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Multi-Dimensional
Derivatives



Derivative of a Function

Reminder: The derivative of a function is defined as

ft+h)—f(t)
h

d .
Eﬂt) =lim
If limit exists: function is called differentiable.

Other notation:

— —
variable time
from context variables

d , : k
Ef(t): f(t) = f(t) %f(t):f”‘)(t)

repeated differentiation
(higher order derivatives)



Taylor Approximation

Smooth functions can be approximated locally:

o f(x)= f(x,)
+%f(x0)(x—x0)
1 d* 2
+5Wf(x0)(x—xo) + ..
1 d”
.t ——
k! dx*

f(x,)x—x, ) +0(x*")

e Convergence: holomorphic functions
e Local approximation for smooth functions



Rule of Thumb

Derivatives and Polynomials

e Polynomial: f(x) = co + cyx + cox? + c3x° ...
Oth-order derivative: f(0) = ¢,

1st-order derivative: f'(0) = ¢,

2nd-order derivative: f''(0) = 2¢,

3rd-order derivative: f'"'(0) = 6¢3

Rule of Thumb:

e Derivatives correspond to polynomial coefficients
e Estimate derivates <> polynomial fitting



Differentiation is lll-posed!

/

@
\)O%.
7,
h

Regularization

e Numerical differentiation needs regularization

= Higher order is more problematic
e Finite differences (larger h)
e Averaging (polynomial fitting) over finite domain



Partial Derivative

Multivariate functions:

e Notation changes:
_—use curly-d

%)
o K XX Xy Xy ) =
k
lim (X X 0 X ¥ X e X, )= [ (X oo X0 Xy X g e X )

h—0 h

e Alternative notation:

=0, f(0)= f, (%)

OX,,



Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functionsf: R —> R" (“curves”
e Functions f: R" — R™ (general case)



Special Cases

Derivatives for:
e Functions f: R” > R (“heightfield”)
e Functionsf: R —> R" (“curves”
e Functions f: R" — R™ (general case)



Gradient

Gradient:
 Given a function f: R” = R (“heightfield”)
e The vector of all partial derivatives of f is called the

gradient:
0 0
o, af (x)
Vi(x)= a f(x)= ) :
o af (x)




Gradient

Gradient:
radien o f(%0)+ Vf(%,): (X —X,)
®) g
X, %1
v, %

e gradient: vector pointing in direction of steepest ascent.
e Local linear approximation (Taylor):

f(X)= f(X)+Vf(X0) (X —X,)
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Higher Order Derivatives

Higher order Derivatives:

e Can do all combinations: 0 0 0
ox; OX, OX,

e Order does not matter for f € C*

1

)
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Hessian Matrix

Higher order Derivatives:
e Important special case: Second order derivative

n

0° 0 O 0 O
ox,.  0x, Ox, Ox, Ox,
0 O 0° 0 O
ox, 0x,  0Ox,’ ox, ox, [f(x)=H(x)
0 0 0 0 0°
ox, Ox, 0Ox, OX, ox .’

e “Hessian” matrix (symmetric for f € C?)

e Orthogonal Eigenbasis, full Eigenspectrum



Taylor Approximation

f(x) 1

2nd order approximation
(schematic)

Second order Taylor approximation:
e Fit a paraboloid to a general function

f(x)zf(xo)Wf(xo)-(x—xo)%(x—xof-Hf(xo)-(x—xo)
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R — R” (“curves”
e Functions f: R" — R™ (general case)
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Derivatives of Curves

Derivatives of vector valued functions:
e Given a function f: R > R" (“curve”

f1(t)

f®)=| :

falt)

e We can compute derivatives for every output dimension:
d

— f(t
™ J?( )

d ey
o= = f'(t)= f(¢)

o
Efn(t)



Geometric Meaning

Tangent Vector: Fto)

e f’: tangent vector

e Motion of physical particle:f= velocity.

e Higher order derivatives: Again vector functions
e Second derivative f= acceleration
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functionsf: R —> R" (“curves”
e Functions f: R” — R™ (general case)
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You can combine it...

