
(Deformable) Shape Matching

Statistical Geometry Processing
Winter Semester 2011/2012

Rigid Shape Matching

 3

Iterated Closest Points (ICP)

The main idea:

• Pairwise matching technique

 Registers two scans

 Multi-part matching is a different story (more on this later)

• We want to minimize the distance between the two parts

 We set up a variational problem

 Minimize distance “energy” by rigid motion of one part

Part A
(stays fixed)

Part B
(moves, rotation & translation)

 4

Iterated Closest Points (ICP)

Problem:

• How to compute the distance

• This is simple if we know the corresponding points.

 Of course, we have in general no idea of what corresponds...

• ICP-idea: set closest point as corresponding point

• Full algorithm:

 Compute closest point points

 Minimize distance to these closest points by a rigid motion

 Recompute new closest points and iterate

 5

Closest Points

Distances:

Closest points distances:

Part A
(stays fixed)

Part B
(moves, rotation & translation)

Part A
(stays fixed)

Part B
(moves, rotation & translation)

 6

Iteration

Part A

Part B

Part A

Part B

Part A

Part B

final result

 7

Variational Formulation

Variational Formulation:

n

i

B
inearest

A
i

SOBSO

dAdist
1

2)(
)(

)(

),3(

2

),3(
33

minarg),(minarg ptRpxtRx

t

R

t

R

Variables: Orthogonal matrix R, translation vector t

 8

Numerical Solution

Question: How to minimize this energy?

• The energy is quadratic

• There is only one problem...

 Constraint optimization

 We have to use an
orthogonal matrix...

• This problem can (still) be solved exactly.

 9

Solution

First step: computing the translation

• Easy to see: average translation is optimal
(c.f. total least squares)

•

• This is independent of the rotation

Second step: compute the rotation

• (2a) Compute optimal linear map

• (2b) Orthogonalize

n

i

B
inearest

A
i

n 1

)(
)(

)(1
ppt

 10

Optimal Linear Map

First:

• Subtract translation from points pi
(A) = pi

(A) – t

• Then: Solve an unconstrained least-squares problem

• Finally: compute the orthogonal matrix R that is
closest to M.

)(
)(

)(~:..1 B
inearest

A
ini ppM

~

)(
)(

)(

3,33,23,1

2,32,22,1

1,31,21,1

~:..1 B
inearest

A
i

mmm

mmm

mmm

ni pp

unknowns
 (9 variables)

 11

Least-Squares Optimal Rotation

How to compute a least-squares (Frobenius norm)
orthogonal matrix that fits a general matrix:

• Compute the SVD: M = UDVT

• The least-squares orthogonal fit is: R = UVT

(just set all singular values to one)

• We can compute this in one step:

 Solve the least-squares matrix fitting problem using SVD

 Omit the diagonal matrix straight ahead

 12

Generalizations

Convergence speed:

• Convergence of basic “point-to-point” ICP is not so great

 Typically: 20-50 iterations for simple examples

 Problem: Zero-th order method
(flip point correspondences in each step)

• Improvement: “point-to-plane” ICP

 First order approximation

 Match points to tangential planes rather than points

 Converges much faster (3-5 iterations for similar examples)

 13

Implementation

Part A

Part B

n

i

B
inearest

B
inearest

A
i

SO

BSO

dAnearestAnearest

1

2
)(

)(
)(

)(
)(

),3(

2

),3(

,minarg

))((),(minarg

3

3

nptRp

xntRx

t

R

t

R

 14

Implementation

Implementation:

• We need normals for each point (unoriented) kNN+PCA

• Compute closest point, project distance vector to its
normal

• Minimize the sum of all such distances:

Part A

Part B

n

i

B
inearest

B
inearest

A
i

SO 1

2
)(

)(
)(

)(
)(

),3(

,minarg

3

nptRp

t

R

 15

Comparison

 Point-to-point: 19 iterations

Point-to-plane: 3 iterations
(accuracy problems)

(much more
accurate result)

 16

Implementation

Problem:

• No closed form solution for the optimal rotation with
point-to-plane correspondences

Solution:

• Numerical solution

• Setup non-linear optimization problem (rotation,
translation = 6 parameters)

• Use non-linear optimization technique

• Remaining problem: Parametrization of the rotations

 Trouble with singularities (spherical topology)

 17

Local Linearization

Standard technique: local linearization

• Transformation: T(x) = Rx + t

• Linearize rotations:

xIxx

1

0

0

)(

0

0

0

)cos()sin(0

)sin()cos(0

001

)cos(0)sin(

010

)sin(0)cos(

100

0)cos()sin(

0)sin()cos(

,,,,

,,

,,

y

TxT

y

T

T

 18

Local Linearization

Standard technique: local linearization

• Numerical solution: iterative solver

• We have a current rotation R(i – 1) from the last iteration:

• Taylor expension at R(i – 1):

• Solve for t, , , (linear expressison quadratic opt.)

xRIx)1()(
,,

1

0

0

)(

 ii

y

T

n

j

B
jnearest

B
jnearest

A
j

i

1

2
)(

)(
)(

)(
)()(

,,

,minarg

3

nptpR

t

 19

Local Linearization

Then:

• Project R(i) back on the manifold of orthogonal matrices.
(for example using the SVD-based algorithm discussed
before)

• Then iterate, until convergence.

Why does this work?

• The parametrization is non-degenerate

 For large , , , the norm of the matrix increases arbitrarily
(i.e.: the object size increases, away from the data)

 Therefore, the least-squares optimization will perform a number
of small steps rather than collapse.

 20

More Tricks & Tweaks

ICP Problems:

• Partial matching might lead to distortions / bias

 Remove outliers (M-estimator, delete “far away points”, e.g.
20% percentile in point-to-point distance)

 Remove normal outliers
(if connection direction deviates from normal direction)

• Sampling problems

 Problem: for example flat surface with engraved letters

 No convergence in that case

 Improvement: Sample correspondence points with distribution
to cover unit sphere of normal directions as uniformly as
possible

Deformable Shape Matching

 22

Example

?

What are the Correspondences?

 23

What are we looking for?

Problem Statement:

Given:

• Two surfaces S1, S2 ℝ3

We are looking for:

• A reasonable deformation function f: S1 ℝ3

 that brings S1 close to S2

?

S1

S2

f

 24

Example

?

Correspondences? no shape match

too much deformation optimum

 25

This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

• We can match any two shapes
using a weird deformation field

• We need to trade-off:

 Shape matching (close to data)

 Regularity of the deformation field (reasonable match)

 26

Components:

Matching Distance:

Deformation / rigidity:

Variational Model

 27

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

)()()()()(fEfEfE rregularizematch

 28

Part 1: Shape Matching

Assume:

• Objective Function:

• Example: least squares distance

• Other distance measures:
Hausdorf distance, Lp-distances, etc.

• L2 measure is frequently used (models Gaussian noise)

S2

f(S1)
 212,1

)(),()(SSfdistfE match

11

1

2

21

)(),()(
Sx

match dSdistfE xx

 29

Point Cloud Matching

Implementation example: Scan matching

• Given: S1, S2 as point clouds

 S1 = {s1
(1), …, sn

(1)}

 S2 = {s1
(2), …, sm

(2)}

• Energy function:

• How to measure ?

 Estimate distance to a point sampled surface

si
(2)

fi(S1)

m

i

i

match Sdist
m

S
fE

1

2)2(

1
1)(,
||

)(s

 x,1Sdist

 30

Surface approximation

Solution #1: Closest point matching

• “Point-to-point” energy

m

i

iSini

match sNNsdist
m

S
fE

1

2)2()2(1)()(,
||

)(
1

si
(2)

f(S1)

 31

Surface approximation

Solution #2: Linear approximation

• “Point-to-plane” energy

• Fit plane to k-nearest neighbors

• k proportional to noise level, typically k 6…20

si
(2)

f(S1)

 32

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

)()()()()(fEfEfE rregularizematch

 33

What is a “nice” deformation field?

