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Vector and Function Spaces



Vectors

7

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space



Vector Operations

V+WwW

“Adding” Vectors:
Concatenation



Vector Operations

Scalar Multiplication:
Scaling vectors (incl. mirroring)



You can combine it...

v 2W + V

Linear Combinations:
This is basically all you can do.

r= Zn:/livi
i=1



Vector Spaces

Vector space:
e Set of vectors V

e Based on field F (we use only F=R)

e Two operations:

= Adding vectorsu=v+w (u,v, w € V)

= Scaling vectorsw=Av (u eV, A € F)

e Vector space axioms:

(al) vu,v,weV: (u+v)+w:u+(v+w)

(a2) Vu,veV: u+v=v+u
(a3) 30, eV:vveV: v+0, =v

(a4) VveV:dweV: v+w=0,

(s1) YveV, A, uekF: /1(/,1V)=(/1,u)v

(s2) forl . eF:vVveV:1.v=v

(s3) V)LEF:VV,WEV:/I(V+W):/LV+/LW
(s4) YAucFEveV: (A+ul=v+uv



Additional Tools

More concepts:
e Subspaces, linear spans, bases

e Scalar product
= Angle, length, orthogonality
= Gram-Schmidt orthogonalization

Cross product (IR3)

Linear maps
= Matrices

Eigenvalues & eigenvectors
Quadratic forms

(Check your old math books)



Example Spaces

Function spaces:
e Space of all functionsf: R > R
o Space of all smooth Ct functions f: R > R
e Space of all functions f: [0..1]°> — R?
e efc...

.




Function Spaces

Intuition:
e Start with a finite dimensional vector
e Increase sampling density towards infinity
e Real numbers: uncountable amount of dimensions

[fll 277 9]T [f]_l 21--'1f18]T f(X)
O g=9 1 0 4o13 10 4og
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Dot Product on Function Spaces

Scalar products

e For square-integrable functions f, g: Q c R" — R, the
standard scalar product is defined as:

f-g:= | f(x)g(x)dx

e |t measures an abstract norm and “angle” between
function (not in a geometric sense)

e Orthogonal functions:

= Do not influence each other in linear combinations.

= Adding one to the other does not change the value in the other
ones direction.
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Approximation of Function Spaces

Finite dimensional subspaces:

e Function spaces with infinite dimension are hard to
represented on a computer

e For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

e Two basic approaches
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Approximation of Function Spaces

Task:

e Given: Infinite-dimensional function space V.

e Task: Find f € V with a certain property.

Recipe: “Finite Differences”
e Sample function f on discrete grid

e Approximate property discretely

i1

= Derivatives => finite differences

= Integrals => Finite sums

e Optimization: Find best discrete function
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Approximation of Function Spaces

0.8
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0 2.0 3.0 4.0 5.0 6.0 0 2.0 3.0 4. 0 0.0 1.0 2.0 3.0

actual solution function space basis approximate solution

Recipe: “Finite Elements”

e Choose basis functions b, ..., b, € V
e Find f = Y%, A;b; that matches the property best
e f is described by (4,,...,1,)
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“Best Match”

Linear combination matches best

e Solution 1: Least squares minimization
2

f(f(x) —Zn:/libi(x)) dx — min
i=1

R

e Solution 2: Galerkin method

n
Vi = 1..n:<f—z/1ibi, bi> — 0
=1

e Both are equivalent
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Optimality Criterion

Given:
e Subspace W cV
e Anelementv eV

Then we get:

« w € W minimizes the quadratic error (w — v)?
(i.e. the Euclidean distance) if and only if:

e the residual (w — v) is orthogonal to W

Least squares = minimal Euclidean distance

17



Formal Derivation

Least-squares
2

E(f) = f(f(x) ZAb(x)) dx

R

j(fZ(x)—ZZAf(x)b (x)+ZZA b(x)bj(x)> dx

i=1i=1

Setting derivatives to zero:

VE(f) = =2 5 + [Ag, s 2] ( (b (), b (x)) )

Result:
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Linear Maps



Linear Maps

A Function
e f:V—> W between vector spaces V, W

is linear if and only if:

o Vv, v,eV:  f(vi+v,) = f(vy) + f(v,)
e YveV, AeF: f(Av) = Af(v)

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.

20



Matrix Representation

Finite dimensional spaces
e Linear maps can be represented as matrices

e For each basis vector v, of V, we specify the mapped
vector w..

e Then, the map fis given by:

vy

fvV)=f| : [|=v,W; +.+V W,




Matrix Representation

This can be written as matrix-vector product:

| | Vi

f0)=|wy - w, |

The columns are the images of the basis vectors (for which the
coordinates of v are given)



Linear Systems of Equations

Problem: Invert an affine map
e Given: Mx=b
e We know M, b
e Looking for x

Solution

e Set of solutions: always an affine subspace of R",
or the empty set.

