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Motivation



Geometric Modeling

What do we want to do?

RI| —— empty space

/7 (typically R3)

\ geometric object
- B c R?




Fundamental Problem

The Problem:
R¢
B
infinite number of points my computer: 8GB of memory

We need to encode a continuous model with a finite
amount of information



Modeling Approaches

Two Basic Approaches
e Discrete representations

= Fixed discrete bins

e “Continuous” representations

= Mathematical description
= Evaluate continuously



Discrete Representations

You know this...

e Fixed Grid of values:

(i3 oo ig) € ZF5 — (X3, ..., Xg) € R

e Typical scenarios:

= d.=2,d,=3: Bitmap images

= d.=3,d,=1: Volume data

(scalar fields)

= d,=2,d,=1: Depth maps (range
images)

e PDEs: “Finite Differences”

models



Modeling Approaches

Two Basic Approaches
e Discrete representations

= Fixed discrete bins

e “Continuous” representations

= Mathematical description
= Evaluate continuously



Classes of Models

Most frequently used models:
e Primitive meshes
e Parametric models
e Implicit models
e Particle / point-based models

Remarks
e Often combinations thereof: hybrid models

e Representations can be converted (may be approximate)

e Some questions are much easier to answer for certain
representations



Modeling Zoo
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Parametric Models
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I
(u,v) ’

Parametric Models

e Function f maps from parameter domain €2 to target space
e Evaluation of f gives one point on the model
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Primitive Meshes

Primitive Meshes

e Collection of geometric primitives

= Triangles

= Quadrilaterals
= More general primitives
(e.g. spline patches)
e Typically, primitives are
parametric surfaces

e Composite model:
= Mesh encodes topology, rough shape

= Primitive parameter encode local geometry

e Triangle meshes rule the world (“triangle soup”)

15



Primitive Meshes

Complex Topology for Parametric Models
e Mesh of parameter domains attached in a mesh
e Domain can have complex shape (“trimmed patches”)

e Separate mapping function f for each part
(typically of the same class)

16



Meshes are Great

Advantages of mesh-based modeling:
e Compact representation (usually)
e Can represent arbitrary topology

17



Meshes are not so great

Problem with Meshes:
e Need to specify a mesh first, then edit geometry
e Problems

= Mesh structure need to be adjusted to fit shape

= Mesh encodes object topology
—> Changing object topology is painful

e Examples
= Surface reconstruction
= Fluid simulation (surface of splashing water)

18



Triangle Meshes



Triangle Meshes

Triangle Meshes:

e Triangle meshes:
(probably) most common representation

e Simplest surface primitive
that can be assembled into meshes

= Rendering in hardware (z-buffering)
= Simple algorithms for intersections (raytracing, collisions)

20



Attributes

How to define a triangle?

e We need three points in R3 (obviously).

e But we can have more:

per-vertex color

texture

per-vertex normals

(represent smooth

surfaces more accurately)

per-vertex texture

coordinates

(etc...)

4
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Shared Attributes in Meshes

In Triangle Meshes:
e Attributes might be shared or separated:

e
<~ <~
adjacent triangles adjacent triangles

share normals have separated normals

22



“Triangle Soup”

Variants in triangle mesh representations:

e “Triangle Soup”
= AsetS={t, ..., t } of triangles
= No further conditions

= “most common” representation
(web downloads and the like)

e Triangle Meshes: Additional consistency conditions
= Conforming meshes: Vertices meet only at vertices
= Manifold meshes: No intersections, no T-junctions

23



Conforming Meshes

Conforming Triangulation:

e Vertices of triangles must only meet at vertices, not in the

middle of edges:

P
T

e This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

V4
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Manifold Meshes

Triangulated two-manifold:

e Every edge is incident to exactly 2 triangles
(closed manifold)

e ...or to at most two triangles (manifold with boundary)

e No triangles intersect (other than along common edges or
vertices)

e Two triangles that share a vertex must share an edge

F A

25



Attributes

In general:

e Vertex attributes:
= Position (mandatory)
= Normals
= Color
= Texture Coordinates

e Face attributes:
= Color
= Texture

e Edge attributes (rarely used)
= E.g.: Visible line

26



Data Structures

The simple approach: List of vertices, edges, triangles

v,: (posx posy posy), attrib,, ..., attrib, .
V,,: (POSX posy posy) ,. -a;ttribl, ..y attribnav
e,: (index; 1index,), attrib,, ..., attrib,_
e,.: (index; 1index,), e.i’.c’.cribl, ..., attrib,__
t,: (idx, 1dx, idx;), attrib,, ..., attrib,_,

ty,: (1dx, 1dx, idx;), attrib,, ..., attrib,_, f
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Pros & Cons

Advantages:
e Simple to understand and build
e Provides exactly the information necessary for rendering

Disadvantages:

e Dynamic operations are expensive:

= Removing or inserting a vertex
— renumber expected edges, triangles

e Adjacency information is one-way
= Vertices adjacent to triangles, edges — direct access
= Any other relationship — need to search
= Can be improved using hash tables (but still not dynamic)
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Adjacency Data Structures

Alternative:

e Some algorithms require extensive neighborhood
operations (get adjacent triangles, edges, vertices)

e ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

e For such algorithms, an adjacency based data structure is
usually more efficient
= The data structure encodes the graph of mesh elements
= Using pointers to neighboring elements

29



First try...

Straightforward Implementation: »
e Use a list of vertices, edges, Ve
triangles
e Add a pointer from each element
to each of its neighbors
e Global triangle list can be used for rendering

Remaining Problems:
e Lots of redundant information — hard to keep consistent

e Adjacency lists might become very long
= Need to search again (might become expensive)
= This is mostly a “theoretical problem” (O(n) search)

30



Less Redundant Data Structures

Half edge data structure:
o Half edges, connected by clockwise / ccw pointers
e Pointers to opposite half edge
e Pointers to/from start vertex of each edge
e Pointers to/from left face of each edge

31



Implementation

// a half edge

struct HalfEdge {
HalfEdge* next;
HalfEdge* previous;
Hal fEdge* opposite;

Vertex* origin;

Face* leftFace;

EdgeData* edge;
};

// the data of the edge
// stored only once
struct EdgeData {
HalfEdge* ankEdge;
/* attributes */

};

// a vertex
struct Vertex {
HalfEdge* someEdge;

};

// the face (triangle, poly)
struct Face {

HalfEdge* half;

/* face attributes */

};
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Implementation

Implementation:
e The data structure should be encapsulated

= To make sure that updates are consistent

= Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

e Free Implementations are available, for example
= OpenMesh
= CGAL

e Alternative data structures: for example winged edge
(Baumgart 1975)
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Particle Representations

Point-based Representations
e Set of points

e Points are (irregular) sample of the object

e Need additional information to deal with “the empty
space around the particles”

o ° additional /\

assumptions

35



Meshless Meshes...

Point Clouds
e Triangle mesh without the triangles
e Only vertices
e Attributes per point

per-vertex normals

per-vertex color

36



Particle Representations

Helpful Information

e Each particle may carries a set of attributes
= Must have: Its position

= Additional geometry:
Density (sample spacing), surface normals

= Additional attributes:

Color, physical quantities (mass, pressure, temperature), ...

e Addition information helps reconstructing
the geometric object described by the particles
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The Wrath of Khan

Why Star Trek is at fault...

e Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

e “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” [Reeves 1983]

e Movie: Genesis sequence

38



Geometric Modeling

3D Scanners

e 3D scanner yield point clouds
= Have to deal with points
anyway

e Algorithms that directly work
on “point clouds”

Data: [IKG, University Hannover, C. Brenner]
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Implicit Modeling

General Formulation:
e Curve /Surface S={x | f(x) = 0}
e xe R (d=2,3), f[x) e R
e Sis (usually) a d-1 dimensional object

This means...:
e The surface obtained implicitly
e Set of points where f vanishes: f(x) =0

o Alternative notation: S = f%(0)
(“inverse” yields a set)