General case:
e Given a function f: R" — R™ (“space warp”)

fi(x,mmX,)
f(x)= f((x1 oy X )) — :

[ Xy X,)
e Maps points in space to other points in space

e First derivative: Derivatives of all output components of f
w.r.t. all input directions.

e “Jacobian matrix”: denoted by Vfor ]f



Jacobian Matrix

Jacobian Matrix:

V(%)= ] ;(X) = V(X 0 X,)
/Vfl (X, X, )

VI (XX, )

axlfl(x) T

O fn(X) -+

axn f1(x)

Oy, fn(X)

Use in a first-order Taylor approximation:

f(x)zf(xowf(xo)T(x—xo

matrix / vector
product

)




Coordinate Systems

Problem:
e What happens, if the coordinate system changes?
e Partial derivatives go into different directions then.
e Do we get the same result?
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Total Derivative

First order Taylor approx.:
o f(Xo)+Vf(Xp) (Xx—%X,)+R, (X)
e Converges for C! functions
fiR"—> RM

R,(X)
XX

lim

X—)XO

(“totally differentiable”)

f(x) 4

f(xo)+Yf(Xo)‘(X_xo)
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Partial Derivatives

Conseqguences:
e Alinear function: fully determined by image of a basis

e Hence: Directions of partial derivatives do not matter —
this is just a basis transform.
= We can use any linear independent set of directions T

= Transform to standard basis by multiplying with T

e Similar argument for higher order derivatives

23



Directional Derivative

The directional derivative is defined as:
e Given ,R"—>R"and ve R", ||v|| =1.

 Directional derivative:
Vo f00=L =2 flx-+tv)

e Compute from Jacobian matrix
Vv f(x)=Vf (X)” ”

(requires total differentiability)
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Multi-Dimensional Optimization



Optimization Problems

Optimization Problem:

e Given a C! function f: R” — R (general heightfield)

e We are looking for a local extremum (minimum /
maximum) of this function

Theorem:

e xis alocal extremum = Vf(x)=0

Sketch of a proof: If Vf(x) # 0, we can walk a small step in

gradient direction to improve the score further (in case of a
maximum, minimum similar).
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Critical Points

Critical points:

e Vf(x) =0 does not guarantee

. ‘ \ "‘0 7 } . N
an extremum (saddle points) ‘“* i
e Points with Vf(x) = 0 are called
critical points.

e Final decision via Hessian matrix:
= All eigenvalues > 0: local minimum
= All eigenvalues < 0: local maximum
= Mixed eigenvalues: saddle point

= Some zero eigenvalues: critical line

27



Quadratic Optimization

Quadratic Case:
e fR"> R
e Objective function: f(x) = x"Ax + b'x +¢
= symmetric nxn matrix A

= n-dim. vector b
= constantc

e Gradient: Vf(x)=2Ax + b
e Critical points: solution to 2Ax =-b
e Solution: Solve system of linear equations

28



Example

Gradient computation example:

[x,y](zjzax+bywz(gj

[x,y](a bj(;j =ax” +2bxy +cy’

b c

0, — 2ax +2by X
V—>2A
0, = 2bx+2cy y
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Global Extrema of Quadratic Funcs.

Three cases:
e Eigenvalues of A > 0: critical points are global minima
e Eigenvalues of A < 0: critical points are global maxima

e Mixed eigenvalues: no global minimum/maximum exists
(minimum and maximum at infinity)

Structure:
e Critical points form an affine subspace of R".

e |.e.: Point, line, plane...

30/ 240



Non-Linear Optimization
Algorithms



Non-Quadratic Optimization

Optimization Problems:

e Find (local/global) minimum of £: R"o> Q2 —> R.

e F for “energy” (motivated from physics)
e What to do if E is non-quadratic?
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Gradient Descent

Gradient Descent:
e Gradient VE points into direction of steepest ascent.

» Walking a small step in direction -VE will decrease the
energy.

e When VE =0, a critical point is found.

