Statistical Geometry Processing

Winter Semester 2011/2012

Variational Modeling

Variational Modeling Basic Techniques

Bayesian Approach

Candidate reconstruction S – 🌵

Measured data D –

Basic Idea:

- We look at a set of functions $f: S \rightarrow D$
- We define an "*energy functional*" $E: (S \rightarrow D) \rightarrow \mathbb{R}$
 - A *functional* assigns real numbers to functions
 - Each function gets a "score"
 - "Energy" means: the smaller the better
- We set up additional requirements ("constraints") on *f*.
 - Soft constraints \rightarrow violation increases energy.
 - *Hard constraints* \rightarrow violation not allowed.
- We then compute the function(s) *f* that minimize *E*.

Very general framework:

- A lot of problems can be directly formulated as variational problems.
- Example 1:
 - We are looking for a curve.
 - It should be as smooth as possible (energy = non-smoothness).
 - It should go through a number of points (hard constraints).

Another example:

- Problem: We want to go to the moon.
- Given:
 - Orbits of moons, planets and star(s).
 - Flight conditions (athmosphere, gravitation of stellar bodies)

• Unknowns:

Throttle (magnitude, direction) from rocket motors (vector function)

• Energy function:

- Usage of rocket fuel (the fewer the better)
- Perhaps: Overall travel time (maybe not longer than a week)

To the moon:

• Constraints:

- We want to start in Cape Canaveral (upright trajectory) and end up on the moon.
- We do not want to hit moons or planets on our way.
- We want to approach the moon at no more than 20 km/h relative speed upon touchdown.
- The rocket motor has a limited range of forces it can create (not more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional. (ok, this is slightly simplified)

Simple example: variational splines

- Energy:
 - We want smooth curves
 - Smooth translates to minimum curvature
 - Quadratic penalty:

$$E(f) = \int_{\text{curve}} |\operatorname{curve}_f(t)|^2 dt$$

Simple example: variational splines

- Energy:
 - Problem: curvature is non-linear
 - Easier to minimize: second derivatives

$$E(f) = \int_{\text{curve}} \left[\frac{d^2}{dt^2} \mathbf{f}(t) \right]^2 dt$$

Simple example: variational splines

- Soft constraints
 - Parameter values t₁,...,t_n at which we should approximate points p₁, ..., p_n:

$$E(f) = \int_{t=t_1}^{t_n} \left[\frac{d^2}{dt^2} \mathbf{f}(t) \right]^2 dt + \lambda \sum_{i=1}^n (\mathbf{f}(t_i) - \mathbf{p}_i)^2$$

• λ controls (lack of) smoothness.

Simple example: variational splines

- Soft constraints
 - Specify the accuracy by error quadrics Q₁, ..., Q_n:

$$E(f) = \int_{t=t_1}^{t_n} \left[\frac{d^2}{dt^2} \mathbf{f}(t) \right]^2 dt + \sum_{i=1}^n \left(\mathbf{f}(t_i) - \mathbf{p}_i \right)^{\mathrm{T}} \mathbf{Q}_i \left(\mathbf{f}(t_i) - \mathbf{p}_i \right)$$

Rank-Deficient Quadrics

The rank deficient error quadric trick:

- A rank-1 matrix constraints the curve in one direction only
- E.g.: Point-to-surface constraints

Numerical Treatment

Numerical computation:

- No closed form solution
 - Discretize (finite dimensional function space)
 - Solve for coefficients (coordinate vector in this function space)

Finite Differences

FD solution:

• Represent curve as array of k values:

t	0	0.1	0.2	 7.4	7.5
у	\mathbf{y}_0	\mathbf{y}_1	y ₂	 Y ₇₄	y ₇₅

• Unknowns are the curve points $y_1, ..., y_k$

Discretized Energy Function

Discretized Energy Function:

- Energy is a squared linear expression
 - Quadratic discrete objective function
- Constraints are quadratic by construction
- Solution by linear system

$$E(f) = \int_{t=t_1}^{t_n} \left[\frac{d^2}{dt^2} \mathbf{f}(t) \right]^2 dt + \sum_{i=1}^n (\mathbf{f}(t_i) - \mathbf{p}_i)^{\mathrm{T}} \mathbf{Q}_i (\mathbf{f}(t_i) - \mathbf{p}_i)$$
$$E^{(discr)}(f) = \sum_{i=1}^k \left[\frac{\mathbf{y}_{i-1} - 2\mathbf{y}_i + \mathbf{y}_{i+1}}{h^2} \right]^2 + \sum_{i=1}^n (\mathbf{y}_{index(t_i)} - \mathbf{p}_i)^{\mathrm{T}} \mathbf{Q}_i (\mathbf{y}_{index(t_i)} - \mathbf{p}_i)$$

