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& Inverse Problems 



Vector and Function Spaces 
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Vectors 

vectors are arrows in space 
classically: 2 or 3 dim. Euclidian space 
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Vector Operations 

v 

w 

v + w 

“Adding” Vectors: 
Concatenation 
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Vector Operations 

v 

Scalar Multiplication: 
Scaling vectors (incl. mirroring) 

1.5·v 

2.0·v 

-1.0·v 



 6 

You can combine it... 

v 

Linear Combinations: 
This is basically all you can do. 
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Vector Spaces 

Vector space: 

• Set of vectors V 

• Based on field F (we use only F = ) 

• Two operations: 

 Adding vectors u = v + w (u, v, w  V) 

 Scaling vectors w = v (u  V,   F) 

• Vector space axioms: 
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Additional Tools 

More concepts: 
• Subspaces, linear spans, bases 

• Scalar product 
 Angle, length, orthogonality 

 Gram-Schmidt orthogonalization 

• Cross product (ℝ3) 

• Linear maps 
 Matrices 

• Eigenvalues & eigenvectors 

• Quadratic forms 

(Check your old math books) 
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Example Spaces 

Function spaces: 

• Space of all functions f:    

• Space of all smooth Ck functions f:    

• Space of all functions f: [0..1]5  8 

• etc... 

0 1 0 1 0 1 

+ = 
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Function Spaces 

Intuition: 

• Start with a finite dimensional vector 

• Increase sampling density towards infinity 

• Real numbers: uncountable amount of dimensions 

0 1 0 1 0 1 
d = 9 d = 18 d =  

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x) 
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Dot Product on Function Spaces 

Scalar products 

• For square-integrable functions f, g:   n  , the 
standard scalar product is defined as: 

 

 

• It measures an abstract norm and “angle” between 
function (not in a geometric sense) 

• Orthogonal functions: 

 Do not influence each other in linear combinations. 

 Adding one to the other does not change the value in the other 
ones direction. 




 dxxgxfgf )()(:
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Approximation of Function Spaces 

Finite dimensional subspaces: 

• Function spaces with infinite dimension are hard to 
represented on a computer 

• For numerical purpose, finite-dimensional subspaces are 
used to approximate the larger space 

• Two basic approaches 
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Approximation of Function Spaces 

Task: 

• Given: Infinite-dimensional function space V. 

• Task: Find f  V with a certain property. 

Recipe: “Finite Differences” 

• Sample function f on discrete grid 

• Approximate property discretely 

 Derivatives => finite differences 

 Integrals => Finite sums 

• Optimization: Find best discrete function 
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Recipe: “Finite Elements” 

• Choose basis functions b1, ..., bd  V 

• Find 𝑓 =  𝜆𝑖𝑏𝑖
𝑑
𝑖=1  that matches the property best 

• 𝑓  is described by (1,...,d) 

Approximation of Function Spaces 

actual solution function space basis approximate solution 
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Examples 
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“Best Match” 

Linear combination matches best 

• Solution 1: Least squares minimization 

 𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

 

 

• Solution 2: Galerkin method 

∀𝑖 = 1. . 𝑛: 𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

,  𝑏𝑖 = 0 

• Both are equivalent 
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Optimality Criterion 

Given: 

• Subspace W ⊆ V 

• An element 𝐯 ∈ V 

Then we get: 

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2 

(i.e. the Euclidean distance) if and only if: 

• the residual w − 𝐯  is orthogonal to W 

Least squares = minimal Euclidean distance 

W 

V 
𝐯 

𝐰 



 18 

Formal Derivation 

Least-squares 

E 𝑓 =  𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 

ℝ

 

          =  𝑓2 𝑥 − 2  𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 +   𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

𝑑𝑥 

ℝ

 

Setting derivatives to zero: 
 

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

 

Result: 

∀𝑗 = 1. . 𝑛:  𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0 

 



Linear Maps 
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Linear Maps 

A Function 

•  f: V  W between vector spaces V, W 

is linear if and only if: 

• v1,v2V: f (v1+v2) = f (v1) + f (v2) 

• vV, F: f (v) = f (v) 

Constructing linear mappings: 

A linear map is uniquely determined if we specify a mapping 
value for each basis vector of V. 
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Matrix Representation 

Finite dimensional spaces 

• Linear maps can be represented as matrices 

• For each basis  vector vi of V, we specify the mapped 
vector wi. 