Properties:

e For sufficiently small steps, this algorithm is guaranteed to
converge

e Generally slow convergence
e Does not work in practice for ill-conditioned problems

33



Newton Optimization

Newton Optimization
e Basic idea: Local quadratic approximation of E:

FX) = B0, )+ VE(X,)-(X—X, )42 (X—X,)" -Hy (%, )- (X=X,

e Solve for vertex (critical point) of the fitted parabola
e Iterate until a minimum is found (VE = 0)

Properties: Ik

» Typically much faster convergence,
more stable

e No convergence guarantee
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Newton Optimization - Divergence

Regularization:
e Hessian matrix: for negative eigenvalues, steps might
point uphill
e (Near-) zero eigenvalues make problem ill-conditioned.
e Simple solution: Add AI to the Hessian for a small A.
e Sum of two quadrics: AI keeps solution at x,.
e This is an example of regularization
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Handling Indefinite Situations

Initial m ' ——
H
’ . Al

First IterW rniblution "
HE

H,+ Al

New m mi* "
Hp Al
Second Itermtion S
H, gt Al
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Further Algorithms

Gradient descent line search:

e Optimize step size for gradient descent
= Fit 1D parabola to E in gradient direction
= Perform 1D Newton search

= |f E does not decrease at the new
position:

— Try to half step width (say up to 10-
20 times).

— If this still does not decrease E, stop
and output local minimum.

37 /287



Further Algorithms

Line search for Newton-optimization:

e Following the quadratic fit might
overshoot

e Line search:
= Test value of E at new position

= Half step width until error decreases
(say 10-20 iterations)

= Switch to gradient descent, if this does not
work

38



Convex Problems

General Classification:
e Non-linear optimization problems can be hard to solve.
e What is definitely “easy”?

Convex Problems:

e Convex functions on a convex domain can be optimized
“easily” using a generic algorithm.

e Other problems might be hard to solve.
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Convex Problems

Convex Function:

e A C?function E is convey, if H. > 0 (all eigenvalues of the
Hessian are strictly positive everywhere)

e Aset Q)is convex if every line connecting two points from
() is also contained in Q.

e A convex function has at most one local minimum

Problem Properties:
e Assume a global minimum exists
e Will be the only local minimum
e Can be reached on a straight line from any point in Q2

40



Convex Problems

Generic Optimization Algorithm (Sketch):
e Gradient descent
e Start at any pointp € Q2
e Perform gradient descent in “small enough” steps

 In case of hitting the domain boundary, project on
boundary surface (follow the wall)

e When the gradient becomes zero, the minimum is found

There are more efficient algorithms...

41



Multi-Dimensional Integrals



Integral

Integral of a function
e Functionf:R > R

b
e Integral jf(t)dt measures signed area under curve:
a

43



Integral

Numerical Approximation
e Sum up a series of approximate shapes

/
X/fﬁﬁ,

e (Riemannian) Definition: limit for baseline — zero
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Multi-Dimensional Integral

Integration in higher dimensions
e Functionsf: R" —> R
e Tessellate domain and sum up volume of cuboids

5
0,6 0,7

DTN
/ldllﬂﬂt\\\\
ATy
a4
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Integral Transformations

Integration by substitution:

g7 (b)

j f(x)dx = j flg(t)g'(t)dt

g (a)

Need to compensate for speed of
movement that shrinks the measured

darea.

g(x)




Multi-Dimensional Substitution

Transformation of Integrals: 0,8(x)

j fdx = | fg(y)|det(Vg(y))|dy ~ *2 1

g Q)

e g € C!, invertible

e Jacobian approximates
local behavior of g()

e Determinant: local area/volume change

e In particular: |det(Vg(y))|=1 means g() is area/volume
conserving.
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Topology

- a very short primer -



A Few Concepts from Topology

Homeomorphism:
e XY
e [ is bijective
e [ is continuous
« [~ exists and is continuous
e Basically, a continuous deformation