= Point, line, plane, hyperplane...

e Innumerous algorithms for solving linear systems
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Solvers for Linear Systems

Algorithms for solving linear systems of equations:
e Gaussian elimination: O(n3) operations for nxn matrices

e We can do better, in particular for special cases:

= Band matrices:
constant bandwidth

= Sparse matrices:
constant number of non-zero
entries per row

— Store only non-zero entries

— Instead of (3.5, 0,0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]
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Solvers for Linear Systems

Algorithms for solving linear systems of n equations:

e Band matrices, O(1) bandwidth:
= Modified O(n) elimination algorithm.

* |terative Gauss-Seidel solver
= converges for diagonally dominant matrices
= Typically: O(n) iterations, each costs O(n) for a sparse matrix.

e Conjugate Gradient solver
= Only symmetric, positive definite matrices
= Guaranteed: O(n) iterations
= Typically good solution after O(\/;) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.
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Eigenvectors & Eigenvalues

Definition:
e Linear map M, non-zero vector X with
Mx = AX
e Aaniseigenvalue of M
e X is the corresponding eigenvector.
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Example

Intuition:

e In the direction of an eigenvector, the linear map acts like
a scaling

e Example: two eigenvalues (0.5 and 2)
e Two eigenvectors

e Standard basis contains no eigenvectors
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Eigenvectors & Eigenvalues

Diagonalization:

In case an nxn matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT..
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Spectral Theorem

Spectral Theorem:

If M is a symmetric nxn matrix of real numbers
(i.e. M = M), there exists an orthogonal set of n
eigenvectors.

This means, every (real) symmetric matrix can be
diagonalized.:

M = TDT" with an orthogonal matrix T.
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Computation

Simple algorithm
e “Power iteration” for symmetric matrices
e Computes largest eigenvalue even for large matrices

e Algorithm:
= Start with a random vector (maybe multiple tries)
= Repeatedly multiply with matrix
= Normalize vector after each step

= Repeat until ration before / after normalization converges
(this is the eigenvalue)

e |ntuition:

= Largest eigenvalue = “dominant” component/direction
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Powers of Matrices

What happens:
e A symmetric matrix can be written as:
ﬂ’l
M=TDT' ' =T T'

A

n

e Taking it to the k-th power yields:
A"
M =TDT"TDT" .. TDT" =TD*T" =T T

e Bottom line: Eigenvalue analysis key to understanding
powers of matrices.



Improvements

Improvements to the power method:
e Find smallest? — use inverse matrix.

e Find all (for a symmetric matrix)? — run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

e How long does it take? — ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.
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Generalization: SVD

Singular value decomposition:
e Let M be an arbitrary real matrix (may be rectangular)
e Then M can be written as:
=M=UDV'
= The matrices U, V are orthogonal
= D is a diagonal matrix (might contain zeros)
= The diagonal entries are called singular values.

e UandV are different in general. For diagonalizable
matrices, they are the same, and the singular values are
the eigenvalues.
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Singular Value Decomposition

Singular value decomposition

VT
M U D
golo|lo|o|o|oO
_ 0|z|lo0|0|0]0
o(ofos|o|o0]|o0O
0(o|o]|a| o] o0
M o J
'
orthogonal

orthogonal
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Singular Value Decomposition

Singular value decomposition

Can be used to solve linear systems of equations
For full rank, square M:
M=UDV'
= Mi=(UDV)i=(V')iID1l(Ul)=VvDilU'
Good numerical properties (numerically stable)
More expensive than iterative solvers

The OpenCV library provides a very good implementation
of the SVD
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Linear Inverse Problems



Inverse Problems

Settings
e A (physical) process f takes place
e It transforms the original input x into an output b
e Task: recover x fromb

Examples:
e 3D structure from photographs
e Tomography: values from line integrals
e 3D geometry from a noisy 3D scan
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Linear Inverse Problems

Assumption: f is linear and finite dimensional
fix)=b = Mx=b

Inversion of fis said to be an ill-posed problem, if one
of the following three conditions hold:
e There is no solution

e There is more than one solution

e There is exactly one solution, but the SVD contains very
small singular values.
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Ill posed Problems

