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Bayesian Statistics

Summary

e |[mportance
= The only sound tool to handle uncertainty
= Manifold applications: Web search to self-driving cars

e Structure
= Probability: positive, additive, normed measure
= Learning is density estimation
= Large dimensions are the source of (almost) all evil
= No free lunch: There is no universal learning strategy



Motivation



Modern Al

Classic artificial intelligence:

e Write a complex program with enough rules to
understand the world

e This has been perceived as not very successful

Modern artificial intelligence
e Machine learning
e Learn structure from data

= Minimal amount of “hardwired” rules
= “Data driven approach”

e Mimics human development (training, early childhood)



Data Driven Computer Science

Statistical data analysis is everywhere:
e Cell phones (transmission, error correction)
e Structural biology
e Web search
e Credit card fraud detection

e Face recognition in point-and-shoot cameras



Probability Theory

(a very brief summary)



Probability Theory

(a very brief summary)

Part |: Philosophy



What is Probability?

Question:
e Whatis probability?

Example:
e A bin with 50 red and 50 blue balls
e Person A takes a ball

e Question to Person B:
What is the probability for red?

What happened:

e Person A took a blue ball

e Not visible to person B



Philosophical Debate...

An old philosophical debate:
 What does “probability” actually mean?

e Can we assign probabilities to events for which the
outcome is already fixed? (but we do not know it for sure)

“Fixed outcome” examples:
e Probability for life on mars

e Probability for J.F. Kennedy having been assassinated
by a intra-government conspiracy

e Probability that the code you wrote is correct



Two Camps

Frequentists’ (traditional) view:
e Well defined experiment

e Probability is the relative number
of positive outcomes

e Only meaningful as a mean of
many experiments

Bayesian view:
e Probability expresses a degree of belief
e Mathematical model of uncertainty
e Can be subjective
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Mathematical Point of View

Mathematics:
e Math does not tell you what is true

It only tells you the consequences if you
accept other assumptions (axioms) to be true

e Mathematicians don’t do philosophy.

Mathematical definition of probability:
e Properties of probability measures
e Consistent with both views
e Defines rules for computing with probabilities
e Setting up probabilities is not a math problem
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Probability Theory

(a very brief summary)

Part II: Probability Measures



Kolmogorov’s Axioms

Discrete probability space:
e Elementary events: Q={w,, ..., o}
e General events: Subsets A < Q)

 Probability measure: Pr: P(QQ) > R

A valid probability measure must ensure:
e Positive: Pr(A) >0
e Additive: [ANB=Y] = [Pr(A)+ Pr(B) = Pr(A u B)]
e Normed: Pr(Q2)=1
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Other Properties Follow

Properties derived from Kolmogorov’s Axioms:

P(A) € [0..1]
P(A) = P(Q\ A)=1-P(A)
P(Z) =0

Pr(A U B) = Pr(A) + Pr(B) — Pr(A N B) =)

=

counted twice
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In other words

Mathematical probability is a

e non-negative, normed, additive measure.
= Always >0
= Sumstol
= Disjoint pieces add up
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In other words

Mathematical probability is a

e non-negative, normed, additive measure.

w, — elementary eve

nt

@, — elementary event

- —

7

2 Pr(w) =1

more likely: w,,

less likely: wg,

Pr(w,;) > Pr(w,)

e Think of a density on some domain €2
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In other words

Mathematical probability is a

e non-negative, normed, additive measure.

/ A Is an event

Pr(A) =X,_, Pr(w)

= Pr(w,,) + Pr(w,,) + Pr(wy;)
+ Pr(w,g) + Pr(ay,) + Pr(a;,)
+ Pr(wsg) + Pr(ay,) + Pr(wsg)

e Think of a density on some domain €2
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In other words

Mathematical probability is a

e non-negative, normed, additive measure.
= Always >0
= Sumstol
= Disjoint pieces add up

What does this model?
e You can always think of an area with density.
e All pieces are positive.
e Sum of densities is 1.
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Discrete Models

Discrete probability space:
e Elementary events: Q={w,, ..., ,}
e General events: Subsets A < Q)

e Probability measure: Pr: P(Q) > R

Probability measures:

e Sum of elementary probabilities

Pr(A)= 2 ., Pr(w)
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Continuous Probability Measures

Continuous probability space:
o Elementary events: Q c R?

