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Bayesian Statistics 

Summary 

• Importance 

 The only sound tool to handle uncertainty 

 Manifold applications: Web search to self-driving cars 

• Structure 

 Probability: positive, additive, normed measure 

 Learning is density estimation 

 Large dimensions are the source of (almost) all evil 

 No free lunch: There is no universal learning strategy 



Motivation 
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Modern AI 

Classic artificial intelligence: 

• Write a complex program with enough rules to 
understand the world 

• This has been perceived as not very successful 

Modern artificial intelligence 

• Machine learning 

• Learn structure from data 

 Minimal amount of “hardwired” rules 

 “Data driven approach” 

• Mimics human development (training, early childhood) 
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Data Driven Computer Science 

Statistical data analysis is everywhere: 

• Cell phones (transmission, error correction) 

• Structural biology 

• Web search 

• Credit card fraud detection 

• Face recognition in point-and-shoot cameras 

• ... 



Probability Theory 
(a very brief summary) 



Probability Theory 
(a very brief summary) 

Part I: Philosophy 



 8 

What is Probability? 

Question:  
• What is probability? 

Example:  
• A bin with 50 red and 50 blue balls 

• Person A takes a ball 

• Question to Person B: 
What is the probability for red? 

What happened: 

• Person A took a blue ball  

• Not visible to person B 
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Philosophical Debate… 

An old philosophical debate: 

• What does “probability” actually mean? 

• Can we assign probabilities to events for which the 
outcome is already fixed? (but we do not know it for sure) 

“Fixed outcome” examples: 

• Probability for life on mars 

• Probability for J.F. Kennedy having been assassinated 
by a intra-government conspiracy  

• Probability that the code you wrote is correct 
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Two Camps 

Frequentists’ (traditional) view: 

• Well defined experiment 

• Probability is the relative number 
of positive outcomes 

• Only meaningful as a mean of  
many experiments 

Bayesian view: 

• Probability expresses a degree of belief 

• Mathematical model of uncertainty 

• Can be subjective 
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Mathematical Point of View 

Mathematics: 

• Math does not tell you what is true 

• It only tells you the consequences if you  
accept other assumptions (axioms) to be true 

• Mathematicians don’t do philosophy. 

Mathematical definition of probability: 

• Properties of probability measures 

• Consistent with both views 

• Defines rules for computing with probabilities 

• Setting up probabilities is not a math problem 



Probability Theory 
(a very brief summary) 

Part II: Probability Measures 
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Kolmogorov’s Axioms 

Discrete probability space:  

• Elementary events:  = {w1, …, wn} 

• General events:  Subsets A   

• Probability measure: Pr: P()   

A valid probability measure must ensure: 

• Positive: Pr(A)  0 

• Additive: [A  B = ]   [Pr(A) + Pr(B) = Pr(A  B)] 

• Normed: Pr() = 1 
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Other Properties Follow 

Properties derived from Kolmogorov’s Axioms: 
 

• P(A)  [0..1] 
 

• P(A) = P( \ A) = 1 – P(A) 
 

• P() = 0 
 

• Pr(A  B) = Pr(A) + Pr(B) – Pr(A  B) 
 

• … 

counted twice 
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In other words 

Mathematical probability is a 

• non-negative, normed, additive measure. 

 Always  0 

 Sums to 1 

 Disjoint pieces add up 



 16 

In other words 

Mathematical probability is a 

• non-negative, normed, additive measure. 

 

 

 

 

 

 

 
 

• Think of a density on some domain  

w1 – elementary event 

w2 – elementary event 
… 

i Pr(wi) = 1  

1 2 3 4 5 6 7 8 

16 8 … … 

64 

21 
more likely: w21 

less likely: w64 

Pr(w21) > Pr(w64) 
 
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Mathematical probability is a 

• non-negative, normed, additive measure. 

