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Representations of Geometry 



Motivation 
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Geometric Modeling 

What do we want to do? 
empty space 
(typically 3) 

geometric object 

B 3 

B 

d 



 4 

Fundamental Problem 

The Problem: 

B 

d 

infinite number of points my computer: 8GB of memory 

We need to encode a continuous model with a finite 
amount of information 
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Modeling Approaches 

Two Basic Approaches 

• Discrete representations 

 Fixed discrete bins 

• “Continuous” representations 

 Mathematical description 

 Evaluate continuously 
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Discrete Representations 

You know this... 

• Fixed Grid of values: 
 (i1, ..., ids

)  ds  (x1, ..., xdt
)  dt 

• Typical scenarios: 

 ds = 2, dt = 3:  Bitmap images 

 ds = 3, dt = 1:  Volume data 
(scalar fields) 

 ds = 2, dt = 1:  Depth maps (range 
images) 

• PDEs: “Finite Differences” 
models 
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Modeling Approaches 

Two Basic Approaches 

• Discrete representations 

 Fixed discrete bins 

• “Continuous” representations 

 Mathematical description 

 Evaluate continuously 
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Classes of Models 

Most frequently used models: 

• Primitive meshes 

• Parametric models 

• Implicit models 

• Particle / point-based models 

Remarks 

• Often combinations thereof: hybrid models 

• Representations can be converted (may be approximate) 

• Some questions are much easier to answer for certain 
representations 



Modeling Zoo 
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Modeling Zoo 
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Parametric Models 

Parametric Models 

• Function f maps from parameter domain  to target space 

• Evaluation of f gives one point on the model 
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  Parametric Models Primitive Meshes 

 

 

  Implicit Models Point-Based Models 

Modeling Zoo 
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Primitive Meshes 

Primitive Meshes 

• Collection of geometric primitives 

 Triangles 

 Quadrilaterals 

 More general primitives 
(e.g. spline patches) 

• Typically, primitives are  
parametric surfaces 

• Composite model: 

 Mesh encodes topology, rough shape 

 Primitive parameter encode local geometry 

• Triangle meshes rule the world (“triangle soup”) 
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Primitive Meshes 

Complex Topology for Parametric Models 

• Mesh of parameter domains attached in a mesh 

• Domain can have complex shape (“trimmed patches”) 

• Separate mapping function f for each part 
(typically of the same class) 

1 

2 

3 
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Meshes are Great 

Advantages of mesh-based modeling: 

• Compact representation (usually) 

• Can represent arbitrary topology 
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Meshes are not so great 

Problem with Meshes: 

• Need to specify a mesh first, then edit geometry 

• Problems 

 Mesh structure need to be adjusted to fit shape 

 Mesh encodes object topology 
 Changing object topology is painful 

• Examples 

 Surface reconstruction 

 Fluid simulation (surface of splashing water) 



Triangle Meshes 
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Triangle Meshes 

Triangle Meshes: 

• Triangle meshes:  
(probably) most common representation 

• Simplest surface primitive  
that can be assembled into meshes 

 Rendering in hardware (z-buffering) 

 Simple algorithms for intersections (raytracing, collisions) 
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Attributes 

How to define a triangle? 

• We need three points in 3 (obviously). 

• But we can have more: 

per-vertex normals 
(represent smooth 
surfaces more accurately) 

per-vertex color 

texture per-vertex texture 
coordinates 

(etc...) 
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Shared Attributes in Meshes 

In Triangle Meshes: 

• Attributes might be shared or separated: 

adjacent triangles  
share normals 

adjacent triangles  
have separated normals 
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“Triangle Soup” 

Variants in triangle mesh representations: 

• “Triangle Soup” 

 A set S = {t1, ..., tn} of triangles 

 No further conditions 

 “most common” representation 
(web downloads and the like) 

• Triangle Meshes: Additional consistency conditions 

 Conforming meshes: Vertices meet only at vertices 

 Manifold meshes: No intersections, no T-junctions 
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Conforming Meshes 

Conforming Triangulation: 

• Vertices of triangles must only meet at vertices, not in the 
middle of edges: 