(neglected here: handling boundary values)

Summary

Summary:

• Variational approaches look like this:

```
compute \underset{f \in F}{\operatorname{argmin}} E(f),
E(f) = E^{(data)}(f) + E^{(regularizer)}(f),
```

 $f \in F = \{f \mid f \text{ satifies hard constraints}\}$

- Connection to statistics:
 - Bayesian maximum a posteriori estimation
 - E^(data) is the data likelihood (log space)
 - *E*^(regularizer) is a prior distribution (log space)

Variational Toolbox Data Fitting, Regularizer Functionals, Discretizations

Toolbox

In the following:

- We will discuss...
 - ...useful standard functionals.
 - ...how to model soft constraints.
 - ...how to model hard constraints.
 - ...how to discretize the model.
- Then snap & click your favorite custom variational modeling scheme.
- (Click & snap means: add together to a composite energy)

Standard Functional #1: Function norm

- Given a function **f**: $\mathbb{R}^m \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

 $E^{(zero)}(f) = \int_{\Omega} \mathbf{f}(\mathbf{x})^2 d\mathbf{x}$

- Function values should not become too large
- Often useful to avoid numerical problems
 - Adding $\lambda E^{(zero)}$ to quadratic energy: smallest eigenvalue bounded by λ (\rightarrow condition number)
 - System always solvable

Standard Functional #2: Harmonic energy

- Given a function **f**: $\mathbb{R}^m \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(harmonic)}(f) = \int_{\Omega} (\nabla \mathbf{f}(\mathbf{x}))^2 d\mathbf{x}$$

- Differences to neighboring points as small as possible
- Appears all the time in physics & engineering

Harmonic Energy

Example: Heat equation

- Metal plate
- Hard constraints:
 - Heat source
 - Heat sink
- Final heat distribution?
 - Heat flow tends to equalize temperature.
 - Stronger heat flow for larger temperature gradients.
 - Gradients become as small as possible.

heat sink heat source

Harmonic Energy

Example: Harmonic energy

- Curves that minimize the harmonic energy:
 - Shortest path, a.k.a. polygons

• Two-dimensional parametric surface:

Surface Example

Surface fitting with Laplacian Regularizer:

initialization

result

Data attraction: point-to-plane, Gaussian window **Regularizer:** minimize triangle edge length

Standard Functional #3: Thin plate spline energy

- Given a function **f**: $\mathbb{R}^m \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(TSS)}(\mathbf{f}) = \int_{\Omega} \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\left\| \frac{\partial^2}{\partial x_i \partial x_j} \mathbf{f}(\mathbf{x}) \right\|^2 \right) d\mathbf{x}$$

- Objective: minimize integral second derivatives (approx. curvature)
- "Be smooth":
 - Yields smooth curves & surfaces
 - A true curvature based energy is rarely used (non-quadratic)

Energies for Vector Fields

Vector fields:

- Now consider volume deformations: $\mathbb{R}^n \to \mathbb{R}^n$
- Think of an object moving (over time).
 - f(x) describes its deformation.
 - **f**(**x**,*t*) describes its motion over time.

Standard Functional #4: Green's deformation tensor

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(deform)}(\mathbf{f}) = \iint_{\Omega} \left\| \mathbf{M} \left[\nabla \mathbf{f}^{\mathrm{T}} \nabla \mathbf{f} - \mathbf{I} \right] \right\|_{F}^{2} d\mathbf{x}$$

- Objective: minimize metric distortion
 - First fundamental form
- Physically-based deformation modeling:
 - Invariant under rigid transformations.
 - Bending, scaling, shearing is penalized.
 - Energy is non-quadratic (4-th order).
 - 9×9 Matrix M encodes material properties (often M = I).