 

 

 

 

 

 

 
 

• Think of a density on some domain  

In other words 

21 22 23 

29 30 31 

36 37 38 

1 2 3 4 5 6 7 8 

16 8 … … 

64 

A is an event 

Pr(A) = iA Pr(wi) 
 

  = Pr(w21) + Pr(w22) + Pr(w23) 
   + Pr(w29) + Pr(w30) + Pr(w31) 
   + Pr(w36) + Pr(w37) + Pr(w38) 
 

 
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In other words 

Mathematical probability is a 

• non-negative, normed, additive measure. 

 Always  0 

 Sums to 1 

 Disjoint pieces add up 

What does this model? 

• You can always think of an area with density. 

• All pieces are positive. 

• Sum of densities is 1. 
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Discrete Models 

Discrete probability space:  

• Elementary events:  = {w1, …, wn} 

• General events:  Subsets A   

• Probability measure: Pr: P()   

Probability measures: 

• Sum of elementary probabilities 

Pr(A) = w

i  A Pr(wi) 
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Continuous Probability Measures 

Continuous probability space:  

• Elementary events:   ℝd 

• General events:  “reasonable”*) subsets A   

• Probability measure: Pr: σ()   assigns 
  probability to subsets*) of  

*) not “all” subsets: Borel sigma algebra (details omitted) 

The same axioms: 

• Positive: Pr(A)  0 

• Additive: [A  B = ]   [Pr(A) + Pr(B) = Pr(A  B)] 

• Normed: P() = 1 
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Continuous Density 

Density model 

• No elementary probabilities 

• Instead: density p: ℝd    ℝ0 

A is an event 

Pr(A)  =  ∫A p(x) dx 

 
Density p(x) with 
 

p(x)  0  and  ∫  p(x) dx = 1 
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Random Variables 

Random Variables 

• Assign numbers or vectors from ℝd to outcomes 

• Notation: 

 random variable X 

 density p(x) = Pr(X = x) 

• Usually:  
Variable = domain of the density 

 

p 

x = X 
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Unified View 

Discrete models as special case 

p(wi), wi  {1,...,9} 

wi 

1 2 3 4 5 6 7 8 9 

Discrete model 

p(x), x  ℝ 

x 

Continuous model 

1 3 5 9 

Dirac-Delta pulses 
 

p(x) = Σi δ(x – xi) p(wi) 
 
Idealization  
∫ℝd δ(x) dx = 1 
 

δ(0) very large 
 

d(x) = 0 everywhere else 



Probability Theory 
(a very brief summary) 

Part III: Statistical Dependence 
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Conditional Probability 

Conditional Probability: 

• Pr(A | B) = Probability of A given B [is true] 

• Easy to show: 
Pr(A  B) = Pr(A | B) · Pr( B) 

 

Statistical Independence 

• A and B independent  
: Pr(A  B) = Pr(A) · Pr( B) 

• Knowing the value of A does not yield 
information about B (and vice versa) 
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Factorization 

Independence = Density Factorization 

x1 

x2 

p(x1, x2) 

= 

p(x1) 



p(x2) 

x1 

x2 

p(x1, x2) = p(x1)  p(x2) 
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Factorization 

Independence = Density Factorization 

x1 

x2 

p(x1, x2) 

= 

p(x1) 



p(x2) 

x1 

x2 

p(x1, x2) = p(x1)  p(x2) 

O(k d) O(d⋅ k) 

1 2 ... k 

k 
... 

1
 

1 2 ... k 

1
 2

 ... 
k 

2
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Marginals 

Example 

• Two random variables 
a, b  [0,1] 

• Joint distribution p(a, b) 

• We do not know b 
 (could by anything) 

• What is the distribution of a? 
 

𝑝 𝑎 =  𝑝 𝑎, 𝑏 𝑑𝑏

1

0

 

p(a,b) 

a 0 1 

b 

0 

1 

a 0 1 

 𝑑𝑏 

“Marginal Probability” 
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Conditional Probability 

Bayes’ Rule: 

 

 

Derivation 

• Pr(A  B) = Pr(A | B) · Pr( B) 
Pr(A  B) = Pr(B | A) · Pr( A) 
 

 Pr(A | B) · Pr( B) = Pr(B | A) · Pr( A) 

 

 

Pr(A | B) =  
Pr(B | A)·Pr(A ) 

Pr(B) 
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Bayesian Inference 

Example: Statistical Inference 

• Medical test to check for a medical condition 

• A: Medical test positive? 

