Statistical Geometry Processing

Winter Semester 2011/2012

A Very Short Primer on Signal Theory

Topics

Topics

- Fourier transform
- Theorems
- Analysis of regularly sampled signals
- Irregular sampling

Fourier Basis

Fourier Basis

- Function space: $\{f : \mathbb{R} \to \mathbb{R}, f \text{ sufficiently smooth}\}$
 - Fourier basis can represent
 - Functions of finite variation
 - Lipchitz-smooth functions
- Basis: sine waves of different *frequency* and *phase*:
 - Real basis:

 $\{\sin 2\pi\omega x, \cos 2\pi\omega x \mid \omega \in \mathbb{R}\}\$

Complex variant:

 $\{e^{-2\pi i\omega x} \mid \omega \in \mathbb{R}\}$ (Euler's formula: $e^{ix} = \cos x + i \sin x$)

Fourier Transform

Fourier Basis properties:

- Fourier basis: $\{e^{-i2\pi\omega x} \mid \omega \in \mathbb{R}\}$
 - Orthogonal basis
 - Projection via scalar products \Rightarrow Fourier transform
- Fourier transform: $(f: \mathbb{R} \to \mathbb{C}) \to (F: \mathbb{R} \to \mathbb{C})$ $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \omega} dx$
- Inverse Fourier transform: $(F: \mathbb{R} \to \mathbb{C}) \to (f: \mathbb{R} \to \mathbb{C})$ $f(\omega) = \int_{-\infty}^{\infty} F(x) e^{2\pi i x \omega} dx$

Fourier Transform

Interpreting the result:

- Transforming a real function $f: \mathbb{R} \to \mathbb{R}$
- Result: $F(\boldsymbol{\omega}): \mathbb{R} \to \mathbb{C}$
 - ω are frequencies (real)
 - Real input f: Symmetric $F(-\omega) = F(\omega)$
 - Output are complex numbers
 - Magnitude: "power spectrum" (frequency content)
 - Phase: phase spectrum (encodes shifts)

Important Functions

Higher Dimensional FT

Multi-dimensional Fourier Basis:

- Functions f: $\mathbb{R}^d \to \mathbb{C}$
- 2D Fourier basis:

 $\begin{aligned} & f(x, y) \text{ represented} \\ & \text{ as combination of} \\ & \{ e^{-i2\pi\omega_x x} \cdot e^{-i2\pi\omega_y y} \mid \omega_x, \omega_y \in \mathbb{R} \} \end{aligned}$

• In general: all combinations of 1D functions

Convolution

Convolution:

- Weighted average of functions
- Definition:

$$f(t) \otimes g(t) = \int_{-\infty}^{\infty} f(x)g(x-t)dx$$

Example:

Theorems

Fourier transform is an isometry:

- $\langle f, g \rangle = \langle F, G \rangle$
- In particular ||f|| = ||F||

Convolution theorem:

- $FT(f \otimes g) = F \cdot G$
- Fourier Transform converts convolution into multiplication
 - All other cases as well: $FT^{-1}(f \cdot g) = F \otimes G, FT(f \cdot g) = F \otimes G, FT^{-1}(F \cdot G) = F \otimes G$
 - Fourier basis diagonalizes shift-invariant linear operators

Sampling a Signal

Given:

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Store digitally:
 - Sample regularly ... f(0.3), f(0.4), f(0.5) ...
- Question: what information is lost?

Sampling

(b) a regular sampling pattern (impulse train) and its frequency spectrum $(s(t) \cdot u(t)) \otimes FT^{-1}(\mathbf{R})$

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

Regular Sampling

Results: Sampling

- Band-limited signals can be represented exactly
 - Sampling with frequency v_s : Highest frequency in Fourier spectrum $\leq v_s/2$
- Higher frequencies alias
 - Aliasing artifacts (low-frequency patterns)
 - Cannot be removed after sampling (loss of information)

Regular Sampling

Result: Reconstruction

- When reconstructing from discrete samples
- Use band-limited basis functions
 - Highest frequency in Fourier spectrum $\leq v_s/2$
 - Otherwise: Reconstruction aliasing

Regular Sampling

Reconstruction Filters

- Optimal filter: sinc (no frequencies discarded)
- However:
 - Ringing artifacts in spatial domain
 - Not useful for images (better for audio)
- Compromise
 - Gaussian filter (most frequently used)
 - There exist better ones, such as Mitchell-Netravalli, Lancos, etc...

2D sinc

2D Gaussian

Irregular Sampling

Irregular Sampling

- No comparable formal theory
- However: similar idea
 - Band-limited by "sampling frequency"
 - Sampling frequency = mean sample spacing
 - Not as clearly defined as in regular grids
 - May vary locally (adaptive sampling)
- Aliasing
 - Random sampling creates noise as aliasing artifacts
 - Evenly distributed sample concentrate noise in higher frequency bands in comparison to purely random sampling

Consequences for our applications

When designing bases for function spaces

- Use band-limited functions
- Typical scenario:
 - Regular grid with spacing σ
 - Grid points **g**_i

• Use functions:
$$\exp\left(-\frac{(\mathbf{x}-\mathbf{g}_i)^2}{\sigma^2}\right)$$

- Irregular sampling:
 - Same idea
 - Use estimated sample spacing instead of grid width
 - Set σ to average sample spacing to neighbors