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Bayesian Approach 

P(S |D) = 
P(D| S ) P(S ) 

P(D) 

prior assumptions measurement model 
(“likelihood”) 

optimize (best S) 

Candidate reconstruction S  – 

Measured data D  – 
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Calculus of Variation 

Basic Idea: 

• We look at a set of functions f: S  D 

• We define an “energy functional” E: (S  D)   

 A functional assigns real numbers to functions 

 Each function gets a “score” 

 “Energy” means: the smaller the better 

• We set up additional requirements (“constraints”) on f. 

 Soft constraints  violation increases energy. 

 Hard constraints  violation not allowed. 

• We then compute the function(s) f that minimize E. 
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Calculus of Variation 

Very general framework: 

• A lot of problems can be directly formulated as variational 
problems. 

• Example 1: 

 We are looking for a curve. 

 It should be as smooth as possible (energy = non-smoothness). 

 It should go through a number of points (hard constraints). 

E large 
E small 

constraints 
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Calculus of Variation 

Another example: 

• Problem: We want to go to the moon. 

• Given: 

 Orbits of moons, planets and star(s). 

 Flight conditions (athmosphere, gravitation of stellar bodies) 

• Unknowns: 

 Throttle (magnitude, direction) from rocket motors (vector 
function) 

• Energy function: 

 Usage of rocket fuel (the fewer the better) 

 Perhaps: Overall travel time (maybe not longer than a week) 
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Calculus of Variation 

To the moon: 

• Constraints: 

 We want to start in Cape Canaveral (upright trajectory) and end 
up on the moon. 

 We do not want to hit moons or planets on our way. 

 We want to approach the moon at no more than 20 km/h 
relative speed upon touchdown. 

 The rocket motor has a limited range of forces it can create (not 
more than a certain thrust, no backward thrust) 

So flying to the moon is just minimizing a functional. 
(ok, this is slightly simplified) 
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A Simple Example 

Simple example: variational splines 

• Energy: 

 We want smooth curves 

 Smooth translates to minimum curvature 

 Quadratic penalty: 

 


curve
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A Simple Example 

Simple example: variational splines 

• Energy: 

 Problem: curvature is non-linear 

 Easier to minimize: second derivatives 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 Parameter values t1,...,tn at which we  
should approximate points p1, ..., pn: 

 

 

 

  controls (lack of) smoothness. 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 Specify the accuracy by error quadrics Q1, ..., Qn: 
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Rank-Deficient Quadrics 

The rank deficient error quadric trick: 

• A rank-1 matrix constraints the curve in one direction only 

• E.g.: Point-to-surface constraints 

n 
 TnnQ i

ti 
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Numerical Treatment 

Numerical computation: 

• No closed form solution 

 Discretize (finite dimensional function space) 

 Solve for coefficients (coordinate vector in this function space) 
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Finite Differences 

FD solution: 

• Represent curve as array of k values: 

 

 

 

• Unknowns are the curve points y1, ..., yk 

t 0 0.1 0.2 ... 7.4 7.5 

y y0 y1 y2 ... Y74 y75 

y1 

y2 

yk 
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Discretized Energy Function 

Discretized Energy Function: 

• Energy is a squared linear expression 

 Quadratic discrete objective function 

• Constraints are quadratic by construction 

• Solution by linear system 

   

   
















 












n

i
itindexiitindex

k

i

iiidiscr

n

i
iiiii

t

tt

ii

n

h
fE

ttdtt
dt

d
fE

1
)(

T

)(

2

1
2

11)(

1

T

2

2

2

2
)(

)()()()(
1

pyQpy
yyy

pfQpff

(neglected here: handling boundary values) 



 16 

Summary 

Summary: 

• Variational approaches look like this: 

 

 

 

 

• Connection to statistics: 

 Bayesian maximum a posteriori estimation 

 E(data) is the data likelihood (log space) 

 E(regularizer) is a prior distribution (log space) 
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Variational Toolbox 
Data Fitting, Regularizer Functionals, 

Discretizations 
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Toolbox 

In the following: 

• We will discuss... 