Standard Functional #5: Volume preservation

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(volume)}(\mathbf{f}) = \int_{\Omega} \left[\det(\nabla \mathbf{f}) - 1 \right]^2 d\mathbf{x}$$

- Objective: minimize local volume changes
- This energy tries to preserve the volume at any point.
 - Incompressible materials (for example fluids)
 - Invariant under rigid transformations
 - Non-quadratic (6th-order in 3D)

Standard Functional #6: Infinitesimal volume preservation

- Velocity $\mathbf{v}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(volume)}(\mathbf{v}) = \int_{\Omega} (\operatorname{div} \mathbf{v}(\mathbf{x}))^2 d\mathbf{x} = \int_{\Omega} \left(\frac{\partial}{\partial x_1} \mathbf{v}(\mathbf{x}) + \dots + \frac{\partial}{\partial x_n} \mathbf{v}(\mathbf{x}) \right)^2 d\mathbf{x}$$

- Objective: minimize local volume changes in a velocity field
- Difference to the previous case:
 - The vectors are instantaneous motions (v(x) = d/dt f(x,t))
 - A divergence free (time dependent) vector field will not introduce volume changes
 - Linear, but works only for small time steps
 - Large (rotational) displacements are not covered

`

Standard Functionals #7 & #8: Velocity & acceleration

- Given a function **v**: $(\mathbb{R}^n \times \mathbb{R}) \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

$$E^{(velocity)}(\mathbf{f}) = \iint_{\Omega} \left(\frac{d}{dt} \mathbf{f}(\mathbf{x}, t) \right)^2 d\mathbf{x} dt, \quad E^{(acc)}(\mathbf{f}) = \iint_{\Omega} \left(\frac{d^2}{dt^2} \mathbf{f}(\mathbf{x}, t) \right)^2 d\mathbf{x} dt$$

- Objective: minimize velocity / acceleration
- Models air resistance, inertia.

Soft Constraints

Soft Constraints

Penalty functions

- Uniform
- General quadrics
- Differential constraints

Types of soft constraints

- Point-wise constraints
- Line / area constraints

Constraint functions

- Least-squares
- M-estimators

Uniform Soft Constraints

Uniform, point-wise soft constraints:

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

 $E^{(constr)}(\mathbf{f}) = \sum_{i=1}^{n} q_i (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$

constraint weights (certainty)

prescribed values (x,y),

Uniform Soft Constraints

General quadratic, point-wise soft constraints:

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

 $E^{(constr)}(\mathbf{f}) = \sum_{i=1}^{n} (\mathbf{f}(\mathbf{x}_{i}) - \mathbf{y}_{i})^{\mathrm{T}} \mathbf{Q}_{i} (\mathbf{f}(\mathbf{x}_{i}) - \mathbf{y}_{i})$

constraint weights (general quadratic form, non-negative)

prescribed values (**x**,**y**)_i

Uniform Soft Constraints

Differential constraints:

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

 $E^{(constr)}(\mathbf{f}) = \sum_{i=1}^{n} \left(D\mathbf{f}(\mathbf{x}_{i}) - (D\mathbf{y})_{i} \right)^{\mathrm{T}} \mathbf{Q}_{i} \left(D\mathbf{f}(\mathbf{x}_{i}) - (D\mathbf{y})_{i} \right)$

constraint weights (general quadratic form, non-negative)

prescribed values (**x**,D**y**)_i

Differential operator: D =

$$= \begin{pmatrix} \frac{\partial}{\partial x_{i_{1,1}} \dots \partial x_{i_{k_{1},1}}} \\ \vdots \\ \frac{\partial}{\partial x_{i_{1,m}} \dots \partial x_{i_{k_{m},m}}} \end{pmatrix}$$

This is still a quadratic constraints (\rightarrow linear system).

