
Statistical Geometry Processing
Winter Semester 2011/2012

Representations of Geometry

Motivation

 3

Geometric Modeling

What do we want to do?
empty space
(typically 3)

geometric object

B 3

B

d

 4

Fundamental Problem

The Problem:

B

d

infinite number of points my computer: 8GB of memory

We need to encode a continuous model with a finite
amount of information

 5

Modeling Approaches

Two Basic Approaches

• Discrete representations

 Fixed discrete bins

• “Continuous” representations

 Mathematical description

 Evaluate continuously

 6

Discrete Representations

You know this...

• Fixed Grid of values:
 (i1, ..., ids

) ds (x1, ..., xdt
) dt

• Typical scenarios:

 ds = 2, dt = 3: Bitmap images

 ds = 3, dt = 1: Volume data
(scalar fields)

 ds = 2, dt = 1: Depth maps (range
images)

• PDEs: “Finite Differences”
models

 7

Modeling Approaches

Two Basic Approaches

• Discrete representations

 Fixed discrete bins

• “Continuous” representations

 Mathematical description

 Evaluate continuously

 8

Classes of Models

Most frequently used models:

• Primitive meshes

• Parametric models

• Implicit models

• Particle / point-based models

Remarks

• Often combinations thereof: hybrid models

• Representations can be converted (may be approximate)

• Some questions are much easier to answer for certain
representations

Modeling Zoo

 10

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 11

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 12

Parametric Models

Parametric Models

• Function f maps from parameter domain to target space

• Evaluation of f gives one point on the model

u

v

(u, v)

f (u, v) f

 ds S dt

output: 1D output: 2D output: 3D
in

p
u

t:
 3

D

in
p

u
t:

 2
D

in

p
u

t:
 1

D

u

f(t) t

function graph

x

t

plane curve

t

space curve

plane warp surface

space warp

y

x

y

z

u

v

x

y u

v

x

y

z

u
v

y

z

w

x

 14

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 15

Primitive Meshes

Primitive Meshes

• Collection of geometric primitives

 Triangles

 Quadrilaterals

 More general primitives
(e.g. spline patches)

• Typically, primitives are
parametric surfaces

• Composite model:

 Mesh encodes topology, rough shape

 Primitive parameter encode local geometry

• Triangle meshes rule the world (“triangle soup”)

 16

Primitive Meshes

Complex Topology for Parametric Models

• Mesh of parameter domains attached in a mesh

• Domain can have complex shape (“trimmed patches”)

• Separate mapping function f for each part
(typically of the same class)

1

2

3

 17

Meshes are Great

Advantages of mesh-based modeling:

• Compact representation (usually)

• Can represent arbitrary topology

 18

Meshes are not so great

Problem with Meshes:

• Need to specify a mesh first, then edit geometry

• Problems

 Mesh structure need to be adjusted to fit shape

 Mesh encodes object topology
 Changing object topology is painful

• Examples

 Surface reconstruction

 Fluid simulation (surface of splashing water)

Triangle Meshes

 20

Triangle Meshes

Triangle Meshes:

• Triangle meshes:
(probably) most common representation

• Simplest surface primitive
that can be assembled into meshes

 Rendering in hardware (z-buffering)

 Simple algorithms for intersections (raytracing, collisions)

 21

Attributes

How to define a triangle?

• We need three points in 3 (obviously).

• But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

 22

Shared Attributes in Meshes

In Triangle Meshes:

• Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

 23

“Triangle Soup”

Variants in triangle mesh representations:

• “Triangle Soup”

 A set S = {t1, ..., tn} of triangles

 No further conditions

 “most common” representation
(web downloads and the like)

• Triangle Meshes: Additional consistency conditions

 Conforming meshes: Vertices meet only at vertices

 Manifold meshes: No intersections, no T-junctions

 24

Conforming Meshes

Conforming Triangulation:

• Vertices of triangles must only meet at vertices, not in the
middle of edges:

• This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

 25

Manifold Meshes

Triangulated two-manifold:

• Every edge is incident to exactly 2 triangles
(closed manifold)

• ...or to at most two triangles (manifold with boundary)

• No triangles intersect (other than along common edges or
vertices)

• Two triangles that share a vertex must share an edge

 26

Attributes

In general:

• Vertex attributes:

 Position (mandatory)

 Normals

 Color

 Texture Coordinates

• Face attributes:

 Color

 Texture

• Edge attributes (rarely used)

 E.g.: Visible line

 27

Data Structures

The simple approach: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
 ...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
 ...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
 ...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

 28

Pros & Cons

Advantages:

• Simple to understand and build

• Provides exactly the information necessary for rendering

Disadvantages:

• Dynamic operations are expensive:

 Removing or inserting a vertex
 renumber expected edges, triangles

• Adjacency information is one-way

 Vertices adjacent to triangles, edges direct access

 Any other relationship need to search

 Can be improved using hash tables (but still not dynamic)

 29

Adjacency Data Structures

Alternative:

• Some algorithms require extensive neighborhood
operations (get adjacent triangles, edges, vertices)

• ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

• For such algorithms, an adjacency based data structure is
usually more efficient

 The data structure encodes the graph of mesh elements

 Using pointers to neighboring elements

 30

First try...

Straightforward Implementation:
• Use a list of vertices, edges,

triangles

• Add a pointer from each element
to each of its neighbors

• Global triangle list can be used for rendering

Remaining Problems:

• Lots of redundant information – hard to keep consistent

• Adjacency lists might become very long

 Need to search again (might become expensive)

 This is mostly a “theoretical problem” (O(n) search)

 31

Half edge data structure:

• Half edges, connected by clockwise / ccw pointers

• Pointers to opposite half edge

• Pointers to/from start vertex of each edge

• Pointers to/from left face of each edge

Less Redundant Data Structures

 32

// a vertex

struct Vertex {

 HalfEdge* someEdge;

 /* vertex attributes */

};

// the face (triangle, poly)

struct Face {

 HalfEdge* half;

 /* face attributes */

};

Implementation

// a half edge

struct HalfEdge {

 HalfEdge* next;

 HalfEdge* previous;

 HalfEdge* opposite;

 Vertex* origin;

 Face* leftFace;

 EdgeData* edge;

};

// the data of the edge

// stored only once

struct EdgeData {

 HalfEdge* anEdge;

 /* attributes */

};

 33

Implementation

Implementation:

• The data structure should be encapsulated

 To make sure that updates are consistent

 Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

• Free Implementations are available, for example

 OpenMesh

 CGAL

• Alternative data structures: for example winged edge
(Baumgart 1975)

 34

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 35

Particle Representations

Point-based Representations

• Set of points

• Points are (irregular) sample of the object

• Need additional information to deal with “the empty
space around the particles”

additional
assumptions

 36

Meshless Meshes...

Point Clouds

• Triangle mesh without the triangles

• Only vertices

• Attributes per point

per-vertex normals

per-vertex color

 37

Particle Representations

Helpful Information

• Each particle may carries a set of attributes

 Must have: Its position

 Additional geometry:
Density (sample spacing), surface normals

 Additional attributes:
Color, physical quantities (mass, pressure, temperature), ...

• Addition information helps reconstructing
the geometric object described by the particles

 38

The Wrath of Khan

Why Star Trek is at fault...

• Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

• “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” [Reeves 1983]

• Movie: Genesis sequence

 39

Geometric Modeling

3D Scanners

• 3D scanner yield point clouds

 Have to deal with points
anyway

• Algorithms that directly work
on “point clouds”

Data: [IKG, University Hannover, C. Brenner]

 40

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 41

Implicit Modeling

General Formulation:

• Curve / Surface S = {x | f(x) = 0}

• x d (d = 2,3), f(x)

• S is (usually) a d-1 dimensional object

This means...:

• The surface obtained implicitly

• Set of points where f vanishes: f(x) = 0

• Alternative notation: S = f -1(0)
(“inverse” yields a set)