 ...useful standard functionals. 

 ...how to model soft constraints. 

 ...how to model hard constraints. 

 ...how to discretize the model. 

• Then snap & click your favorite custom variational 
modeling scheme. 

• (Click & snap means: add together to a composite energy) 



Functionals 
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Functionals 

Standard Functional #1: Function norm 

• Given a function f: m     n 

• Minimize: 

 
 

• Function values should not become too large 

• Often useful to avoid numerical problems 

 Adding E(zero) to quadratic energy: 
smallest eigenvalue bounded by  ( condition number) 

 System always solvable 




 xxf dfE zero 2)( )()(
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Functionals 

Standard Functional #2: Harmonic energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Differences to neighboring points as small as possible 

• Appears all the time in physics & engineering 
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Harmonic Energy 

Example: Heat equation 

• Metal plate 

• Hard constraints: 

 Heat source 

 Heat sink 

• Final heat distribution? 

 Heat flow tends to equalize temperature. 

– Stronger heat flow for larger temperature gradients. 

 Gradients become as small as possible. 

heat sink heat source 
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Harmonic Energy 

Example: Harmonic energy 

• Curves that minimize the harmonic energy: 

 Shortest path, a.k.a. polygons 

 

 

• Two-dimensional parametric surface: 
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Surface Example 

Surface fitting with Laplacian Regularizer: 

initialization result 

Data attraction: point-to-plane, Gaussian window 
 Regularizer: minimize triangle edge length 
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Functionals 

Standard Functional #3: Thin plate spline energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize integral second derivatives 
(approx. curvature) 

• “Be smooth”: 

 Yields smooth curves & surfaces 

 A true curvature based energy is rarely used (non-quadratic) 
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Energies for Vector Fields 

Vector fields: 

• Now consider volume deformations: n  n 

• Think of an object moving (over time). 

 f(x) describes its deformation. 

 f(x,t) describes its motion over time. 

  n f()  n 

f: n  n 
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Functionals 

Standard Functional #4: Green’s deformation tensor 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize metric distortion 
 First fundamental form 

• Physically-based deformation modeling: 
 Invariant under rigid transformations. 

 Bending, scaling, shearing is penalized. 

 Energy is non-quadratic (4-th order). 

 99 Matrix M encodes material properties (often M = I). 
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Functionals 

Standard Functional #5: Volume preservation 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes 

• This energy tries to preserve the volume at any point. 

 Incompressible materials (for example fluids) 

 Invariant under rigid transformations 

 Non-quadratic (6th-order in 3D) 
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Functionals 

Standard Functional #6: Infinitesimal volume preservation 
• Velocity v: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes in a velocity 
field 

• Difference to the previous case: 
 The vectors are instantaneous motions (v(x) = d/dt f(x,t)) 

 A divergence free (time dependent) vector field will not 
introduce volume changes 

 Linear, but works only for small time steps 

 Large (rotational) displacements are not covered 
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Functionals 

Standard Functionals #7 & #8: Velocity & acceleration 
• Given a function v: (n  )      n 

• Minimize: 

 

 

• Objective: minimize velocity / acceleration 

• Models air resistance, inertia. 
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Soft Constraints 
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Soft Constraints 

Penalty functions 
• Uniform 
• General quadrics 
• Differential constraints 

Types of soft constraints 
• Point-wise constraints 
• Line / area constraints 

Constraint functions 
• Least-squares 
• M-estimators 
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Uniform Soft Constraints 

Uniform, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

General quadratic, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

Differential constraints: 
• Given a function f: n     n 

• Minimize: 
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This is still a quadratic constraints ( linear system). 
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Examples 

Examples of differential constraints: 

• Prescribe normal orientation of a surface 

 

 

• Prescribe rotation of a deformation field 

 

• Prescribe velocity or acceleration of a particle trajectory 
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Line / Area Soft Constraints 

Line and area constraints: 
• Given a function f: n     n 

• Minimize: 

 

 

 

 

 

• A.k.a: “transfinite constraints” 
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Constraint Functions 