• Isometric “elastic” energies

 Extrinsic (“volumetric deformation”)

 Intrinsic (“as-isometric-as
 possible embedding”)

• Thin shell model

 Preserves shape (metric plus curvature)

• Thin-plate splines

 Allowing strong deformations, but keep shape

Part II: Deformation Model

)()(fE rregularize

 34

Elastic Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”

• Embed source surface S1 in volume

• f should preserve 3 3 metric tensor (least squares)

1

2T)()(
V

rregularize dxfffE I

first fundamental form I (ℝ3×3)

S1

V1

f

S2

f

f (V1)
ambient space

 35

Volume Model

Variant: Thin-Plate-Splines

• Use regularizer that penalizes curved deformation

second derivative (ℝ3×3)

S1

V1

f

S2

Hf =(f)

f (V1)
ambient space

1

2)()()(
V

f
rregularize dxxHfE

 36

How does the deformation look like?

original

as-rigid-as
possible
volume

thin
plate

splines

 37

Intrinsic Matching (2-Manifold)

• Target shape is given and complete

• Isometric embedding

1

2T)()(
S

rregularize dxfffE I
first fund. form (S1, intrinsic)

Isometric Regularizer

S1

f

S2

f

tangent space

 38

“Thin Shell” Energy

• Differential geometry point of view

 Preserve first fundamental form I

 Preserve second fundamental form II

 …in a least least-squares sense

• Complicated to implement

• Usually approximated

Elastic “Thin Shell” Regularizer

S1

S2

f

I
II

I
II

 39

Deformable ICP

How to build a deformable ICP algorithm

• Pick a surface distance measure

• Pick an deformation model / regularizer

)()()()()(fEfEfE rregularizematch

 40

Deformable ICP

How to build a deformable ICP algorithm

• Pick a surface distance measure

• Pick an deformation model / regularizer

• Initialize f (S1) with S1 (i.e., f = id)

• Pick a non-linear optimization algorithm

 Gradient decent (easy, but bad performance)

 Preconditioned conjugate gradients (better)

 Newton, Gauss Newton (even better, but more work)

 LBGFS (quick & effective)

 Always use analytical derivatives!

• Run optimization

Animation Reconstruction

 42

Real-time Scanners

space-time
stereo

courtesy of James Davis,
UC Santa Cruz

color-coded
structured light

courtesy of Phil Fong,
Stanford University

motion compensated
structured light

courtesy of Sören König,
TU Dresden

 43

Animation Reconstruction

Problems

• Noisy data

• Incomplete data (acquisition holes)

• No correspondences

noise

holes

missing correspondences

 44

Animation Reconstruction

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences

Urshape Factorization Approach

 46

“Factorization”

t = 0 t = 1 t = 2

data

urshape S

f

f
f

deformation

 47

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape

• Deformation

Domain Assembly
• Getting an initial estimate

• Urshape assembly

 48

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape

• Deformation

Domain Assembly
• Getting an initial estimate

• Urshape assembly

 49

Energy Minimization

Energy Function

E(f, S) = Edata + Edeform + Esmooth

Components

• Edata(f, S) – data fitting

• Edeform(f) – elastic deformation, smooth trajectory

• Esmooth(S) – smooth surface

Optimize S, f alternatingly

 50

Data Fitting

Data fitting

• Necessary: fi(S) ≈ Di

• Truncated squared distance
function (point-to-plane)

S

Di

fi

Di

fi(S)

Edata(f, S)

 51

Edeform(f)

Elastic Deformation Energy

S

Di

f

Regularization
• Elastic energy

• Smooth trajectories

 52

Surface Reconstruction

Data fitting

• Smooth surface

• Fitting to noisy data

S

Di

Esmooth(S)

fi
-1(Di)

S

fi
-1(Di)

