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Iterated Closest Points (ICP) 

The main idea: 

• Pairwise matching technique 

 Registers two scans 

 Multi-part matching is a different story (more on this later) 

• We want to minimize the distance between the two parts 

 We set up a variational problem 

 Minimize distance “energy” by rigid motion of one part 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 
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Iterated Closest Points (ICP) 

Problem: 

• How to compute the distance 

• This is simple if we know the corresponding points. 

 Of course, we have in general no idea of what corresponds... 

• ICP-idea: set closest point as corresponding point 

• Full algorithm: 

 Compute closest point points 

 Minimize distance to these closest points by a rigid motion 

 Recompute new closest points and iterate 
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Closest Points 

Distances: 

 

 

Closest points distances: 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 
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Iteration 

Part A 

Part B 

Part A 

Part B 

Part A 

Part B 

final result 
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Variational Formulation 

Variational Formulation: 
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Variables: Orthogonal matrix R, translation vector t 
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Numerical Solution 

Question: How to minimize this energy? 

• The energy is quadratic 

• There is only one problem... 

 Constraint optimization 

 We have to use an  
orthogonal matrix... 

• This problem can (still) be solved exactly. 
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Solution 

First step: computing the translation 

• Easy to see: average translation is optimal 
(c.f. total least squares) 

•   

• This is independent of the rotation 

Second step: compute the rotation 

• (2a) Compute optimal linear map 

• (2b) Orthogonalize 
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Optimal Linear Map 

First: 

• Subtract translation from points pi
(A) = pi

(A) – t 

• Then: Solve an unconstrained least-squares problem 

 

 

 

 

 

• Finally: compute the orthogonal matrix R that is 
closest to M. 
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Least-Squares Optimal Rotation 

How to compute a least-squares (Frobenius norm) 
orthogonal matrix that fits a general matrix: 

• Compute the SVD: M = UDVT 

• The least-squares orthogonal fit is: R = UVT 

(just set all singular values to one) 

• We can compute this in one step: 

 Solve the least-squares matrix fitting problem using SVD 

 Omit the diagonal matrix straight ahead 



 12 

Generalizations 

Convergence speed: 

• Convergence of basic “point-to-point” ICP is not so great 

 Typically: 20-50 iterations for simple examples 

 Problem: Zero-th order method 
(flip point correspondences in each step) 

• Improvement: “point-to-plane” ICP 

 First order approximation 

 Match points to tangential planes rather than points 

 Converges much faster (3-5 iterations for similar examples) 
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Implementation 

Part A 

Part B 
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Implementation 

Implementation: 

• We need normals for each point (unoriented)  kNN+PCA 

• Compute closest point, project distance vector to its 
normal 

• Minimize the sum of all such distances: 

Part A 

Part B 
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Comparison 

 Point-to-point: 19 iterations 

Point-to-plane: 3 iterations 
(accuracy problems) 

(much more 
accurate result) 
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Implementation 

Problem: 

• No closed form solution for the optimal rotation with 
point-to-plane correspondences 

Solution: 

• Numerical solution 

• Setup non-linear optimization problem (rotation, 
translation = 6 parameters) 

• Use non-linear optimization technique 

• Remaining problem: Parametrization of the rotations 

 Trouble with singularities (spherical topology) 
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Local Linearization 

Standard technique: local linearization 

• Transformation: T(x) = Rx + t 

• Linearize rotations: 

xIxx
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Local Linearization 

Standard technique: local linearization 

• Numerical solution: iterative solver 

• We have a current rotation R(i – 1)  from the last iteration: 

• Taylor expension at R(i – 1): 

 

 

 

• Solve for t, , ,   (linear expressison  quadratic opt.) 
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Local Linearization 

Then: 

• Project R(i) back on the manifold of orthogonal matrices. 
(for example using the SVD-based algorithm discussed 
before) 

• Then iterate, until convergence. 

Why does this work? 

• The parametrization is non-degenerate 

 For large , , , the norm of the matrix increases arbitrarily 
(i.e.: the object size increases, away from the data) 

 Therefore, the least-squares optimization will perform a number 
of small steps rather than collapse. 
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More Tricks & Tweaks 

ICP Problems: 

• Partial matching might lead to distortions / bias 

 Remove outliers (M-estimator, delete “far away points”, e.g. 
20% percentile in point-to-point distance) 

 Remove normal outliers  
(if connection direction deviates from normal direction) 

• Sampling problems 

 Problem: for example flat surface with engraved letters 

 No convergence in that case 

 Improvement: Sample correspondence points with distribution 
to cover unit sphere of normal directions as uniformly as 
possible 



Deformable Shape Matching 
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Example 

? 

What are the Correspondences? 
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What are we looking for? 

Problem Statement: 

Given: 

• Two surfaces S1, S2  ℝ3 

We are looking for: 

• A reasonable deformation function f: S1  ℝ3 

 that brings S1 close to S2 

 

? 

S1 

S2 

f 
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Example 

? 