Examples

Examples of differential constraints:

• Prescribe normal orientation of a surface

 $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3, \ E^{(constr)}(\mathbf{f}) = q \begin{pmatrix} -\partial_u \\ -\partial_v \\ 1 \end{pmatrix}^2$

• Prescribe rotation of a deformation field

 $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$, $E^{(constr)}(\mathbf{f}) = q \| \nabla \mathbf{f} - \mathbf{R} \|_F^2$

• Prescribe velocity or acceleration of a particle trajectory $\mathbf{f}: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3, \mathbf{f}(\mathbf{x},t) = \mathbf{pos}, \ E^{(constr)}(\mathbf{f}) = q(x,t) (\ddot{\mathbf{f}}(\mathbf{x},t) - \mathbf{a}(\mathbf{x},t))^2$
Line / Area Soft Constraints

Line and area constraints:

- Given a function $\mathbf{f}: \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$
- Minimize:

 $E^{(constr)}(\mathbf{f}) = \int_{A \subseteq \Omega} (\mathbf{f}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^{\mathrm{T}} \mathbf{Q}(\mathbf{x}) (\mathbf{f}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))$

quadric error weights (may be position dependent)

prescribed values **y**(**x**) (function of position **x**)

area $A \subseteq \Omega$ on which the constraint is placed (line, area, volume...)

• A.k.a: "transfinite constraints"

Constraint Functions

Constraint Functions:

- Typical: quadratic constraints $E(x) = f(x)^2$
 - Easy to optimize (linear system)
 - Well-defined critical point (gradient vanishes)
 - However: sensitive to outliers
- Alternatives for bad data:
 - L_1 -norm constraints (E(x) = |f(x)|)
 - more robust
 - still convex, i.e. can be optimized
 - Truncated constraints
 - even more robust
 - non-convex, difficult to optimize

Discretization

Finite Element Discretization

Finite-element discretization:

- Finite dimensional space spanned by basis functions
- Finite differences (FD)
 - Special case
 - Grid of piecewise constant basis
- General approach:

 $\operatorname{argmin}_{f} E(f) \to \operatorname{argmin}_{\lambda} E(\widetilde{f}_{\lambda})$ $\widetilde{f}_{\lambda}(x) = \sum_{i=1}^{k} \lambda_{i} b_{i}(x)$

Finite Element Discretization

Derive a discrete equation:

- Just plug in the discrete \tilde{f} .
- Then minimize the it over the λ .
- Compute the critical point(s):

 $E(\widetilde{f}_{\lambda}(x)) \rightarrow \min$ $\Rightarrow \forall i = 1...k : \frac{\partial}{\partial \lambda_{i}} E(\widetilde{f}_{\lambda}(x)) = 0$

- Quadratic functionals: linear system.
- Non-linear, smooth functionals: Newton, Gauss-Newton, LBFGS, or the similar

Example

(Abstract) example:

- Minimize square integral of a differential operator
- Quadratic differential constraints
- Yields quadratic optimization problem in the coefficients

Example

(Abstract) example (cont):

$$E(f) = \int_{\Omega} (D^{(1)} f(x))^{2} dx + \mu \sum_{i=1}^{n} (D^{(2)} f(x_{i}) - y_{i})^{2}$$

$$\widetilde{f}_{\lambda}(x) = \sum_{i=1}^{k} \lambda_{i} b_{i}(x)$$

$$E(\widetilde{f}_{\lambda}) = \int_{\Omega} \left(D^{(1)} \sum_{i=1}^{k} \lambda_{i} b_{i}(x) \right)^{2} dx + \mu \sum_{i=1}^{n} \left(D^{(2)} \sum_{i=1}^{k} \lambda_{i} b_{i}(x) - y_{i} \right)^{2}$$

$$= \int_{\Omega} \left(\sum_{i=1}^{k} \lambda_{i} \left[D^{(1)} b_{i} \right] x \right)^{2} dx + \mu \sum_{i=1}^{n} \left(\sum_{i=1}^{k} \lambda_{i} D^{(2)} b_{i}(x) - y_{i} \right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j} \int_{\Omega} \left[D^{(1)} b_{i} \right] x \left[D^{(1)} b_{j} \right] x dx + \mu \sum_{i=1}^{n} \left(\sum_{i=1}^{k} \lambda_{i} D^{(2)} b_{i}(x) - y_{i} \right)^{2}$$

Numerical Aspects

How to solve the problems?

Solving the discretized variational problem:

- Quadratic energy and quadratic constraints:
 - The discretization is a quadratic function as well.
 - The gradient is a linear expression.
 - The matrix in this expression is symmetric.
 - If the problem is well-defined, the matrix is semi-positive definite.
 - It is usually very sparse (coefficients of basis functions only interact with their neighbors, as far as their support overlaps).
 - We can use iterative sparse system solvers:
 - Most frequently used: conjugate gradients (needs SPD matrix). CG is available in GeoX.