Constraint Functions: 
• Typical: quadratic constraints E(x) = f (x)2 

 Easy to optimize (linear system) 

 Well-defined critical point (gradient vanishes) 

 However: sensitive to outliers 

• Alternatives for bad data: 
 L1-norm constraints (E(x) = |f (x)|) 

– more robust 

– still convex, i.e. can be optimized 

 Truncated constraints 

– even more robust 

– non-convex, difficult to optimize 



Discretization 
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Finite Element Discretization 

Finite-element discretization: 

• Finite dimensional  space spanned by basis functions 

• Finite differences (FD) 

 Special case 

 Grid of piecewise constant basis 

• General approach: 
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Finite Element Discretization 

Derive a discrete equation: 

• Just plug in the discrete f. 

• Then minimize the it over the . 

• Compute the critical point(s): 

 

 

 

• Quadratic functionals: linear system. 

• Non-linear, smooth functionals: 
Newton, Gauss-Newton, LBFGS, or the similar 
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Example 

(Abstract) example: 

• Minimize square integral of a differential operator 

• Quadratic differential constraints 

• Yields quadratic optimization problem in the coefficients 
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Example 

(Abstract) example (cont): 
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Numerical Aspects 
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How to solve the problems? 

Solving the discretized variational problem: 

• Quadratic energy and quadratic constraints: 

 The discretization is a quadratic function as well. 

 The gradient is a linear expression. 

 The matrix in this expression is symmetric. 

 If the problem is well-defined, the matrix is semi-positive 
definite. 

 It is usually very sparse (coefficients of basis functions only 
interact with their neighbors, as far as their support overlaps). 

 We can use iterative sparse system solvers: 

– Most frequently used: conjugate gradients (needs SPD 
matrix). CG is available in GeoX. 
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How to solve the problems? 

Solving the discretized variational problem: 

• Non linear energy functions: 
 If the function is convex, we can get to a critical point that is the global 

minimum. 

 In general, we can only find a local optimum (or critical point). 

– Need a good initialization 

 Newton optimization: 

– 2nd order Taylor expansions (Hessian matrix, gradient) 

– Iteratively solve linear problems. 

– Typically, Hessian matrices are sparse. Use conjugate gradients to 
solve for critical points. 

 Non-linear conjugate gradients: with line search (faster than simple 
gradient decent). 

 LBFGS: Black box-solver, only needs gradient. 



Hard Constraints 



 48 

Hard Constraints 

Hard Constraints: 

• Properties of the solution to be met exactly 

• Three options to implement hard constraints: 

 Strong soft constraints (easy, but not exact) 

 Variable elimination (exact, but limited) 

 Lagrange multipliers (most complex and general method) 
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Hard Soft Constraints 

Simplest Implementation: 

• Soft constraints with large weight 

 

• A few serious problems: 

 Technique is not exact 

– Might be not acceptable for some applications 

 The stronger the constraints, the larger the weight. This means:  

– The condition number of the quadric matrix (condition of 
the Hessian in the non-linear case) becomes worse. 

– At some point, no solution is possible anymore. 

– Iterative solvers are slowed down (e.g. conjugate gradients) 

)10 (say large very  with),( )()( 6)()(  fEfEfE sconstraintrregularize 
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Variable Elimination 

Idea: Variable elimination 

• We just replace variables by fixed numbers. 

• Then solve the remaining system. 

Example: 

4.0 

2.5 

4.5 

y1 
y2 

y3 
y4 y5 y6 

y7 
y8 

y9 

f ’(x0) = h-1(y1 – 4.0) 

f ’(x3) = h-1(y4 – y3) 
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Variable Elimination 

Advantages: 
• Exact constraints 

• Conceptually simple 

Problems: 
• Only works for simple constraints (variable = value) 

• Need to augment system  
 Not easy to implement generically 

• Does not work for FE methods (general basis functions) 
 Values are sum of scaled basis functions 
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Lagrange Multipliers 

Most general technique: Lagrange multipliers 

• Works for complex, composite constraints 

• General basis functions 

• Exact solutions (no approximation) 
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Lagrange Multipliers 

Here is the idea: 

• Assume we want to optimize E(x1, ..., xn) subject to an 
implicitly formulated constraint g(x1, ..., xn) = 0. 