• Then, the map f is given by: 
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Matrix Representation 

This can be written as matrix-vector product: 

 

 

The columns are the images of the basis vectors (for which the 
coordinates of v are given) 
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Linear Systems of Equations 

Problem: Invert an affine map 

• Given: Mx = b 

• We know M, b 

• Looking for x 

Solution 

• Set of solutions: always an affine subspace of n, 
or the empty set. 

 Point, line, plane, hyperplane... 

• Innumerous algorithms for solving linear systems 
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Solvers for Linear Systems 

Algorithms for solving linear systems of equations: 

• Gaussian elimination: O(n3) operations for n  n matrices 

• We can do better, in particular for special cases: 

 Band matrices: 
constant bandwidth 
 

 Sparse matrices: 
constant number of non-zero 
entries per row 

– Store only non-zero entries 

– Instead of (3.5, 0, 0, 0, 7, 0, 0), 
store [(1:3.5), (5:7)] 
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Solvers for Linear Systems 

Algorithms for solving linear systems of n equations: 

• Band matrices, O(1) bandwidth: 
 Modified O(n) elimination algorithm. 

• Iterative Gauss-Seidel solver 
 converges for diagonally dominant matrices 
 Typically: O(n) iterations, each costs O(n) for a sparse matrix. 

• Conjugate Gradient solver 
 Only symmetric, positive definite matrices 
 Guaranteed: O(n) iterations 
 Typically good solution after O(  n) iterations. 

More details on iterative solvers: J. R. Shewchuk: An Introduction to the 
Conjugate Gradient Method Without the Agonizing Pain, 1994. 
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Eigenvectors & Eigenvalues 

Definition: 

• Linear map M, non-zero vector x with 

  Mx = x 

•  an is eigenvalue of M  

• x is the corresponding eigenvector. 
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Example 

Intuition: 

• In the direction of an eigenvector, the linear map acts like 
a scaling 

 

 

 

 

• Example: two eigenvalues (0.5 and 2) 

• Two eigenvectors 

• Standard basis contains no eigenvectors 
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Eigenvectors & Eigenvalues 

Diagonalization: 

In case an n  n matrix M has n linear independent 
eigenvectors, we can diagonalize M by transforming to this 
coordinate system: M = TDT-1. 
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Spectral Theorem 

Spectral Theorem: 

If M is a symmetric n  n matrix of real numbers 
(i.e. M = MT), there exists an orthogonal set of n 
eigenvectors. 

This means, every (real) symmetric matrix can be 
diagonalized: 

M = TDTT with an orthogonal matrix T. 
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Computation 

Simple algorithm 

• “Power iteration” for symmetric matrices 

• Computes largest eigenvalue even for large matrices 

• Algorithm: 

 Start with a random vector (maybe multiple tries) 

 Repeatedly multiply with matrix 

 Normalize vector after each step 

 Repeat until ration before / after normalization converges 
(this is the eigenvalue) 

• Intuition: 

 Largest eigenvalue = “dominant” component/direction 
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Powers of Matrices 

What happens: 

• A symmetric matrix can be written as: 

 

 

 

• Taking it to the k-th power yields: 

 

 

 

• Bottom line: Eigenvalue analysis key to understanding 
powers of matrices. 
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Improvements 

Improvements to the power method: 

• Find smallest?  – use inverse matrix. 

