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Derivative of a Function 

Reminder: The derivative of a function is defined as 

 

If limit exists: function is called differentiable. 
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Taylor Approximation 

Smooth functions can be approximated locally: 

•   

 

 

 

• Convergence: holomorphic functions 

• Local approximation for smooth functions  
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Rule of Thumb 

Derivatives and Polynomials 

• Polynomial:  𝑓 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 … 
 0th-order derivative: 𝑓 0 = 𝑐0 

 1st-order derivative: 𝑓′ 0 = 𝑐1 

 2nd-order derivative: 𝑓′′ 0 = 2𝑐2 

 3rd-order derivative: 𝑓′′′ 0 = 6𝑐3 

 ... 

Rule of Thumb: 

• Derivatives correspond to polynomial coefficients 

• Estimate derivates  polynomial fitting 
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Differentiation is Ill-posed! 

Regularization 

• Numerical differentiation needs regularization 

 Higher order is more problematic 

• Finite differences (larger h) 

• Averaging (polynomial fitting) over finite domain 

h 
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Partial Derivative 

Multivariate functions: 

• Notation changes: 

 

 

 

 

• Alternative notation: 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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Gradient 

Gradient: 

• Given a function f: n   (“heightfield”) 

• The vector of all partial derivatives of f is called the 
gradient: 
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Gradient 

Gradient: 

 

 

 

 

• gradient: vector pointing in direction of steepest ascent. 

• Local linear approximation (Taylor): 
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Higher Order Derivatives 

Higher order Derivatives: 

• Can do all combinations: 

 

• Order does not matter for f  Ck 
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Hessian Matrix 

Higher order Derivatives: 

• Important special case: Second order derivative 

 

 

 

 

 

 

 

• “Hessian” matrix (symmetric for f  C2) 

• Orthogonal Eigenbasis, full Eigenspectrum 
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Taylor Approximation 

Second order Taylor approximation: 

• Fit a paraboloid to a general function 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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Derivatives of Curves 

Derivatives of vector valued functions: 

• Given a function f:   n (“curve”) 

 

 

 

• We can compute derivatives for every output dimension: 
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Geometric Meaning 

Tangent Vector: 

• f ’: tangent vector 

• Motion of physical particle: f = velocity. 

• Higher order derivatives: Again vector functions 

• Second derivative f = acceleration 

f ’(t0) 

f(t) 

t0 

. 

.. 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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You can combine it... 

General case: 

• Given a function f: n  m (“space warp”) 

 

 

 

• Maps points in space to other points in space 

• First derivative: Derivatives of all output components of f 
w.r.t. all input directions. 

• “Jacobian matrix”: denoted by f or Jf 
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Jacobian Matrix 

Jacobian Matrix: 

 

 

Use in a first-order Taylor approximation: 
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Coordinate Systems 

Problem: 

• What happens, if the coordinate system changes? 

• Partial derivatives go into different directions then. 

• Do we get the same result? 
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Total Derivative 

First order Taylor approx.: 

•   

• Converges for C1 functions 
f: n  m 

  
 
 
(“totally differentiable”) 
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Partial Derivatives 

Consequences: 

• A linear function: fully determined by image of a basis 

• Hence: Directions of partial derivatives do not matter – 
this is just a basis transform. 

 We can use any linear independent set of directions T 

 Transform to standard basis by multiplying with T-1 

• Similar argument for higher order derivatives 
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Directional Derivative 

The directional derivative is defined as: 

• Given  f: n  m and  v  n, ||v|| = 1. 

• Directional derivative: 

 

 

• Compute from Jacobian matrix 
 
 

 
(requires total differentiability) 
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Multi-Dimensional Optimization 
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Optimization Problems 

Optimization Problem: 

• Given a C1 function f: n   (general heightfield) 

• We are looking for a local extremum (minimum / 
maximum) of this function 

Theorem: 

• x is a local extremum  f (x) = 0 

Sketch of a proof: If f (x)  0, we can walk a small step in 
gradient direction to improve the score further (in case of a 
maximum, minimum similar). 
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Critical Points 

Critical points: 

• f (x) = 0 does not guarantee 
 an extremum (saddle points) 

• Points with f (x) = 0 are called 
critical points. 