Topological equivalence

e Objects are topologically equivalence if there exists a
homeomorphism that maps between them

e “Can be deformed into each other”

49



Surfaces

Boundaries of volumes in 3D

e Topological Equivalence classes
= Sphere
= Torus
= n-fold Torus

e Genus = humber of tunnels
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Manifold

homeomorphism

Definition: Manifold o

e A d-manifold M:
At every x € M there exists an e-environment
homeomorphic to a d-dimensional disc

e With boundary: disc or half-disc

J
7’
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Further concepts

Connected Set

e There exists a continuous
curve within the set
between all pairs of points

Simply Connected

e Every closed loop can be
continuously shrunken
until it disappears
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Differential Geometry
of Curves & Surfaces



Part I: Curves



Parametric Curves

Parametric Curves:
e A differentiable function

f:(a, b) > R"

describes a parametric curve
C=f((a, b)), CCR".

e The parametrization is called regular if f’(t) # O for all t.

o If ||f'(t)||=1forallt, fis called a unit-speed
parametrization of the curve C.
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Length of a Curve

The length of a curve:

e The length of a regular curve Cis defined as:
b
length(C) = (|| f'(t)]d¢

e Independent of the parametrization
(integral transformation theorem).

e Alternative: length(C) = |b —a]| for a unit-speed
parametrization

56



Reparametrization

Enforcing unit-speed parametrization:
e Assume:||f’(t)]|# O for all t.

* We have: |
length(C) = j||f'(t)||dt (invertible, because f’(t) > 0)

e Concatenating f olength ' (C) yields a unit-speed
parametrization of the curve

length(t)

length1(t)

57



Tangents

Unit Tangents:

e The unit tangent vector at x € (a, b) is given by:
f(¢)
Ir@)

e For curves Cc R?, the unit normal vector of the curve is
defined as:

normal(t) = ((1) _01)

tangent(t) =

f(0)
IF@)
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Curvature

Curvature:
e First derivatives show curve direction / speed of
movement.
e Curvature is encoded in 2nd order information.

e Why not just use f"'?
e Problem: Depends on parametrization

= Different velocity yields different results

= Need to distinguish between acceleration
in tangential and non-tangential directions.

59



Curvature & 2nd Derivatives

C=f((a, b)) normal(t)

f7(t) ta néent(t)

Definition of curvature

e We want only the non-tangential component of f”.

e Accelerating/slowing down does not matter for curvature
of the traced out curve C.

e Need to normalize speed.

60



Curvature

Curvature of a Curve C € R?:

" 0 —-1) .
<f (t),[1 Ojf (t)>
Gl

e Normalization factor:

= Divide by ||f’|| to obtain unit tangent vector

K2(t)=

= Divide again twice to normalize f”
— Taylor expansion / chain rule:

FOE) = f(t)+ AF(,)(E —to)%ff"(t)(t—to)z (%)

— Second derivative scales quadratically with speed
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Unit-speed parametrization

Unit-speed parametrization:
« Assume a unit-speed parametrization, i.e. | =1
e Then, k2 simplifies to:

k2(t)=|f"(t)
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Radius of Curvature

Easy to see:

e Curvature of a circle is constant, k2= + 1/r (r = radius).
(see problem sets)

e Accordingly: Define radius of curvature as 1/k2.

e Osculating circle:

= Radius: 1 /k2
- Center!f(t)+inormal(t)

K2
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Theorems

Definition:
e Rigid motion: x > Ax+b with orthogonal A

= Orientation preserving (no mirroring) if det(A) = +1
= Mirroring leads to det(A) =-1

Theorems for plane curves:

e Curvature is invariant under rigid motion
= Absolute value is invariant
= Signed value is invariant for orientation preserving rigid motion

e Two unit speed parameterized curves with identical
signed curvature function differ only in a orientation
preserving rigid motion.
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Space Curves

General case: Curvature of a Curve Cc R”

e W.l.o.g.: Assume we are given a unit-speed
parametrization f of C
e The curvature of C at parameter value t is defined as:

k(6)=| /")

e For a general, regular curve C < R? (any regular
parametrization):

