
Statistical Geometry Processing
Winter Semester 2011/2012

Representations of Geometry

Motivation

 3

Geometric Modeling

What do we want to do?
empty space
(typically 3)

geometric object

B 3

B

d

 4

Fundamental Problem

The Problem:

B

d

infinite number of points my computer: 8GB of memory

We need to encode a continuous model with a finite
amount of information

 5

Modeling Approaches

Two Basic Approaches

• Discrete representations

 Fixed discrete bins

• “Continuous” representations

 Mathematical description

 Evaluate continuously

 6

Discrete Representations

You know this...

• Fixed Grid of values:
 (i1, ..., ids

)  ds  (x1, ..., xdt
)  dt

• Typical scenarios:

 ds = 2, dt = 3: Bitmap images

 ds = 3, dt = 1: Volume data
(scalar fields)

 ds = 2, dt = 1: Depth maps (range
images)

• PDEs: “Finite Differences”
models

 7

Modeling Approaches

Two Basic Approaches

• Discrete representations

 Fixed discrete bins

• “Continuous” representations

 Mathematical description

 Evaluate continuously

 8

Classes of Models

Most frequently used models:

• Primitive meshes

• Parametric models

• Implicit models

• Particle / point-based models

Remarks

• Often combinations thereof: hybrid models

• Representations can be converted (may be approximate)

• Some questions are much easier to answer for certain
representations

Modeling Zoo

 10

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 11

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 12

Parametric Models

Parametric Models

• Function f maps from parameter domain  to target space

• Evaluation of f gives one point on the model

u

v

(u, v)

f (u, v) f

  ds S  dt

output: 1D output: 2D output: 3D
in

p
u

t:
 3

D

in
p

u
t:

 2
D

in

p
u

t:
 1

D

u

f(t) t

function graph

x

t

plane curve

t

space curve

plane warp surface

space warp

y

x

y

z

u

v

x

y u

v

x

y

z

u
v

y

z

w

x

 14

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 15

Primitive Meshes

Primitive Meshes

• Collection of geometric primitives

 Triangles

 Quadrilaterals

 More general primitives
(e.g. spline patches)

• Typically, primitives are
parametric surfaces

• Composite model:

 Mesh encodes topology, rough shape

 Primitive parameter encode local geometry

• Triangle meshes rule the world (“triangle soup”)

 16

Primitive Meshes

Complex Topology for Parametric Models

• Mesh of parameter domains attached in a mesh

• Domain can have complex shape (“trimmed patches”)

• Separate mapping function f for each part
(typically of the same class)

1

2

3

 17

Meshes are Great

Advantages of mesh-based modeling:

• Compact representation (usually)

• Can represent arbitrary topology

 18

Meshes are not so great

Problem with Meshes:

• Need to specify a mesh first, then edit geometry

• Problems

 Mesh structure need to be adjusted to fit shape

 Mesh encodes object topology
 Changing object topology is painful

• Examples

 Surface reconstruction

 Fluid simulation (surface of splashing water)

Triangle Meshes

 20

Triangle Meshes

Triangle Meshes:

• Triangle meshes:
(probably) most common representation

• Simplest surface primitive
that can be assembled into meshes

 Rendering in hardware (z-buffering)

 Simple algorithms for intersections (raytracing, collisions)

 21

Attributes

How to define a triangle?

• We need three points in 3 (obviously).

• But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

 22

Shared Attributes in Meshes

In Triangle Meshes:

• Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

 23

“Triangle Soup”

Variants in triangle mesh representations:

• “Triangle Soup”

 A set S = {t1, ..., tn} of triangles

 No further conditions

 “most common” representation
(web downloads and the like)

• Triangle Meshes: Additional consistency conditions

 Conforming meshes: Vertices meet only at vertices

 Manifold meshes: No intersections, no T-junctions

 24

Conforming Meshes

Conforming Triangulation:

• Vertices of triangles must only meet at vertices, not in the
middle of edges:

• This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

 25

Manifold Meshes

Triangulated two-manifold:

• Every edge is incident to exactly 2 triangles
(closed manifold)

• ...or to at most two triangles (manifold with boundary)

• No triangles intersect (other than along common edges or
vertices)

• Two triangles that share a vertex must share an edge

 26

Attributes

In general:

• Vertex attributes:

 Position (mandatory)

 Normals

 Color

 Texture Coordinates

• Face attributes:

 Color

 Texture

• Edge attributes (rarely used)

 E.g.: Visible line

 27

Data Structures

The simple approach: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
 ...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
 ...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
 ...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

 28

Pros & Cons

Advantages:

• Simple to understand and build

• Provides exactly the information necessary for rendering

Disadvantages:

• Dynamic operations are expensive:

 Removing or inserting a vertex
 renumber expected edges, triangles

• Adjacency information is one-way

 Vertices adjacent to triangles, edges  direct access

 Any other relationship  need to search

 Can be improved using hash tables (but still not dynamic)

 29

Adjacency Data Structures

Alternative:

• Some algorithms require extensive neighborhood
operations (get adjacent triangles, edges, vertices)

• ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

• For such algorithms, an adjacency based data structure is
usually more efficient

 The data structure encodes the graph of mesh elements

 Using pointers to neighboring elements

 30

First try...

Straightforward Implementation:
• Use a list of vertices, edges,

triangles

• Add a pointer from each element
to each of its neighbors

• Global triangle list can be used for rendering

Remaining Problems:

• Lots of redundant information – hard to keep consistent

• Adjacency lists might become very long

 Need to search again (might become expensive)

 This is mostly a “theoretical problem” (O(n) search)

 31

Half edge data structure:

• Half edges, connected by clockwise / ccw pointers

• Pointers to opposite half edge

• Pointers to/from start vertex of each edge

• Pointers to/from left face of each edge

Less Redundant Data Structures

 32

// a vertex

struct Vertex {

 HalfEdge* someEdge;

 /* vertex attributes */

};

// the face (triangle, poly)

struct Face {

 HalfEdge* half;

 /* face attributes */

};

Implementation

// a half edge

struct HalfEdge {

 HalfEdge* next;

 HalfEdge* previous;

 HalfEdge* opposite;

 Vertex* origin;

 Face* leftFace;

 EdgeData* edge;

};

// the data of the edge

// stored only once

struct EdgeData {

 HalfEdge* anEdge;

 /* attributes */

};

 33

Implementation

Implementation:

• The data structure should be encapsulated

 To make sure that updates are consistent

 Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

• Free Implementations are available, for example

 OpenMesh

 CGAL

• Alternative data structures: for example winged edge
(Baumgart 1975)

 34

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 35

Particle Representations

Point-based Representations

• Set of points

• Points are (irregular) sample of the object

• Need additional information to deal with “the empty
space around the particles”

additional
assumptions

 36

Meshless Meshes...

Point Clouds

• Triangle mesh without the triangles

• Only vertices

• Attributes per point

per-vertex normals

per-vertex color

 37

Particle Representations

Helpful Information

• Each particle may carries a set of attributes

 Must have: Its position

 Additional geometry:
Density (sample spacing), surface normals

 Additional attributes:
Color, physical quantities (mass, pressure, temperature), ...

• Addition information helps reconstructing
the geometric object described by the particles

 38

The Wrath of Khan

Why Star Trek is at fault...

• Particle methods: first used for fuzzy phenomena
(fire, clouds, smoke)

• “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” [Reeves 1983]

• Movie: Genesis sequence

 39

Geometric Modeling

3D Scanners

• 3D scanner yield point clouds

 Have to deal with points
anyway

• Algorithms that directly work
on “point clouds”

Data: [IKG, University Hannover, C. Brenner]

 40

 Parametric Models Primitive Meshes

 Implicit Models Point-Based Models

Modeling Zoo

 41

Implicit Modeling

General Formulation:

• Curve / Surface S = {x | f(x) = 0}

• x  d (d = 2,3), f(x)  

• S is (usually) a d-1 dimensional object

This means...:

• The surface obtained implicitly

• Set of points where f vanishes: f(x) = 0

• Alternative notation: S = f -1(0)
(“inverse” yields a set)

 42

Implicit Modeling

Example:

• Circle: x2 + y2 = r2
  fr(x,y) = x2 + y2 - r2 = 0

• Sphere: x2 + y2 + z2 = r2

Special Case:

• Signed distance field

• Function value is signed distance to surface

• Negative means inside, positive means outside

x2

y2
r2

||)(),(222222 ryxryxyx  signf

 43

Implicit Modeling: Pros & Cons

Advantages:

• Topology changes easy (in principle)

• Standard technique for simulations with free boundaries
(“level-set methods”)

 Example: fluid simulation
(evolving water-air interface)

• Other applications:

 Surface reconstruction

 “Blobby surfaces”

 Surface analysis (local)

 44

Implicit Modeling: Pros & Cons

Disadvantages:

• Need to solve inversion problem S = f -1(0)

• More complex / slower algorithms

• Usually needs more memory than meshes

Implicit Function – Details

 46

The Implicit Function Theorem

Implicit Function Theorem:

• Given a differentiable function

 f : n  D  , ,

• Within an  -neighborhood of x(0) we can represent the
zero level set of f completely as a heightfield function g

 g : n-1   such that for x – x(0) <  we have:

 f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and

 f(x1,..., xn)  0 everywhere else.

• The heightfield is a differentiable (n – 1)-manifold and its
surface normal is the colinear to the gradient of f.

0),...,()()0()0(
1

)0(








n

nn

xxf
x

f
x

x0)()0(xf

 47

This means

Surface modeling:

• Use smooth (differentiable) function f in 3

• Gradient of f does not vanish.

This gives us the following guarantees:

• The zero-level set is actually a surface:

 We obtained a closed 2-manifold without boundary.

 We have a well defined interior / exterior.

Sufficient:

• We need smoothness / non-vanishing gradient only close
to the zero-crossing.

 48

Implicit Function Types

Function types:

• General case
 Non-zero gradient at zero crossing

 Otherwise arbitrary

• Signed implicit function:
 sign(f): negative inside and positive outside the object

(or the other way round, but we assume this orientation here)

• Signed distance field
 |f| = distance to the surface

 sign(f): negative inside, positive outside

• Squared distance function
 f = (distance to the surface)2

 49

Implicit Function Types

Use depends on application:

• Signed implicit function
 Solid modeling

 Interior well defined

• Signed distance function
 Most frequently used representation

 Constant gradient  numerically stable surface definition

 Availability of distance values useful for many applications

• Squared distance function
 This representation is useful for statistical optimization

 Minimize sum of squared distances  least squares optimization

 Useful for surfaces defined up to some insecurity / noise.

 Direct surface extraction more difficult (gradient vanishes!).

signed distance

 50

Squared Distance Function

Example: Surface from random samples

1. Determine sample point (uniform)

2. Add noise (Gaussian)

sampling Gaussian noise many samples distribution
(in space)

 
   








  μxΣμx

Σ
xΣμ

1T

2/12/,
2

1
exp

||π2

1
)(

d
p

 51

Smoothness

Smoothness of signed distance function:

• Any distance function (signed, unsigned, squared) cannot
be globally smooth in general cases

• The distance function is
non-differentiable at the medial axis

 Medial axis = set of points that
have the same distance to two
or more different surface points

 For sharp corners, the medial
axis touches the surfaces

 This means: f non-differentiable
on the surface itself

 52

Differential Properties

Some useful differential properties:

• We look at a surface point x, i.e. f (x) = 0.

• We assumef (x)  0.

• The unit normal of the implicit surface is given by:

 For signed functions, the normal is pointing outward.

 For signed distance functions, this simplifies to n(x) = f (x).