S

f

 53

Factorization

t = 0 t = 1 t = 2

data

urshape S

f

f
f

deformation

 54

Summary: Variational Model

)(),)((),,(),,(

urshapendeformatiodata

SESEEEEdSEdSE smoothvelocityaccelvolumerigidmatch
 fff

)(

2

),(),()(),(

SV
F

T
rigidrigid dxttxSE Ixfxff xx

)(

2
1),()(),(

SV

volvolume dxtxSE xff x

S

accaccel dxt
t

xSE

2

2

2

),()(),(xff

S

velocityvelocity dxt
t

xSE

2

),()(),(xff

S

uvsmoothsmooth dxxsxSE
22)()()(

T

t

n

i

imatch

t

SfddisttruncdfSE
1 1

2)))(,((),,(

 55

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape

• Deformation

Domain Assembly
• Getting an initial estimate

• Urshape assembly

 56

geometry

Discretization

Sampling:

• Full resolution geometry

• Subsample deformation

deformation

 57

geometry

Discretization

Sampling:

• Full resolution geometry

 High frequency

• Subsample deformation

 Low frequency

deformation

 58

geometry

Discretization

Sampling:

• Full resolution geometry

 High frequency, stored once

• Subsample deformation

 Low frequency, all frames ⇒ more costly

deformation

 59

Shape Representation

Shape Representation:

• Graph of surfels (point + normal + local connectivity)

• Esmooth – neighboring planes should be similar

• Same as the bunny exercise...

S

 60

...but how about Neighborhoods?

Topology estimation

• Domain of S, base shape (topology)

• Here, we assume this is easy to get

• In the following

 k-nearest neighborhood graph

 Typically: k = 6..20

Limitations

• This requires dense enough sampling

• Does not work for undersampled data

 61

Volumetric Deformation Model

• Surfaces embedded in “stiff” volumes

• Easier to handle than “thin-shell models”

• General – works for non-manifold data

Deformation

geometry

“thick shell”

f

S
V

 62

Deformation

Deformation Energy

• Keep deformation gradients ∇f as-rigid-as-possible

• This means: ∇fT∇f = I

• Minimize: Edeform = ∫T ∫V||∇f(x,t)T∇f(x,t) – I||2 dx dt

geometry

f

S

“thick shell”

∇f

V

 63

Additional Terms

More Regularization

• Volume preservation: Evol = ∫T ∫V||det(∇f) – 1||2

 Stability

• Acceleration: Eacc = ∫T ∫V||∂t
2 f||2

 Smooth trajectories

• Velocity (weak): Evel = ∫T ∫V||∂t f||2

 Damping

 64

Discretization

How to represent the deformation?

• Goal: efficiency

• Finite basis:
As few basis functions as possible

geometry

deformation

 65

Discretization

Meshless finite elements

• Partition of unity, smoothness

• Linear precision

• Adaptive sampling is easy

geometry

deformation

 66

Topology:

• Separate deformation
nodes for disconnected
pieces

• Need to ensure

 Consistency

 Continuity

• Euclidean / intrinsic
distance-based coupling rule

 See references for details

Meshless Finite Elements

 67

Adaptive Sampling

Adaptive Sampling

• Bending areas

 Decrease rigidity

 Decrease thickness

 Increase sampling density

• Detecting bending areas:
residuals over many frames

 68

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Deformation

• Shape

Domain Assembly
• Getting an initial estimate

• Urshape assembly

 69

Urshape Assembly

Adjacent frames are similar

• Solve for frame pairs first

• Assemble urshape step-by-step

frame 11 frame 12 frame 13 frame 14 frame 15 frame 16

[data set courtesy of C. Theobald, MPC-VCC]

 70

Hierarchical Merging

S

f(S)

data

f

 71

Hierarchical Merging

S

f(S)

data

f

 72

Initial Urshapes

S

f(S)

data

f

 73

Initial Urshapes

S

f(S)

data

f

 74

Alignment

S

f(S)

data

f

 75

Align & Optimize

S

f(S)

data

f

 76

Hierarchical Alignment

S

f(S)

data

f

 77

Hierarchical Alignment

S

f(S)

data

f

Results

 79

 80

 81

 82

