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CUDA
A Parallel Computing Architecture for NVIDIA GPUs 

Supports standard 
languages and APIs
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CUDA C Programming

Heterogeneous programming model
CPU and GPU are separate devices with separate memory 
spaces

CPU code is standard C/C++

Driver API: low-level interface

Runtime API: high-level interface (one extension to C)

GPU code

Subset of C with extensions

CUDA goals
Scale GPU code to 100s of cores, 1000s of parallel threads

Facilitate heterogeneous computing
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CUDA Kernels and Threads

Parallel portions of an application are executed on 
the device as kernels

One kernel is executed at a time

Many threads execute each kernel

Differences between CUDA and CPU threads 
CUDA threads are extremely lightweight

Very little creation overhead

Fast switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Definitions 
Device = GPU 
Host = CPU

Kernel = function that runs on the device



© NVIDIA Corporation 2009

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code

Each thread has an ID that it uses to compute memory 
addresses and make control decisions

0 1 2 3 4 5 6 7

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID
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Thread Cooperation

The Missing Piece: threads may need to cooperate

Thread cooperation is a powerful feature of CUDA

Thread cooperation is valuable
Share results to avoid redundant computation

Share memory accesses

Bandwidth reduction

Cooperation between a monolithic array of threads 
is not scalable

Cooperation within smaller batches of threads is scalable 



Kernel launches a grid of thread blocks
Threads within a block cooperate via shared memory

Threads within a block can synchronize

Threads in different blocks cannot cooperate

Allows programs to transparently scale to different 
GPUs
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Thread Batching

Grid

Thread Block 0

Shared Memory

Thread Block 1

Shared Memory

Thread Block N-1

Shared Memory

…



Hardware is free to schedule thread blocks 
on any processor

A kernel scales across parallel multiprocessors
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Transparent Scalability

Kernel grid

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1
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10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double



Per-thread

Per-block

Per-device
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Kernel Memory Access

Thread
Registers

Local Memory

Shared
Memory

Block

...Kernel 0

...Kernel 1

Global
MemoryT

im
e

On-chip

Off-chip, uncached

• On-chip, small

• Fast

• Off-chip, large

• Uncached

• Persistent across 
kernel launches

• Kernel I/O



Multiprocessor
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Physical Memory Layout

“Local” memory resides in device DRAM
Use registers and shared memory to minimize local 
memory use

Host can read and write global memory but not 
shared memory

Host

CPU

ChipsetDRAM

Device

DRAM

Local 
Memory

Global
Memory

GPU

Multiprocessor

Multiprocessor

Registers

Shared Memory
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Execution Model

Software Hardware

Threads are executed by thread processors

Thread

Thread 
Processor

Thread 
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on 
one multiprocessor - limited by multiprocessor 
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at 
one time



CUDA Programming Basics

Part I - Software Stack and Memory Management
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Outline of CUDA Programming Basics

Part I

CUDA software stack and compilation

GPU memory management

Part II

Kernel launches

Some specifics of GPU code

NOTE: only the basic features are covered

See the Programming Guide for many more API functions
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CUDA Software Development 
Environment

Main components
Device Driver (part of display driver)

Toolkit (compiler, documentation, libraries)

SDK (example codes, white papers)

Consult Quickstart Guides for installation 
instructions on different platforms

http://www.nvidia.com/cuda



© NVIDIA Corporation 2009

CUDA Software Development Tools

Profiler
Available now for all supported OSs

Command-line or GUI

Sampling signals on GPU for:

Memory access parameters

Execution (serialization, divergence)

Debugger
Currently Linux only (gdb)

Runs on the GPU

Emulation mode

Compile with -deviceemu
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Compiler

Any source file containing language extensions, like 
“<<< >>>”, must be compiled with nvcc

nvcc is a compiler driver

Invokes all the necessary tools and compilers like cudacc, 
g++, cl, ...

nvcc can output either:

C code (CPU code)

That must then be compiled with the rest of the application 
using another tool

PTX or object code directly

An executable requires linking to:

Runtime library (cudart)

Core library (cuda)
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Compiling

NVCC

CPU/GPU
Source

PTX to Target

Compiler

 G80 … GPU 

Target code

PTX Code Virtual

Physical

CPU Source
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nvcc & PTX Virtual Machine