 42

Implicit Modeling

Example:

• Circle: x2 + y2 = r2
 fr(x,y) = x2 + y2 - r2 = 0

• Sphere: x2 + y2 + z2 = r2

Special Case:

• Signed distance field

• Function value is signed distance to surface

• Negative means inside, positive means outside

x2

y2
r2

||)(),(222222 ryxryxyx signf

 43

Implicit Modeling: Pros & Cons

Advantages:

• Topology changes easy (in principle)

• Standard technique for simulations with free boundaries
(“level-set methods”)

 Example: fluid simulation
(evolving water-air interface)

• Other applications:

 Surface reconstruction

 “Blobby surfaces”

 Surface analysis (local)

 44

Implicit Modeling: Pros & Cons

Disadvantages:

• Need to solve inversion problem S = f -1(0)

• More complex / slower algorithms

• Usually needs more memory than meshes

Implicit Function – Details

 46

The Implicit Function Theorem

Implicit Function Theorem:

• Given a differentiable function

 f : n D , ,

• Within an -neighborhood of x(0) we can represent the
zero level set of f completely as a heightfield function g

 g : n-1 such that for x – x(0) < we have:

 f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and

 f(x1,..., xn) 0 everywhere else.

• The heightfield is a differentiable (n – 1)-manifold and its
surface normal is the colinear to the gradient of f.

0),...,()()0()0(
1

)0(

n

nn

xxf
x

f
x

x0)()0(xf

 47

This means

Surface modeling:

• Use smooth (differentiable) function f in 3

• Gradient of f does not vanish.

This gives us the following guarantees:

• The zero-level set is actually a surface:

 We obtained a closed 2-manifold without boundary.

 We have a well defined interior / exterior.

Sufficient:

• We need smoothness / non-vanishing gradient only close
to the zero-crossing.

 48

Implicit Function Types

Function types:

• General case
 Non-zero gradient at zero crossing

 Otherwise arbitrary

• Signed implicit function:
 sign(f): negative inside and positive outside the object

(or the other way round, but we assume this orientation here)

• Signed distance field
 |f| = distance to the surface

 sign(f): negative inside, positive outside

• Squared distance function
 f = (distance to the surface)2

 49

Implicit Function Types

Use depends on application:

• Signed implicit function
 Solid modeling

 Interior well defined

• Signed distance function
 Most frequently used representation

 Constant gradient numerically stable surface definition

 Availability of distance values useful for many applications

• Squared distance function
 This representation is useful for statistical optimization

 Minimize sum of squared distances least squares optimization

 Useful for surfaces defined up to some insecurity / noise.

 Direct surface extraction more difficult (gradient vanishes!).

signed distance

 50

Squared Distance Function

Example: Surface from random samples

1. Determine sample point (uniform)

2. Add noise (Gaussian)

sampling Gaussian noise many samples distribution
(in space)

 μxΣμx

Σ
xΣμ

1T

2/12/,
2

1
exp

||π2

1
)(

d
p

 51

Smoothness

Smoothness of signed distance function:

• Any distance function (signed, unsigned, squared) cannot
be globally smooth in general cases

• The distance function is
non-differentiable at the medial axis

 Medial axis = set of points that
have the same distance to two
or more different surface points

 For sharp corners, the medial
axis touches the surfaces

 This means: f non-differentiable
on the surface itself

 52

Differential Properties

Some useful differential properties:

• We look at a surface point x, i.e. f (x) = 0.

• We assumef (x) 0.

• The unit normal of the implicit surface is given by:

 For signed functions, the normal is pointing outward.

 For signed distance functions, this simplifies to n(x) = f (x).

