Statistical Geometry Processing

Winter Semester 2011/2012

Machine Learning

Topics

Topics

- Machine Learning Intro
 - Learning is density estimation
 - The curse of dimensionality
- Bayesian inference and estimation
 - Bayes rule in action
 - Discriminative and generative learning
- Markov random fields (MRFs) and graphical models
- Learning Theory
 - Bias and Variance / No free lunch
 - Significance

Machine Learning & Bayesian Statistics

Statistics

How does machine learning work?

- Learning: learn a probability distribution
- Classification: assign probabilities to data

We will look only at classification problems:

- Distinguish two classes of objects
- From ambiguous data

Application

Application Scenario:

- Automatic scales at supermarket
- Detect type of fruit using a camera

Toy Example:

- We want to distinguish pictures of oranges and bananas
- We have 100 training pictures for each fruit category
- From this, we want to derive a rule to distinguish the pictures automatically

Very simple algorithm:

- Compute average color
- Learn distribution

Simple Learning

Simple Learning Algorithms:

- Histograms
- Fitting Gaussians
- We will see more

Machine Learning

Very simple idea:

- Collect data
- Estimate probability distribution
- Use learned probabilities for classification (etc.)
- We always decide for the most likely case (largest probability)

Easy to see:

- If the probability distributions are known exactly, this decision is optimal (in expectation)
- "Minimal Bayesian risk classifier"

What is the problem?

Why is machine learning difficult?

- We need to learn the probabilities
- Typical problem: High dimensional input data

High Dimensional Spaces

High Dimensional Spaces

High Dimensional Spaces

High dimensional probability spaces:

- Too much space to fill
- We can never get a sufficient number of examples
- Learning is almost impossible

What can we do?

- We need additional assumptions
- Simplify probability space
- Model statistical dependencies

This makes machine learning a hard problem.

Learn From High Dimensional Input

Learning Strategies:

- Features to reduce the dimension
 - Average color
 - Boundary shape
 - Other heuristics

Usually chosen manually. (black magic?)

- High-dimensional learning techniques
 - Neural networks (old school)
 - Support vector machines (current "standard" technique)
 - Ada-boost, decision trees, ... (many other techniques)
- Usually used in combination

Basic Idea: Neural Networks

Classic Solution: Neural Networks

- Non-linear functions
 - Features as input
 - Combine basic functions with weights
- Optimize to yield
 - (1,0) on bananas
 - (0,1) on oranges
- Fit non-linear decision boundary to data

Outputs

Neural Networks

Support Vector Machines

training set

best separating hyperplane

Kernel Support Vector Machine

original space

Example Mapping:

$$\phi \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (x^2, xy, y^2)$$

Other Learning Algorithms

Popular Learning Algorithms

- Fitting Gaussians
- Linear discriminant functions
- Ada-boost
- Decision trees
- ...

More Complex Learning Tasks

Learning Tasks

Examples of Machine Learning Problems

Pattern recognition

- Single class (banana / non-banana)
- Multi class (banana, orange, apple, pear)
- *Howto:* Density estimation, highest density minimizes risk

Regression

- Fit curve to sparse data
- Howto: Curve with parameters, density estimation for parameters

• Latent variable regression

- Regression between observables and hidden variables
- *Howto:* Parametrize, density estimation

Supervision

Supervised learning

• Training set is labeled

Semi-supervised

• Part of the training set is labeled

Unsupervised

• No labels, find structure on your own ("Clustering")

Reinforcement learning

• Learn from experience (losses/gains; robotics)

Principle

training set

Model

hypothesis

Two Types of Learning

Estimation:

- Output most likely parameters
 - Maximum density
 - "Maximum likelihood"
 - "Maximum a posteriori"
 - Mean of the distribution

Inference:

- Output probability density
 - Distribution for parameters
 - More information
- Marginalize to reduce dimension

Bayesian Models

Scenario

- Customer picks banana $\int (X = 0)$ or orange $\bigcirc (X = 1)$
- Object X creates image D

Modeling

Given image D (observed), what was X (latent)?

$$P(X|D) = \frac{P(D|X)P(X)}{P(D)}$$
$$P(X|D) \sim P(D|X)P(X)$$

Bayesian Models

Model for Estimating X

$$P(X|D) \sim P(D|X) P(X)$$

posterior

data term, prior likelihood

Generative vs. Discriminative

Properties

- Comprehensive model: Full description of how data is created
- Might be complex (how to create images of fruit?)

