Statistical Geometry Processing

Winter Semester 2011/2012

Global Shape Matching

Rigid Global Matching

Iterated Closest Points (ICP)

Problems

- Need good intialization
 - Non-convex problem
 - Runs into local minima
- Deformable shape matching
 - Even worse: bad initialization even more problematic
 - Reason: more degrees of freedom

Global Matching

How to assemble the bunny (globally)?

Pipeline (rough sketch):

- Feature detection
- Feature descriptors
- Spectral validation

Feature Detection

Feature points (keypoints)

- Regions that can be identified locally
- "Bumps", i.e. points with maximum curvature
 - "curvature" $\in \left\{ \kappa_1, \kappa_2, \frac{1}{2}(\kappa_1 + \kappa_2), \kappa_1 \cdot \kappa_2 \right\}$
 - Mean/principal curvature most stable
 (κ₂ often inaccurate when computed by least-squares fitting)
 - "SIFT" features compute bumps at multiple scales:
 - With with different radii
 - Search for maxima in 3D surface-scale space
 - Output: list of keypoints

Bunny Curvature

Stanford Bunny (dense point cloud)

[courtesy of Martin Bokeloh]

Descriptors

Feature descriptors:

- Rotation invariant description of local neighborhood (within scale of the feature point)
 - Translation already fixed by feature point
- Used to find match candidates
- Not 100% reliable (typically 3x 5x outlier ratio)

Descriptors

Rotation invariant descriptors:

- Curvatures $\{\kappa_1, \kappa_2\}$, derived properties
 - Curvature histograms in spherical neighborhood
- Pairwise distances
 - "d2-Histograms": Histogram of pairwise distance within sphere
 - Histogram of distances to medial axis
- Spin images
 - Use surface normal
 - Cut-out sphere
 - Rotate geometry around sphere and splat into "spin-image"
- Spherical harmonics power spectrum, Zernicke descriptors

Correspondence Validation

We have:

- Candidate matches
- But every keypoint matches
 5 others on average
- At most one of these is correct

Validation Criterion:

Euclidian distance should be preserved

Invariants

Rigid Matching

• Invariant: Euclidean distances are preserved

Branch and Bound

Simple Algorithm:

- Branch-and-bound [Gelfand et al. 2005]
- Fix correspondences, prune all incompatible ones (i.e., violation of Euclidian distance)
- Try all possibilities

Efficiency:

- Efficient for sparse (widely spaced) features
 - Only few combinations work
- Possibly exponential for dense features (try many equivalent solutions)

Alternatives

Alternatives: We will look at

- Spectral matching
- Randomized search

Further alternatives:

- Loopy belief propagation ("Correlated Correspondences", Anguelov 2005).
- Quadratic assignment heuristics

Important:

• Structure: Pairwise optimization problem

Isometric Matching

Invariants

Intrinsisc Matching

• Invariants: All geodesic distances are preserved

Invariants

Intrinsisc Matching

- Presevation of geodesic distances ("intrinsic distances")
- Approximation
 - Cloth is almost unstretchable
 - Skin does not stretch a lot

- Accepted model for deformable shape matching
 - In cases where one subject is presented in different poses
 - Accross different subjects: Other assumptions necessary
 - Then: global matching is an open problem

Feature Based Matching

Quadratic Assignment Model

Problem Statement

Deformable Matching

- Two shapes: original, deformed
- How to establish correspondences?
- Looking for global optimum
 - Arbitrary pose

Assumption

 Approximately isometric deformation

Feature-Matching

• Detect feature points

• Local matching: potential correspondences

• Global filtering: correct subset

Feature-Matching

- Detect feature points
 - Maxima of Gaussian curvature
 - Locally unique descriptors
- Local matching: potential correspondences

• Global filtering: correct subset

Feature-Matching

- Detect feature points
 - Maxima of Gaussian curvature
 - Locally unique descriptors

- Local matching: potential correspondences
 - Curvature histograms
 - Heat-kernels, geodesic waves
- Global filtering: correct subset

Feature-Matching

- Detect feature points
 - Maxima of Gaussian curvature
 - Locally unique descriptors

- Local matching: potential correspondences
 - Curvature histograms
 - Heat-kernels, geodesic waves
- Global filtering: correct subset
 - Quadratic assignment
 - Spectral relaxation [Leordeanu et al. 05]
 - RANSAC