e General events: “reasonable””) subsets A c Q

e Probability measure: Pr:o(Q) — R assigns
probability to subsets™ of Q

“) not “all” subsets: Borel sigma algebra (details omitted)

The same axioms:
e Positive: Pr(A) =20
e Additive: [ANB=Y] = [Pr(A)+ Pr(B)=Pr(Aw B)]
e Normed: P(Q)=1
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Continuous Density

Density model
 No elementary probabilities
e Instead: density p: R — R>Y

A is an event

Pr(A) = IA p(x) dx

p(x)>0 and [, p(x)dx =1
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Random Variables

Random Variables

e Assign numbers or vectors from R9 to outcomes
e Notation:

= random variable X
= density p(x) = Pr(X =x)
e Usually:
Variable = domain of the density
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Unified View

Discrete models as special case

p(w), w; € {1,...,.9} p(x),x € R Dirac-Delta pulses
T p(x) =Z;ox - x;) p(w))

- Idealization
12343}6789 1 3 5 g deS(X)dle
l X 6(0) very large

Discrete model Continuous model d(x) = 0 everywhere else

23



Probability Theory

(a very brief summary)

Part IlI: Statistical Dependence



Conditional Probability

Conditional Probability:
e Pr(A|B) = Probability of A given B [is true]

e Easy to show:
Pr(ANB) =Pr(A|B) - Pr(B)

Statistical Independence

e Aand B independent
<= Pr(AMB) = Pr(A) - Pr(B)

 Knowing the value of A does not yield
information about B (and vice versa)
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Factorization

Independence = Density Factorization
P(Xy, X;) p(x1) . plx))

]
X
x

p(xy, X;) = p(x{) X p(x;)
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Factorization

Independence = Density Factorization

Tz

p(xy, X5)

p(x)

12..

12..

Xq

p(xy, X;) = p(x{) X p(x;)

0(k9)

0(d-k)

--Z-['

p(x;)
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Marginals

Example

e Two random variables
a, b e [0,1]

e Joint distribution p(a, b)

e We do not know b
(could by anything)

e What is the distribution of a?

1
_ N
»(a) J pla. b P

“Marginal Probability”
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Conditional Probability

Bayes’ Rule:
Pr(B | A)-Pr(A
o | ) < PETAPrA)
Pr(B)
Derivation

e Pr(ANB)=Pr(A|B) - Pr(B)
Pr(ANB)=Pr(B|A) - Pr(A)

— Pr(A|B) - Pr(B) = Pr(B | A) - Pr(A)
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Bayesian Inference

Example: Statistical Inference
e Medical test to check for a medical condition
e A: Medical test positive?

= 99% correct if patientisill
= Butin 1 of 100 cases, reports illness for healthy patients

e B: Patient has disease?
= We know: One in 10 000 people have it

A patient is diaghosed with the disease:
e How likely is it for the patient to actually be sick?
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Bayesian Inference

’ [ ]

Apply Bayes Rule: A: Medical test positive?
. . . .
PF(A | B)'PI‘(B) B: Patient has disease:

Pr(A)

Pr(B|A) =

Pr(test pos. | disease)-Pr(deasease)

Pr(disease | test positive) =
Pr(test pos. | disease)Pr(disease) + Pr(test pos. | disease)Pr(disease)

0.99-0.0001 0.000099

© 0.99-0.0001 + 0.01-0.9999  0.0100979901

1 .
~ 0.0098 ~ —— < most likely healthy
100
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Soccer Stadium — 10000 people

1 person
actually sick




Conclusion

Pr(B | A)-Pr(A)
Bayes’ Rule: Pr(A|B) = Pr(B)
e Used to fuse knowledge
= “Prior” knowledge (prevalence of disease)

= “Measurement”: tests, sensor data, new information

= Can be used repeatedly to add more information

e Standard tool for interpreting sensor measurements
(Sensor fusion, reconstruction)
e Examples:

= [mage reconstruction (noisy sensors)
= Face recognition
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Chain Rule

Incremental update

e Probability can be split into chain of conditional
probabilities:
Pr(X,, .., X, X;)

— Pr(anxn—l:Xn—z; ---;Xl) PI‘(X3|X2, Xl)PF(X2|X1)PF(X1)

e Example application:
= X;is measurement at time i
= Update probability distribution as more data comes in

e Attention —although it might look like, this does not reduce
the complexity of the joint distribution
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Probability Theory

(a very brief summary)

Part IV: Uniqueness — Philosophy Again...