How to solve the problems?

Solving the discretized variational problem:

- Non linear energy functions:
 - If the function is convex, we can get to a critical point that is the global minimum.
 - In general, we can only find a local optimum (or critical point).
 - Need a *good initialization*
 - Newton optimization:
 - 2nd order Taylor expansions (Hessian matrix, gradient)
 - Iteratively solve linear problems.
 - Typically, Hessian matrices are sparse. Use conjugate gradients to solve for critical points.
 - Non-linear conjugate gradients: with line search (faster than simple gradient decent).
 - LBFGS: Black box-solver, only needs gradient.

Hard Constraints

Hard Constraints

Hard Constraints:

- Properties of the solution to be met *exactly*
- Three options to implement hard constraints:
 - Strong soft constraints (easy, but not exact)
 - Variable elimination (exact, but limited)
 - Lagrange multipliers (most complex and general method)

Hard Soft Constraints

Simplest Implementation:

• Soft constraints with large weight

 $E(f) = E^{(regularizer)}(f) + \lambda E^{(constraints)}(f)$, with λ very large (say 10⁶)

- A few serious problems:
 - Technique is not exact
 - Might be not acceptable for some applications
 - The stronger the constraints, the larger the weight. This means:
 - The condition number of the quadric matrix (condition of the Hessian in the non-linear case) becomes worse.
 - At some point, no solution is possible anymore.
 - Iterative solvers are slowed down (e.g. conjugate gradients)

Variable Elimination

Idea: Variable elimination

- We just replace variables by fixed numbers.
- Then solve the remaining system.

Example:

Variable Elimination

Advantages:

- Exact constraints
- Conceptually simple

Problems:

- Only works for simple constraints (variable = value)
- Need to augment system
 - Not easy to implement generically
- Does not work for FE methods (general basis functions)
 - Values are *sum* of scaled basis functions

Lagrange Multipliers

Most general technique: Lagrange multipliers

- Works for complex, composite constraints
- General basis functions
- Exact solutions (no approximation)

Lagrange Multipliers

Here is the idea:

- Assume we want to optimize *E*(*x*₁, ..., *x_n*) subject to an implicitly formulated constraint *g*(*x*₁, ..., *x_n*) = 0.
- This looks like this:

Lagrange Multipliers

Formally:

- Optimize $E(x_1, ..., x_n)$ subject to $g(x_1, ..., x_n) = 0$.
- Formally, we want: $\nabla E(\mathbf{x}) = \lambda \nabla g(\mathbf{x}) \text{ and } g(\mathbf{x}) = 0$
- We get a local optimum for: $LG(\mathbf{x}) = E(\mathbf{x}) + \lambda g(\mathbf{x})$ $\nabla_{\mathbf{x},\lambda} LG(\mathbf{x}) = 0$ i.e.: $(\partial_{x_1}, ..., \partial_{x_n}, \partial_{\lambda}) LG(\mathbf{x}) = 0$
- A critical point of this equation satisfies both ∇E(x) = λ∇g(x) and g(x) = 0.

 $\nabla E = \lambda \nabla g$

Example

Example: Optimizing a quadric subject to a linear equality constraint

- We want to optimize: $E(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x}$
- Subject to: $g(\mathbf{x}) = \mathbf{m}\mathbf{x} + n = 0$

We obtain:

- $LG(\mathbf{x}) = E(\mathbf{x}) + \lambda \mathbf{g}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + \lambda (\mathbf{m} \mathbf{x} + n)$ $\nabla_{\mathbf{x}} (LG(\mathbf{x})) = 2\mathbf{A} \mathbf{x} + \mathbf{b} + \lambda \mathbf{m}$ $\nabla_{\lambda} (LG(\mathbf{x})) = \mathbf{m} \mathbf{x} + n$
- Linear system: $\begin{pmatrix} 2\mathbf{A} & \mathbf{m} \\ \mathbf{m}^{\mathrm{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} -b \\ -n \end{pmatrix}$

Multiple Constraints

Multiple Constraints:

- Similar idea
- Introduce multiple "Lagrange multipliers" λ . $E(x) \rightarrow \min$ subject to: $\forall i = 1...k : g_i(x) = 0$