• Final decision via Hessian matrix: 

 All eigenvalues > 0: local minimum 

 All eigenvalues < 0: local maximum 

 Mixed eigenvalues: saddle point 

 Some zero eigenvalues: critical line 

i > 0 0 > 0, 1 < 0 

0 = 0, 1 > 0 
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Quadratic Optimization 

Quadratic Case: 

• f: n   

• Objective function: f (x) = xTA x  +  bTx  + c 

 symmetric n  n matrix A 

 n-dim. vector b 

 constant c 

• Gradient: f (x) = 2A x  +  b 

• Critical points: solution to 2A x  = -b 

• Solution: Solve system of linear equations 
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Example 

Gradient computation example: 
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Global Extrema of Quadratic Funcs. 

Three cases: 

• Eigenvalues of A  0: critical points are global minima 

• Eigenvalues of A  0: critical points are global maxima 

• Mixed eigenvalues: no global minimum/maximum exists 
(minimum and maximum at infinity) 

Structure: 

• Critical points form an affine subspace of n. 

• I.e.: Point, line, plane... 

 



Non-Linear Optimization 
Algorithms 
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Non-Quadratic Optimization 

Optimization Problems: 

• Find (local/global) minimum of E: n    . 

• E for “energy” (motivated from physics) 

• What to do if E is non-quadratic? 
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Gradient Descent 

Gradient Descent: 

• Gradient E points into direction of steepest ascent. 

• Walking a small step in direction -E will decrease the 
energy. 

• When E = 0, a critical point is found. 

Properties: 

• For sufficiently small steps, this algorithm is guaranteed to 
converge 

• Generally slow convergence 

• Does not work in practice for ill-conditioned problems 
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Newton Optimization 

Newton Optimization 

• Basic idea: Local quadratic approximation of E: 

 

• Solve for vertex (critical point) of the fitted parabola 

• Iterate until a minimum is found (E = 0) 

Properties: 

• Typically much faster convergence, 
more stable 

• No convergence guarantee 
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Newton Optimization - Divergence 

Regularization: 

• Hessian matrix: for negative eigenvalues, steps might 
point uphill 

• (Near-) zero eigenvalues make problem ill-conditioned. 

• Simple solution: Add  I to the Hessian for a small . 

• Sum of two quadrics:  I keeps solution at x0. 

• This is an example of regularization  
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Handling Indefinite Situations 

minimum 

x0 

minimum new solution 

new solution 

x0 

minimum 

minimum 

... 

Initial state: 

First Iteration: 

Second Iteration: 

New state: 

 I 

 I 

HE 

HE 

HE 

HE 

HE +  I 

HE +  I 
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Further Algorithms 

Gradient descent line search: 

• Optimize step size for gradient descent 

 Fit 1D parabola to E in gradient direction 

 Perform 1D Newton search 

 If E does not decrease at the new 
position: 

– Try to half step width (say up to 10-
20 times). 

– If this still does not decrease E, stop 
and output local minimum. 
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Further Algorithms 

Line search for Newton-optimization: 

• Following the quadratic fit might 
overshoot 

• Line search: 

 Test value of E at new position 

 Half step width until error decreases 
 (say 10-20 iterations) 

 Switch to gradient descent, if this does not 
work 
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Convex Problems 

General Classification: 

• Non-linear optimization problems can be hard to solve. 

• What is definitely “easy”? 

Convex Problems: 

• Convex functions on a convex domain can be optimized 
“easily” using a generic algorithm. 

• Other problems might be hard to solve. 
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Convex Problems 

Convex Function: 

• A C2 function E is convex, if HE > 0 (all eigenvalues of the 
Hessian are strictly positive everywhere) 

• A set  is convex if every line connecting two points from 
 is also contained in . 

• A convex function has at most one local minimum 

Problem Properties: 

• Assume a global minimum exists 

• Will be the only local minimum 

• Can be reached on a straight line from any point in  
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Convex Problems 

Generic Optimization Algorithm (Sketch): 

• Gradient descent 

• Start at any point p   

• Perform gradient descent in “small enough” steps 

• In case of hitting the domain boundary, project on 
boundary surface (follow the wall) 

• When the gradient becomes zero, the minimum is found 

There are more efficient algorithms... 