EDG

CPU/GPU
Source

PTX Code

CPU Source

Open64

EDG

Separate CPU & GPU code

Open64

Generates GPU PTX 
assembly

Parallel Thread eXecution 
(PTX)

Virtual Machine and ISA

Programming model

Execution resources and 
state
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Compiler Flags

Important flags:

-arch=sm_13 enables double precision on compatible 

hardware

-G enables debugging on device code

--ptxas-options=-v shows register and memory usage

--maxregcount=N limits the number of registers to N

-use_fast_math uses fast math library
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GPU Memory Management
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Memory spaces

CPU and GPU have separate memory spaces
Data is moved across PCIe bus

Use functions to allocate/set/copy memory on GPU

Very similar to corresponding C functions

Pointers are just addresses
Can’t tell from the pointer value whether the address is on 
CPU or GPU

Must exercise care when dereferencing:

Dereferencing CPU pointer on GPU will likely crash

Same for vice versa

Host
GPU
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GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory
cudaMalloc(void **pointer, size_t nbytes)

cudaMemset(void *pointer, int value, size_t 
count)

cudaFree(void *pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *a_d = 0;

cudaMalloc( (void**)&a_d,  nbytes );

cudaMemset( a_d, 0, nbytes);

cudaFree(a_d);
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Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,  

           enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and 
dst

Blocks CPU thread: returns after the copy is complete

Doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice



int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);

   a_h = (float *)malloc(nBytes);

   b_h = (float *)malloc(nBytes);

   cudaMalloc((void **) &a_d, nBytes);

   cudaMalloc((void **) &b_d, nBytes);

   for (i=0, i<N; i++) a_h[i] = 100.f + i;

   cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

   cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

   cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}
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Data Movement Example 

Host Device



int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);

   a_h = (float *)malloc(nBytes);

   b_h = (float *)malloc(nBytes);

   cudaMalloc((void **) &a_d, nBytes);

   cudaMalloc((void **) &b_d, nBytes);

   for (i=0, i<N; i++) a_h[i] = 100.f + i;

   cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

   cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

   cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}
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Data Movement Example  

Host

a_h

b_h



int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);

   a_h = (float *)malloc(nBytes);

   b_h = (float *)malloc(nBytes);

   cudaMalloc((void **) &a_d, nBytes);
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   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}
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Data Movement Example  

Host Device
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b_d



int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);

   a_h = (float *)malloc(nBytes);

   b_h = (float *)malloc(nBytes);
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   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}
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int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data
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   cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);
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   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
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}
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int main(void)

{

   float *a_h, *b_h;  // host data
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}
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int main(void)

{

   float *a_h, *b_h;  // host data
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   cudaMalloc((void **) &a_d, nBytes);
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int main(void)

{

   float *a_h, *b_h;  // host data
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int main(void)

{

   float *a_h, *b_h;  // host data

   float *a_d, *b_d;  // device data

   int N = 14, nBytes, i ;

   nBytes = N*sizeof(float);
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   b_h = (float *)malloc(nBytes);
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   for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );

   free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

   return 0;

}
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Data Movement Example  

Host Device



CUDA Programming Basics

Part II - Kernels
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Outline of CUDA Basics

Part I

CUDA software stack and compilation

GPU memory management

Part II

Kernel launches

Some specifics of GPU code

NOTE: only the basic features are covered

See the Programming Guide for many more API functions
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CUDA Programming Model

Parallel code (kernel) is launched and executed on a 
device by many threads

Threads are grouped into thread blocks

Parallel code is written for a thread

Each thread is free to execute a unique code path

Built-in thread and block ID variables
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Thread Hierarchy

Threads launched for a parallel section are 
partitioned into thread blocks

Grid = all blocks for a given launch

Thread block is a group of threads that can:

Synchronize their execution

Communicate via shared memory
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Executing Code on the GPU

Kernels are C functions with some restrictions

Cannot access host memory
Must have void return type

No variable number of arguments (“varargs”)
Not recursive
No static variables

Function arguments automatically copied from host 
to device
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Function Qualifiers