 

 

 

 

 

• This makes sure that we can move vertices around 
arbitrarily without creating holes in the surface 
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Manifold Meshes 

Triangulated two-manifold: 

• Every edge is incident to exactly 2 triangles 
(closed manifold) 

• ...or to at most two triangles (manifold with boundary) 

• No triangles intersect (other than along common edges or 
vertices) 

• Two triangles that share a vertex must share an edge 
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Attributes 

In general: 

• Vertex attributes: 

 Position (mandatory) 

 Normals 

 Color 

 Texture Coordinates 

• Face attributes: 

 Color 

 Texture 

• Edge attributes (rarely used) 

 E.g.: Visible line 
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Data Structures 

The simple approach: List of vertices, edges, triangles 
 

v1: (posx posy posy), attrib1, ..., attribnav 
                    ... 

vnv: (posx posy posy), attrib1, ..., attribnav 

 

e1: (index1 index2), attrib1, ..., attribnae 
                    ... 

ene: (index1 index2), attrib1, ..., attribnae 

 

t1: (idx1 idx2 idx3), attrib1, ..., attribnat 
                    ... 

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat 
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Pros & Cons 

Advantages: 

• Simple to understand and build 

• Provides exactly the information necessary for rendering 

Disadvantages: 

• Dynamic operations are expensive: 

 Removing or inserting a vertex  
 renumber expected edges, triangles 

• Adjacency information is one-way 

 Vertices adjacent to triangles, edges  direct access 

 Any other relationship  need to search 

 Can be improved using hash tables (but still not dynamic) 
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Adjacency Data Structures 

Alternative: 

• Some algorithms require extensive neighborhood 
operations (get adjacent triangles, edges, vertices) 

• ...as well as dynamic operations (inserting, deleting 
triangles, edges, vertices) 

• For such algorithms, an adjacency based data structure is 
usually more efficient 

 The data structure encodes the graph of mesh elements 

 Using pointers to neighboring elements 
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First try... 

Straightforward Implementation: 
• Use a list of vertices, edges, 

triangles 

• Add a pointer from each element 
to each of its neighbors 

• Global triangle list can be used for rendering 

Remaining Problems: 

• Lots of redundant information – hard to keep consistent 

• Adjacency lists might become very long 

 Need to search again (might become expensive) 

 This is mostly a “theoretical problem” (O(n) search) 
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Half edge data structure: 

• Half edges, connected by clockwise / ccw pointers 

• Pointers to opposite half edge 

• Pointers to/from start vertex of each edge 

• Pointers to/from left face of each edge 

Less Redundant Data Structures 
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// a vertex 

struct Vertex { 

   HalfEdge* someEdge; 

   /* vertex attributes */ 

}; 

 

// the face (triangle, poly) 

struct Face { 

   HalfEdge* half; 

   /* face attributes */ 

}; 

Implementation 

// a half edge 

struct HalfEdge { 

   HalfEdge* next; 

   HalfEdge* previous; 

   HalfEdge* opposite; 

 

   Vertex* origin; 

   Face* leftFace; 

   EdgeData* edge; 

}; 

 

// the data of the edge 

// stored only once 

struct EdgeData { 

   HalfEdge* anEdge; 

   /* attributes */ 

}; 
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Implementation 

Implementation: 

• The data structure should be encapsulated 

 To make sure that updates are consistent 

 Implement abstract data type with more high level operations 
that guarantee consistency of back and forth pointers 

• Free Implementations are available, for example 

 OpenMesh 

 CGAL 

• Alternative data structures: for example winged edge 
(Baumgart 1975) 
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  Parametric Models Primitive Meshes 

 

 

  Implicit Models Point-Based Models 

Modeling Zoo 
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Particle Representations 

Point-based Representations 

• Set of points 

• Points are (irregular) sample of the object 

• Need additional information to deal with “the empty 
space around the particles” 

additional 
assumptions 
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Meshless Meshes... 