Quadratic Assignment

Most difficult part: Global filtering

- Find a consistent subset
- Pairwise consistency:
 - Correspondence pair must preserve intrinsic distance
- Maximize number of pairwise consistent pairs
 - Quadratic assignment (in general: NP-hard)

Quadratic Assignment

- *n* potential correspondences
- Each one can be turned on or off
- Label with variables x_i
- Compatibility score:

$$P^{(match)}(x_1,...,x_n) = \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j}^{(compatible)}, x_i \in \{0,1\}$$

(incomplete model; details later)

Quadratic Assignment

- Compatibility score:
 - Singeltons:
 Descriptor match

$$P^{(match)}(x_1, ..., x_n) = \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j}^{(compatible)}, x_i \in \{0,1\}$$

Quadratic Assignment

- Compatibility score:
 - Singeltons:
 Descriptor match
 - Doubles: Compatibility

$$P^{(match)}(x_1, ..., x_n) = \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j}^{(compatible)}, x_i \in \{0,1\}$$

Quadratic Assignment

- Matrix notation: $P^{(match)}(x_1,...,x_n) = \prod_{i=1}^{n} P_i^{(single)} \prod_{i,j=1}^{n} P_{i,j}^{(compatible)}$ $\log P^{(match)}(x_1,...,x_n) = \sum_{i=1}^{n} \log P_i^{(single)} + \sum_{i,j=1}^{n} \log P_{i,j}^{(compatible)}$ $= \mathbf{xs} + \mathbf{x}^T \mathbf{Dx}$
- Quadratic scores are encoded in Matrix D
- Linear scores are encoded in Vector s

Quadratic Assignment

Task: find optimal binary vector x

Regularization:

• No trivial solution x = 0

Examples

- As many "1"s as possible without exceeding error threshold
- Fixed norm of **x**-vector

Spectral Matching

Simple & Effective Approximation:

- Spectral matching [Leordeanu & Hebert 05]
- Form compatibility matrix:

All entries within [0..1] = [no match...perfect match]

Spectral Matching

Approximate largest clique:

- Compute eigenvector with largest eigenvalue
- Maximizes Rayleigh quotient:

 $\operatorname{arg\,max} \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|^{2}}$

- "Best yield" for bounded norm
 - The more consistent pairs (rows of 1s), the better
 - Approximates largest clique
- Implementation
 - For example: power iteration

Spectral Matching

Post-processing

- Greedy quantization
 - Select largest remaining entry, set it to 1
 - Set all entries to 0 that are not pairwise consistent with current set
 - Iterate until all entries are quantized

In practice...

- This algorithm turns out to work quite well.
- Very easy to implement
- Limited to (approx.) quadratic assignment model

Spectral Matching Example

Application to Animations

• Feature points: Geometric MLS-SIFT features [Li et al. 2005]

• Descriptors:

Curvature & color ring histograms

Global Filtering: Spectral matchin

Spectral matching

• Pairwise animation matching: Low precision passive stereo data

[Data set: Christian Theobald, Implementation: Martin Bokeloh]

Ransac and Forward Search

Random Sampling Algorithms

Estimation subject to outliers:

- We have candidate correspondences
- But most of them are bad
- Standard vision problem
- Standard tools: Ransac & forward search

RANSAC

"Standard" RANSAC line fitting example:

- Randomly pick two points
- Verify how many others fit
- Repeat many times and pick the best one (most matches)

Forward Search

Forward Search:

- Ransac variant
- Like ransac, but refine model by "growing"
- Pick best match, then recalculate
- Repeat until threshold is reached

RANSAC/FWS Algorithm

Idea

- Starting correspondence
- Add more that are consistent
 - Preserve intrinsic distances
- Importance sampling algorithm

Advantages

- Efficient (small initial set)
- General (arbitrary criteria)

Ransac/FWS Details

Algorithm: Simple Idea

. . .