• Find all (for a symmetric matrix)? – run repeatedly, 
orthogonalize current estimate to already known 
eigenvectors in each iteration (Gram Schmidt) 

• How long does it take? – ratio to next smaller eigenvalue, 
gap increases exponentially. 

There are more sophisticated algorithms based on 
this idea. 
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Generalization: SVD 

Singular value decomposition: 

• Let M be an arbitrary real matrix (may be rectangular) 

• Then M can be written as: 

 M = U D VT  

 The matrices U, V are orthogonal 

 D is a diagonal matrix (might contain zeros) 

 The diagonal entries are called singular values. 

• U and V are different in general. For diagonalizable 
matrices, they are the same, and the singular values are 
the eigenvalues. 
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M U D 

VT 

Singular Value Decomposition 

Singular value decomposition 

1 

2 

3 

4 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

0 0 

0 0 0 

= 


orthogonal 



orthogonal 
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Singular Value Decomposition 

Singular value decomposition 

• Can be used to solve linear systems of equations 

• For full rank, square M: 

  M = U D VT  

  M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT  

• Good numerical properties (numerically stable) 

• More expensive than iterative solvers 

• The OpenCV library provides a very good implementation 
of the SVD 



Linear Inverse Problems 
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Inverse Problems 

Settings 

• A (physical) process f takes place 

• It transforms the original input x into an output b 

• Task: recover x from b 

Examples: 

• 3D structure from photographs 

• Tomography: values from line integrals 

• 3D geometry from a noisy 3D scan 
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Linear Inverse Problems 

Assumption: f is linear and finite dimensional 

f (x) = b    Mf x = b 

Inversion of f is said to be an ill-posed problem, if one 
of the following three conditions hold: 

• There is no solution 

• There is more than one solution 

• There is exactly one solution, but the SVD contains very 
small singular values. 
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Ill posed Problems 

Ratio: Small singular values amplify errors 

• Assume inexact input  

 Measurement noise 

 Numerical noise 

• Reminder: M-1 = V D-1 UT 

 

 

 

• Orthogonal transforms preserve norm of x, 
so V and U do not cause problems 

does not hurt 
(orthogonal) 

does not hurt 
(orthogonal) 

this one is decisive 
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Ill posed Problems 

Ratio: Small singular values amplify errors 

• Reminder: x = M-1b = (V D-1 UT)b 

• Say D looks like that: 

 

 

• Any input noise in b in the direction of the fourth right 
singular vector will be amplified by 109. 

• If our measurement precision is less than that, the result 
will be unusable. 

• Does not depend on how we invert the matrix. 

• Condition number: max /min 
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Ill Posed Problems 

Two problems: 

(1) Mapping destroys information 

 goes below noise level 

 cannot be recovered by any means 

(2) Inverse mapping amplifies noise 

 yields garbage solution 

 even remaining information not recovered 

 extremely large random solutions are obtained 

We can do something about problem #2 
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Regularization 

Regularization 

• Avoiding destructive noise caused by inversion 

 Various techniques 

 Goal: ignore the misleading information 

• Subspace inversion: 

 Ignore subspace with small singular values 

– needs an SVD, risk of ringing 

 Additional assumptions:  

– smoothness (or something similar) 

– make compound problem (f 
-1 + assumptions) well posed 

• We will look at this in detail later 
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Illustration of the Problem 

original function smoothed function 

f g f ⊗ g forward 
problem 
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Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

smoothed function reconstructed function 
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Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

regularized 
reconstructed function 

smoothed function 
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Illustration of the Problem 

original function 

f g 

Frequency Domain 

G 

Frequency Domain 

G-1 
regularization 
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Analysis 
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Digging Deeper... 