Point Clouds 

• Triangle mesh without the triangles 

• Only vertices 

• Attributes per point 

per-vertex normals 

per-vertex color 
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Particle Representations 

Helpful Information 

• Each particle may carries a set of attributes 

 Must have: Its position 

 Additional geometry:  
Density (sample spacing), surface normals 

 Additional attributes: 
Color, physical quantities (mass, pressure, temperature), ... 

• Addition information helps reconstructing  
the geometric object described by the particles 
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The Wrath of Khan 

Why Star Trek is at fault... 

• Particle methods: first used for fuzzy phenomena 
(fire, clouds, smoke) 

• “Particle Systems—a Technique for Modeling a Class of 
Fuzzy Objects” [Reeves 1983] 

• Movie: Genesis sequence  
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Geometric Modeling 

3D Scanners 

• 3D scanner yield point clouds 

 Have to deal with points 
anyway 

• Algorithms that directly work 
on “point clouds” 

Data: [IKG, University Hannover, C. Brenner] 
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  Parametric Models Primitive Meshes 

 

 

  Implicit Models Point-Based Models 

Modeling Zoo 
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Implicit Modeling 

General Formulation: 

• Curve / Surface S = {x | f(x) = 0} 

• x  d (d = 2,3), f(x)   

• S is (usually) a d-1 dimensional object 

This means...: 

• The surface obtained implicitly 

• Set of points where f vanishes:  f(x) = 0 

• Alternative notation: S = f -1(0) 
(“inverse” yields a set) 
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Implicit Modeling 

Example: 

• Circle: x2 + y2 = r2  
       fr(x,y) = x2 + y2 - r2 = 0 

• Sphere:  x2 + y2 + z2 = r2  

Special Case: 

• Signed distance field 

• Function value is signed distance to surface 

 

• Negative means inside, positive means outside 

x2 

y2 
r2 

||)(),( 222222 ryxryxyx  signf
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Implicit Modeling: Pros & Cons 

Advantages: 

• Topology changes easy (in principle) 

• Standard technique for simulations with free boundaries 
(“level-set methods”) 

 Example: fluid simulation 
(evolving water-air interface) 

• Other applications: 

 Surface reconstruction 

 “Blobby surfaces” 

 Surface analysis (local) 
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Implicit Modeling: Pros & Cons 

Disadvantages: 

• Need to solve inversion problem S = f -1(0) 

• More complex / slower algorithms 

• Usually needs more memory than meshes 



Implicit Function – Details 
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The Implicit Function Theorem 

Implicit Function Theorem: 

• Given a differentiable function 
 

 f : n  D  ,                     , 
  

• Within an  -neighborhood of x(0) we can represent the 
zero level set of f completely as a heightfield function g 

     g : n-1         such that for  x – x(0) <   we have: 

     f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and  

     f(x1,..., xn)  0 everywhere else. 

• The heightfield is a differentiable (n – 1)-manifold and its 
surface normal is the colinear to the gradient of f. 
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This means 

Surface modeling: 

• Use smooth (differentiable) function f in 3 

• Gradient of f does not vanish. 

This gives us the following guarantees: 

• The zero-level set is actually a surface: 

 We obtained a closed 2-manifold without boundary. 

 We have a well defined interior / exterior. 

Sufficient: 

• We need smoothness / non-vanishing gradient only close 
to the zero-crossing. 
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Implicit Function Types 

Function types: 

• General case 
 Non-zero gradient at zero crossing 

 Otherwise arbitrary 

• Signed implicit function: 
 sign(f): negative inside and positive outside the object 

(or the other way round, but we assume this orientation here) 

• Signed distance field 
 |f| = distance to the surface 

 sign(f): negative inside, positive outside 

• Squared distance function 
 f = (distance to the surface)2 
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Implicit Function Types 

Use depends on application: 

• Signed implicit function 
 Solid modeling 

 Interior well defined 

• Signed distance function 
 Most frequently used representation 

 Constant gradient  numerically stable surface definition 

 Availability of distance values useful for many applications 

• Squared distance function 
 This representation is useful for statistical optimization 

 Minimize sum of squared distances  least squares optimization 

 Useful for surfaces defined up to some insecurity / noise. 