- Select correspondences with probability proportional to their plausibility
- First correspondence: Descriptors
- Second: Preserve distance (distribution peaks)
- Third: Preserve distance (even fewer choices)
- Rapidly becomes deterministic
- Repeat multiple times (typ.: 100x)
 - Choose the largest solution (larges #correspondences)

Ransac/FWS Details

Provably Efficient:

- Theoretically efficient (details later)
- Faster in practice (using descriptors)

Flexible:

- In later iterations (> 3 correspondences), allow for outlier geodesics
- Can handle topological noise

Forward Search

- Add correspondences incrementally
- Compute match probabilities given the information already decided on
- Iterate until no more matches can found that meet a certain error threshold
- Outer Loop:
 - Iterate the algorithm with random choices
 - Pick the best (i.e., largest) solution

Step 1:

- Start with one correspondence
 - Target side importance sampling: prefer good descriptor matches
 - Optional source side imp. sampl: prefer unique descriptors

Step 2:

- Compute "posterior" incorporating geodesic distance
 - Target side importance sampling: sample according to descriptor match × distance score
 - Again: optional source side imp. sampl: prefer unique descriptors

Step 2:

- Compute "posterior" incorporating geodesic distance
 - Target side importance sampling: sample according to descriptor match × distance score
 - Again: optional source side imp. sampl: prefer unique descriptors

Step 3:

• Same as step 2, continue sampling...

Step 3:

• Same as step 2, continue sampling...

Source side:

- Match all descriptors, compute entropy
- Choose minimum entropy features for start
- Subsequent features: consider entropy of all matches in addition

Another View

Landmark Coordinates

 Distance to already established points give a charting of the manifold

Results

Results: Topological Noise

Spectral Quadratic Assignment [Leordeanu et al. 05] Ransac Algorithm [Tevs et al. 09]

Complexity

How expensive is all of this?

Cost analysis:

• How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:

- Assume disc or sphere topology
- An isometric mapping is in particular a conformal mapping
- A conformal mapping is determined by 3 point-to-point correspondences

How expensive is it..?

First correspondence:

- Worst case: *n* trials (*n* feature points)
- In practice: k ≪ n good descriptor matches (typically k ≈ 5-20)

Second correspondence:

- Worst case: *n* trials, expected: \sqrt{n} trials
- In practice: very few (due to descriptor matching, maybe 1-3)

Last match:

• At most two matches

Costs...

Overall costs:

- Worst case: O(n²) matches to explore
- Typical: O(n^{1.5}) matches to explore

Randomization:

- Exploring *m* items costs expected O(*m* log *m*) trials
- Worst case bound of O(n² log n) trials
- Asymptotically sharp: O(c)-times more trials for shrinking failure probability to O(exp(-c²))

Costs...

Surface discretization:

- Assume *E*-sampling of the manifold (no features):
 O(*E*⁻²) sample points
- Worst case O(*E*⁻⁴ log *E*⁻¹) sample correspondences for finding a match with accuracy *E*.
- Expected: O($\mathcal{E}^{-3} \log \mathcal{E}^{-1}$).

In practice:

- Importance sampling by descriptors is very effective
- Typically: Good results after 100 iterations
- Entropy-based planning: 1-10 iteartions

General Case

Numerical errors:

 Noisy surfaces, imprecise features: reflected in probability maps (we know how little we might know)

Topological noise:

- Use robust constraint potentials
- For example: account for 5 best matches only

Topologically complex cases:

- No analysis beyond disc/spherical topology
- However: the algorithm will work in the general case (potentially, at additional costs)

Other Application: Symmetry Detection

Symmetry Detection

Symmetry Detection

[data sets: IKG, Leibnitz University Hannover / M. Wacker, HTW Dresden]

Rigid, Isometic, Relaxed Isometric

rigid isometric relaxed isometric

Learning Correspondences

Objective

Window Variants

Objective

User: a few sparse sketches

Find similar elements

Learning a Matching Model

Learning a matching model

- Learn *descriptors*
- Learn *geometric relations*

Energy Function

$$\frac{1}{Z} \prod_{i=1}^{k} \Phi_{i}(\mathbf{x}_{i}) \prod_{i=1}^{k-1} \Psi_{i}(\mathbf{x}_{i}, \mathbf{x}_{i+1})$$

Markov Chain Model

- Global optimum: Belief propagation
- Symmetry: Enumerate local optima

Result: Single-Class Learning

Window Variants

Result: Multi-Class Learning

Results: Ludwigskirche

