Linear map M, non-zero vector x with

 Mx = x

•  an is eigenvalue of M

• x is the corresponding eigenvector.

 27

Example

Intuition:

• In the direction of an eigenvector, the linear map acts like
a scaling

• Example: two eigenvalues (0.5 and 2)

• Two eigenvectors

• Standard basis contains no eigenvectors



 28

Eigenvectors & Eigenvalues

Diagonalization:

In case an n  n matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT-1.

 29

Spectral Theorem

Spectral Theorem:

If M is a symmetric n  n matrix of real numbers
(i.e. M = MT), there exists an orthogonal set of n
eigenvectors.

This means, every (real) symmetric matrix can be
diagonalized:

M = TDTT with an orthogonal matrix T.

 30

Computation

Simple algorithm

• “Power iteration” for symmetric matrices

• Computes largest eigenvalue even for large matrices

• Algorithm:

 Start with a random vector (maybe multiple tries)

 Repeatedly multiply with matrix

 Normalize vector after each step

 Repeat until ration before / after normalization converges
(this is the eigenvalue)

• Intuition:

 Largest eigenvalue = “dominant” component/direction

 31

Powers of Matrices

What happens:

• A symmetric matrix can be written as:

• Taking it to the k-th power yields:

• Bottom line: Eigenvalue analysis key to understanding
powers of matrices.

T

1

T TTTDTM


















n





T

1

TTTT ... TTTTDTDTTDTTDTM




















k

n

k

kk







 32

Improvements

Improvements to the power method:

• Find smallest? – use inverse matrix.

• Find all (for a symmetric matrix)? – run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

• How long does it take? – ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.

 33

Generalization: SVD

Singular value decomposition:

• Let M be an arbitrary real matrix (may be rectangular)

• Then M can be written as:

 M = U D VT

 The matrices U, V are orthogonal

 D is a diagonal matrix (might contain zeros)

 The diagonal entries are called singular values.

• U and V are different in general. For diagonalizable
matrices, they are the same, and the singular values are
the eigenvalues.

 34

M U D

VT

Singular Value Decomposition

Singular value decomposition

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=


orthogonal



orthogonal

 35

Singular Value Decomposition

Singular value decomposition

• Can be used to solve linear systems of equations

• For full rank, square M:

 M = U D VT

  M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT

• Good numerical properties (numerically stable)

• More expensive than iterative solvers

• The OpenCV library provides a very good implementation
of the SVD

Linear Inverse Problems

 37

Inverse Problems

Settings

• A (physical) process f takes place

• It transforms the original input x into an output b

• Task: recover x from b

Examples:

• 3D structure from photographs

• Tomography: values from line integrals

• 3D geometry from a noisy 3D scan

 38

Linear Inverse Problems

Assumption: f is linear and finite dimensional

f (x) = b  Mf x = b

Inversion of f is said to be an ill-posed problem, if one
of the following three conditions hold:

• There is no solution

• There is more than one solution

• There is exactly one solution, but the SVD contains very
small singular values.

 39

Ill posed Problems

Ratio: Small singular values amplify errors

• Assume inexact input

 Measurement noise

 Numerical noise

• Reminder: M-1 = V D-1 UT

• Orthogonal transforms preserve norm of x,
so V and U do not cause problems

does not hurt
(orthogonal)

does not hurt
(orthogonal)

this one is decisive

 40

Ill posed Problems

Ratio: Small singular values amplify errors

• Reminder: x = M-1b = (V D-1 UT)b

• Say D looks like that:

• Any input noise in b in the direction of the fourth right
singular vector will be amplified by 109.

• If our measurement precision is less than that, the result
will be unusable.

• Does not depend on how we invert the matrix.

• Condition number: max /min

















000000001.0000

09.000

001.10

0005.2

:D

 41

Ill Posed Problems

Two problems:

(1) Mapping destroys information

 goes below noise level

 cannot be recovered by any means

(2) Inverse mapping amplifies noise

 yields garbage solution

 even remaining information not recovered

 extremely large random solutions are obtained

We can do something about problem #2

















000000001.0000

09.000

001.10

0005.2

:D

 42

Regularization

Regularization

• Avoiding destructive noise caused by inversion

 Various techniques

 Goal: ignore the misleading information

• Subspace inversion:

 Ignore subspace with small singular values

– needs an SVD, risk of ringing

 Additional assumptions:

– smoothness (or something similar)