 Direct surface extraction more difficult (gradient vanishes!). 

signed distance 
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Squared Distance Function 

Example: Surface from random samples 

1. Determine sample point (uniform) 

2. Add noise (Gaussian) 

sampling Gaussian noise many samples distribution 
(in space) 
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Smoothness 

Smoothness of signed distance function: 

• Any distance function (signed, unsigned, squared) cannot 
be globally smooth in general cases 

• The distance function is  
non-differentiable at the medial axis 

 Medial axis = set of points that 
have the same distance to two 
or more different surface points 

 For sharp corners, the medial 
axis touches the surfaces 

 This means: f non-differentiable 
on the surface itself 
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Differential Properties 

Some useful differential properties: 

• We look at a surface point x, i.e. f (x) = 0. 

• We assumef (x)  0. 

• The unit normal of the implicit surface is given by: 

 

 

 For signed functions, the normal is pointing outward. 

 For signed distance functions, this simplifies to n(x) = f (x). 
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Differential Properties 

Some useful differential properties: 

• The mean curvature of the surface is proportional to the 
divergence of the unit normal: 

 

 

 

 

• For a signed distance function, the formula simplifies to: 
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Mean Curvature Formula 

Proof (sketch): 

• We assume that the normal is in z-direction, i.e., x, y are 
tangent to the surface (divergence is invariant under 
rotation). The surface normal is given by: 
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Computing Volume Integrals 

Computing volume integrals: 

• Heavyside function: 

 

 

• Volume integral over interior volume f of 
some function g(x) (assuming negative interior values): 
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Computing Surface Integrals 

Computing surface integrals: 

• Dirac delta function: 

 Idealized function (distribution) 

 Zero everywhere ((x) = 0),  
except at x = 0, where it is positive, inifinitely large. 

 The integral of (x) over x is one. 

• Dirac delta function on the surface: directional derivative 
of step(x) in normal direction: 
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Surface Integral 

Computing surface integrals: 

• Surface integral over the surface  f = {x | f (x) = 0} 
of some function g(x): 

 

 

• This looks nice, but is numerically intractable. 

• We can fix this using smothed out Dirac/Heavyside 
functions... 
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Smoothed Functions 

Smooth-step function 
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Implicit Surfaces 
Numerical Discretization 
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Representing Implicit Functions 

Representation: Two basic techniques 

• Discretization on grids 

 Simple finite differencing (FD) grids 

 Grids of basis functions (finite elements FE) 

 Hierarchical / adaptive grids (FE) 

• Discretization with radial basis functions 
(particle FE methods) 
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Discretization 

Discretization examples 

• In the following, we will look at 2D examples 

• The 3D (d-dimensional) case is similar 
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Regular Grids 

Discretization: 

• Regular grid of values fi,j 

• Grid spacing h 

• Differential properties can 
be approximated by finite 
differences: 

 For example: 
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Regular Grids 

Variant: 

• Use only cells near the surface 

• Saves storage & computation time 

• However: We need to know an 
estimate on where the surface is 
located to setup the 
representation 

• Propagate to the rest of the 
volume (if necessary): 
fast marching method 
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Fast Marching Method 

Problem statement: 

• Assume we are given the surface and signed distance 
value in a narrow band. 

• Now we want to compute distance values everywhere on 
the grid. 

Three solutions: 

• Nearest neighbor queries 

• Eikonal equation 

• Fast marching 
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Nearest Neighbors 

Algorithm: 

• For each grid cell: 

 Compute nearest point on 
the surface 

 Enter distance 

• Approximate nearest neighbor 
computation: 

 Look for nearest grid cell with 
zero crossing first 

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance) 

• Costs: O(n) kNN queries (n empty cells) 
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Eikonal Equation 

Eikonal Equation 

• Place variables in empty cells 

• Fixed values in known cells 

• Then solve the following PDE: 

 

 

 

• This is a (non-linear) boundary value problem. 

known

known

A

ff

f







x

xx

 area known the on

 )()(  to subject

1



 67 

Fast Marching 

Solving the Equation: 

• The Eikonal equation can be solved efficiently by a region 
growing algorithm: 

 Start with the initial known values 

 Compute new distances at immediate neighbors solving a local 
Eikonal equation (*) 

 The smallest of these values must be correct (similar to Dijkstra’s 
algorithm) 

 Fix this value and update the neighbors again 

 Growing front, O(n log n) time. 
 

