
Statistical Geometry Processing 
Winter Semester 2011/2012 

Shape Spaces and 
Surface Reconstruction 



Part I: Mesh Denoising 
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Surface Reconstruction 

Goal: Surface reconstruction from noisy point clouds 

• Input: Noisy raw scanner data 

• Output: “Nice” surface 
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Statistical Model 

Bayesian reconstruction 

• Probability space 
 = S  D 

• S – original model 
D – measurement data 

• Bayes’ rule: 

 

• Find most likely S 

S D 

P(S |D) = 
P(D| S ) P(S ) 

P(D) 
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Bayesian Approach 

P(S |D) = 
P(D| S ) P(S ) 

P(D) 

prior assumptions measurement model 
(“likelihood”) 

optimize (best S) 

Candidate reconstruction S  – 

Measured data D  – 
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Computational Framework 

Negative log-posterior 

S D 

E(S |D)  ~  E(D|S) + E(S) 

measurement  
potential 

prior potential 

data fitting 
reasonable 

reconstruction? 
 

Compute maximum a posteriori 
(MAP) solution 
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Statistical Model 

Generative Model: 

original curve / surface noisy sample points 
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Statistical Model 

Generative Model: 

1. Determine sample point (uniform) 

2. Add noise (Gaussian) 

sampling Gaussian noise many samples distribution 
(in space) 
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Denoising: Vertex Displacement 

Measurement Model (Assignment #4): 

1. Sampling: choose subset of measured points (known) 

2. Noise: shift measured points randomly 
according to (known) pnoise(x1,...,xm) 

original scene S sample noise measurement D 
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Measurement Model 

Noise Model 

• Most simple: Independent, Gaussian noise 

• Negative log-likelihood: 
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Why do We Need Priors? 

No Reconstruction without Priors 

• Measurement itself has highest probability 

measurement D 
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Priors 

Shape Prior 

• Generic Prior 

 Smooth surfaces 

• Example (assignment sheet): 

 Points are expected to lie at the mean 
of their neighbors 

 “Laplacian” prior: 

 𝐸 𝑆 = 𝐸(𝐱1, … , 𝐱𝑛)~ 𝐱𝑖 −
1

𝑁 𝑖
 𝐱𝑗j∈N i

2
𝑛
i=1    

• Formal integrability of P(S) 

 Limit to bounding box, large Gaussian window 

 Omit in practice 

 

N(i) 

𝐱  

xi 
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Denoising Model 

 Data fitting 

 E(D|S) ~ i dist(S, di)
2 

 

 Prior: Smoothness 

 Es(S) ~ S curv(S)2 

D 

S 

S 
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Parametrization 

Parametrization 

• Need to know neighborhood 

• Here, we assume this is known 
(denoising vs. full reconstruction 

 

 

Optimization 

• Minimize E(S|D) 

• Here: Solve linear system 
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Example 

data optimized mesh 
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Extensions 

Piecewise smooth objects 

• Additional (heuristic) segmentation step 

• Modify priors at edges  

• Man-made objects 
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MRF Structure 

Markov Random Field (MRF) 

data D 

reconstruction S 

data fitting (per node) 

smoothness 
(local neighborhoods) 



Shape Spaces 
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Shape Spaces 

Mesh Denoising 

• Fixed topology (fixed mesh) 

• n vertices can move around 

• Space: ℝ3𝑛 

• On this space: 

 Probability density 
𝑝 𝐱 , 𝑝:ℝ3𝑛 → ℝ+  

 Alternatively: energy 
𝐸 𝐱 = −log 𝑝 𝐱 ,   
𝐸(𝐱):ℝ3𝑛 → ℝ+  

 Minimize E, maximize p 

 E does not need to integrate to one (more general) 
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General Concept 

General shape spaces: 

• Mapping from sphere to ℝ3 (fixed topology) 

• Implicit functions in ℝ3 
 General topology 

 But redundancy for off-surface points 

• Point-based models 

 Topology implicit 

 Hard to capture 

• How to describe more specific priors? 

 Our model is a stationary MRF (typical choice) 

 “Space of all people”, “Space of all houses”? 