Kernels designated by function qualifier:
__global__ 

Function called from host and executed on device
Must return void

Other CUDA function qualifiers
__device__ 

Function called from device and run on device
Cannot be called from host code

__host__ 

Function called from host and executed on host (default)

__host__ and __device__ qualifiers can be combined to 
generate both CPU and GPU code
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Launching Kernels

Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(…)

Execution Configuration (“<<< >>>”)

dG - dimension and size of grid in blocks

Two-dimensional: x and y

Blocks launched in the grid: dG.x*dG.y

dB - dimension and size of blocks in threads: 

Three-dimensional: x, y, and z

Threads per block: dB.x*dB.y*dB.z

Unspecified dim3 fields initialize to 1
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Execution Configuration Examples

kernel<<<32,512>>>(...);

dim3 grid, block;
grid.x = 2; grid.y = 4;
block.x = 8; block.y = 16;

kernel<<<grid, block>>>(...);

dim3 grid(2, 4), block(8,16);

kernel<<<grid, block>>>(...);

Equivalent assignment using 
constructor functions
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CUDA Built-in Device Variables

All __global__ and __device__ functions have 

access to these automatically defined variables

dim3 gridDim;
Dimensions of the grid in blocks (at most 2D)

dim3 blockDim;
Dimensions of the block in threads

dim3 blockIdx;
Block index within the grid

dim3 threadIdx;
Thread index within the block
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Built-in variables are used to determine unique 
thread IDs

Map from local thread ID (threadIdx) to a global ID which 

can be used as array indices

Unique Thread IDs

0

0 1 2 3 4

1

0 1 2 3 4

2

0 1 2 3 4

blockIdx.x

blockDim.x = 5

threadIdx.x

blockIdx.x*blockDim.x
+threadIdx.x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Grid
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Minimal Kernels

__global__ void kernel( int *a )
{
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  a[idx] = 7;
}

__global__ void kernel( int *a )
{
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  a[idx] = blockIdx.x;
}

__global__ void kernel( int *a )
{
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  a[idx] = threadIdx.x;
}

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

Output: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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Increment Array Example

CPU program CUDA program

void inc_cpu(int *a, int N)

{

  int idx;    

  for (idx = 0; idx<N; idx++) 

   a[idx] = a[idx] + 1;

}

void main()

{

  …

  inc_cpu(a, N);

  …

}

__global__ void inc_gpu(int *a_d, int N)

{

  int idx = blockIdx.x * blockDim.x 

                 + threadIdx.x;

  if (idx < N)

      a_d[idx] = a_d[idx] + 1;

}

void main()

{

  …

  dim3 dimBlock (blocksize);

  dim3 dimGrid(ceil(N/(float)blocksize));

  inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

  …

}
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Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately

kernel executes after all previous CUDA calls have 
completed

cudaMemcpy() is synchronous

control returns to CPU after copy completes

copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete
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Host Synchronization Example

…

// copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code
run_cpu_stuff();

// copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

…
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Variable Qualifiers (GPU code)

__device__
Stored in global memory (large, high latency, no cache)

Allocated with cudaMalloc (__device__ qualifier implied)

Accessible by all threads
Lifetime: application

__shared__
Stored in on-chip shared memory (very low latency)
Specified by execution configuration or at compile time

Accessible by all threads in the same thread block
Lifetime: thread block

Unqualified variables:
Scalars and built-in vector types are stored in registers
Arrays may be in registers or local memory
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Using shared memory

Size known at compile time

__global__ void kernel(…)

{

   …

   __shared__ float sData[256];

   …

}

int main(void)

{

  …

  kernel<<<nBlocks,blockSize>>>(…);

  …

}

Size known at kernel launch

__global__ void kernel(…)
{
   … 
   extern __shared__ float sData[];
   …
}
 
int main(void)
{
   …
   smBytes=blockSize*sizeof(float);
   kernel<<<nBlocks, blockSize,
            smBytes>>>(…);
   …
}
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GPU Thread Synchronization

void __syncthreads();

Synchronizes all threads in a block

Generates barrier synchronization instruction

No thread can pass this barrier until all threads in the 
block reach it

Used to avoid RAW / WAR / WAW hazards when accessing 
shared memory

Allowed in conditional code only if the conditional 
is uniform across the entire thread block
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GPU Atomic Integer Operations