Generative vs. Discriminative

Properties

- Easier:
 - Learn mapping from phenomenon to explanation
 - Not trying to explain / understand the whole phenomenon
- Often easier, but less powerful

Statistical Dependencies

Markov Random Fields and Graphical Models

Problem

Estimation Problem:

posterior

prior

- X = 3D mesh (10K vertices)
- **D** = noisy scan (or the like)
- Assume P(D | X) is known
- But: Model P(X) cannot be build
 - Not even enough training data
 - In this part of the universe :-)

30000 dimensions

Reducing dependencies

Problem:

- $p(x_1, x_2, \dots, x_{10000})$ is to high-dimensional
- *k* States, *n* variables: O(*k*^{*n*}) density entries
- General dependencies kill the model

Idea

- Hand-craft decencies
- We might know or guess what actually depends on each other and what not
- This is the art of machine learning

Graphical Models

Factorize Models

• Pairwise models:

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{i=1}^n p_i^{(1)}(x_i) \prod_{i,j \in E} p_{i,j}^{(2)}(x_i, x_j)$$

- Model complexity:
 - O(nk²) parameters
- Higher order models:
 - Triplets, quadruples as factors
 - Local neighborhoods

Graphical Models

Markov Random fields

 Factorize density in local "cliques"

Graphical model

- Connect variables that are directly dependent
- Formal model: Conditional independence

Graphical Models

Conditional Independence

- A node is conditionally independent of all others given the values of its direct neighbors
- I.e. set these values to constants, x₇ is independent of all others

Theorem (Hammersley–Clifford):

 Given conditional independence as graph, a (positive) probability density factors over cliques in the graph

Example: Texture Synthesis

region selected

completion

Texture Synthesis

Idea

- One or more images as examples
- Learn image statistics
- Use knowledge:
 - Specify boundary conditions
 - Fill in texture

The Basic Idea

Markov Random Field Model

- Image statistics
- How pixels are colored depends on local neighborhood only (Markov Random Field)
- Predict color from neighborhood

A Little Bit of Theory...

Image statistics:

р

- An image of *n* × *m* pixels
- Random variable: $\mathbf{x} = [x_{11}, ..., x_{nm}] \in [0, 1, ..., 255]^{n \times m}$
- Probability distribution:

$$(\mathbf{x}) = p(x_{11}, ..., x_{nm})$$

256 choices
256 choices

 $256^{n \times m}$ probability values

It is impossible to learn full images from examples!

Simplification

Problem:

- Statistical dependencies
- Simple modell can express dependencies on all kinds of combinations

Markov Random Field:

- Each pixel is *conditionally independent* of the rest of the image given a small neighborhood
- In English: likelihood only depends on neighborhood, not rest of the image

Markov Random Field

Example:

- Red pixel depends on light red region
- Not on black region
- If region is known, probability is fixed and independent of the rest

However:

- Regions overlap
- Indirect global dependency

Pixel

Texture Synthesis

Use for Texture Synthesis

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{n} \prod_{j=1}^{m} p_{i,j}(N_{i,j})$$
$$p_{i,j} = p_{i,j}(N_{i,j})$$
$$= p_{i,j}(x_{i-k,j-k} \dots, x_{i+k,j+k})$$
$$\sim \exp\left(\frac{-dist(N_{i,j}, data)^2}{2\sigma^2}\right)$$

				_^	.	
					1, J	
			8	;		
			_ ',	J		

Inference

Inference Problem

- Computing $p(\mathbf{x})$ is trivial for known \mathbf{x} .
- Finding the **x** that maximizes $p(\mathbf{x})$ is very complicated.
- In general: NP-hard
- No efficient solution known (not even for the image case)

In practice

 Different approximation strategies ("heuristics", strict approximation is also NP-hard)

Simple Practical Algorithm

Here is the short story:

- Unknown pixels: consider known neighborhood
- Match to all of the known data
- Copy the pixel with the best matching neighborhood
- Region growing, outside in

Approximation only

Can run into bad local minima

Learning Theory

There is no such thing as a free lunch...