41



Implicit Modeling

Example: LT \
e Circle: x> +y?=1r? ﬁ
< fxy)=x2+y?-r’=0 2
. X :

e Sphere: x> +y?+2%2=1r

~~~
Vw -7
L TR

Special Case:
e Signed distance field
e Function value is signed distance to surface

X,y)=sign(x* +y° —r°)|X* +y° —r?|
g

 Negative means inside, positive means outside

42



Implicit Modeling: Pros & Cons

Advantages:
e Topology changes easy (in principle)
e Standard technique for simulations with free boundaries
(“level-set methods”)

= Example: fluid simulation
(evolving water-air interface)

e Other applications:
= Surface reconstruction
= “Blobby surfaces”
= Surface analysis (local)

43



Implicit Modeling: Pros & Cons

Disadvantages:
e Need to solve inversion problem S = f-1(0)
e More complex / slower algorithms
e Usually needs more memory than meshes

44



Implicit Function — Details



The Implicit Function Theorem

Implicit Function Theorem:
e Given a differentiable function

fiR"oD >R, f(x")=0, f(x“”) = f(xg‘”,..., x")#0

e Within an &-neighborhood of x(O) we can represent the
zero level set of f completely as a heightfield function g

g:R™ —> R  suchthat for x - x(0 < & we have:
f(Xppee X, 1, 9 (Xp,m0%,, 1)) = 0 and
f(x4,- X)) # 0 everywhere else.

e The heightfield is a differentiable (n — 1)-manifold and its
surface normal is the colinear to the gradient of /.

46



This means

Surface modeling:
e Use smooth (differentiable) function fin R3
e Gradient of f does not vanish.

This gives us the following guarantees:

e The zero-level set is actually a surface:
= We obtained a closed 2-manifold without boundary.
= We have a well defined interior / exterior.

Sufficient:

e We need smoothness / non-vanishing gradient only close
to the zero-crossing.

47



Implicit Function Types

Function types:

e General case
= Non-zero gradient at zero crossing
= Otherwise arbitrary
e Signed implicit function:
= sign(f): negative inside and positive outside the object
(or the other way round, but we assume this orientation here)

e Signed distance field
= |f| =distance to the surface
= sign(f): negative inside, positive outside

e Squared distance function
= f=(distance to the surface)?

48



Implicit Function Types

Use depends on application:

!
|
. . . . . Do =
e Signed implicit function
= Solid modeling .
= Interior well defined N N
e Signed distance function 1

, signed distance
= Most frequently used representation

= Constant gradient — numerically stable surface definition
= Availability of distance values useful for many applications

e Squared distance function

= This representation is useful for statistical optimization

= Minimize sum of squared distances — least squares optimization
= Useful for surfaces defined up to some insecurity / noise.

= Direct surface extraction more difficult (gradient vanishes!).



Squared Distance Function

Example: Surface from random samples
1. Determine sample point (uniform)
2. Add noise (Gaussian)

.‘:.
sampling Gaussian noise many samples

Py (x)= any /21 BTG expi—%(x—u)Tzl (X—u)j

distribution
(in space)

50



Smoothness

Smoothness of sighed distance function:

e Any distance function (signed, unsigned, squared) cannot
be globally smooth in general cases

e The distance function is
non-differentiable at the medial axis

= Medial axis = set of points that
have the same distance to two
or more different surface points

= For sharp corners, the medial
axis touches the surfaces

= This means: f non-differentiable
on the surface itself

51



Differential Properties

Some useful differential properties:
 We look at a surface point x, i.e. f(x) = 0.
e We assume Vf(x) #0.

e The unit normal of the implicit surface is given by:
VI(x)
[V/ )|

= For signed functions, the normal is pointing outward.

n(x)=

= For signed distance functions, this simplifies to n(x) = Vf(x).

52



Differential Properties

Some useful differential properties:

e The mean curvature of the surface is proportional to the
divergence of the unit normal:
—2H(x)=V -n(x)

0 0 0
=—n (X)+—n (X)+—n (X
o) ayy() 5, X

o V)
[V )|