Requires hardware with compute capability >= 1.1
G80 = Compute capability 1.0

G84/G86/G92 = Compute capability 1.1

GT200 = Compute capability 1.3

Atomic operations on integers in global memory:

Associative operations on signed/unsigned ints

add, sub, min, max, ...

and, or, xor

Increment, decrement

Exchange, compare and swap

Atomic operations on integers in shared memory
Requires compute capability >= 1.2
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Blocks must be independent

Any possible interleaving of blocks should be valid
presumed to run to completion without pre-emption

can run in any order

can run concurrently OR sequentially

Blocks may coordinate but not synchronize
shared queue pointer: OK

shared lock: BAD … can easily deadlock

Independence requirement provides scalability
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Built-in Vector Types

Can be used in GPU and CPU code

[u]char[1..4], [u]short[1..4], [u]int[1..4], 

[u]long[1..4], float[1..4], double[1..2]

Structures accessed with x, y, z, w fields:

  uint4 param;

  int y = param.y;

dim3
Based on uint3

Used to specify dimensions

Default value (1,1,1)
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CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:
measure elapsed time for CUDA calls (clock cycle precision)

query the status of an asynchronous CUDA call

block CPU until CUDA calls prior to the event are completed

asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;

cudaEventCreate(&start);  cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start);  cudaEventDestroy(stop);
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CUDA Error Reporting to CPU

All CUDA calls return error code:
Except for kernel launches

cudaError_t type

cudaError_t cudaGetLastError(void)

Returns the code for the last error (no error has a code)

Can be used to get error from kernel execution

char* cudaGetErrorString(cudaError_t code)

Returns a null-terminated character string describing the 
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));



Libraries 
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Libraries 

! "Two widely used libraries included in the toolkit 

! "CUBLAS: BLAS implementation 

! "CUFFT: FFT implementation 

! "CUDPP (Data Parallel Primitives), available from 

http://www.gpgpu.org/developer/cudpp/: 

! "Reduction 

! "Scan 

! "Sort 

! "Sparse matrix vector multiplication 

2 
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CUBLAS 

! " Implementation of BLAS (Basic Linear Algebra Subprograms) 

! " Self-contained at the API level, no direct interaction with driver 

! " Basic model for use 

! " Create matrix and vector objects in GPU memory space 

! " Fill objects with data 

! " Call sequence of CUBLAS functions 

! " Retrieve data from GPU 

! " CUBLAS library contains helper functions 

! " Creating and destroying objects in GPU space 

! "Writing data to and retrieving data from objects 

! " BLAS is split into 3 levels: 

! " Level 1 (vector-vector operations, O(n) ) 

! " Level 2 (matrix-vector operations, O(n2) ) 

! " Level 3 (matrix-matrix operations, O(n3) ) 

3 
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Supported Features 

! "  BLAS functions 

! " Single precision data: 

! "Level 1 

! "Level 2 

! "Level 3 

! " Complex single precision data: 

! "Level 1 

! "CGEMM 

! " Double precision data: 

! "Level 1: DASUM, DAXPY, DCOPY, DDOT, DNRM2, DROT,  
     DROTM, DSCAL, DSWAP, ISAMAX, IDAMIN  

! "Level 2: DGEMV, DGER, DSYR, DTRSV 

! "Level 3: DGEMM, DTRSM, DTRMM, DSYMM, DSYRK,         
     DSYR2K 

! " Complex double precision data: 

! "ZGEMM 

4 
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Using CUBLAS 

! "Following BLAS convention, CUBLAS uses column-
major storage 

! "Interface to CUBLAS library is in cublas.h 

! "Function naming convention: 
! "cublas + BLAS name 

! "e.g., cublasSGEMM 

! "Error handling 
! "CUBLAS core functions do not return error 

! "CUBLAS provides function to retrieve last error recorded 

! "CUBLAS helper functions do return error 

! "Helper functions: 
! "Memory allocation, data transfer 

5 
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CUBLAS Helper Functions 

6 

! "cublasInit() 

! "Initializes CUBLAS library 

! "cublasShutdown() 

! "Releases resources used by CUBLAS library 

! "cublasGetError() 

! "Returns last error from CUBLAS core function (+ resets) 

! "cublasAlloc() 

! "Wrapper around cudaMalloc() to allocate space for array 

! "cublasFree() 

! "destroys object in GPU memory 

! "cublas[Set|Get][Vector|Matrix]() 

! "Copies array elements between CPU and GPU memory 

! "Accommodates non-unit strides 
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CUBLAS code example 

7 

float *a, *b, *c; ! !// host pointers!

float *a_d, *b_d, *c_d;  !// device pointers!

stat = cublasAlloc(n*n, sizeof(float), (void **)&a_d);!

assert(stat == CUBLAS_STATUS_SUCCESS);!