K(£) = TAGEING| c

Gl —~ A

(e fr(e)

e General curvature is unsigned
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Torsion

Characteristics of Space Curves in R3:

e Curvature not sufficient

e Curve may “bend” in space

e Curvatureis a 2nd order property
e 2nd order curves are always flat

= Quadratic curves are specified by 3 points in space,
which always lie in a plane

= Cannot capture out-of-plane bends

e Missing property: Torsion
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Torsion

Definition:

e Let fbe aregular parametrization of a curve CcR?3 with
non-zero curvature

e The torsion of f at t is defined as

_LOx - S0 _ det(f'(), (0, (D)
TRGEIAG THGEIAG

T(t)
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lllustration

()= det(£'(6), (), £ (1))

JAGEYNO'}
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Theorem

Fundamental Theorem of Space Curves

e Two unit speed parameterized curves C — R3 with
identical, positive curvature and identical torsion are
identical up to a rigid motion.
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Part ll: Surfaces



Parametric Patches

Parametric Surface Patches:
A smoothly differentiable function

fir RPoQ—R"
describes a parametric surface patch

P=f(Q), PcR".
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Parametric Patches

Function f(x) = f(u,v) - R3

e Tangents: %f(xo +tr) = V.f(Xq)
e Canonical tangents: 0 f(u,v), 0, f(u,v)

0y f(U,v) X0y f (u,v)

e Normal: n(x,) = 10, f (w,v) Xy, f (wv)]|

72



lllustration

vl Q< R?
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Surface Area

Surface Area:
e Patch P: f: QO —» R?
e Computation is simple
e Integrate over constant function f =1 over surface
e Then apply integral transformation theorem:

area(P) = ([0, (%) <0, f (x)dx
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Fundamental Forms

Fundamental Forms:
e Describe the local parametrized surface
e Measure...

= ...distortion of length (first fundamental form)

= ...surface curvature (second fundamental form)

e Parametrization independent surface curvature
measures will be derived from this
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First Fundamental Form

First Fundamental Form
e Also known as metric tensor.
e Given a regular parametric patch f: R?> Q — R3.
e fwill distort angles and distances

e We will look at a local first order Taylor approximation to
measure the effect:

)= f(%0)+ VF(%,)(x %) y 0uf o
e Length changes become visible ‘_/\ p

in the scalar product... %o U flxg) Ol X0
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First Fundamental Form

First Fundamental Form
o, f (X,)

e First order Taylor approximation:
FX)~ f(%0)+ V(%)X —X, ) /\ Z
X, U fix,) 0, f (%)
e Scalar product of vectors a, b € R?: 0

(f(x,+a)— f(xp), F(xg+b)—f(xy))=(Vf(x,)a Vf(x,)b)
=a"(Vf (x,)"VF (x,))b

firstfunda\nQental form

. f(a+x0)
WL

o U £x,)
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First Fundamental Form

First Fundamental Form

e The first fundamental form can be written as a
2 X 2 matrix:

o\ (0SS BSOS\ _(E F o
o ):[aufavf @vfavf)::EF G] )=/ )y

e The matrix is symmetric and positive definite
(regular parametrization, semi-definte otherwise)

e Defines a generalized scalar product that measures
lengths and angles on the surface.
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Second Fundamental Form

Problems:
e The first fundamental form measures length changes only.
e A cylinder looks like a flat sheet in this view.
e We need a tool to measure curvature of a surface as well.
e This requires second order information.