Ratio: Small singular values amplify errors

e Assume inexact input
= Measurement noise
= Numerical noise

e Reminder: M1=v D1UT
e ™
does not hurt does not hurt

(orthogonal) (orthogonal)
this one is decisive

e Orthogonal transforms preserve norm of x,
so V and U do not cause problems

39



lll posed Problems

Ratio: Small singular values amplify errors
e Reminder: x=M1b=(VD1U"b

e Say D looks like that: 25 0 0 0
D — 0O 11 O 0
' 0 0 09 0

0O 0 0 0.000000001

e Any input noise in b in the direction of the fourth right
singular vector will be amplified by 10°.

e If our measurement precision is less than that, the result
will be unusable.

e Does not depend on how we invert the matrix.
e Condition number: o__. /o

max min



lll Posed Problems

Two problems:
25 0 0 0

(1) Mapping destroys information D:= g 1(-)1 009 g
= goes below noise level 0 0 0 0.000000001

= cannot be recovered by any means

(2) Inverse mapping amplifies noise
= yields garbage solution
= even remaining information not recovered
= extremely large random solutions are obtained

We can do something about problem #2



Regularization

Regularization
e Avoiding destructive noise caused by inversion

= Various techniques
= Goal: ignore the misleading information

e Subspace inversion:
= |gnore subspace with small singular values
— needs an SVD, risk of ringing
= Additional assumptions:
— smoothness (or something similar)
— make compound problem (f* + assumptions) well posed

e We will look at this in detail later
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lllustration of the Problem
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lllustration of the Problem

|

inverse
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U\
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lllustration of the Problem
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lllustration of the Problem

original function
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lllustration of the Problem

original function

(12)

1.5
0.3
0.4 k
1.6
0.2

\0.3/

W =

\ 1

=N R

forward
problem

—

N R
RN R
RN R

f®g

=N R

N R
N

smoothed function

(1.4)

1.5
0.8
0.9
1.3
0.8

\0.7/

47



lllustration of the Problem
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Analysis

( 2 1 1)
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Digging Deeper...

Let’s look at this example again:

e Convolution operation:
£ = | F@- g - e
R

e Shift-invariant linear operator

) (

f g

N N
RN R
RN R

RN R

W =

RN R

RN R

N R
\—

\ 1

continuous discrete
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Convolution Theorem

Fourier Transform
e Function space:
f:10..2m] — R (suff. smooth)

e Fourier basis:
{1, cos kx,sinkx|k = 1,2, ...}
e Properties

= The Fourier basis is an orthogonal basis (standard scalar prod.)
= The Fourier basis diagonalizes all shift-invariant linear operators
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Convolution Theorem

This means:
e Let F:N - R be the Fourier transform (FT) of
f:10..2n] » R
e Then: f@eg = FTY(F - @)

Consequences

e Fourier spectrum of convolution operator (“filter”)
determines well-posedness of inverse operation
(deconvolution)

e Certain frequencies might be lost

= In our example: high frequencies
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Quadratic Forms



Multivariate Polynomials

A multi-variate polynomial of total degree d:
e Afunctionf:R"—> R, x— f(x)
e fis a polynomial in the components of x

e Any 1D direction f(s + tr) is a polynomial of
maximum degree d in t.

Examples:

e f(x,v):=x+Xxy+YyV is of total degree 2. In diagonal
direction, we obtain f{t[1/+2, 1/42]T) = t2.

— 2 2 :
o fX,Y) 1= CyoX + Copy° + C1 XY + C1X + C1Y + Cpp IS @
guadratic polynomial in two variables
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Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

e XTAX + b'™x +c¢
e Ais an nxn matrix, b is an n-dim. vector, c is a number

e Matrix A can always be chosen to be symmetric

e If it isn’t, we can substitute by 0.5 - (A + AT), not changing
the polynomial
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Example

Example:

G- 3

B 1 2y x) 1x 2y
—[Xy]3 )y =[x y] 3x 4y

=x1x+x2y+ y3x+ ydy
=1x" +(2+3)xy +4y°
=1x* +(2.5+2.5)xy +4y°

s 34 T

1 25
25 4

J
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Quadratic Polynomials

Specifying quadratic polynomials:
e X'TAX + b'x +cC
e b shifts the function in space (if A has full rank):
(X—,u)TA(X—,u)JrC
=X Ax— ' AX—X Au+pu-pu+c

(Asym.)