)(

)(
)(

x

x
xn

f

f

 53 53 / 80

Differential Properties

Some useful differential properties:

• The mean curvature of the surface is proportional to the
divergence of the unit normal:

• For a signed distance function, the formula simplifies to:

)(

)(

)()()(

)()(2

x

x

xxx

xnx

f

f

n
z

n
y

n
x

H

zyx

)(

)()()()()(2
2

2

2

2

2

2

x

xxxxx

f

f
z

f
y

f
x

fH

 54 54 / 80

Mean Curvature Formula

Proof (sketch):

• We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

z

x, y

1

),(

),(

1

0

0

),(yxs

yxs

yx y

x

n

),(2

),(),(

),(),(

1),(),(),(

2

22

2

2

2

2

2

2

2

yxH

yxs
y

yxs
yx

yxs
yx

yxs
x

trace

z
yxs

y
yxs

x
yx

 n

)(tr

2

1
)(00 xSH x

 55 55 / 80

Computing Volume Integrals

Computing volume integrals:

• Heavyside function:

• Volume integral over interior volume f of
some function g(x) (assuming negative interior values):

0 if1

0 if0
)step(

x

x
x

f

dxfgdg

xxxx))(step(1)()(

 56 56 / 80

Computing Surface Integrals

Computing surface integrals:

• Dirac delta function:

 Idealized function (distribution)

 Zero everywhere ((x) = 0),
except at x = 0, where it is positive, inifinitely large.

 The integral of (x) over x is one.

• Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

)())((

)(

)(
)())((step)())(step(ˆ

xx

x

x
xxxnx

ff

f

f
fff

(x)

x

 57 57 / 80

Surface Integral

Computing surface integrals:

• Surface integral over the surface f = {x | f (x) = 0}
of some function g(x):

• This looks nice, but is numerically intractable.

• We can fix this using smothed out Dirac/Heavyside
functions...

f

dffgdg

xxxxxx |)(|))(()()(

 58 58 / 80

Smoothed Functions

Smooth-step function

x

x
xx

x

x

1

π
sin

π2

1

22

1
0

)p(smooth_ste

Smoothed Dirac delta function

x

x
x

x

x

0

π
cos

2

1

2

1
0

)ta(smooth_del

Implicit Surfaces
Numerical Discretization

 60

Representing Implicit Functions

Representation: Two basic techniques

• Discretization on grids

 Simple finite differencing (FD) grids

 Grids of basis functions (finite elements FE)

 Hierarchical / adaptive grids (FE)

• Discretization with radial basis functions
(particle FE methods)

 61

Discretization

Discretization examples

• In the following, we will look at 2D examples

• The 3D (d-dimensional) case is similar

 62

Regular Grids

Discretization:

• Regular grid of values fi,j

• Grid spacing h

• Differential properties can
be approximated by finite
differences:

 For example:

)(
1

)()(,1)()(),(hOff
h

f jiji

x

 xxxxx

)(
2

1
)(2

)(,1)()(,1)(hOff
h

f jiji

x

 xxxxx

 63

Regular Grids

Variant:

• Use only cells near the surface

• Saves storage & computation time

• However: We need to know an
estimate on where the surface is
located to setup the
representation

• Propagate to the rest of the
volume (if necessary):
fast marching method

 64

Fast Marching Method

Problem statement:

• Assume we are given the surface and signed distance
value in a narrow band.

• Now we want to compute distance values everywhere on
the grid.

Three solutions:

• Nearest neighbor queries

• Eikonal equation

• Fast marching

 65

Nearest Neighbors

Algorithm:

• For each grid cell:

 Compute nearest point on
the surface

 Enter distance

• Approximate nearest neighbor
computation:

 Look for nearest grid cell with
zero crossing first

 Then compute distance curve zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

• Costs: O(n) kNN queries (n empty cells)

 66

Eikonal Equation

Eikonal Equation

• Place variables in empty cells

• Fixed values in known cells

• Then solve the following PDE:

• This is a (non-linear) boundary value problem.

known

known

A

ff

f

x

xx

 area known the on

)()(to subject

1

 67

Fast Marching

Solving the Equation:

• The Eikonal equation can be solved efficiently by a region
growing algorithm:

 Start with the initial known values

 Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

 The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

 Fix this value and update the neighbors again

 Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

 68

Regular Grids of Basis Functions

Discretization (2D):

• Place a basis function in each
grid cell: bi,j = b(x – i, y – j)

• Typical choices:

 Bivariate uniform cubic B-splines
(tensor product)

 b(x, y) = exp[-(x2 + y2)]

• The implicit function is then
represented as:

• The i,j describe different f.

b2,3

b3,3

i jn

i

n

j
jiji yxbyxf

0 0
,,),(),(

 69

Regular Grids of Basis Functions

Differential Properties:

• Derivatives:

• Derivatives are linear
combinations of the derivatives
of the basis function.