e For a signed distance function, the formula simplifies to:

—ZH(X)=V-Vf(X)=§(—2f(X)+§/—2f(X)+§Z—Zf(X)

=Af(x)

53 /803



Mean Curvature Formula

Proof (sketch):

e We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

0 —8XS(X,y)
n(x,y)=0|=-0,s(x,y)
1 1

2

Von(xy) = s(xoy) -2 s+ 1

Ox*

=trace 2

oxoy

82
oy°

62
—5(x,
2 (x,y)

s(x,y)

0
0Z

2

0
s(x,
oxoy (x.)

2

—S\ X,
o (x,y)

X,y

=—2H(x,y) {H(Xo) = %tr(s(xo))}

54 / 8G:4



Computing Volume Integrals

Computing volume integrals:

o Heavy5|de function:
tep(x) =1, O %
Stepl X )=
P ifx>0

e Volume mtegral over interior volume Qfof
some function g(x) (assuming negative interior values):

J gtxyix = I g(x)(1-step( f(x)))dx

Qpf

55 /805



Computing Surface Integrals

e Dirac delta function:
= |dealized function (distribution)

= Zero everywhere (0(x) = 0),
except at x = 0, where it is positive, inifinitely large.

= The integral of 6(x) over x is one.

Computing surface integrals: Aéi(x)

| X

e Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

§ = V[step( £(x))] n(x) = [Vstep)( f(x))- VF(x) L

IV/ ()|

=S5(f(x))-|Vf(x)

56 / 8%:6



Surface Integral

Computing surface integrals:

» Surface integral over the surface 0Q),= {x| f(x) =0}
of some function g(x):

| g(xydx = [ g(x)5(f(x))| VF(x)|dx

Q¢

e This looks nice, but is numerically intractable.

e We can fix this using smothed out Dirac/Heavyside
functions...

57/ 8%:7



Smoothed Functions

Smooth-step function

-

0 X<—¢&
1 x 1 . ([1mx
smooth_step(x)=<{—+—+—sin| — | —¢<x<¢
2 26 2T g
1 E<X

Smoothed Dirac delta function

0
1 1
smooth_delta(x)=<—+
2 2¢
0

\

X<-—=¢&

X
cos(—) —&c<x<¢
E

X>&

58 /8G:8



Implicit Surfaces
Numerical Discretization



Representing Implicit Functions

Representation: Two basic techniques

e Discretization on grids
= Simple finite differencing (FD) grids
= Grids of basis functions (finite elements FE)
= Hierarchical / adaptive grids (FE)
e Discretization with radial basis functions
(particle FE methods)

60



Discretization

Discretization examples
e In the following, we will look at 2D examples
e The 3D (d-dimensional) case is similar

61



Regular Grids

Discretization: r

e Regular grid of valuesfiJ.

e Grid spacing h _——

e Differential properties can —
be approximated by finite
differences:

= For example:

0 1
8_ f(x)= Z (fi(x),j(x) - fi(x)—l,j(x) )+ O(h)

af(X) — E (fi(x)+1,j(x) - fi(x)—1,j(x) )"‘ O(h”)

62



Regular Grids

Variant:
e Use only cells near the surface
e Saves storage & computation time

e However: We need to know an
estimate on where the surface is
located to setup the
representation

e Propagate to the rest of the
volume (if necessary):
fast marching method

63



Fast Marching Method

Problem statement:

e Assume we are given the surface and signed distance
value in a narrow band.

e Now we want to compute distance values everywhere on
the grid.

Three solutions:
e Nearest neighbor queries
e Eikonal equation
e Fast marching

64



Nearest Neighbors

Algorithm:

e For each grid cell: \

= Compute nearest point on \
the surface \\

= Enter distance N

e Approximate nearest neighbor

computation:

= Look for nearest grid cell with
zero crossing first

= Then compute distance curve <> zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

e Costs: O(n) kNN queries (n empty cells)

65



Eikonal Equation

Eikonal Equation
e Place variables in empty cells

e Fixed values in known cells —

e Then solve the following PDE:
[Vfl=1

Subj eCt tO f(X) — fknown (X)
ontheknownareaxe A

known

e This is a (non-linear) boundary value problem.

66



Fast

Marching

Solving the Equation:

e The Eikonal equation can be solved efficiently by a region
growing algorithm:

Start with the initial known values

Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

Fix this value and update the neighbors again
Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

67



Regular Grids of Basis Functions

Discretization (2D):

e Place a basis function in each
gridcell: b, = b(x -1,y -])
e Typical choices:

= Bivariate uniform cubic B-splines
(tensor product)

* b(x,y) = exp[-A(x* + y?)]