– make compound problem (f
-1 + assumptions) well posed

• We will look at this in detail later

 43

Illustration of the Problem

original function smoothed function

f g f ⊗ g forward
problem

 44

Illustration of the Problem

f’ f ⊗ g inverse
problem

smoothed function reconstructed function

 45

Illustration of the Problem

f’ f ⊗ g inverse
problem

regularized
reconstructed function

smoothed function

 46

Illustration of the Problem

original function

f g

Frequency Domain

G

Frequency Domain

G-1
regularization

 47

1.4

1.5

0.8

0.9

1.3

0.8

0.7


















1.2

1.5

0.3

0.4

1.6

0.2

0.3








































Illustration of the Problem

original function smoothed function

f g f ⊗ g

2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

*

forward
problem

= 1

3

 48

1.4

1.5

0.8

0.9

1.2

0.8

0.7


















 1.2

1.5

0.3

0.4

1.6

0.2

0.3

1.4

1.5

0.8

0.9

1.3

0.8

0.7








































Illustration of the Problem

original function smoothed function

f g f ⊗ g

2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

*

forward
problem

= 3

-1





















solution
(from 2 digits)

correct

 49

Analysis



















 2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

Matrix Spectrum

Dominant Eigenvectors Smallest Eigenvectors

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 2 3 4 5 6 7

0,2

0,2

1 2 3 4 5 6 7

4

3,2

3,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

 50

Digging Deeper...

Let’s look at this example again:

• Convolution operation:

𝑓′(𝑥) = 𝑓(𝑡) ∙ 𝑔 𝑡 − 𝑥 𝑑𝑡

ℝ

• Shift-invariant linear operator

f g



















 2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

continuous discrete

 51

Convolution Theorem

Fourier Transform

• Function space:

𝑓: 0. . 2π → ℝ (suff. smooth)

• Fourier basis:
1, cos 𝑘𝑥 , sin 𝑘𝑥|𝑘 = 1,2, …

• Properties

 The Fourier basis is an orthogonal basis (standard scalar prod.)

 The Fourier basis diagonalizes all shift-invariant linear operators

 52

Convolution Theorem

This means:

• Let 𝐹: ℕ → ℝ be the Fourier transform (FT) of

 𝑓: [0. . 2π] → ℝ

• Then: 𝑓 ⨂ 𝑔 = 𝐹𝑇−1(𝐹 ⋅ 𝐺)

Consequences

• Fourier spectrum of convolution operator (“filter”)
determines well-posedness of inverse operation
(deconvolution)

• Certain frequencies might be lost

 In our example: high frequencies

Quadratic Forms

 54

Multivariate Polynomials

A multi-variate polynomial of total degree d:

• A function f: n  , x  f(x)

• f is a polynomial in the components of x

• Any 1D direction f(s + tr) is a polynomial of
maximum degree d in t.

Examples:

• f(x, y) := x + xy + y is of total degree 2. In diagonal
direction, we obtain f(t[1/ 2, 1/ 2]T) = t2.

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a
quadratic polynomial in two variables

 55

Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

• xTA x + bTx + c

• A is an n  n matrix, b is an n-dim. vector, c is a number

• Matrix A can always be chosen to be symmetric

• If it isn’t, we can substitute by 0.5·(A + AT), not changing
the polynomial

 56

Example

Example:

xxxx

xxx












































































































45.2

5.21

42

31

43

21

2

1

4)5.25.2(1

4)32(1

4321

43

21
][

43

21
][

43

21
)(

TT

22

22

T

yxyx

yxyx

yyxyyxxx

yx

yx
yx

y

x
yx

f
y

x
f

 57

Quadratic Polynomials

Specifying quadratic polynomials:

• xTA x + bTx + c

• b shifts the function in space (if A has full rank):

• c is an additive constant

   

  cxx

cxxxx

cxx













xAA

AAA

A

2T
sym.) (A

TTT

T

= b

 58

Some Properties

Important properties

• Multivariate polynomials form a vector space

• We can add them component-wise:

 2x2 + 3y2 + 4xy + 2x + 2y + 4

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5

= 5x2 + 5y2 + 5xy + 7x + 7y + 9

• In vector notation:

 xTA1 x + b1
Tx + c1

 + (xTA2x + b2
Tx + c2)

 = xT(A1 + A2)x + (b1 + b2)Tx + (c1 + c2)

 59

Quadratic Polynomials

Quadrics

• Zero level set of a quadratic polynomial: “quadric”

• Shape depends on eigenvalues of A

• b shifts the object in space

• c sets the level

 60

Shapes of Quadrics

Shape analysis:

• A is symmetric

• A can be diagonalized with orthogonal eigenvectors

• Q contains the principal axis of the quadric

• The eigenvalues determine the quadratic growth
(up, down, speed of growth)

   xx

xx

n

n

QQ

QQAxx























































1T

1TTT

 61

Shapes of Quadratic Polynomials

1 = 1, 2 = 1 1 = 1, 2 = -1 1 = 1, 2 = 0

 62

The Iso-Lines: Quadrics

1 > 0, 2 > 0 1 < 0, 2 > 0

elliptic hyperbolic

1 = 0, 2  0

degenerate case

 63

Quadratic Optimization

Quadratic Optimization

• Minimize quadratic objective function

xTA x + bTx + c

• Required: A > 0 (only positive eigenvalues)
 It’s a paraboloid with a unique minimum

 The vertex (critical point) can be determined
by simply solving a linear system

• Necessary and sufficient condition

2A x = –b

 64

Condition Number

How stable is the solution?

• Depends on Matrix A

good bad

 65

Regularization

• Sums of positive semi-definite matrices are
positive semi-definite

• Add regularizing quadric

 “Fill in the valleys”

 Bias in the solution

Example

• Original: xTA x + bTx + c

• Regularized: xT(A + I)x + bTx + c

Regularization

A + I

 66

Rayleigh Quotient

Relation to eigenvalues:

• Min/max eigenvalues of a symmetric A expressed as
constraint quadratic optimization:

• The other way round – eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.

 Axx
xx

Axx T

1T

T

min minmin



x

  Axx
xx

Axx T

1T

T

max maxmax



x



 67

Coordinate Transformations

One more interesting property:

• Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

• Such a matrix can always be written as square of another
matrix:

      






























n

T
T

T

D

DTDTDTTDDT






1

2
TTDTM

 68

SPD Quadrics

Interpretation:

• Start with a unit positive quadric xTx.

• Scale the main axis (diagonal of D)

• Rotate to a different coordinate system (columns of T)

• Recovering main axis from M: Compute eigensystem
(“principal component analysis”)

 2
T DTTDTMI Identity

main axis

xxT MxxT

 69

Why should I care?

What are quadrics good for?

• log-probability of Gaussian models

• Estimation in Gaussian probabilistic
models...

 ...is quadratic optimization.

 ...is solving of linear systems of equations.

• Quadratic optimization

 easy to use & solve

 feasible :-)

• Approximate more complex models locally

Gaussian normal distribution

 












 


2

2

,
2

exp
π2

1
)(








x
xp

Groups and Transformations

 71

Groups

Definition:
A set G with operation ⊗ is called a group (G, ⊗), iff:

• Closed: ⊗: 𝐺 × 𝐺 → 𝐺 (always maps back to G)

• Associativity: (𝑓 ⊗ g) ⊗ ℎ = 𝑓 ⊗ (g ⊗ ℎ)

• Neutral element: there exists 𝑖𝑑 ∈ 𝐺 such that for any
 𝑔 ∈ 𝐺: 𝑔 ⊗ 𝑖𝑑 = 𝑔

• Inverse element: For each 𝑔 ∈ 𝐺 there exists 𝑔−1 ∈ 𝐺
 such that 𝑔 ⊗ 𝑔−1 = 𝑔−1 ⊗ 𝑔 = 𝑖𝑑

Abelian Groups

• The group is commutative iff always 𝑓 ⊗ g = 𝑔 ⊗ 𝑓

 72

Examples of Groups

Examples:

• G = invertible matrices, ⊗ = composition (matrix mult.)

• G = invertible affine transformation of ℝ𝑑, ⊗ =
composition
(matrix form: homogeneos coordinates)

• G = bijections of a set S to itself, ⊗ = composition

 G = smooth Ck bijections of a set S to itself, ⊗ = composition

 G = global symmetry transforms of a shape, ⊗ = composition

 G = permutation of a discrete set, ⊗ = composition

 73

Examples of Groups

Examples:

• G = invertible matrices, ⊗ = composition (matrix mult.)

• G = invertible affine transformation of ℝ𝑑
Subgroups:

 G = similarity transform (translation, rotation, mirroring,
scaling ≠ 0)

 E(d): G = rigid motions (translation, rotation, mirroring)

 SE(d): G = rigid motions (translation, rotation)

 O(d): G = orthogonal matrix (rotation, mirroring)
(columns/rows orthonormal)

 SO(d): G = orthogonal matrix (rotation)
(columns/rows orthonormal, determinant 1)

 G = translations (the only commutative group out of these)

 74

Examples of Groups

Examples:

• G = global symmetry transforms of a 2D shape

 75

Examples of Groups

Examples:

• G = global symmetry transforms of a 3D shape

(extended to infinity) (extended to infinity)

 76

Outlook

More details on this later

• Symmetry groups

• Structural regularity

• Crystalographic groups and regular lattices