Lagrangian objective function: $LG(\mathbf{x}) = E(\mathbf{x}) + \sum_{i=1}^{k} \lambda_i g_i(\mathbf{x})$ $\nabla_{\mathbf{x},\lambda} LG(\mathbf{x}) = 0$ i.e.: $(\partial_{x_1}, ..., \partial_{x_n}, \partial_{\lambda_1}, ..., \partial_{\lambda_k}) LG(\mathbf{x}) = 0$

Multiple Constraints

Example: Linear subspace constraints

• $E(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x}$ subject to $g(\mathbf{x}) = \mathbf{M} \mathbf{x} + \mathbf{n} = \mathbf{0}$

•
$$LG(\mathbf{x}) = E(\mathbf{x}) + \sum_{i=1}^{n} \lambda_i \mathbf{g}_i(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + \sum_{i=1}^{n} \lambda_i (\mathbf{m}_i \mathbf{x} + n_i)$$

- Linear system: $\begin{pmatrix} 2A & M^T \\ M & 0 \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} -b \\ -n \end{pmatrix}$
- Remark: M must have full rank for this to work.

What can we do with this?

Multiple linear equality constraints:

- Constraint multiple function values, differential properties, integral values
- Area constraints: Sample at each basis function of the discretization and prescribe a value
- Need to take care:
 - We need to make sure that the constraints are linearly independent at any time

Inequality constraints:

• There are efficient quadratic programming algorithms. (Idea: turn on and off the constraints intelligently.)

Manifold Constraints

Optimization on Unit Sphere

Solution: Local Parameterization

- Current normal estimate
- Tangent parameterization
- New variables *u*, *v*
- Renormalize
- Non-linear optimization
- No degeneracies

[Hoffer et al. 04]

Optimization on SO(3)

Orthonormal matrices

• Local, 1st order, non-degenerate parametrization:

$$\mathbf{C}_{\mathbf{x}_{i}^{(t)}} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} \qquad \mathbf{A}_{i} = \mathbf{A}_{0} \exp(\mathbf{C}_{\mathbf{x}_{i}}) \\ \doteq \mathbf{A}_{0} (I + \mathbf{C}_{\mathbf{x}_{i}}^{(t)})$$

- Optimize parameters α , β , γ , then recompute A_0
- Compute initial estimate using [*Horn 87*]

The Euler Lagrange Equation (some more math)

Theoretical Result:

- An integral energy minimization problem can be reduced to a differential equation.
- We look at energy functions of a specific form:

$$f:[a,b] \to \mathbb{R}$$
$$E(f) = \int_{a}^{b} F(x,f(x),f'(x))dx$$

- *f* is the unknown function
- *F* is the energy at each point *x* to be integrated
- F depends (at most) on the position x, the function value f(x) and the first derivative f'(x).

Now we look for a minimum:

- Necessary condition:
- $\frac{d}{df} E(f) = 0$ (critical point)
- In order to compute this:
 - Approximate f by a polygon (finite difference approximation)
 - $f \stackrel{\wedge}{=} ((x_1, y_1), ..., (x_n, y_n))$
 - Equally spaced: $x_i x_{i-1} = h$

(Can be formalized more precisely using *functional derivatives*)

Minimum condition:

Minimum condition:

$$\nabla_{\mathbf{y}}\widetilde{E} = \sum_{i=2}^{n} \left[\partial_{2}F\left(x_{i}, y_{i}, \frac{y_{i} - y_{i-1}}{h}\right) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \partial_{3}\frac{1}{h}F\left(x_{i}, y_{i}, \frac{y_{i} - y_{i-1}}{h}\right) \begin{pmatrix} 0 \\ \vdots \\ -1 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \right]$$

*i*th entry:

$$\partial_{y_i} \widetilde{E} = \partial_2 F\left(x_i, y_i, \frac{y_i - y_{i-1}}{h}\right) - \frac{1}{h} \left(\partial_3 F\left(x_i, y_i, \frac{y_{i+1} - y_i}{h}\right) - \partial_3 F\left(x_i, y_i, \frac{y_i - y_{i-1}}{h}\right)\right)$$