Let’s look at this example again: 

• Convolution operation: 

𝑓′(𝑥) =  𝑓(𝑡) ∙ 𝑔 𝑡 − 𝑥 𝑑𝑡

ℝ

 

• Shift-invariant linear operator 

f g 
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Convolution Theorem 

Fourier Transform 

• Function space: 

𝑓: 0. . 2π → ℝ (suff. smooth) 

• Fourier basis: 
1, cos 𝑘𝑥 , sin 𝑘𝑥|𝑘 = 1,2, …  

• Properties 

 The Fourier basis is an orthogonal basis (standard scalar prod.) 

 The Fourier basis diagonalizes all shift-invariant linear operators 
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Convolution Theorem 

This means: 

• Let 𝐹: ℕ → ℝ    be the Fourier transform (FT) of 

 𝑓: [0. . 2π] → ℝ 

• Then: 𝑓  ⨂ 𝑔 = 𝐹𝑇−1(𝐹 ⋅ 𝐺) 

Consequences 

• Fourier spectrum of convolution operator (“filter”) 
determines well-posedness of inverse operation 
(deconvolution) 

• Certain frequencies might be lost 

 In our example: high frequencies 

 



Quadratic Forms 
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Multivariate Polynomials 

A multi-variate polynomial of total degree d: 

• A function f: n  ,   x  f(x) 

• f is a polynomial in the components of x 

• Any 1D direction f(s + tr) is a polynomial of  
maximum degree d in t. 

Examples: 

• f(x, y) := x + xy + y  is of total degree 2. In diagonal 
direction, we obtain f(t[1/  2, 1/  2]T) = t2. 

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a 
quadratic polynomial in two variables 
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Quadratic Polynomials 

In general, any quadratic polynomial in n variables 
can be written as: 

• xTA x  +  bTx  + c 

• A is an n  n matrix, b is an n-dim. vector, c is a number 

• Matrix A can always be chosen to be symmetric 

• If it isn’t, we can substitute by 0.5·(A + AT), not changing 
the polynomial 



 56 

Example 

Example: 

xxxx

xxx
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Quadratic Polynomials 

Specifying quadratic polynomials: 

• xTA x  +  bTx  + c 

• b shifts the function in space (if A has full rank): 

 

 

 

 

• c is an additive constant 

   

  cxx

cxxxx

cxx
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Some Properties 

Important properties 

• Multivariate polynomials form a vector space 

• We can add them component-wise: 

 2x2 + 3y2 + 4xy + 2x + 2y + 4 

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5 

= 5x2 + 5y2 + 5xy + 7x + 7y + 9 

• In vector notation: 

       xTA1 x  +  b1
Tx  + c1 

 + (xTA2x  +  b2
Tx  + c2) 

 = xT(A1 + A2)x  +  (b1 + b2)Tx  + (c1 + c2) 
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Quadratic Polynomials 

Quadrics 

• Zero level set of a quadratic polynomial: “quadric” 

• Shape depends on eigenvalues of A 

• b shifts the object in space 

• c sets the level 



 60 

Shapes of Quadrics 

Shape analysis: 

• A is symmetric 

• A can be diagonalized with orthogonal eigenvectors 

 

 

 

 

• Q contains the principal axis of the quadric 

• The eigenvalues determine the quadratic growth 
(up, down, speed of growth) 
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Shapes of Quadratic Polynomials 

1 = 1, 2 = 1  1 = 1, 2 = -1  1 = 1, 2 = 0  
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The Iso-Lines: Quadrics 

1 > 0, 2 > 0  1 < 0, 2 > 0  

elliptic hyperbolic 

1 = 0, 2  0  

degenerate case 
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Quadratic Optimization 

Quadratic Optimization 

• Minimize quadratic objective function 

xTA x  +  bTx  + c 

• Required: A > 0 (only positive eigenvalues) 
 It’s a paraboloid with a unique minimum 

 The vertex (critical point) can be determined 
by simply solving a linear system 

• Necessary and sufficient condition 

2A x  = –b 
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Condition Number 

How stable is the solution? 