Multi-Dimensional Integrals 
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Integral 

Integral of a function 

• Function f:    

• Integral                measures signed area under curve: 
b

a

dttf )(

+ 
+ 

+ + + + 
- - 
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Integral 

Numerical Approximation 

• Sum up a series of approximate shapes 

 

 

 

 

 

• (Riemannian) Definition: limit for baseline  zero 
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Multi-Dimensional Integral 

Integration in higher dimensions 

• Functions f: n   

• Tessellate domain and sum up volume of cuboids 
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Integral Transformations 

Integration by substitution: 

 
 

Need to compensate for speed of 
movement that shrinks the measured 
area. 
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Multi-Dimensional Substitution 

Transformation of Integrals: 

 
 

• g  C1, invertible 

• Jacobian approximates 
local behavior of g() 

• Determinant: local area/volume change 

• In particular:                            means g() is area/volume 
conserving. 
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Topology 
- a very short primer - 
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A Few Concepts from Topology 

Homeomorphism:  

• 𝑓: 𝑋 → 𝑌 

• 𝑓 is bijective 

• 𝑓 is continuous 

• 𝑓−1 exists and is continuous 

• Basically, a continuous deformation 

Topological equivalence 

• Objects are topologically equivalence if there exists a 
homeomorphism that maps between them 

• “Can be deformed into each other” 
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Surfaces 

Boundaries of volumes in 3D 

• Topological Equivalence classes 

 Sphere 

 Torus 

 n-fold Torus 

• Genus = number of tunnels 

 

g = 0 g = 1 g = 2 

... 
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Manifold 

Definition: Manifold 

• A d-manifold M:  
At every 𝑥 ∈ 𝑀 there exists an 𝜖-environment 
homeomorphic to a d-dimensional disc 

• With boundary: disc or half-disc 

𝑥1 

homeomorphism 

𝑥2 
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Further concepts 

Connected Set 

• There exists a continuous 
curve within the set 
between all pairs of points 

 

Simply Connected 

• Every closed loop can be 
continuously shrunken 
until it disappears 



Differential Geometry 
of Curves & Surfaces 



Part I: Curves 
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f 

Parametric Curves 

Parametric Curves: 

• A differentiable function 

      f: (a, b)  n 

 describes a parametric curve 

C = f ((a, b)), C  n. 

• The parametrization is called regular if f ’(t)  0 for all t. 

• If | f ’(t)|  1 for all t, f is called a unit-speed 
parametrization of the curve C. 

a 

b C = f ((a, b)) 
f 

|         | 
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Length of a Curve 

The length of a curve: 

• The length of a regular curve C is defined as: 

 

• Independent of the parametrization 

(integral transformation theorem). 

• Alternative: length(C) = |b – a| for a unit-speed 

parametrization 
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Reparametrization 

Enforcing unit-speed parametrization: 

• Assume:| f ’(t)|  0 for all t. 

• We have: 

 
 

• Concatenating                           yields a unit-speed 
parametrization of the curve 
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length(t) 
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(invertible, because f ’(t) > 0) 

|         | 
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Tangents 

Unit Tangents: 

• The unit tangent vector at x  (a, b) is given by: 

 

 

• For curves C    2, the unit normal vector of the curve is 
defined as: 
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Curvature 

Curvature: 

• First derivatives show curve direction / speed of 
movement. 

• Curvature is encoded in 2nd order information. 

• Why not just use f ’’? 

• Problem: Depends on parametrization 

 Different velocity yields different results 

 Need to distinguish between acceleration 
in tangential and non-tangential directions. 
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Curvature & 2nd Derivatives 

Definition of curvature 

• We want only the non-tangential component of f ’’. 

• Accelerating/slowing down does not matter for curvature 
of the traced out curve C. 

• Need to normalize speed. 

C = f ((a, b)) 

tangent(t) 

normal(t) 

f’’(t) 



 61 

Curvature 

Curvature of a Curve C  2: 

 

 

• Normalization factor: 

 Divide by  |f ’|  to obtain unit tangent vector 

 Divide again twice to normalize f ’’ 

– Taylor expansion / chain rule: 

 

– Second derivative scales quadratically with speed 
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Unit-speed parametrization 

Unit-speed parametrization: 

• Assume a unit-speed parametrization, i.e.            . 