Overfitting

Problem: Overfitting

- Two steps:
 - Learn model on training data
 - Use model on more data ("test data")
- Overfitting
 - High accuracy in training is no guarantee for later performance

Learning Probabilities

Learning Probabilities

Learning Probabilities

Housing Prices in Springfield

disclaimer: numbers are made up

Housing Prices in Springfield

disclaimer: numbers are made up

Housing Prices in Springfield 600 K × × /.* 500 K 400 K 300 K 200 K 100 K 1970 1980 1990 2000 2010 1960

disclaimer: numbers are made up

Housing Prices in Springfield

disclaimer: numbers are made up

Bias – Variance Tradeoff

There is a trade off:

Bias:

Coarse prior assumptions to regularize model

Variance:

• Bad generalization performance

Model Selection

How to choose the right model?

For example

- Linear
- Quadratic
- Higher order

Standard heuristic: Cross validation

- Partition data in two parts (halfs, leave-one-out,...)
- Train on part 1, test on part 2
- Choose according to performance on part 2

Cross Validation

Housing Prices in Springfield

disclaimer: numbers are made up

Cross Validation

Housing Prices in Springfield 600 K 500 K 400 K 300 K 200 K 100 K 1960 1970 1980 1990 2000 2010

disclaimer: numbers are made up

Cross Validation

Housing Prices in Springfield 600 K 500 K 400 K 300 K 200 K 100 K 1960 1970 1980 1990 2000 2010

disclaimer: numbers are made up

No Free Lunch Theorem

Given

- Labeling problem (holds in general as well)
 - Data $\mathbf{x}_i \in \Omega$ (for example: images of fruit)
 - Labels $l_i \in \{1, ..., k\}$ (for example: fruit type)
- Training data $D = \{(\mathbf{x}_1 \equiv \mathbf{l}_1), \dots, (\mathbf{x}_n \equiv \mathbf{l}_n)\}$

Looking for

- Hypothesis h that works everywhere on Ω
 - 1 MPixel photos: 256¹⁰⁰⁰⁰⁰⁰ data items
 - Cannot cover everything with examples
- Off training error: Predictions on $\Omega \setminus D$

No Free Lunch Theorem

Unknown:

• True labeling function $L: \Omega \rightarrow \{1, ..., k\}$

Assumption

- No prior information
- All true labeling functions are equally likely

Theorem ("no free lunch")

 Under these assumptions, all learning algorithms have the same expected performance (i.e.: averaged over all potential true L)

Consequences

Without prior knowledge:

- The expected off-training error of the following algorithms is the same
 - Fancy Multi-Class Support Vector machine
 - Output random numbers
 - Output always 0
 - Learning with cross validation

There is no "ultimate learning algorithm"

- Learning from data needs further knowledge (structure assumptions)
- No truly "fully automatic" machine learning

Example: Regression

Housing Prices in Springfield

Example: Regression

Housing Prices in Springfield

Example: Regression

Housing Prices in Springfield

Example: Density Estimation

Relativity of Orange-Banana Spaces

VS.

"smooth densities" In this case: Gaussians

Significance and Capacity

Scenario

- We have a two hypothesis h₀, h₁
- One is correct

Solution

• Choose the one with higher likelihood

Significance test

- For example: Does new drug help?
- h₀: Just random outcome
- Show that P(h₀) is small

Machine Learning: Capacity

d-1

 $p(x) = \sum_{i=0}^{n} a_i x^i$

We have:

Complex models

Example

- Polynomial fitting
- *d* continuous parameters *a_i*

Significance?

Simple criterion

- Model must be able to predict training data
- Order *d* 1 polynomial can always fit *d* points perfectly
 - Credit card numbers: 16 digits, 15-th order polynomial?
- Need O(d) training points at least
 - Random sampling: Overhead
 - *d* bins need O(*d* log *d*) random draws
- Rule of thumb "10 samples per parameter"
Simple Model

Single Hypothesis

- Hypothesis $h: \mathbb{R}^d \to \{0,1\}$, maps features to decisions Groud truth $g: \mathbb{R}^d \to \{0,1\}$, correct labeling
- Stream of data, drawn i.i.d.

 $(\mathbf{x}_i, y_i) \sim \mathcal{D}$ $g(\mathbf{x}_i) = y_i$

drawn from fixed distribution \mathcal{D} .