Letting $h \rightarrow 0$, we obtain the continuous Euler-Lagrange differential equation:

$$\partial_2 F(x,f(x),f'(x)) - \frac{d}{dx} \partial_3 F(x,f(x),f'(x)) = 0$$

Example

Example: Harmonic Energy

$$E(f) = \int_{a}^{b} \left(\frac{d}{dx}f(x)\right)^{2} dx$$

$$F(x,f(x),f'(x)) = f'(x)^2$$

$$\partial_2 F(x, f(x), f'(x)) - \frac{d}{dx} \partial_3 F(x, f(x), f'(x)) = 0$$

$$\Leftrightarrow 0 - \frac{d}{dx} \partial_{f'(x)} (f'(x))^2 = 0$$

$$\Leftrightarrow 0 - \frac{d}{dx} 2 \frac{d}{dx} f(x) = 0$$

$$\Leftrightarrow \frac{d^2}{dx^2} f(x) = 0$$

Generalizations

Multi-dimensional version:

$$f: \mathbb{R}^{d} \supseteq \Omega \to \mathbb{R}$$
$$E(f) = \int_{\Omega} F(x_{1}, \dots, x_{d}, f(x), \partial_{x_{1}} f(\mathbf{x}), \dots, \partial_{x_{d}} f(\mathbf{x})) dx_{1} \dots dx_{d}$$

Necessary condition for extremum:

$$\frac{\partial E}{\partial f(\mathbf{x})} - \sum_{i=1}^{d} \frac{d}{dx_{i}} \frac{\partial E}{\partial f_{x_{i}}} = 0$$

$$f_{x_{i}} \coloneqq \frac{\partial}{\partial x_{i}} f(\mathbf{x})$$

This is a *partial differential equation (PDE)*.

Example

Example: General Harmonic energy

 $E^{(harmonic)}(f) = \int_{\Omega} (\nabla \mathbf{f}(\mathbf{x}))^2 d\mathbf{x}$

Euler Lagrange equation:

$$\Delta \mathbf{f}(\mathbf{x}) = \left(\frac{\partial^2}{\partial x_1^2} f(\mathbf{x}) + \dots + \frac{\partial^2}{\partial x_d^2} f(\mathbf{x})\right) = 0$$

Summary

Euler Lagrange Equation:

- Converts integral minimization problem into ODE or PDE.
- Gives a necessary, but not sufficient condition for extremum (critical "point", read: function f)
- Application:
 - From a numerical point of view, this does not buy us much.
 - We can usually directly optimize the integral expression.
 - Similarly complex to compute (boundary value problem for a PDE vs. variational problem).
 - Analytical tool
 - Helps understanding the minimizer functions.

Animation Reconstruction
Variational Animation Modeling

Variational Framework

$$E(\mathbf{f}) = \underbrace{E_{match}(\mathbf{f})}_{\text{constraints}} + \underbrace{\left(E_{rigid} + E_{volume} + E_{accel} + E_{velocity}\right)}_{\text{deformation}} \mathbf{(f)}$$

$$E_{match}(\mathbf{f}) = \sum_{t=1}^{T} \sum_{i=1}^{n_t} dist(d_i, f(S))^2$$

$$E_{rigid}(\mathbf{f}) = \int_{V(S)} \omega_{rigid}(x) \left\| \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x},t)^T \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x},t) - \mathbf{I} \right\|_F^2 dx$$

$$E_{volume}(\mathbf{f}) = \int_{V(S)} \omega_{vol}(x) \left(|\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}, t)| - 1 \right)^2 dx$$

$$E_{accel}(\mathbf{f}) = \int_{S} \omega_{acc}(x) \left(\frac{\partial^2}{\partial t^2} \mathbf{f}(\mathbf{x}, t)\right)^2 dx$$

$$E_{velocity}(\mathbf{f}) = \int_{S} \omega_{velocity}(x) \left(\frac{\partial}{\partial t} \mathbf{f}(\mathbf{x}, t)\right)^2 dx$$

[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008]

Meshless Modeling of Deformable Shapes and their Motion

Bart Adams^{1,2} Maks Ovsjanikov¹ Michael Wand³ Hans-Peter Seidel⁴ Leonidas J. Guibas¹

¹Stanford University ²Katholieke Universiteit Leuven ³Max Planck Center for Visual Computing and Communication ⁴Max Planck Institut Informatik

Data Set: "Popcorn Tin"

94 frames data: 53K points/frame rec: 25K points/frame

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008](data set courtesy of P. Phong, Stanford. U.)