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge 
University Press 1996. 
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Regular Grids of Basis Functions 

Discretization (2D): 

• Place a basis function in each 
grid cell: bi,j = b(x – i, y – j) 

• Typical choices: 

 Bivariate uniform cubic B-splines 
(tensor product) 

 b(x, y) = exp[-(x2 + y2)] 

• The implicit function is then 
represented as: 

 
 

• The i,j describe different f. 
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Regular Grids of Basis Functions 

Differential Properties: 

• Derivatives: 

 

 

 

 

• Derivatives are linear 
combinations of the derivatives 
of the basis function. 

• In particular: We again get a 
linear expression in the i,j. 
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Adaptive Grids 

Adaptive / hierarchical grid: 

• Perform a quadtree /octree 
tessellation of the domain 
(or any other partition into 
elements) 

• Refine where more precision is 
necessary (near surface, maybe 
curvature dependent) 

• Associate basis functions with 
each cell (constant or higher 
order) 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Place a set of “particles” in space 
at positions xi. 

• Associate each with a radial basis 
function b(x – xi). 

• The discretization is then given 
by: 

 

 

• The i encode f. 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Obviously, derivatives are again 
linear in i: 

 

 

• The radial basis functions can also 
have different size (support) for 
adaptive refinement 

• Placement: near the expected 
surface 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Where should we place the radial 
basis functions? 

 If we have an initial guess for 
the surface shape: 

– put some on the surface 

– and some in +/- normal direction. 

 Otherwise: 

– Uniform placement in lowres 

– Solve for surface 

– Refine near lowres-surface, iterate. 



Implicit Surfaces 
Level Set Extraction 
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Iso-Surface Extraction 

New task: 

• Assume we have defined an implicit function 

• Now we want to extract the surface. 

• I.e. convert it to an explicit, piecewise parametric 
representation, typically a triangle mesh. 

• For this we need an iso-surface extraction algorithm 

 a.k.a. level set extraction 

 a.k.a. contouring 
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Algorithms 

Algorithms: 

• Marching Cubes 

 This is the standard technique. 

• There are alternatives (in particular for special cases) 
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Marching Cubes 

Marching Cubes: 

• The most frequently used iso-surface extraction algorithm 

 Triangle mesh from an iso-value surface of a scalar volume 

 Example: Visualization of CT scanner data 

• Simple idea: 

 Define and solve a fixed complexity, local problem. 

 Compute a full solution by solving many such local problems 
incrementally. 
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Marching Cubes 

Marching Cubes: 

• Local problem: 

 Cube with 8 vertices 

 Each vertex is either inside or 
outside the volume 
(i.e. f (x) < 0 or f (x)  0) 

 How to triangulate this cube? 

 How to place the vertices? 
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Triangulation 

Triangulation: 

• 256 different cases 

 Each of 8 vertices: in or out. 

• By symmetry: reduction to 15 cases 

 Reflection, rotation, bit inversion 

• Computes the topology of the mesh 
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Vertex Placement 

How to place the vertices? 

• Zero-th order: Vertices at edge midpoints 

• First order: Linearly interpolate vertices along edges. 

• Example: 

 f(x) = -0.1 and f(y) = 0.2 

 Vertex at ratio 1:2 between x and y 
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Outer Loop 

Outer Loop: 

• Start: bounding box 

• Divide into cubes (regular grid) 

• Execute “marching cube”  
in each subcube 

• Output: union of all cube results 

• Optional:  

 Vertex hash table to make 
mesh consistent 

 Removes double vertices 
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Marching Squares 

Marching Squares: 

• There is also a 2D version of the algorithm, called 
marching squares. 

• Same idea, but fewer cases. 



Representations Summary 
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Summary 

• Many different 
representations 

• No silver bullet 

• All representations work 
in principle for all problems 

• Effort application dependent 

 Conceptual effort 

 Computational effort 

Summary 