)(

)(
)(

x

x
xn

f

f






 53 53 / 80

Differential Properties

Some useful differential properties:

• The mean curvature of the surface is proportional to the
divergence of the unit normal:

• For a signed distance function, the formula simplifies to:

)(

)(

)()()(

)()(2

x

x

xxx

xnx

f

f

n
z

n
y

n
x

H

zyx























)(

)()()()()(2
2

2

2

2

2

2

x

xxxxx

f

f
z

f
y

f
x

fH


















 54 54 / 80

Mean Curvature Formula

Proof (sketch):

• We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

z

x, y








































1

),(

),(

1

0

0

),(yxs

yxs

yx y

x

n

),(2

),(),(

),(),(

1),(),(),(

2

22

2

2

2

2

2

2

2

yxH

yxs
y

yxs
yx

yxs
yx

yxs
x

trace

z
yxs

y
yxs

x
yx




















































 n

 







)(tr

2

1
)(00 xSH x

 55 55 / 80

Computing Volume Integrals

Computing volume integrals:

• Heavyside function:

• Volume integral over interior volume f of
some function g(x) (assuming negative interior values):










0 if1

0 if0
)step(

x

x
x

  




f

dxfgdg


xxxx))(step(1)()(

 56 56 / 80

Computing Surface Integrals

Computing surface integrals:

• Dirac delta function:

 Idealized function (distribution)

 Zero everywhere ((x) = 0),
except at x = 0, where it is positive, inifinitely large.

 The integral of (x) over x is one.

• Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

   

)())((

)(

)(
)())((step)())(step(ˆ

xx

x

x
xxxnx

ff

f

f
fff












(x)

x

 57 57 / 80

Surface Integral

Computing surface integrals:

• Surface integral over the surface  f = {x | f (x) = 0}
of some function g(x):

• This looks nice, but is numerically intractable.

• We can fix this using smothed out Dirac/Heavyside
functions...

 




f

dffgdg


xxxxxx |)(|))(()()(

 58 58 / 80

Smoothed Functions

Smooth-step function


























x

x
xx

x

x








1

π
sin

π2

1

22

1
0

)p(smooth_ste

Smoothed Dirac delta function

































x

x
x

x

x

0

π
cos

2

1

2

1
0

)ta(smooth_del

Implicit Surfaces
Numerical Discretization

 60

Representing Implicit Functions

Representation: Two basic techniques

• Discretization on grids

 Simple finite differencing (FD) grids

 Grids of basis functions (finite elements FE)

 Hierarchical / adaptive grids (FE)

• Discretization with radial basis functions
(particle FE methods)

 61

Discretization

Discretization examples

• In the following, we will look at 2D examples

• The 3D (d-dimensional) case is similar

 62

Regular Grids

Discretization:

• Regular grid of values fi,j

• Grid spacing h

• Differential properties can
be approximated by finite
differences:

 For example:

 )(
1

)()(,1)()(),(hOff
h

f jiji

x





 xxxxx

 )(
2

1
)(2

)(,1)()(,1)(hOff
h

f jiji

x





 xxxxx

 63

Regular Grids

Variant:

• Use only cells near the surface

• Saves storage & computation time

• However: We need to know an
estimate on where the surface is
located to setup the
representation

• Propagate to the rest of the
volume (if necessary):
fast marching method

 64

Fast Marching Method

Problem statement:

• Assume we are given the surface and signed distance
value in a narrow band.

• Now we want to compute distance values everywhere on
the grid.

Three solutions:

• Nearest neighbor queries

• Eikonal equation

• Fast marching

 65

Nearest Neighbors

Algorithm:

• For each grid cell:

 Compute nearest point on
the surface

 Enter distance

• Approximate nearest neighbor
computation:

 Look for nearest grid cell with
zero crossing first

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

• Costs: O(n) kNN queries (n empty cells)

 66

Eikonal Equation

Eikonal Equation

• Place variables in empty cells

• Fixed values in known cells

• Then solve the following PDE:

• This is a (non-linear) boundary value problem.

known

known

A

ff

f







x

xx

 area known the on

)()(to subject

1

 67

Fast Marching

Solving the Equation:

• The Eikonal equation can be solved efficiently by a region
growing algorithm:

 Start with the initial known values

 Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

 The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

 Fix this value and update the neighbors again

 Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

 68

Regular Grids of Basis Functions

Discretization (2D):

• Place a basis function in each
grid cell: bi,j = b(x – i, y – j)

• Typical choices:

 Bivariate uniform cubic B-splines
(tensor product)

 b(x, y) = exp[-(x2 + y2)]

• The implicit function is then
represented as:

• The i,j describe different f.

b2,3

b3,3

 


i jn

i

n

j
jiji yxbyxf

0 0
,,),(),(

 69

Regular Grids of Basis Functions

Differential Properties:

• Derivatives:

• Derivatives are linear
combinations of the derivatives
of the basis function.

• In particular: We again get a
linear expression in the i,j.

b2,3

b3,3


 
























i jn

i

n

j mkk

ji

mkk

yxb
xx

yxf
xx

0 0 1

,

1

),(
...

),(
...



 70

Adaptive Grids

Adaptive / hierarchical grid:

• Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements)

• Refine where more precision is
necessary (near surface, maybe
curvature dependent)

• Associate basis functions with
each cell (constant or higher
order)

 71

Particle Methods

Particle methods /
radial basis functions:

• Place a set of “particles” in space
at positions xi.

• Associate each with a radial basis
function b(x – xi).

• The discretization is then given
by:

• The i encode f.





n

i
iibf

0

)()(xxx 

 72

Particle Methods

Particle methods /
radial basis functions:

• Obviously, derivatives are again
linear in i:

• The radial basis functions can also
have different size (support) for
adaptive refinement

• Placement: near the expected
surface












 n

i
i

mkk

i

mkk

b
xx

f
xx 0 11

)(
...

)(
...

xxx 

 73

Particle Methods

Particle methods /
radial basis functions:

• Where should we place the radial
basis functions?

 If we have an initial guess for
the surface shape:

– put some on the surface

– and some in +/- normal direction.

 Otherwise:

– Uniform placement in lowres

– Solve for surface

– Refine near lowres-surface, iterate.

Implicit Surfaces
Level Set Extraction

 75

Iso-Surface Extraction

New task:

• Assume we have defined an implicit function

• Now we want to extract the surface.

• I.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

• For this we need an iso-surface extraction algorithm

 a.k.a. level set extraction

 a.k.a. contouring

 76

Algorithms

Algorithms:

• Marching Cubes

 This is the standard technique.

• There are alternatives (in particular for special cases)

 77

Marching Cubes

Marching Cubes:

• The most frequently used iso-surface extraction algorithm

 Triangle mesh from an iso-value surface of a scalar volume

 Example: Visualization of CT scanner data

• Simple idea:

 Define and solve a fixed complexity, local problem.

 Compute a full solution by solving many such local problems
incrementally.

 78

Marching Cubes

Marching Cubes:

• Local problem:

 Cube with 8 vertices

 Each vertex is either inside or
outside the volume
(i.e. f (x) < 0 or f (x)  0)

 How to triangulate this cube?

 How to place the vertices?

 79

Triangulation

Triangulation:

• 256 different cases

 Each of 8 vertices: in or out.

• By symmetry: reduction to 15 cases

 Reflection, rotation, bit inversion

• Computes the topology of the mesh

 80

Vertex Placement

How to place the vertices?

• Zero-th order: Vertices at edge midpoints

• First order: Linearly interpolate vertices along edges.

• Example:

 f(x) = -0.1 and f(y) = 0.2

 Vertex at ratio 1:2 between x and y

 81

Outer Loop

Outer Loop:

• Start: bounding box

• Divide into cubes (regular grid)

• Execute “marching cube”
in each subcube

• Output: union of all cube results

• Optional:

 Vertex hash table to make
mesh consistent

 Removes double vertices

 82

Marching Squares

Marching Squares:

• There is also a 2D version of the algorithm, called
marching squares.

• Same idea, but fewer cases.

Representations Summary

 84

Summary

• Many different
representations

• No silver bullet

• All representations work
in principle for all problems

• Effort application dependent

 Conceptual effort

 Computational effort

Summary