Correspondences? no shape match 

too much deformation optimum 
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This is a Trade-Off 

Deformable Shape Matching is a Trade-Off: 

• We can match any two shapes  
using a weird deformation field 

 

 

• We need to trade-off: 

 Shape matching (close to data) 

 Regularity of the deformation field (reasonable match) 
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Components: 

 
Matching Distance: 

Deformation / rigidity: 

Variational Model 
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Variational Model 

Variational Problem: 

• Formulate as an energy minimization problem: 

)()()( )()( fEfEfE rregularizematch 
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Part 1: Shape Matching 

Assume: 

• Objective Function: 

 

 

• Example: least squares distance 

 

 

 

• Other distance measures: 
Hausdorf distance, Lp-distances, etc. 

• L2 measure is frequently used (models Gaussian noise) 

S2 

f(S1) 
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Point Cloud Matching 

Implementation example: Scan matching 

• Given: S1, S2 as point clouds 

 S1 = {s1
(1), …, sn

(1)}  

 S2 = {s1
(2), …, sm

(2)} 

• Energy function: 

 

• How to measure                   ? 

 Estimate distance to a point sampled surface 

 

si
(2) 

fi(S1) 
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Surface approximation 

Solution #1: Closest point matching 

• “Point-to-point” energy 
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Surface approximation 

Solution #2: Linear approximation 

• “Point-to-plane” energy 

• Fit plane to k-nearest neighbors 

• k proportional to noise level, typically k  6…20 

si
(2) 

f(S1) 
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Variational Model 

Variational Problem: 

• Formulate as an energy minimization problem: 

)()()( )()( fEfEfE rregularizematch 



 33 

What is a “nice” deformation field? 

• Isometric “elastic” energies 

 Extrinsic (“volumetric deformation”) 

 Intrinsic (“as-isometric-as 
                  possible embedding”) 

• Thin shell model 

 Preserves shape (metric plus curvature) 

• Thin-plate splines 

 Allowing strong deformations, but keep shape 

Part II: Deformation Model 

)()( fE rregularize
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Elastic Volume Model 

Extrinsic Volumetric “As-Rigid-As Possible” 

• Embed source surface S1 in volume 

• f should preserve 3  3 metric tensor (least squares) 
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Volume Model 

Variant: Thin-Plate-Splines 

• Use regularizer that penalizes curved deformation 

second derivative (ℝ3×3) 

S1 

V1 
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How does the deformation look like? 

original 

as-rigid-as 
possible 
volume 

thin 
plate 

splines 
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Intrinsic Matching (2-Manifold) 

• Target shape is given and complete 

• Isometric embedding 
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“Thin Shell” Energy 

• Differential geometry point of view 

 Preserve first fundamental form I 

 Preserve second fundamental form II 

 …in a least least-squares sense 

• Complicated to implement 

• Usually approximated 

Elastic “Thin Shell” Regularizer 

S1 

S2 

f 

I 
II 

I 
II 
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Deformable ICP 

How to build a deformable ICP algorithm 

• Pick a surface distance measure 

• Pick an deformation model / regularizer 

 

)()()( )()( fEfEfE rregularizematch 
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Deformable ICP 

How to build a deformable ICP algorithm 

• Pick a surface distance measure 

• Pick an deformation model / regularizer 

• Initialize f (S1) with S1  (i.e., f = id) 

• Pick a non-linear optimization algorithm 

 Gradient decent (easy, but bad performance) 

 Preconditioned conjugate gradients (better) 

 Newton, Gauss Newton (even better, but more work) 

 LBGFS (quick & effective) 

 Always use analytical derivatives! 

• Run optimization 



Animation Reconstruction 
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Real-time Scanners 

space-time 
stereo 

courtesy of James Davis, 
UC Santa Cruz 

color-coded 
structured light 

courtesy of Phil Fong, 
Stanford University 

motion compensated 
structured light 

courtesy of Sören König, 
TU Dresden 
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Animation Reconstruction 

Problems 

• Noisy data 

• Incomplete data (acquisition holes) 

• No correspondences 

 

noise 

holes 

missing correspondences 
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Animation Reconstruction 

Remove noise, outliers 

Fill-in holes 
(from all frames) 

Dense correspondences 



Urshape Factorization Approach 
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“Factorization” 

t = 0 t = 1 t = 2 

data 

urshape S 

f  

f 
f 

deformation 
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Components 

Variational Model 
• Given an initial estimate, 

improve urshape and deformation 

Numerical Discretization 
• Shape 

• Deformation 

Domain Assembly 
• Getting an initial estimate 

• Urshape assembly 
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Components 

Variational Model 
• Given an initial estimate, 

improve urshape and deformation 

Numerical Discretization 
• Shape 

• Deformation 

Domain Assembly 
• Getting an initial estimate 

• Urshape assembly 
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Energy Minimization 

Energy Function 

E(f, S) = Edata + Edeform  + Esmooth 

Components 

• Edata(f, S) – data fitting 

• Edeform(f) – elastic deformation, smooth trajectory 

• Esmooth(S) – smooth surface 

Optimize S, f alternatingly 
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Data Fitting 

Data fitting 

• Necessary: fi(S) ≈ Di 

• Truncated squared distance 
function (point-to-plane) 

S 

Di 

fi 

Di 

fi(S) 