. . .!

stat = cublasSetMatrix(n,n,sizeof(float),(void *)a,n,!

! ! ! (void *)a_d,n);!

assert(stat == CUBLAS_STATUS_SUCCESS);!

. . .!

cublasSgemm('n','n',n,n,n,alpha,a_d,n,b_d,n,beta,c_d,n);!

cudaThreadSynchronize();!

stat = cublasGetError();!

assert(stat == CUBLAS_STATUS_SUCCESS);!

stat = cublasGetMatrix(n,n,sizeof(float),c_d,n,c,n);!

assert(stat == CUBLAS_STATUS_SUCCESS);!
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SGEMM Performance 

8 
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DGEMM Performance 
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CUFFT 

! "The Fast Fourier Transform (FFT) is a divide-and-

conquer algorithm for efficiently computing discrete 

Fourier transform of complex or real-valued data 
sets. 

! "CUFFT 

! "Provides a simple interface for computing parallel FFT on 

an NVIDIA GPU 

! "Allows users to leverage the floating-point power and 

parallelism of the GPU without having to develop a custom, 

GPU-based FFT implementation 

10 
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Supported Features 

! "1D, 2D and 3D transforms of complex and real-valued 

data 

! "Batched execution for doing multiple 1D transforms 

in parallel 

! "1D transform size up to 8M elements 

! "2D and 3D transform sizes in the range [2,16384] 

! "In-place and out-of-place transforms for real and 

complex data. 

11 
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Transform Types 

! "Library supports real and complex transforms 
! "CUFFT_C2C, CUFFT_C2R, CUFFT_R2C 

! "Directions 
! "CUFFT_FORWARD (-1) and CUFFT_INVERSE (1) 

! "According to sign of the complex exponential term 

! "Real and imaginary parts of complex input and 
output arrays are interleaved 
! "cufftComplex type is defined for this 

! "Real to complex FFTs, output array holds only 
nonredundant coefficients 
! "N -> N/2+1 

! "N0 x N1 x … x Nn -> N0 x N1 x … x (Nn/2+1) 

! "For in-place transforms the input/output arrays need to be 
padded 

12 
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More on Transforms 

! " For 2D and 3D transforms, CUFFT performs transforms in row-

major  (C-order) 

! " If calling from FORTRAN or MATLAB, remember to change the order of 

size parameters during plan creation 

! " CUFFT performs un-normalized transforms: 

 IFFT(FFT(A))= length(A)*A 

! " CUFFT API is modeled after FFTW. Based on plans, that 

completely specify the optimal configuration to execute a 

particular size of FFT 

! " Once a plan is created, the library stores whatever state is 
needed to execute the plan multiple times without recomputing 

the configuration 

! "Works very well for CUFFT, because different kinds of FFTs 

require different thread configurations and GPU resources 

13 
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CUFFT Types and Definitions 

14 

! "cufftHandle 

! "Type used to store and access CUFFT plans 

! "cufftResults 

! "Enumeration of API function return values 

! "cufftReal 

! "single-precision, real datatype 

! "cufftComplex 

! "single-precision, complex datatype 

! "Real and complex transforms 

! "CUFFT_C2C, CUFFT_C2R, CUFFT_R2C 

! "Directions 

! "CUFFT_FORWARD, CUFFT_INVERSE 
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CUFFT code example: 

2D complex to complex transform 

#define NX 256!

#define NY 128!

cufftHandle plan;!

cufftComplex *idata, *odata;!

cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);!

cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);!

…!
/* Create a 2D FFT plan. */!

cufftPlan2d(&plan, NX, NY, CUFFT_C2C);!