= Any first order approximation is inherently “flat”.
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Second Fundamental Form

Definition:

e Given: regular parametric patch f: R?> Q — R3.

e Second fundamental form:
(a.k.a. shape operator, curvature tensor)

auuf(XO)'n auvf(XO)'nj

S(XO):(auvf(Xo)'n 0w f(X,)

e Notation:

I(x,y)= XT[ﬁuuf(Xo)-n 6uvf(x0).nj

0, f(X,)m By f(x,)m)
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Second Fundamental Form

Basic Idea:
e Compute second derivative vectors

e Project in normal direction (remove tangential
acceleration)
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Alternative Computation

Alternative Formulation (Gauss):
e Local height field parameterization f(x,y) = z

e Orthonormal x,y coordinates tangential to surface,
z in normal direction, origin at zero

Z

e 2nd order Taylor representation:
f(X) = % x"fU'(x)x + f'(X)x+ f(0)
—ex? + 2 TXy + gy2

e Second fundamental form: Matrix of second derivatives

4 ]
8?9’f a)’)’f h f g

0
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Basic Idea

In other words:

e First fundamental form: 1
Linear part (squared) of local
Taylor approximation.

e Second fundamental form: 1l
Quadratic part of heightfield
approximation

e Both matrices are symmetric.

= Next: eigenanalysis, of course...

0',
"llm

””/’/9
'Il I/ j
'II f
'II I i

l
lll///
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Principal Curvature

Eigenanalysis:

e Eigenvalues of second fundamental form
for an orthonormal tangent basis are called
principal curvatures K,, K,.

e Corresponding orthogonal eigenvectors are called
principal directions of curvature.
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Normal Curvature

Definition:

e The normal curvature k(r) in direction r for a unit length
direction vector r at parameter position x, is given by:

k,, (r)=IL_(r,r)=r S(x,)r

Relation to Curvature of Plane Curves:

e Intersect the surface locally with plane
spanned by normal and r through point x,.

e |dentical curvatures (up to sign).

normal]

i

r
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Principal Curvatures

Relation to principal curvature:

e The maximum principal cuvature K, is the maximum of
the normal curvature

e The minimum principal cuvature k, is the minimum of the
normal curvature
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Gaussian & Mean Curvature

More Definitions:

e The Gaussian curvature K is the product of the principal
curvatures: K = KK,

e The mean curvature H is the average: H=0.5 - (k; + k,)

Theorems:

* K(x,)=det(S(x,))= ZZ ‘_{: :

eG-2fF +gE
2(EG-F?)

* H(x,)= %tr(S(xO)):
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Global Properties

Definition:
e Anisometry is a mapping between surfaces that preserves
distances on the surface (geodesics)

e A developable surface is a surface with Gaussian curvature
zero everywhere (i.e. no curvature in at least one
direction)

= Examples: Cylinder, Cone, Plane

e A developable surface can be locally mapped to a plane
isometrically (flattening out, unroll).
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Theorema Egregium

Theorema egregium (Gauss):

e Any isometric mapping preservers Gaussian curvature, i.e.
Gaussian curvature is invariant under isometric maps
(“intrinsic surface property”)

e Consequence: The earth (= sphere) cannot be mapped to
a plane in an exactly length preserving way.
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Gauss Bonnet Theorem

Gauss Bonnet Theorem:

For a compact, orientable surface without boundary in R3, the
area integral of the Gauss curvature is related to the genus g
of the surface:

[ K(x)dx =4n(1-g)
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Fundamental Theorem of Surfaces

Theorem:

e Given two parametric patches in R3 defined on the same
domain Q.

e Assume that the first and second fundamental form are
identical.

e Then there exists a rigid motion that maps on surface to
the other.
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Summary

Objects are the same up to a rigid motion, if...:
e Curves R — R?: Same speed, same curvature
e Curves R — R3: Same speed, same curvature, torsion
e Surfaces R? — R3: Same first & second fundamental form
e VVolumetric Objects R3® — R3: Same first fundamental form

\_@ \¥S§f 40 05
| \JS'\%){ T 05

plane curve space curve surface space warp
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Deformation Models

What if this does not hold?

e Deviation in fundamental forms is a measure of
deformation

A

e Example: Surfaces R

—

= Diagonals of I, - I,: scaling (stretching) > >
= Off-diagonals of I, - I,: sheering - L
= Elements of II; - II,: bending

e This is the basis of deformation models.

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer
Graphics 21(4)), 1987.

93



