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Part I: Mesh Denoising



Surface Reconstruction

Goal: Surface reconstruction from noisy point clouds
e Input: Noisy raw scanner data
e Output: “Nice” surface



Statistical Model

Bayesian reconstruction
e Probability space
Q - QSXQD
- S — original model
D — measurement data

e Bayes’ rule:
P(D|S) P(S)
P(D)

P(S |D) =

e Find most likely S



Bayesian Approach

measurement model
(“likelihood”)

- P(D|S) P(S)

optimize (best S) 3

Candidate reconstruction S — #
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Computational Framework

Negative log-posterior

Compute maximum a posteriori
(MAP) solution

E(S|D) ~ ED|S) + E(S)

measurement prior potential

potential
reasonable

data fitting reconstruction?



Statistical Model

Generative Model:
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Statistical Model

Generative Model:
1. Determine sample point (uniform)
2. Add noise (Gaussian)

DIV

sampling Gaussian noise many samples

distribution
(in space)



Denoising: Vertex Displacement
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Measurement Model (Assignment #4):
1. Sampling: choose subset of measured points (known)

2. Noise: shift measured points randomly
according to (known) p,_...(x4,...,.x,.)



Measurement Model

Noise Model

e Most simple: Independent, Gaussian noise
» Negative log-likelihood:

—logp(D|S)= %Z(Si _di)Tzi_l(Si —d;)+c
i=1
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Why do We Need Priors?

No Reconstruction without Priors
e Measurement itself has highest probability

measurement D
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Priors

Shape Prior ,N(i)
e Generic Prior e T
,"‘ x ! 'o’
= Smooth surfaces @-._ C'Q JPPaaaity
. s‘s .“.: ,Xl /'
e Example (assignment sheet): \.x____‘:_'
= Points are expected to lie at the mean
of their neighbors
= “Laplacian” prior:
E(S) = E(x X, )~ N X; — —— Y X :
1) = 4an 1=1 L IN(D)| ]EN(I) J)
e Formal integrability of P(S) X

= Limit to bounding box, large Gaussian window
= Omit in practice
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Denoising Model

Data fitting
EWD|S) ~ Z.dist(S, d,)?

......

Prior: Smoothness

ES(S) ~ ISCUTV(S)z
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Parametrization

Parametrization
e Need to know neighborhood

e Here, we assume this is known
(denoising vs. full reconstruction

Optimization
e Minimize E(S|D)
e Here: Solve linear system
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Example

mesh

optimized

data
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Extensions

Piecewise smooth objects
e Additional (heuristic) segmentation step
e Modify priors at edges
e Man-made objects
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MRF Structure

Markov Random Field (MRF)
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Shape Spaces



Shape Spaces

Mesh Denoising
e Fixed topology (fixed mesh)
e n vertices can move around
e Space: R3"
e On this space:

= Probability density
p(x),p: R¥" —» R*

= Alternatively: energy

E(x) = —log p(x),
Ex):R3" - R*

= Minimize E, maximize p
= E does not need to integrate to one (more general)

19



General Concept

General shape spaces:
e Mapping from sphere to R> (fixed topology)

e Implicit functions in R?

= General topology

= But redundancy for off-surface points =

e Point-based models
= Topology implicit

= Hard to capture

e How to describe more specific priors?

= Our model is a stationary MRF (typical choice)

= “Space of all people”, “Space of all houses”?
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