Edata(f, S) 
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Edeform(f) 

Elastic Deformation Energy 

S 

Di 

f 

Regularization 
• Elastic energy 

 

• Smooth trajectories 
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Surface Reconstruction 

Data fitting 

• Smooth surface 

• Fitting to noisy data 

S 

Di 

Esmooth(S) 

fi
-1(Di) 

S 

fi
-1(Di) 

S 

f 
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Factorization 

t = 0 t = 1 t = 2 

data 

urshape S 

f  

f 
f 

deformation 
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Summary: Variational Model 

)(),)((),,(),,(

urshapendeformatiodata

SESEEEEdSEdSE smoothvelocityaccelvolumerigidmatch     
 fff

 

)(

2

),(),()(),(

SV
F

T
rigidrigid dxttxSE Ixfxff xx

  

)(

2
1),()(),(

SV

volvolume dxtxSE xff x

 


















S

accaccel dxt
t

xSE

2

2

2

),()(),( xff   













S

velocityvelocity dxt
t

xSE

2

),()(),( xff 

  

S

uvsmoothsmooth dxxsxSE
22 )()()( 


 



T

t

n

i

imatch

t

SfddisttruncdfSE
1 1

2 )))(,((),,(



 55 

Components 

Variational Model 
• Given an initial estimate, 

improve urshape and deformation 

Numerical Discretization 
• Shape 

• Deformation 

Domain Assembly 
• Getting an initial estimate 

• Urshape assembly 



 56 

geometry 

Discretization 

Sampling: 

• Full resolution geometry 

• Subsample deformation 

deformation 
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geometry 

Discretization 

Sampling: 

• Full resolution geometry 

 High frequency 

• Subsample deformation 

 Low frequency 

deformation 
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geometry 

Discretization 

Sampling: 

• Full resolution geometry 

 High frequency, stored once 

• Subsample deformation 

 Low frequency, all frames ⇒ more costly 

deformation 
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Shape Representation 

Shape Representation: 

• Graph of surfels (point + normal + local connectivity) 

• Esmooth – neighboring planes should be similar 

• Same as the bunny exercise... 

S 
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...but how about Neighborhoods? 

Topology estimation 

• Domain of S, base shape (topology) 

• Here, we assume this is easy to get 

• In the following 

 k-nearest neighborhood graph 

 Typically: k = 6..20 

Limitations 

• This requires dense enough sampling 

• Does not work for undersampled data 
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Volumetric Deformation Model 

• Surfaces embedded in “stiff” volumes 

• Easier to handle than “thin-shell models” 

• General – works for non-manifold data 

Deformation 

geometry 

“thick shell” 

f 

S 
V 
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Deformation 

Deformation Energy 

• Keep deformation gradients ∇f as-rigid-as-possible 

• This means: ∇fT∇f = I 
 

• Minimize:  Edeform = ∫T ∫V||∇f(x,t)T∇f(x,t) – I||2 dx dt 

geometry 

f 

S 

“thick shell” 

∇f 

V 
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Additional Terms 

More Regularization 

• Volume preservation: Evol = ∫T ∫V||det(∇f) – 1||2 

 Stability 

• Acceleration: Eacc = ∫T ∫V||∂t
2  f||2 

 Smooth trajectories 

• Velocity (weak): Evel = ∫T ∫V||∂t  f||2 

 Damping 
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Discretization 

How to represent the deformation? 

• Goal: efficiency 

• Finite basis: 
As few basis functions as possible 

geometry 

deformation 
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Discretization 

Meshless finite elements 

• Partition of unity, smoothness 

• Linear precision 

• Adaptive sampling is easy 

geometry 

deformation 
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Topology: 

• Separate deformation 
nodes for disconnected 
pieces 

• Need to ensure 

 Consistency 

 Continuity 

• Euclidean / intrinsic  
distance-based coupling rule 

 See references for details 

Meshless Finite Elements 
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Adaptive Sampling 

Adaptive Sampling 

• Bending areas 

 Decrease rigidity 

 Decrease thickness 

 Increase sampling density 

• Detecting bending areas:  
residuals over many frames 
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Components 

Variational Model 
• Given an initial estimate, 

improve urshape and deformation 

Numerical Discretization 
• Deformation 

• Shape 

Domain Assembly 
• Getting an initial estimate 

• Urshape assembly 
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Urshape Assembly 

Adjacent frames are similar 

• Solve for frame pairs first 

• Assemble urshape step-by-step 

frame 11 frame 12 frame 13 frame 14 frame 15 frame 16 

[data set courtesy of C. Theobald, MPC-VCC] 
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Hierarchical Merging 

S 

f(S) 

data 

f 
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Hierarchical Merging 

S 

f(S) 

data 

f 
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Initial Urshapes 

S 

f(S) 

data 

f 



 73 

Initial Urshapes 

S 

f(S) 

data 

f 
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Alignment 

S 

f(S) 

data 

f 
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Align & Optimize 

S 

f(S) 

data 

f 
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Hierarchical Alignment 

S 

f(S) 

data 

f 
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Hierarchical Alignment 

S 

f(S) 

data 

f 



Results 
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