• Expected error:

 $\epsilon(h) = P_{\mathcal{D}}(h(\mathbf{x}) \neq g(\mathbf{x}))$

Simple Model

Empirical vs. True Error

- Inifinte stream $(\mathbf{x}_i, y_i) \sim \mathcal{D}$, drawn i.i.d.
- Finite training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim \mathcal{D}$, drawn i.i.d.
- Expected error:

 $\epsilon(h) = P_{\mathcal{D}}(h(\mathbf{x}) \neq g(\mathbf{x}))$

• Empirical error (training error):

$$\hat{\epsilon}(h) = \frac{1}{n} \sum_{i}^{n} \left(h(\mathbf{x}_{i}) - g(\mathbf{x}_{i}) \right)$$

• Bernoulli experiment: Chernoff bound

 $P(|\hat{\epsilon}(h) - \epsilon(h)| > \gamma) \le 2\exp(-2\gamma^2 n)$

Simple Model

Empirical vs. True Error

- Finite training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim \mathcal{D}$, drawn i.i.d.
- Training error bound:

 $P(|\hat{\epsilon}(h) - \epsilon(h)| > \gamma) \le 2\exp(-2\gamma^2 n)$

Result

- Reliability of *assessment* of *hypothesis quality* grows quickly with increasing number of trials
- We can bound generalization error

Machine Learning

We have multiple hypothesis

- Multiple hypothesis $\mathcal{H} = \{h_1, \dots, h_k\}$
- Need a bound on generalization error estimate for all of them after n training examples

 $P(\exists h_i \in \mathcal{H}: |\epsilon(h_i) - \hat{\epsilon}(h_i)| > \gamma)$ = $P([h_1 \text{ breaks}] \cup \dots \cup [h_k \text{ breaks}])$ $\leq kP([h_i \text{ breaks}])$ = $2k \exp(-2\gamma^2 n)$

Machine Learning

Result

- After *n* training examples, we now training error up to γ uniformly for *k* hypothesis with probability of at least $1 - 2k \exp(-2\gamma^2 n)$
- With probability of at least 1δ sufficient to use

$$n \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$
 (log in k)

training examples.

• With probability $1 - \delta$, error bounded by

$$\forall h_i \in \mathcal{H}: |\epsilon(h_i) - \hat{\epsilon}(h_i)| \leq \sqrt{\frac{1}{2n} \log \frac{2k}{\delta}}$$

Empirical Risk Minimization

ERM Learning Algorithm

- Evaluate all hypothesis $\mathcal{H} = \{h_1, \dots, h_k\}$ on training set
- Choose \hat{h} with lowest error,

 $\hat{h} = \arg\min_{i=1..k} \hat{\epsilon}(h_i)$

"Empirical Risk Minimization"

Empirical Risk Minimization

Guarantees

- When using empirical risk minimization
- With probability $\geq 1 \delta$, we get:
 - Not far from optimum:

 $\epsilon(\hat{h}) \leq \epsilon(h_{best}) + 2\gamma$

• Trade off:

Generalization

Can be generalized

• For multi-class learning, regression, etc.

Continuous set of hypothesis

- Simple: *k* bits encode hypothesis
- More sophisticated model: Vapnik-Chervonenkis (VC) dimension
 - "Capacity" of classifier
 - Max. number of points that can be labled differently by hypothesis set
 - $O(VC(\mathcal{H}))$ training examples needed

Conclusion

Two theoretical insights

• No free lunch:

Without additional information, no prediction possible about off-training examples

- Significance: Yes, we can...
 - ...estimate expected generalization error with high probability
 - ...choose a good hypothesis from a set (with h.p. / error bounds)

Conclusion

Two theoretical insights

- There is no contradiction here
 - Still, some non-training points might be misclassified all the time
 - But they cannot show up frequently
 - Have to choose hypothesis set
 - Infinite capacity leads to unbounded error
 - Thus: We do need prior knowledge

Conclusions

Machine Learning

- Is basically density estimation
- Curse of dimensionality
 - High dimensionality makes things intractable
 - Model dependencies to fight the problem

Conclusions

Machine Learning

- No free lunch
 - You can only learn when you already know something
 - Math won't tell you were knowledge initially came from
- Significance
 - Beware of overfitting!
 - Need to adapt plasticity of model to available training data

Recommended Further Readings

Short intro:

 Aaron Hertzman: Siggraph 2004 Course "Introduction to Bayesian Learning" <u>http://www.dgp.toronto.edu/~hertzman/ibl2004/</u>

Bayesian learning, no free lunch:

• **R. Duda, P. Hart, D. Stork**: Pattern Classification, 2nd edition, Wiley.

Significance of multiple hypothesis:

 Andrew Ng, Stanford University "CS 229 – Machine Learning" Course notes (Lecture 4) <u>http://cs229.stanford.edu/materials.html</u>