= XTAX—(ZA,u)x+,u-,u+C
=b

e Cis an additive constant
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Some Properties

Important properties
e Multivariate polynomials form a vector space
e We can add them component-wise:
2x%2 + 3y?2 + Axy + 2x+ 2y + 4
+ 3x?+2y2+ Ixy + 5x+ 5y + 5

= 5x2+5y2+5xy + 7x+ 7y + 9
e |n vector notation:
x'Ax + b,'x +¢,
+ A(x'A,x + b,'x +¢,)
=X'(A;+4A)x + (b;+4b,)'x + (¢, +4c,)
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Quadratic Polynomials

Quadrics
e Zero level set of a quadratic polynomia
e Shape depends on eigenvalues of A
o b shifts the object in space
e c sets the level

|, “

quadric”
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Shapes of Quadrics

Shape analysis:
e Ais symmetric
e A can be diagonalized with orthogonal eigenvectors

A
xTAx=x{QT( ; jq}x

™ Je

e () contains the principal axis of the quadric

e The eigenvalues determine the quadratic growth
(up, down, speed of growth)
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Shapes of Quadratic Polynomials
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The Iso-Lines: Quadrics

elliptic hyperbolic degenerate case

A,=0,4,#0

'/III}
W
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Quadratic Optimization

Quadratic Optimization
e Minimize quadratic objective function

xTAx + b™x + ¢

¢
\ 00

o ey . . . ‘\\_\\\“N’WI
 Required: A >0 (only positive eigenvalues) e

= |t’s a paraboloid with a unique minimum

",
I/;/,l

= The vertex (critical point) can be determined
by simply solving a linear system

e Necessary and sufficient condition

2Ax =-b



Condition Number

How stable is the solution?
e Depends on Matrix A
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Regularization

Regularization

e Sums of positive semi-definite matrices are
positive semi-definite
e Add regularizing quadric

= “Fill in the valleys”
= Bias in the solution

Example
e Original: xTAx + b™x +¢
e Regularized: x'(A+ I)x + b'x +¢
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Rayleigh Quotient

Relation to eigenvalues:

e Min/max eigenvalues of a symmetric A expressed as
constraint quadratic optimization:

T
. X Ax . T )
Apin = MIN—— =min (x AX) A =max—:

X'x |x= X' X |¥=t

e The other way round — eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.
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Coordinate Transformations

One more interesting property:

e Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

e Such a matrix can always be written as square of another
matrix:

M=TDT" = T\/_I\/_ TT) 73D |rvp) =(rVDf
\//1/1 .

Joo-|
i

67



SPD Quadrics

- - 4@@

[dentity I M=TDT" = (7D )

Interpretation:
e Start with a unit positive quadric x"x.
e Scale the main axis (diagonal of D)
e Rotate to a different coordinate system (columns of T)

e Recovering main axis from M: Compute eigensystem
(“principal component analysis”)

x ' Mx
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Why should | care?

What are quadrics gOOd for? Gaussian normal distribution
e log-probability of Gaussian models

e Estimation in Gaussian probabilistic
models...

= ...is quadratic optimization.

_ 1 _x—p)f
p/l,(j(x)o_\/ﬂexp[ 202 J

= ...is solving of linear systems of equations.

e Quadratic optimization
= easy to use & solve
= feasible :-)

e Approximate more complex models locally
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Groups and Transformations



Groups

Definition:
A set G with operation ® is called a group (G, ®), iff:
e Closed: X: G X G — G (always maps back to G)
e Associativity: (R RXh=fRQ3(gR h)
e Neutral element: there exists id € G such that for any
JgEG: gRid=g
* Inverse element: For each g € G there exists g_l EG
suchthatg ® g 1 =g 1 ®g=id

Abelian Groups
e The group is commutative iffalways f Qg =9 Q [
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Examples of Groups

Examples:
e G =invertible matrices, ® = composition (matrix mult.)
e G = invertible affine transformation of R¢, & =

composition
(matrix form: homogeneos coordinates)

e G = bijections of a set S to itself, @ = composition
= G = smooth Ckbijections of a set S to itself, & = composition
= G = global symmetry transforms of a shape, @ = composition

= (G = permutation of a discrete set, @ = composition
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Examples of Groups

Examples:
e G =invertible matrices, ® = composition (matrix mult.)

e G = invertible affine transformation of R%
Subgroups:

= G =similarity transform (translation, rotation, mirroring,
scaling # 0)

= E(d): G =rigid motions (translation, rotation, mirroring)
= SE(d): G = rigid motions (translation, rotation)
= O(d): G = orthogonal matrix (rotation, mirroring)
(columns/rows orthonormal)
= SO(d): G = orthogonal matrix (rotation)
(columns/rows orthonormal, determinant 1)

= G = translations (the only commutative group out of these)
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Examples of Groups

Examples:
e G =global symmetry transforms of a 2D shape

‘G A
g?;; €
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Examples of Groups

Examples:
e G =global symmetry transforms of a 3D shape

ey

(extended to infinity) (extended to infinity)
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Outlook

More details on this later
e Symmetry groups
e Structural regularity
e Crystalographic groups and regular lattices

76