e The implicit function is then
represented as:

f(x,y)= Zilzjl/ﬂti,jbi,j(xr)d

i=0 j=0

* The 4, describe different f.
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Regular Grids of Basis Functions

Differential Properties:

e Derivatives:

0
X,
OX o1 OX, Jx.)

S5 [ 2 j(m

i=0 j=0

e Derivatives are linear
combinations of the derivatives
of the basis function. b,

e |n particular: We again get a bs 5-

linear expression in the 4, .
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Adaptive Grids

Adaptive / hierarchical grid:

e Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements)

e Refine where more precision is
necessary (near surface, maybe
curvature dependent)

e Associate basis functions with
each cell (constant or higher
order)

70



Particle Methods

Particle methods /
radial basis functions:
e Place a set of “particles” in space
at positions X..
e Associate each with a radial basis
function b(x—x).
e The discretization is then given
by:

)= 2 bx—x)

e The A, encode f.

71



Particle Methods

Particle methods /
radial basis functions:
e Obviously, derivatives are again
linear in A

=Y hx-x,)

anlnuanm 120 anl...anm

e The radial basis functions can also
have different size (support) for
adaptive refinement

e Placement: near the expected
surface

72



Particle Methods

Particle methods /
radial basis functions:

e Where should we place the radial
basis functions?

= |f we have an initial guess for
the surface shape:

— put some on the surface

— and some in +/- normal direction.
= Otherwise:

— Uniform placement in lowres

— Solve for surface

— Refine near lowres-surface, iterate.

73



Implicit Surfaces
Level Set Extraction



Iso-Surface Extraction

New task:

e Assume we have defined an implicit function
e Now we want to extract the surface.

e |.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

e For this we need an iso-surface extraction algorithm
= a.k.a. level set extraction
= a.k.a. contouring

75



Algorithms

Algorithms:

e Marching Cubes
= This is the standard technique.

e There are alternatives (in particular for special cases)
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Marching Cubes

Marching Cubes:
e The most frequently used iso-surface extraction algorithm

= Triangle mesh from an iso-value surface of a scalar volume
= Example: Visualization of CT scanner data

e Simple idea:
= Define and solve a fixed complexity, local problem.

= Compute a full solution by solving many such local problems
incrementally.

77



Marching Cubes

Marching Cubes:

e Local problem:
= Cube with 8 vertices

= Each vertex is either inside or
outside the volume

(i.,e. f(x) <0orf(x)=>0)
= How to triangulate this cube?
= How to place the vertices?

78



Triangulation

Triangulation:
e 256 different cases
= Each of 8 vertices: in or out.

e By symmetry: reduction to 15 cases

= Reflection, rotation, bit inversion

e Computes the topology of the mesh

79



Vertex Placement

How to place the vertices?
e Zero-th order: Vertices at edge midpoints
e First order: Linearly interpolate vertices along edges.

e Example:
= f(x)=-0.1and f(y) =0.2
= Vertex at ratio 1:2 between x and y

80



Outer Loop

Outer Loop:
e Start: bounding box
e Divide into cubes (regular grid)
e Execute “marching cube”
in each subcube
e QOutput: union of all cube results
e Optional:

= Vertex hash table to make
mesh consistent

= Removes double vertices

® ® @ @ @ ® @ @
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Marching Squares

LD

Marching Squares:

e There is also a 2D version of the algorithm, called
marching squares.

e Same idea, but fewer cases.
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Representations Summary



Summary

Summary L@

e Many different
representations

Parametric Models

!

e No silver bullet !

1

e All representations work implicit Models
in principle for all problems

e Effort application dependent
= Conceptual effort
= Computational effort

Y
e
Primitive Meshes

Particle Models
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