 99% correct if patient is ill 

 But in 1 of 100 cases, reports illness for healthy patients 

• B: Patient has disease? 

 We know: One in 10 000 people have it 

A patient is diagnosed with the disease: 

• How likely is it for the patient to actually be sick? 
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Bayesian Inference 

Apply Bayes’ Rule: 

Pr(B | A) =  
Pr(A | B)·Pr(B ) 

Pr(A) 

Pr(disease | test positive) =  
Pr(test pos. | disease)·Pr(deasease) 

Pr(test pos.|disease)Pr(disease) + Pr(test pos.|disease)Pr(disease) 

0.99·0.0001 

0.99·0.0001 + 0.01·0.9999 
= 

 0.0098  
1 

100 
 most likely healthy 

= 
0.000099 

0.0100979901 

A: Medical test positive? 

B: Patient has disease? 
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Intuition 

Soccer Stadium – 10 000 people 

1 person 
actually sick 

100 people with 
positive test 
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Conclusion 

Bayes’ Rule: 

• Used to fuse knowledge 

 “Prior” knowledge (prevalence of disease) 

 “Measurement”: tests, sensor data, new information 

 Can be used repeatedly to add more information 

• Standard tool for interpreting sensor measurements 
(Sensor fusion, reconstruction) 

• Examples: 

 Image reconstruction (noisy sensors) 

 Face recognition 

Pr(A | B) =  
Pr(B | A)·Pr(A ) 

Pr(B) 
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Chain Rule 

Incremental update 

• Probability can be split into chain of conditional 
probabilities: 

Pr 𝑋𝑛, … , 𝑋2, 𝑋1  
 

= Pr 𝑋𝑛 𝑋𝑛−1, 𝑋𝑛−2, … , 𝑋1)⋯Pr 𝑋3 𝑋2, 𝑋1 Pr(𝑋2|𝑋1)Pr(𝑋1) 

 

• Example application:  
 Xi is measurement at time i 

 Update probability distribution as more data comes in  

• Attention – although it might look like, this does not reduce 
the complexity of the joint distribution 



Probability Theory 
(a very brief summary) 

Part IV: Uniqueness – Philosophy Again... 
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Cox Axioms 

Are there alternatives? 

• Is this the right way to define probabilities? 

• Are there no other uncertainty measures? 

Answer (short): 

• Yes. 

• Any reasonable*) probability measure has the same 
properties 

 Up to normalization constant; we can have Pr  [0..42] if we like 

*) reasonable – Cox axioms: 
ordering Pr(A) > Pr(B) > Pr(C) well defined, Pr(A) = f(Pr(A)), 
Pr(A  B) = g(Pr(A|B), Pr(B)) for arbitrary, fixed f, g. 
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What is Probability? 

Principle #1: [Hertzman 2004] 

 

“Probability theory is nothing more than 
  common sense reduced to calculation” 
 

Pierre-Simon Laplace, 1814 

Principle #2,3: [Hertzman 2004] 

• Given a complete model, we can 
   compute any other probability 

• Use Bayes rule to infer unknown 
   variables from observations 



Probability Theory 
(a very brief summary) 

Part IV: Characteristics of Probability Measures 
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Moments of Distributions 

Density Function (1D) 