• Then, 2 simplifies to: 

)('')( tft κ2

1' f
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Radius of Curvature 

Easy to see: 

• Curvature of a circle is constant,2   1/r  (r = radius). 
(see problem sets) 

• Accordingly: Define radius of curvature as 1/2. 

• Osculating circle: 

 Radius: 

 Center: 

κ2/1

)(
1

)( tnormaltf
κ2


. 
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Theorems 

Definition: 

• Rigid motion: x  Ax+b with orthogonal A 
 Orientation preserving (no mirroring) if det(A) = +1 

 Mirroring leads to det(A) = -1 

Theorems for plane curves: 

• Curvature is invariant under rigid motion 

 Absolute value is invariant 

 Signed value is invariant for orientation preserving rigid motion 

• Two unit speed parameterized curves with identical 
signed curvature function differ only in a orientation 
preserving rigid motion. 
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Space Curves 

General case: Curvature of a Curve C  n 

• W.l.o.g.: Assume we are given a unit-speed 
parametrization f of C 

• The curvature of C at parameter value t is defined as: 

 
 

• For a general, regular curve C  3 (any regular 
parametrization): 

 

 

• General curvature is unsigned 
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Torsion 

Characteristics of Space Curves in 3: 

• Curvature not sufficient 

• Curve may “bend” in space 

• Curvature is a 2nd order property 

• 2nd order curves are always flat 

 Quadratic curves are specified by 3 points in space, 
which always lie in a plane 

 Cannot capture out-of-plane bends 

• Missing property: Torsion 
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Torsion 

Definition: 

• Let f be a regular parametrization of a curve C  3 with 
non-zero curvature 

• The torsion of f at t is defined as 
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Illustration 
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Theorem 

Fundamental Theorem of Space Curves 

• Two unit speed parameterized curves C  3 with 
identical, positive curvature and identical torsion are 
identical up to a rigid motion. 



Part II: Surfaces 
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Parametric Patches 

Parametric Surface Patches: 

A smoothly differentiable function 

   f:  2   n 

describes a parametric surface patch 

  P = f (), P  n. 
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Parametric Patches 

Function f 𝐱 =  𝑓 𝑢, 𝑣 → ℝ3 

• Tangents: 
𝑑

𝑑𝑡
𝑓 𝐱0 + 𝑡𝐫 = 𝛻𝐫𝑓(𝐱0) 

• Canonical tangents:  

• Normal: 𝐧 𝐱0 =
𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)

𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)
 

),(),,( vufvuf vu 
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Illustration 

u 

v 

(u, v) 

f (u, v) f 

  2 P  3 

v f (u, v) 

u f (u, v) 

normal (u, v) 
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Surface Area 

Surface Area: 

• Patch 𝑃: 𝑓: Ω → ℝ3 

• Computation is simple 

• Integrate over constant function f  1 over surface 

• Then apply integral transformation theorem: 




 xxx dffP uu )()()area(



 75 

Fundamental Forms 

Fundamental Forms: 

• Describe the local parametrized surface 

• Measure... 

 ...distortion of length (first fundamental form) 

 ...surface curvature (second fundamental form) 

• Parametrization independent surface curvature 
measures will be derived from this 
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First Fundamental Form 

First Fundamental Form 

• Also known as metric tensor. 

• Given a regular parametric patch f:  2   3. 

• f will distort angles and distances 

• We will look at a local first order Taylor approximation to 
measure the effect: 

 
 

• Length changes become visible 
in the scalar product... 
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First Fundamental Form 

First Fundamental Form 

• First order Taylor approximation: 

 

• Scalar product of vectors a, b  2: 
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First Fundamental Form 

First Fundamental Form 

• The first fundamental form can be written as a 
2  2 matrix: 

 

 

• The matrix is symmetric and positive definite 

(regular parametrization, semi-definte otherwise) 

• Defines a generalized scalar product that measures 

lengths and angles on the surface. 
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Second Fundamental Form 

Problems: 

• The first fundamental form measures length changes only. 

• A cylinder looks like a flat sheet in this view. 