• This looks like this: 

E g 0)(,  xggE 
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Lagrange Multipliers 

Formally: 

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0. 

• Formally, we want: 

 

• We get a local optimum for: 

 

 

 

• A critical point of this equation 
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Example 

Example: Optimizing a quadric subject to a linear  
 equality constraint 

• We want to optimize: 

• Subject to: 

We obtain: 

•   

 

 
 

• Linear system: 
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Multiple Constraints 

Multiple Constraints: 

• Similar idea 

• Introduce multiple “Lagrange multipliers” . 
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Lagrangian objective function: 
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Multiple Constraints 

Example: Linear subspace constraints 

•                                 subject to 

•   

 

• Linear system: 
 

• Remark: M must have full rank for this to work. 
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What can we do with this? 

Multiple linear equality constraints: 

• Constraint multiple function values, differential 
properties, integral values 

• Area constraints: Sample at each basis function of the 
discretization and prescribe a value 

• Need to take care: 

 We need to make sure that the constraints are linearly 
independent at any time 

Inequality constraints: 

• There are efficient quadratic programming algorithms. 
(Idea: turn on and off the constraints intelligently.) 



Manifold Constraints 
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Optimization on Unit Sphere 

Solution: Local Parameterization 

• Current normal estimate 

• Tangent parameterization 

• New variables u, v 

• Renormalize 

• Non-linear optimization 

• No degeneracies 

tangentu 

tangentv 

n0 

n(u,v) 

v

u
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[Hoffer et al. 04] 
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Optimization on SO(3) 

Orthonormal matrices 

• Local, 1st order, non-degenerate parametrization: 

 

 

 

• Optimize parameters, , , then recompute A0 

• Compute initial estimate using [Horn 87 ] 
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The Euler Lagrange Equation 
(some more math) 
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The Euler-Lagrange Equation 

Theoretical Result: 

• An integral energy minimization problem can be reduced 
to a differential equation. 

• We look at energy functions of a specific form: 

 

 

 

 f is the unknown function 

 F is the energy at each point x to be integrated 

 F depends (at most) on the position x, the function value f (x) and 
the first derivative f'(x). 
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The Euler-Lagrange Equation 

Now we look for a minimum: 

• Necessary condition: 

•                          (critical point) 
 

• In order to compute this: 

 Approximate f by a polygon (finite difference approximation) 

 f = ((x1, y1), ..., (xn, yn)) 

 Equally spaced: xi – xi-1 = h 
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(Can be formalized more precisely 
using functional derivatives) 
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The Euler-Lagrange Equation 

Minimum condition: 
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The Euler-Lagrange Equation 

Minimum condition: 
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Letting h  0, we obtain the continuous Euler-Lagrange 
differential equation: 
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The Euler-Lagrange Equation 

0))('),(,())('),(,( 32  xfxfxF
dx

d
xfxfxF

f '(x) 

f 

(at every point x) 

f (x) 

x 



 68 

Example 

Example: Harmonic Energy 
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Generalizations 

Multi-dimensional version: 

 df :
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This is a partial differential equation (PDE). 
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Example 

Example: General Harmonic energy 
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Summary 

Euler Lagrange Equation: 
• Converts integral minimization problem into ODE or PDE. 

• Gives a necessary, but not sufficient condition for 
extremum (critical “point”, read: function f ) 

• Application: 
 From a numerical point of view, this does not buy us much. 

– We can usually directly optimize the integral expression. 

– Similarly complex to compute (boundary value problem for a 
PDE vs. variational problem). 

 Analytical tool 

– Helps understanding the minimizer functions. 



Animation Reconstruction 
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Variational Animation Modeling 

f (x, t) – deformation field 

t = 0 t = 1 t = 2 

x – point on urshape S 

S 

f 
f 
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Variational Framework 
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