• p: ℝ  ℝ0   

Expected Value / Mean: 
• 𝐸 𝑝 = 𝜇 ∶= 𝑝, 𝑥  

              =  𝑝(𝑥) ∙ℝ
𝑥 𝑑𝑥  

Variance: 
• 𝑉𝑎𝑟 𝑝 = 𝜎2 ∶= 𝑝, (𝑥 − 𝜇)2  

                   =  𝑝 𝑥 ∙ℝ
(𝑥 − 𝜇)2 𝑑𝑥 

p(x) 

x 

p(x) 

x  

x 

p(x) 

x  

(x – )2 

  
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Standard Deviation 

Bounds on spread 

• Standard deviation 
 

𝜎 = 𝑉𝑎𝑟 𝑝  

• Expected range of variations 

• Bounds spread of the distribution 

• Formal bound: Chebyshev’s inequality 
 

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2
 

p(x) 

x  

(x – )2 

  
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Remark: Other Moments 

Higher order moments: 
• 𝑚𝑘 𝑝 ≔ 𝑝, (𝑥 − 𝜇)

𝑘  =  𝑝 𝑥 ∙
ℝ

(𝑥 − 𝜇)𝑘  𝑑𝑥 

• Skewness: m3 (asymetry of the distribution) 

• Kurtosis: m4    (peakedness) 

More general 

• 𝑝, 𝑓𝑖  with basis functions fi, for example:  

 Fourier basis („characteristic function“) 

We will not use any of this in this lecture... 
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x1 

x2 
 
Σ 

Moments of Distributions 

Multi-variate density function 

• Density p: ℝd  ℝ0   

• 𝐸 𝑝 = 𝜇 ∶= 𝑝, 𝑥 =  𝑝(𝑥) ∙ℝ𝑑
𝑥 𝑑𝑥  

• Cov 𝑥𝑖 , 𝑥𝑗 : = 𝑝, (𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖)  

=  𝑝 𝑥

ℝ𝑑

(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖) 𝑑𝑥 

•  =
⋱ ⋮ ⋰
⋯ Cov(𝑥𝑖 , 𝑥𝑗) ⋯

⋰ ⋮ ⋱

 

p(x1, x2) 

x1 

p(x1, x2) 

x2 
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Properties 

Expected Value: 

• E(X+Y) = E(X) + E(Y) 

• E(X) = E(X) 

Variance: 

• Var(X) = 2Var(X) 

• Let X, Y be independent, then: 
Var(X + Y) = Var(X) + Var(Y) 
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Entropy 

How random is the randomness? 

• Measure of unorderliness 

• How much information remains in 
the events, knowing the 
distribution? 

Idea 

• Try to code the events 

• Binary codes 

 short codes for frequent events 

 long codes for infrequent events 

p(x) 

x 

p(x) 

x 

p(x) 

x a b 
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Entropy 

Best solution 

• Use codes of 𝒪(log
1

𝑝
) bits for events with probability p 

• Can be implemented: Huffman coding, arithmetic coding 

Definition: Entropy 

𝐻 𝑋 = − 𝑝 𝑥𝑖  log 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

• Coding efficiency of independent events 
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Examples 

p(x) 

x 

p(x) 

x 

p(x) 

x 

p(x) 

x 

𝐻 = − 
1

𝑛
log
1

𝑛

𝑛

𝑖=1

= log𝑛 

𝐻 = 0 



Probability Theory 
(a very brief summary) 

Part V: Large numbers 
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Law of Large Numbers 

Intuition for Probabilities: 

• Single outcomes are random 

• But on average over a larger number of trials, the 
behavior is known 

• It can be shown that probability measures naturally  
have this property 
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Law of Large Numbers 

Let 

• 𝑋1, 𝑋2, … , 𝑋𝑛 be i.i.d. random variables 
(independent, identically distributed) 

We look at the mean 

𝑋 𝑛 =
1

𝑛
 𝑋𝑖

𝑛

𝑖=1

 

(Weak) law of large numbers 

lim
𝑛→∞
Pr 𝑋 𝑛 − 𝜇 > 𝜖 = 0 

 

 



 50 

Proof 

Proof: 

• Additionally assumption: finite variance Var(Xi) = σ 2 

• The theorem then follows from 

 Additivity of variances 

 Chebyshev’s bound 
 

Var 𝑋 𝑛 = Var
1

𝑛
 𝑋𝑖

𝑛

𝑖=1

=
1

𝑛2
 Var(𝑋𝑖)

𝑛

𝑖=1

=
𝑛𝜎

𝑛2
=
𝜎

𝑛
 

 

    ⇒ 𝜎 𝑋 𝑛 =
𝜎

𝑛
 

• Chebyshev:  Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2
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Additional Insight 

Averaging of independent trials 

• Reduces the variance 

• For independent sampling,  

convergence rate is 
1

𝑛
 

• This is usually lousy... 

