
Statistical Geometry Processing
Winter Semester 2011/2012

Linear Algebra, Function Spaces
& Inverse Problems

Vector and Function Spaces

 3

Vectors

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space

 4

Vector Operations

v

w

v + w

“Adding” Vectors:
Concatenation

 5

Vector Operations

v

Scalar Multiplication:
Scaling vectors (incl. mirroring)

1.5·v

2.0·v

-1.0·v

 6

You can combine it...

v

Linear Combinations:
This is basically all you can do.

w

2w + v

n

i
ii

1

vr

 7

Vector Spaces

Vector space:

• Set of vectors V

• Based on field F (we use only F =)

• Two operations:

 Adding vectors u = v + w (u, v, w V)

 Scaling vectors w = v (u V, F)

• Vector space axioms:

 8

Additional Tools

More concepts:
• Subspaces, linear spans, bases

• Scalar product
 Angle, length, orthogonality

 Gram-Schmidt orthogonalization

• Cross product (ℝ3)

• Linear maps
 Matrices

• Eigenvalues & eigenvectors

• Quadratic forms

(Check your old math books)

 9

Example Spaces

Function spaces:

• Space of all functions f:

• Space of all smooth Ck functions f:

• Space of all functions f: [0..1]5 8

• etc...

0 1 0 1 0 1

+ =

 10

Function Spaces

Intuition:

• Start with a finite dimensional vector

• Increase sampling density towards infinity

• Real numbers: uncountable amount of dimensions

0 1 0 1 0 1
d = 9 d = 18 d =

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x)

 11

Dot Product on Function Spaces

Scalar products

• For square-integrable functions f, g: n , the
standard scalar product is defined as:

• It measures an abstract norm and “angle” between
function (not in a geometric sense)

• Orthogonal functions:

 Do not influence each other in linear combinations.

 Adding one to the other does not change the value in the other
ones direction.

 dxxgxfgf)()(:

 12

Approximation of Function Spaces

Finite dimensional subspaces:

• Function spaces with infinite dimension are hard to
represented on a computer

• For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

• Two basic approaches

 13

Approximation of Function Spaces

Task:

• Given: Infinite-dimensional function space V.

• Task: Find f V with a certain property.

Recipe: “Finite Differences”

• Sample function f on discrete grid

• Approximate property discretely

 Derivatives => finite differences

 Integrals => Finite sums

• Optimization: Find best discrete function

 14

Recipe: “Finite Elements”

• Choose basis functions b1, ..., bd V

• Find 𝑓 = 𝜆𝑖𝑏𝑖
𝑑
𝑖=1 that matches the property best

• 𝑓 is described by (1,...,d)

Approximation of Function Spaces

actual solution function space basis approximate solution

 15

Examples

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2

Monomial basis

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Fourier basis

0 2

B-spline basis,

Gaussian basis

 16

“Best Match”

Linear combination matches best

• Solution 1: Least squares minimization

 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

• Solution 2: Galerkin method

∀𝑖 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑖 = 0

• Both are equivalent

 17

Optimality Criterion

Given:

• Subspace W ⊆ V

• An element 𝐯 ∈ V

Then we get:

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2

(i.e. the Euclidean distance) if and only if:

• the residual w − 𝐯 is orthogonal to W

Least squares = minimal Euclidean distance

W

V
𝐯

𝐰

 18

Formal Derivation

Least-squares

E 𝑓 = 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥

ℝ

 = 𝑓2 𝑥 − 2 𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 + 𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

𝑑𝑥

ℝ

Setting derivatives to zero:

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

Result:

∀𝑗 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0

Linear Maps

 20

Linear Maps

A Function

• f: V W between vector spaces V, W

is linear if and only if:

• v1,v2V: f (v1+v2) = f (v1) + f (v2)

• vV, F: f (v) = f (v)

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.

 21

Matrix Representation

Finite dimensional spaces

• Linear maps can be represented as matrices

• For each basis vector vi of V, we specify the mapped
vector wi.

• Then, the map f is given by:

nn

n

vv

v

v

ff wwv

 ...)(11

1

 22

Matrix Representation

This can be written as matrix-vector product:

The columns are the images of the basis vectors (for which the
coordinates of v are given)

n

n

v

v

vf
1

1

||

||

)(ww

 23

Linear Systems of Equations

Problem: Invert an affine map

• Given: Mx = b

• We know M, b

• Looking for x

Solution

• Set of solutions: always an affine subspace of n,
or the empty set.

 Point, line, plane, hyperplane...

• Innumerous algorithms for solving linear systems

 24

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

• Gaussian elimination: O(n3) operations for n n matrices

• We can do better, in particular for special cases:

 Band matrices:
constant bandwidth

 Sparse matrices:
constant number of non-zero
entries per row

– Store only non-zero entries

– Instead of (3.5, 0, 0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]

 25

Solvers for Linear Systems

Algorithms for solving linear systems of n equations:

• Band matrices, O(1) bandwidth:
 Modified O(n) elimination algorithm.