• In particular: We again get a
linear expression in the i,j.

b2,3

b3,3

i jn

i

n

j mkk

ji

mkk

yxb
xx

yxf
xx

0 0 1

,

1

),(
...

),(
...

 70

Adaptive Grids

Adaptive / hierarchical grid:

• Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements)

• Refine where more precision is
necessary (near surface, maybe
curvature dependent)

• Associate basis functions with
each cell (constant or higher
order)

 71

Particle Methods

Particle methods /
radial basis functions:

• Place a set of “particles” in space
at positions xi.

• Associate each with a radial basis
function b(x – xi).

• The discretization is then given
by:

• The i encode f.

n

i
iibf

0

)()(xxx

 72

Particle Methods

Particle methods /
radial basis functions:

• Obviously, derivatives are again
linear in i:

• The radial basis functions can also
have different size (support) for
adaptive refinement

• Placement: near the expected
surface

 n

i
i

mkk

i

mkk

b
xx

f
xx 0 11

)(
...

)(
...

xxx

 73

Particle Methods

Particle methods /
radial basis functions:

• Where should we place the radial
basis functions?

 If we have an initial guess for
the surface shape:

– put some on the surface

– and some in +/- normal direction.

 Otherwise:

– Uniform placement in lowres

– Solve for surface

– Refine near lowres-surface, iterate.

Implicit Surfaces
Level Set Extraction

 75

Iso-Surface Extraction

New task:

• Assume we have defined an implicit function

• Now we want to extract the surface.

• I.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

• For this we need an iso-surface extraction algorithm

 a.k.a. level set extraction

 a.k.a. contouring

 76

Algorithms

Algorithms:

• Marching Cubes

 This is the standard technique.

• There are alternatives (in particular for special cases)

 77

Marching Cubes

Marching Cubes:

• The most frequently used iso-surface extraction algorithm

 Triangle mesh from an iso-value surface of a scalar volume

 Example: Visualization of CT scanner data

• Simple idea:

 Define and solve a fixed complexity, local problem.

 Compute a full solution by solving many such local problems
incrementally.

 78

Marching Cubes

Marching Cubes:

• Local problem:

 Cube with 8 vertices

 Each vertex is either inside or
outside the volume
(i.e. f (x) < 0 or f (x) 0)

 How to triangulate this cube?

 How to place the vertices?

 79

Triangulation

Triangulation:

• 256 different cases

 Each of 8 vertices: in or out.

• By symmetry: reduction to 15 cases

 Reflection, rotation, bit inversion

• Computes the topology of the mesh

 80

Vertex Placement

How to place the vertices?

• Zero-th order: Vertices at edge midpoints

• First order: Linearly interpolate vertices along edges.

• Example:

 f(x) = -0.1 and f(y) = 0.2

 Vertex at ratio 1:2 between x and y

 81

Outer Loop

Outer Loop:

• Start: bounding box

• Divide into cubes (regular grid)

• Execute “marching cube”
in each subcube

• Output: union of all cube results

• Optional:

 Vertex hash table to make
mesh consistent

 Removes double vertices

 82

Marching Squares

Marching Squares:

• There is also a 2D version of the algorithm, called
marching squares.

• Same idea, but fewer cases.

Representations Summary

 84

Summary

• Many different
representations

• No silver bullet

• All representations work
in principle for all problems

• Effort application dependent

 Conceptual effort

 Computational effort

Summary