 Rapid progress first 

 Then takes forever to converge 

𝑛 
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Central Limit Theorem 

Why are so many phenomena normal-distributed? 

• Let 𝑋1, … , 𝑋𝑛 be real (1D) random variables 

with means 𝜇𝑖 and finite variances 𝜎𝑖
2. 

• Then the distribution of the mean  

 𝑋𝑖
𝑛
𝑖=1   −    𝜇𝑖

𝑛
𝑖=1

 𝜎𝑖
2𝑛

𝑖=1

    →    𝒩(0,1) 

converges to a normal distribution. 

Multi-dimensional variant 

• Similar result for multi-dimensional case 



Probability Theory 
(a very brief summary) 

Part VI: Gaussian Distributions 
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Well-known probability distributions 

Important distributions 

• Uniform distribution 

 Only defined for finite domains 

 Maximum entropy  
among all distributions 

• Gaussian / normal distribution 

 Infinite domains 

 Maximizes entropy  
for fixed variance 

• Heavy tail distributions 

 “Outlier robust” 

p(x) 

x a b 

p(x) 

x 

p(x) 

x a b 
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Gaussians 

Gaussian Normal Distribution 

• Two parameters: 𝜇, 𝜎 

• Density: 

𝒩𝜇,𝜎 𝑥 ≔
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2  

• Mean: 𝜇 

• Variance: 𝜎2 

Gaussian normal distribution 
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Log Space 

Neg-log-density: 

log𝒩𝜇,𝜎 𝑥 ≔
𝑥 − 𝜇 2

2𝜎2
+
1

2
ln 2𝜋𝜎2  

     ~
1

2𝜎2
𝑥 − 𝜇 2 

Calculations in log-space: 

• Densities of products of Gaussians are 
Sums of quadratic polynomials 

• Calculations simplified in log-space 

 Exception: Sum of Gaussians do not work 
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Multi-Variate Gaussians 

Gaussian Normal Distribution in d Dimensions 

• Two parameters: 𝛍 (d-dim-vector), Σ (d  d matrix) 

• Density: 

𝒩𝛍,𝚺 𝐱 ≔
1

2𝜋 −
𝑑
2 det Σ −

1
2

𝑒−
1
2
𝐱−𝛍 TΣ−1 𝐱−𝛍  

• Mean: 𝛍 

• Covariance Matrix: Σ 

x1 

x2 
 
Σ 

p(x1, x2) 
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Log Space 

Neg-Log Density: 

•
1

2
𝐱 − 𝛍 TΣ−1 𝐱 − 𝛍 + 𝑐𝑜𝑛𝑠𝑡 

• Quadratic multivariate polynomial 

Consequences: 

• Optimization (maximum probability 
density) by solving a linear system 

• Gaussians are ellipsoids 

 Eigenvectors of Σ are main axes  
(principal component analysis, PCA) 

 Eigenvalues are extremal variances 

 

σ1 
σ2 
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More Rules for Gaussians 

More Rules for Computations with Gaussians 

• Products of Gaussians are Gaussians 

 Algorithm: Add quadratic polynomials 

 Variance can only decrease 

• Marginals (“projections”) of Gaussians are Gaussians 

 Unknown values: Leave out dimensions in 𝛍, Σ  

 Known values: Schur complement 

• Affine mappings of Gaussians are Gaussians 

 Algorithm: apply map to argument x, yields different quadric 

• General sums of Gaussians do not have closed-form 
log-densities 
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More Rules for Gaussians 

Coordinate Transforms 

• General Gaussians as affine transforms of unit Gaussians 

 Quadric 
1

2
𝐱 − 𝛍 TΣ−1 𝐱 − 𝛍 + 𝑐 

 Main axis transform:  