• Depends on Matrix A 

 

good bad 
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Regularization 

• Sums of positive semi-definite matrices are  
positive semi-definite 

• Add regularizing quadric 

 “Fill in the valleys” 

 Bias in the solution 

Example 

• Original: xTA x  +  bTx  + c 

• Regularized: xT(A + I )x  +  bTx  + c 

 

Regularization 

A   + I 
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Rayleigh Quotient 

Relation to eigenvalues: 

• Min/max eigenvalues of a symmetric A expressed as 
constraint quadratic optimization: 

 

 

 

• The other way round – eigenvalues solve a certain type of 
constrained, (non-convex) optimization problem. 
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Coordinate Transformations 

One more interesting property: 

• Given a positive definite symmetric (“SPD”) matrix M 
(all eigenvalues positive) 

• Such a matrix can always be written as square of another 
matrix: 
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SPD Quadrics 

Interpretation: 

• Start with a unit positive quadric xTx. 

• Scale the main axis (diagonal of D) 

• Rotate to a different coordinate system (columns of T) 

• Recovering main axis from M: Compute eigensystem 
(“principal component analysis”) 

 2
T DTTDTMI Identity

main axis 

xxT MxxT



 69 

Why should I care? 

What are quadrics good for? 

• log-probability of Gaussian models 

• Estimation in Gaussian probabilistic 
models...  

 ...is quadratic optimization. 

 ...is solving of linear systems of equations. 

• Quadratic optimization 

 easy to use & solve 

 feasible :-) 

• Approximate more complex models locally 

Gaussian normal distribution 
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Groups and Transformations 
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Groups 

Definition: 
A set G with operation ⊗ is called a group (G, ⊗), iff: 

• Closed: ⊗: 𝐺 × 𝐺 → 𝐺 (always maps back to G) 

• Associativity: (𝑓 ⊗ g) ⊗ ℎ = 𝑓 ⊗ (g ⊗ ℎ) 

• Neutral element: there exists 𝑖𝑑 ∈ 𝐺 such that for any 
 𝑔 ∈ 𝐺:  𝑔 ⊗ 𝑖𝑑 = 𝑔 

• Inverse element: For each 𝑔 ∈ 𝐺 there exists 𝑔−1 ∈ 𝐺 
 such that 𝑔 ⊗ 𝑔−1 = 𝑔−1 ⊗ 𝑔 = 𝑖𝑑 

Abelian Groups 

• The group is commutative iff always 𝑓 ⊗ g = 𝑔 ⊗ 𝑓 
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Examples of Groups 

Examples: 

• G = invertible matrices, ⊗ = composition (matrix mult.) 

• G = invertible affine transformation of ℝ𝑑, ⊗ = 
composition  
(matrix form: homogeneos coordinates) 

• G = bijections of a set S to itself, ⊗ = composition  

 G = smooth Ck bijections of a set S to itself, ⊗ = composition  

 G = global symmetry transforms of a shape, ⊗ = composition   

 G = permutation of a discrete set, ⊗ = composition  
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Examples of Groups 

Examples: 

• G = invertible matrices, ⊗ = composition (matrix mult.) 

• G = invertible affine transformation of ℝ𝑑 
Subgroups: 

 G = similarity transform (translation, rotation, mirroring, 
scaling ≠ 0) 

 E(d): G = rigid motions (translation, rotation, mirroring) 

 SE(d): G = rigid motions (translation, rotation) 

 O(d): G = orthogonal matrix (rotation, mirroring) 
(columns/rows orthonormal)  

 SO(d): G = orthogonal matrix (rotation) 
(columns/rows orthonormal, determinant 1) 

 G = translations (the only commutative group out of these) 
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Examples of Groups 

Examples: 

• G = global symmetry transforms of a 2D shape  
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Examples of Groups 

Examples: 

• G = global symmetry transforms of a 3D shape  

 

(extended to infinity) (extended to infinity) 
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Outlook 

More details on this later 

• Symmetry groups 

• Structural regularity 

• Crystalographic groups and regular lattices 