Cox Axioms

Are there alternatives?
e Is this the right way to define probabilities?
e Are there no other uncertainty measures?

Answer (short):
e Yes.

e Any reasonable ' probability measure has the same
properties

= Up to normalization constant; we can have Pr € [0..42] if we like
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What is Probability?

Principle #1: [Hertzman 2004]

“Probability theory is nothing more than
common sense reduced to calculation”

Pierre-Simon Laplace, 1814

Principle #2,3: [Hertzman 2004]

e Given a complete model, we can
compute any other probability

e Use Bayes rule to infer unknown
variables from observations
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Probability Theory

(a very brief summary)

Part IV: Characteristics of Probability Measures



Moments of Distributions

Density Function (1D) tp(x)
e p:R—> R
X
Expected Value / Mean:
« E(p) = 1= (p, ) %\
= Jpp(x) - x dx = - -
Variance: \{p() (= 1)
» Var(p) = o* :=(p, (x — p)*) /ﬁ\_‘}l%
= fRP(x) - (x —w)* dx T T x
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Standard Deviation

Bounds on spread N p(x) (X = 1i)?
 Standard deviation /6( |
o =Var(p) u X

e Expected range of variations
e Bounds spread of the distribution
e Formal bound: ChebysheVv’s inequality

1
Pr(|J X —u| = ko) < )
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Remark: Other Moments

Higher order moments:
« m(p) = (p, (x = W)*) = [ p(x) - (x — ¥ dx

e Skewness: m; (asymetry of the distribution)

e Kurtosis: m, (peakedness)

More general

« (p, fi) with basis functions f,, for example:

= Fourier basis (,,characteristic function®)

We will not use any of this in this lecture...
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Moments of Distributions

Multi-variate density function
e Density p: R — R0

CE@) == (px) = [oap(x) -xdx
o Cov(x;,x;):=(p, (; — p) (x; — )

= fp(x) (2 — i) (x5 — i) dx

]Rd

= cotiun )

p(xy, X,)
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Properties

Expected Value:
e E(X+Y) = E(X) + E(Y)
« E(WX) = AE(X)

Variance:
o Var(\X) = A*Var(X)

e Let X, Y be independent, then:

Var(X + Y) = Var(X) + Var(Y)
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Entropy

How random is the randomness? | p(x)

e Measure of unorderliness

e How much information remains in
the events, knowing the
distribution? 1 p(x)

Idea

e Try to code the events

< >

e Binary codes "
4 ()
= short codes for frequent events

= long codes for infrequent events

r
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Entropy

Best solution

e Use codes of O(log %) bits for events with probability p

e Can be implemented: Huffman coding, arithmetic coding
Definition: Entropy
n
HOO == ) p(xo) logp(x;)
i=1

e Coding efficiency of independent events
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Examples

1 p(x)

1 p(x)
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Probability Theory

(a very brief summary)

Part V: Large numbers



Law of Large Numbers

Intuition for Probabilities:
e Single outcomes are random

e But on average over a larger number of trials, the
behavior is known

e It can be shown that probability measures naturally
have this property
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Law of Large Numbers

Let

e X1,X5,...,X,, bei.i.d. random variables
(independent, identically distributed)

We look at the mean

(Weak) law of large numbers

lim Pr(|X, —u| >€) =0
n—>00
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Proof

Proof:
 Additionally assumption: finite variance Var(X.) = o*
e The theorem then follows from

= Additivity of variances
= Chebyshev’s bound

_ 1/{< 1 (< n
Var(X,) = Var (E (Z Xi>> = ﬁ(; Var(Xi)> = n_j = %

—1

= O-(Xn) — %

1
e Chebyshev: Pr(|JX —u| = ko) < =
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Additional Insight

Averaging of independent trials
e Reduces the variance

e For independent sampling,

o1
convergence rate Is —

JVn
e This is usually lousy...
= Rapid progress first
= Then takes forever to converge
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Central Limit Theorem

Why are so many phenomena normal-distributed?

e Let X4, ..., X,, bereal (1D) random variables

with means 1; and finite variances o/

e Then the distribution of the mean

N (0,1)

converges to a normal distribution.