𝚺−1 = 𝐔𝐃𝐔T = 𝐔
𝜎1
−2

𝜎2
−2

⋱

𝐔T 

 

𝚺−
1
2 = 𝐔𝐃

1
2𝐔T = 𝐔

𝜎1
−1

𝜎1
−1

⋱

𝐔T 
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More Rules for Gaussians 

Unit Gaussian: 

• We get: 
   

1

2
𝐱 − 𝛍 T Σ−

1
2

T

Σ−
1
2 𝐱 − 𝛍 + 𝑐 

 

=
1

2
Σ−
1
2 𝐱 − Σ−

1
2 𝛍

T

Σ−
1
2 𝐱 − Σ−

1
2 𝛍 + 𝑐 

 

• This is a unit Quadric / Gaussian 𝐱T𝐈 𝐱  

 rotated to Coordinate frame Σ−
1

2 

 and translated accordingly by Σ−
1

2 𝛍 
 

σ1 
σ2 

quadric 
𝐱T𝐈 𝐱 

general 
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More Rules for Gaussians 

Unit Gaussian: 
• In addition, we have to recompute the 

(log) normalization factor 
 

                                    𝑐 = ln
1

2𝜋
−
𝑑
2 det Σ

−
1
2

 

 

to ensure a unit integral 

Rule of thumb: 

• All Gaussians are related by 

 Translation 

 Rotation & non-uniform scaling 

 Adapting the density to integrate to 1 

 

σ1 
σ2 

quadric 
𝐱T𝐈 𝐱 

general 
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 

σ1 
σ2 

general 

Mahalanobis Distance 

Given: 
• A Gaussian distribution with parameters 𝛍, 𝚺 

• Sample point 𝐱, 𝐲 ∈ ℝ𝑑  

Mahalanobis distance of x: 
 

𝐷𝑀 𝐱 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍  
 

𝐷𝑀 𝐱, 𝐲 = 𝐱 − 𝐲 𝑇𝚺−1 𝐱 − 𝐲  

Interpretation: 
• Measures distances in “unit Gaussian space” 

• One unit = one standard deviation 
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Applications 

Example 

• Given a sample from and a Gaussian distribution 

• How likely is this sample from that distribution? 

• Density value not a good measure 

 Absolute density depends on breadth 

p(x) 

x 

p(x) 

x 

 = 1  = 1 
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Estimation from Data 

Task 

• Data 𝐝1, … , 𝐝𝐧 generated w/Gaussian distribution (i.i.d.) 

• Estimate parameters 

Maximum Likelihood Estimation 

• Most likely parameters:   argmax𝛍,𝚺𝑃(𝛍, 𝚺|𝐝1, … , 𝐝𝑛)  
 

𝛍𝑚𝑙 =
1

𝑛
 𝐝𝑖

𝑛

𝑖=1

           𝚺𝑚𝑙 =
1

𝑛 − 1
 𝐝𝑖 − 𝛍 𝐝𝑖 − 𝛍

T

𝑛

𝑖=1

 

mean covariance 
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 

σ1 
σ2 

general 

Mahalanobis Distance 

Given: 
• A Gaussian distribution with parameters 𝛍, 𝚺 

• Sample point 𝐱, 𝐲 ∈ ℝ𝑑  

Mahalanobis distance of x: 
 

𝐷𝑀 𝐱 = 𝐱 − 𝛍 𝑇𝚺−1 𝐱 − 𝛍  
 

𝐷𝑀 𝐱, 𝐲 = 𝐱 − 𝐲 𝑇𝚺−1 𝐱 − 𝐲  

Interpretation: 
• Measures distances in “unit Gaussian space” 

• One unit = one standard deviation 
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Conclusions 

Bayesian Statistics 
• Uncertain captured in numbers 

• Mathematics gives us the rules to derive consequences 
of our assumptions 

 

The rest of the theory 
• Formal tools to work with uncertainty 