• We need a tool to measure curvature of a surface as well. 

• This requires second order information. 

 Any first order approximation is inherently “flat”. 
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Second Fundamental Form 

Definition: 

• Given: regular parametric patch f:  2   3. 

• Second fundamental form:  
(a.k.a. shape operator, curvature tensor) 

 

 

 
• Notation: 
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Second Fundamental Form 

Basic Idea: 

• Compute second derivative vectors 

• Project in normal direction (remove tangential 
acceleration) 
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Alternative Computation 

Alternative Formulation (Gauss): 

• Local height field parameterization f(x,y) = z 

• Orthonormal x,y coordinates tangential to surface, 
z in normal direction, origin at zero 

• 2nd order Taylor representation: 

 

 
 

• Second fundamental form: Matrix of second derivatives 
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Basic Idea 

In other words: 

• First fundamental form: I 
Linear part (squared) of local 
Taylor approximation. 

• Second fundamental form: II 
Quadratic part of heightfield 
approximation 

• Both matrices are symmetric. 

 Next: eigenanalysis, of course... 
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i > 0 0 > 0, 1 < 0 0 = 0, 1 > 0 

Principal Curvature 

Eigenanalysis: 

• Eigenvalues of second fundamental form 
for an orthonormal tangent basis are called 
principal curvatures 1, 2. 

• Corresponding orthogonal eigenvectors are called 
principal directions of curvature. 

0 = 0, 1 = 0 

... 
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Normal Curvature 

Definition: 

• The normal curvature k(r) in direction r for a unit length 
direction vector r at parameter position x0 is given by: 

 

Relation to Curvature of Plane Curves: 

• Intersect the surface locally with plane 
spanned by normal and r through point x0. 

• Identical curvatures (up to sign). u 
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normal normal normal 

rxSrrrIIrx )(),()( 0
T

x00
k



 86 

Principal Curvatures 

Relation to principal curvature: 

• The maximum principal cuvature 1 is the maximum of 
the normal curvature 

• The minimum principal cuvature 2 is the minimum of the 
normal curvature 
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More Definitions: 

• The Gaussian curvature K is the product of the principal 
curvatures: K = 12 

• The mean curvature H is the average: H = 0.5·(1 + 2) 

Theorems: 

•   

•   
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Global Properties 

Definition: 

• An isometry is a mapping between surfaces that preserves 
distances on the surface (geodesics) 

• A developable surface is a surface with Gaussian curvature 
zero everywhere (i.e. no curvature in at least one 
direction) 

 Examples: Cylinder, Cone, Plane 

• A developable surface can be locally mapped to a plane 
isometrically (flattening out, unroll). 
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Theorema Egregium 

Theorema egregium (Gauss): 

• Any isometric mapping preservers Gaussian curvature, i.e. 
Gaussian curvature is invariant under isometric maps 
(“intrinsic surface property”) 

• Consequence: The earth ( sphere) cannot be mapped to 
a plane in an exactly length preserving way. 
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Gauss Bonnet Theorem 

Gauss Bonnet Theorem: 

For a compact, orientable surface without boundary in 3, the 
area integral of the Gauss curvature is related to the genus g 
of the surface: 
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S

 1π4)(

g = 0 g = 1 g = 2 
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Fundamental Theorem of Surfaces 

Theorem: 

• Given two parametric patches in 3 defined on the same 
domain . 

• Assume that the first and second fundamental form are 
identical. 

• Then there exists a rigid motion that maps on surface to 
the other. 
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Summary 

Objects are the same up to a rigid motion, if...: 

• Curves   2: Same speed, same curvature 

• Curves   3: Same speed, same curvature, torsion 

• Surfaces 2  3: Same first & second fundamental form 

• Volumetric Objects 3  3: Same first fundamental form 

plane curve space curve surface space warp 

= = = = 
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Deformation Models 

What if this does not hold? 

• Deviation in fundamental forms is a measure of 
deformation 

• Example: Surfaces 

 Diagonals of I1 - I2: scaling (stretching) 

 Off-diagonals of I1 - I2: sheering  

 Elements of II1 - II2: bending 

• This is the basis of deformation models. 

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically 
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer 
Graphics 21(4)), 1987. 