Multi-dimensional variant

e Similar result for multi-dimensional case
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Probability Theory

(a very brief summary)

Part VI: Gaussian Distributions



Well-known probability distributions

Important distributions | p()
e Uniform distribution

= Only defined for finite domains

| ' X
= Maximum entropy a b

among all distributions N
® p(x)

e Gaussian / normal distribution
= Infinite domains /\
X

= Maximizes entropy
for fixed variance

e Heavy tail distributions [ p()

= “QOutlier robust” _JL

a b X
54




Gaussians

Gaussian Normal Distribution

e Two parameters: u,o

e Density:
N, o (x) L5
X) = e 20
o V2mo?
e Mean: u

e Variance: g*

Gaussian normal distribution
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Log Space

Neg-log-density:

(x — p)? ,
log NV, 5 (x) = 52 +§ln(27m )
1 2
’“T‘Z(X — 1)

Calculations in log-space:

e Densities of products of Gaussians are
Sums of quadratic polynomials

e Calculations simplified in log-space

= Exception: Sum of Gaussians do not work
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Multi-Variate Gaussians

Gaussian Normal Distribution in d Dimensions

e Two parameters: u (d-dim-vector), X (d x d matrix)

e Density:
1 1o —1(x_
Nz () = [ —— G
(2m) 2 det(X) 2
e Mean:

e Covariance Matrix: 2
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Log Space

Neg-Log Density:
: %(X — T 1 (x — ) + const

e Quadratic multivariate polynomial

Consequences:
e Optimization (maximum probability
density) by solving a linear system
e Gaussians are ellipsoids

= Eigenvectors of X are main axes
(principal component analysis, PCA)

= Eigenvalues are extremal variances

58



More Rules for Gaussians

More Rules for Computations with Gaussians

e Products of Gaussians are Gaussians
= Algorithm: Add quadratic polynomials
= Variance can only decrease

e Marginals (“projections”) of Gaussians are Gaussians
= Unknown values: Leave out dimensions in p, X
= Known values: Schur complement

o Affine mappings of Gaussians are Gaussians
= Algorithm: apply map to argument X, yields different quadric

e General sums of Gaussians do not have closed-form
log-densities
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More Rules for Gaussians

Coordinate Transforms

e General Gaussians as affine transforms of unit Gaussians
g Quadric%(x - Wz lx—n +c

= Main axis transform:

60



More Rules for Gaussians

Unit Gaussian:
e We get:

T
%(x — u)T(Z_%) (Z_%)(x —n+c

e De- D) (6D D)+

e This is a unit Quadric / Gaussian X1 x

1
= rotated to Coordinate frame X 2

1
= and translated accordingly by (Z"E)p

quadric

@XTIX

2

general
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More Rules for Gaussians

Unit Gaussian:

e |n addition, we have to recompute the
(log) normalization factor

¢ =lIn ( 5 - 1)
(2m) 2 det(%) 2

to ensure a unit integral

Rule of thumb:

e All Gaussians are related by
= Translation
= Rotation & non-uniform scaling
= Adapting the density to integrate to 1

quadric

@XTIX

2

general
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Mahalanobis Distance

Given:
e A Gaussian distribution with parameters pw, X

e« Sample point x,y € R%

Mahalanobis distance of x:

Dy (x) =y (x — WTZ"1(x — p)
Du(xy) = x—y)TZ1(x—y)

Interpretation:

e Measures distances in “unit Gaussian space’

)

e One unit = one standard deviation
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Applications

Example
e Given a sample from and a Gaussian distribution
e How likely is this sample from that distribution?
e Density value not a good measure

= Absolute density depends on breadth
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Estimation from Data

Task

e Datad,, ..., d, generated w/Gaussian distribution (i.i.d.)
e Estimate parameters

Maximum Likelihood Estimation
* Most likely parameters: argmax,, s P(u, X|d;, ..., d;)

n n
1 1
Wi :EZldi - =m2(di—u)(di—u)T
i= i=

mean covariance
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Mahalanobis Distance

Given:
e A Gaussian distribution with parameters pw, X

e« Sample point x,y € R%

Mahalanobis distance of x:

Dy (x) =y (x — WTZ"1(x — p)
Du(xy) = x—y)TZ1(x—y)

Interpretation:

e Measures distances in “unit Gaussian space’

)

e One unit = one standard deviation
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Conclusions

Bayesian Statistics
e Uncertain captured in numbers

e Mathematics gives us the rules to derive consequences
of our assumptions

The rest of the theory
e Formal tools to work with uncertainty
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