• Iterative Gauss-Seidel solver
 converges for diagonally dominant matrices
 Typically: O(n) iterations, each costs O(n) for a sparse matrix.

• Conjugate Gradient solver
 Only symmetric, positive definite matrices
 Guaranteed: O(n) iterations
 Typically good solution after O(n) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.

 26

Eigenvectors & Eigenvalues

Definition:

• Linear map M, non-zero vector x with

 Mx = x

• an is eigenvalue of M

• x is the corresponding eigenvector.

 27

Example

Intuition:

• In the direction of an eigenvector, the linear map acts like
a scaling

• Example: two eigenvalues (0.5 and 2)

• Two eigenvectors

• Standard basis contains no eigenvectors

 28

Eigenvectors & Eigenvalues

Diagonalization:

In case an n n matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT-1.

 29

Spectral Theorem

Spectral Theorem:

If M is a symmetric n n matrix of real numbers
(i.e. M = MT), there exists an orthogonal set of n
eigenvectors.

This means, every (real) symmetric matrix can be
diagonalized:

M = TDTT with an orthogonal matrix T.

 30

Computation

Simple algorithm

• “Power iteration” for symmetric matrices

• Computes largest eigenvalue even for large matrices

• Algorithm:

 Start with a random vector (maybe multiple tries)

 Repeatedly multiply with matrix

 Normalize vector after each step

 Repeat until ration before / after normalization converges
(this is the eigenvalue)

• Intuition:

 Largest eigenvalue = “dominant” component/direction

 31

Powers of Matrices

What happens:

• A symmetric matrix can be written as:

• Taking it to the k-th power yields:

• Bottom line: Eigenvalue analysis key to understanding
powers of matrices.

T

1

T TTTDTM

n

T

1

TTTT ... TTTTDTDTTDTTDTM

k

n

k

kk

 32

Improvements

Improvements to the power method:

• Find smallest? – use inverse matrix.

• Find all (for a symmetric matrix)? – run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

• How long does it take? – ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.

 33

Generalization: SVD

Singular value decomposition:

• Let M be an arbitrary real matrix (may be rectangular)

• Then M can be written as:

 M = U D VT

 The matrices U, V are orthogonal

 D is a diagonal matrix (might contain zeros)

 The diagonal entries are called singular values.

• U and V are different in general. For diagonalizable
matrices, they are the same, and the singular values are
the eigenvalues.

 34

M U D

VT

Singular Value Decomposition

Singular value decomposition

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal

orthogonal

 35

Singular Value Decomposition

Singular value decomposition

• Can be used to solve linear systems of equations

• For full rank, square M:

 M = U D VT

 M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT

• Good numerical properties (numerically stable)

• More expensive than iterative solvers

• The OpenCV library provides a very good implementation
of the SVD

Linear Inverse Problems

 37

Inverse Problems

Settings

• A (physical) process f takes place

• It transforms the original input x into an output b

• Task: recover x from b

Examples:

• 3D structure from photographs

• Tomography: values from line integrals

• 3D geometry from a noisy 3D scan

 38

Linear Inverse Problems

Assumption: f is linear and finite dimensional

f (x) = b Mf x = b

Inversion of f is said to be an ill-posed problem, if one
of the following three conditions hold:

• There is no solution

• There is more than one solution

• There is exactly one solution, but the SVD contains very
small singular values.

 39

Ill posed Problems

Ratio: Small singular values amplify errors

• Assume inexact input

 Measurement noise

 Numerical noise

• Reminder: M-1 = V D-1 UT

• Orthogonal transforms preserve norm of x,
so V and U do not cause problems

does not hurt
(orthogonal)

does not hurt
(orthogonal)

this one is decisive

 40

Ill posed Problems

Ratio: Small singular values amplify errors

• Reminder: x = M-1b = (V D-1 UT)b

• Say D looks like that:

• Any input noise in b in the direction of the fourth right
singular vector will be amplified by 109.

• If our measurement precision is less than that, the result
will be unusable.

• Does not depend on how we invert the matrix.

