Statistical Geometry Processing

Winter Semester 2011/2012

Shape Spaces and Surface Reconstruction

Part I: Mesh Denoising

Surface Reconstruction

Goal: Surface reconstruction from noisy point clouds

- Input: Noisy raw scanner data
- Output: "Nice" surface

Statistical Model

Bayesian reconstruction

- Probability space $\Omega = \Omega_S \times \Omega_D$
- S original model
 D measurement data
- Bayes' rule:

 $P(S \mid D) = \frac{P(D \mid S) P(S)}{P(D)}$

• Find most likely S

Bayesian Approach

Candidate reconstruction $S - \phi$

Measured data D –

Computational Framework

Statistical Model

Generative Model:

original curve / surface

noisy sample points

Statistical Model

Generative Model:

- 1. Determine sample point (uniform)
- 2. Add noise (Gaussian)

sampling

many samples

distribution (in space)

Denoising: Vertex Displacement

Measurement Model (Assignment #4):

- 1. Sampling: choose subset of measured points (known)
- 2. Noise: shift measured points randomly according to (known) $p_{noise}(x_1,...,x_m)$

Measurement Model

Noise Model

- Most simple: Independent, Gaussian noise
- Negative log-likelihood:

$$-\log p(D|S) = \frac{1}{2} \sum_{i=1}^{m} (s_i - d_i)^{\mathrm{T}} \Sigma_i^{-1} (s_i - d_i) + c$$

Why do We Need Priors?

No Reconstruction without Priors

• Measurement itself has highest probability

measurement D

Priors

Shape Prior

- Generic Prior
 - Smooth surfaces
- Example (assignment sheet):
 - Points are expected to lie at the mean of their neighbors
 - "Laplacian" prior:

$$E(S) = E(\mathbf{x}_1, \dots, \mathbf{x}_n) \sim \sum_{i=1}^n \left(\mathbf{x}_i - \frac{1}{|N(i)|} \sum_{j \in N(i)} \mathbf{x}_j \right)^2$$

- Formal integrability of P(S)
 - Limit to bounding box, large Gaussian window
 - Omit in practice

 $\overline{\mathbf{x}}$

Denoising Model

Data fitting

$$E(\mathbf{D} | \mathbf{S}) \sim \Sigma_i \operatorname{dist}(\mathbf{S}, \mathbf{d}_i)^2$$

Prior: Smoothness $E_s(S) \sim \int_S \operatorname{curv}(S)^2$

Parametrization

Parametrization

- Need to know neighborhood
- Here, we assume this is known (denoising vs. full reconstruction

Optimization

- Minimize E(S|D)
- Here: Solve linear system

Example

Extensions

Piecewise smooth objects

- Additional (heuristic) segmentation step
- Modify priors at edges
- Man-made objects

MRF Structure

Markov Random Field (MRF)

smoothness
(local neighborhoods)

Shape Spaces

Shape Spaces

Mesh Denoising

- Fixed topology (fixed mesh)
- *n* vertices can move around
- Space: \mathbb{R}^{3n}
- On this space:
 - Probability density $p(\mathbf{x}), p: \mathbb{R}^{3n} \to \mathbb{R}^+$
 - Alternatively: energy $E(\mathbf{x}) = -\log p(\mathbf{x}),$ $E(\mathbf{x}): \mathbb{R}^{3n} \to \mathbb{R}^+$
 - Minimize E, maximize p
 - E does not need to integrate to one (more general)

General Concept

General shape spaces:

- Mapping from sphere to \mathbb{R}^3 (fixed topology)
- Implicit functions in \mathbb{R}^3
 - General topology
 - But redundancy for off-surface points
- Point-based models
 - Topology implicit
 - Hard to capture
- How to describe more specific priors?
 - Our model is a stationary MRF (typical choice)
 - "Space of all people", "Space of all houses"?