• Condition number: max /min

000000001.0000

09.000

001.10

0005.2

:D

 41

Ill Posed Problems

Two problems:

(1) Mapping destroys information

 goes below noise level

 cannot be recovered by any means

(2) Inverse mapping amplifies noise

 yields garbage solution

 even remaining information not recovered

 extremely large random solutions are obtained

We can do something about problem #2

000000001.0000

09.000

001.10

0005.2

:D

 42

Regularization

Regularization

• Avoiding destructive noise caused by inversion

 Various techniques

 Goal: ignore the misleading information

• Subspace inversion:

 Ignore subspace with small singular values

– needs an SVD, risk of ringing

 Additional assumptions:

– smoothness (or something similar)

– make compound problem (f
-1 + assumptions) well posed

• We will look at this in detail later

 43

Illustration of the Problem

original function smoothed function

f g f ⊗ g forward
problem

 44

Illustration of the Problem

f’ f ⊗ g inverse
problem

smoothed function reconstructed function

 45

Illustration of the Problem

f’ f ⊗ g inverse
problem

regularized
reconstructed function

smoothed function

 46

Illustration of the Problem

original function

f g

Frequency Domain

G

Frequency Domain

G-1
regularization

 47

1.4

1.5

0.8

0.9

1.3

0.8

0.7

1.2

1.5

0.3

0.4

1.6

0.2

0.3

Illustration of the Problem

original function smoothed function

f g f ⊗ g

2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

*

forward
problem

= 1

3

 48

1.4

1.5

0.8

0.9

1.2

0.8

0.7

 1.2

1.5

0.3

0.4

1.6

0.2

0.3

1.4

1.5

0.8

0.9

1.3

0.8

0.7

Illustration of the Problem

original function smoothed function

f g f ⊗ g

2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

*

forward
problem

= 3

-1

solution
(from 2 digits)

correct

 49

Analysis

 2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

Matrix Spectrum

Dominant Eigenvectors Smallest Eigenvectors

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 2 3 4 5 6 7

0,2

0,2

1 2 3 4 5 6 7

4

3,2

3,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

 50

Digging Deeper...

Let’s look at this example again:

• Convolution operation:

𝑓′(𝑥) = 𝑓(𝑡) ∙ 𝑔 𝑡 − 𝑥 𝑑𝑡

ℝ

• Shift-invariant linear operator

f g

 2 1 0 0 0 0 1

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

1 0 0 0 0 1 2

continuous discrete

 51

Convolution Theorem

Fourier Transform

• Function space:

𝑓: 0. . 2π → ℝ (suff. smooth)

• Fourier basis:
1, cos 𝑘𝑥 , sin 𝑘𝑥|𝑘 = 1,2, …

• Properties

 The Fourier basis is an orthogonal basis (standard scalar prod.)

 The Fourier basis diagonalizes all shift-invariant linear operators

 52

Convolution Theorem

This means:

• Let 𝐹: ℕ → ℝ be the Fourier transform (FT) of

 𝑓: [0. . 2π] → ℝ

• Then: 𝑓 ⨂ 𝑔 = 𝐹𝑇−1(𝐹 ⋅ 𝐺)

Consequences

• Fourier spectrum of convolution operator (“filter”)
determines well-posedness of inverse operation
(deconvolution)

• Certain frequencies might be lost

 In our example: high frequencies

Quadratic Forms

 54

Multivariate Polynomials

A multi-variate polynomial of total degree d:

• A function f: n , x f(x)

• f is a polynomial in the components of x

• Any 1D direction f(s + tr) is a polynomial of
maximum degree d in t.

Examples:

• f(x, y) := x + xy + y is of total degree 2. In diagonal
direction, we obtain f(t[1/ 2, 1/ 2]T) = t2.

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a
quadratic polynomial in two variables

 55

Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

• xTA x + bTx + c

• A is an n n matrix, b is an n-dim. vector, c is a number

• Matrix A can always be chosen to be symmetric

• If it isn’t, we can substitute by 0.5·(A + AT), not changing
the polynomial

 56

Example

Example:

xxxx

xxx

45.2

5.21

42

31

43

21

2

1

4)5.25.2(1

4)32(1

4321

43

21
][

43

21
][

43

21
)(

TT

22

22

T

yxyx

yxyx

yyxyyxxx

yx

yx
yx

y

x
yx

f
y

x
f

 57

Quadratic Polynomials

Specifying quadratic polynomials:

• xTA x + bTx + c

• b shifts the function in space (if A has full rank):

• c is an additive constant

 cxx

cxxxx

cxx

xAA

AAA

A

2T
sym.) (A

TTT

T

= b

 58

Some Properties

Important properties

• Multivariate polynomials form a vector space

• We can add them component-wise:

 2x2 + 3y2 + 4xy + 2x + 2y + 4

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5

= 5x2 + 5y2 + 5xy + 7x + 7y + 9

• In vector notation:

 xTA1 x + b1
Tx + c1

 + (xTA2x + b2
Tx + c2)

 = xT(A1 + A2)x + (b1 + b2)Tx + (c1 + c2)

 59

Quadratic Polynomials

Quadrics

• Zero level set of a quadratic polynomial: “quadric”

• Shape depends on eigenvalues of A

• b shifts the object in space

• c sets the level

 60

Shapes of Quadrics

Shape analysis:

• A is symmetric

• A can be diagonalized with orthogonal eigenvectors

• Q contains the principal axis of the quadric

• The eigenvalues determine the quadratic growth
(up, down, speed of growth)

 xx

xx

n

n

QQ

QQAxx

1T

1TTT

 61

Shapes of Quadratic Polynomials

1 = 1, 2 = 1 1 = 1, 2 = -1 1 = 1, 2 = 0

 62

The Iso-Lines: Quadrics

1 > 0, 2 > 0 1 < 0, 2 > 0

elliptic hyperbolic

1 = 0, 2 0

degenerate case

 63

Quadratic Optimization

Quadratic Optimization

• Minimize quadratic objective function

xTA x + bTx + c

• Required: A > 0 (only positive eigenvalues)
 It’s a paraboloid with a unique minimum

 The vertex (critical point) can be determined
by simply solving a linear system

• Necessary and sufficient condition

2A x = –b

 64

Condition Number

How stable is the solution?

• Depends on Matrix A

good bad

 65

Regularization

• Sums of positive semi-definite matrices are
positive semi-definite

• Add regularizing quadric

 “Fill in the valleys”

 Bias in the solution

Example

• Original: xTA x + bTx + c

• Regularized: xT(A + I)x + bTx + c

Regularization

A + I

 66

Rayleigh Quotient

Relation to eigenvalues:

• Min/max eigenvalues of a symmetric A expressed as
constraint quadratic optimization:

• The other way round – eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.

 Axx
xx

Axx T

1T

T

min minmin

x

 Axx
xx

Axx T

1T

T

max maxmax

x

 67

Coordinate Transformations

One more interesting property:

• Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

• Such a matrix can always be written as square of another
matrix:

n

T
T

T

D

DTDTDTTDDT

1

2
TTDTM

 68

SPD Quadrics

Interpretation:

• Start with a unit positive quadric xTx.

• Scale the main axis (diagonal of D)

• Rotate to a different coordinate system (columns of T)

• Recovering main axis from M: Compute eigensystem
(“principal component analysis”)

 2
T DTTDTMI Identity

main axis

xxT MxxT

 69

Why should I care?

What are quadrics good for?

• log-probability of Gaussian models

• Estimation in Gaussian probabilistic
models...

 ...is quadratic optimization.

 ...is solving of linear systems of equations.

• Quadratic optimization

 easy to use & solve

 feasible :-)

• Approximate more complex models locally

Gaussian normal distribution

2

2

,
2

exp
π2

1
)(

x
xp

Groups and Transformations

 71

Groups

Definition:
A set G with operation ⊗ is called a group (G, ⊗), iff:

• Closed: ⊗: 𝐺 × 𝐺 → 𝐺 (always maps back to G)

• Associativity: (𝑓 ⊗ g) ⊗ ℎ = 𝑓 ⊗ (g ⊗ ℎ)

• Neutral element: there exists 𝑖𝑑 ∈ 𝐺 such that for any
 𝑔 ∈ 𝐺: 𝑔 ⊗ 𝑖𝑑 = 𝑔

• Inverse element: For each 𝑔 ∈ 𝐺 there exists 𝑔−1 ∈ 𝐺
 such that 𝑔 ⊗ 𝑔−1 = 𝑔−1 ⊗ 𝑔 = 𝑖𝑑

Abelian Groups

• The group is commutative iff always 𝑓 ⊗ g = 𝑔 ⊗ 𝑓

 72

Examples of Groups

Examples:

• G = invertible matrices, ⊗ = composition (matrix mult.)

• G = invertible affine transformation of ℝ𝑑, ⊗ =
composition
(matrix form: homogeneos coordinates)

• G = bijections of a set S to itself, ⊗ = composition

 G = smooth Ck bijections of a set S to itself, ⊗ = composition

 G = global symmetry transforms of a shape, ⊗ = composition

 G = permutation of a discrete set, ⊗ = composition

 73

Examples of Groups

Examples:

• G = invertible matrices, ⊗ = composition (matrix mult.)

• G = invertible affine transformation of ℝ𝑑
Subgroups:

 G = similarity transform (translation, rotation, mirroring,
scaling ≠ 0)

 E(d): G = rigid motions (translation, rotation, mirroring)

 SE(d): G = rigid motions (translation, rotation)

 O(d): G = orthogonal matrix (rotation, mirroring)
(columns/rows orthonormal)

 SO(d): G = orthogonal matrix (rotation)
(columns/rows orthonormal, determinant 1)

 G = translations (the only commutative group out of these)

 74

Examples of Groups

Examples:

• G = global symmetry transforms of a 2D shape

 75

Examples of Groups

Examples:

• G = global symmetry transforms of a 3D shape

(extended to infinity) (extended to infinity)

 76

Outlook

More details on this later

• Symmetry groups

• Structural regularity

• Crystalographic groups and regular lattices