 /* Use the CUFFT plan to transform the signal out of place. */!

cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);!

/* Inverse transform the signal in place. */!

cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);!

 /* Destroy the CUFFT plan. */!
cufftDestroy(plan);!

cudaFree(idata), cudaFree(odata);!

15 
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Single Precision CUFFT Performance 

16 
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Double Precision CUFFT Performance 

17 
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Accuracy and performance 

The CUFFT library implements several FFT algorithms, each with different 

performances and accuracy.  

The best performance paths correspond to transform sizes that: 

1.!  Fit in CUDA’a shared memory 
2.!  Are powers of a single factor (e.g. power-of-two) 

If only condition 1 is satisfied, CUFFT uses a more general mixed-radix 

factor algorithm that is slower and less accurate numerically. 

If none of the above conditions is satisfied, CUFFT uses an out-of-place, 
mixed-radix algorithm that stores all intermediate results in global GPU 

memory.  

One notable exception is for long 1D transforms, where CUFFT uses a 
distributed algorithm that performs 1D FFT using 2D FFT. 

CUFFT does not implement any specialized algorithms for real data, and 

so there is no direct performance benefit to using real to complex (or 
complex to real) plans instead of complex to complex. 
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NVPP 

19 

! "NVIDIA Performance Primitives 

! "Focuses on image and video processing 

! "Currently in Beta 

Face Detection 
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Fortran Integration 

! "Fortran-to-C calling conventions are not 

standardized and differ by platform and toolchain. 

! "Differences may include: 

! "symbol names (capitalization, name mangling) 

! "argument passing (by value or reference) 

! "passing of string arguments (length information) 

! "passing of pointer arguments (size of the pointer) 

! "returning floating-point or compound data types (for 

example, single-precision or complex data type) 
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Fortran-to-C example 

22 

call vectorAdd(a, b, c, n, stat)!

__global__void vectorAddKernel(double *a, double *b, double *c,!

                               int *n)!

{!

  int i = blockIdx.x*blockDim.x + threadIdx.x;!

  if (i < n) c[i] = a[i] + b[i];!

}!

extern “C” vectoradd_(double *a, double *b, double *c,!

                      int *n, int *stat)!

{!

  double *a_d, *b_d, *c_d;!

  . . .!

  vectorAddKernel<<< , >>>(a_d, b_d, c_d, *n);!

  . . .!

  *stat = cudaGetLastError();!

}!

Fortran 

C 
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Calling CUBLAS from FORTRAN 

! "CUBLAS provides wrapper functions (in the file 

fortran.c) that need to be compiled with the user 

preferred toolchain 

! "Providing source code allows users to make any 

changes necessary for a particular platform and 
toolchain. 
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CUBLAS Interfaces 

! "Thunking (define CUBLAS_USE_THUNKING when compiling fortran.c) 

! " Allows interfacing to existing applications without any changes 

! " During each call, the wrappers allocate GPU memory, copy source data from 
CPU memory space to GPU memory space, call CUBLAS, and finally copy back 
the results to CPU memory space and deallocate the GPU memory 

! " Intended for light testing due to data transfer and allocation/deallocation 
overhead 

! "Non-Thunking (default) 

! " Intended for production code 

! " Substitute device pointers for vector and matrix arguments in all BLAS functions 

! " Existing applications need to be modified slightly to: 

! "Allocate and deallocate data structures in GPU memory space (using 
CUBLAS_ALLOC and CUBLAS_FREE) 

! "Copy data  between GPU and CPU memory spaces (using 
CUBLAS_SET_VECTOR, CUBLAS_GET_VECTOR, 
CUBLAS_SET_MATRIX, and CUBLAS_GET_MATRIX) 
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SGEMM example (Thunking) 

! Define 3 single precision matrices A, B, C!

real, dimension(m1,m1):: A, B, C!

. . .!

! Initialize !

. . .!

#ifdef CUBLAS!

  ! Call SGEMM in CUBLAS library using Thunking interface (library takes care of !

  ! memory allocation on device and data movement)!

  call cublasSGEMM('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)!

#else!

  ! Call SGEMM in host BLAS library!

  call SGEMM('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)!

#endif!

To use the host BLAS routine: 
  g95 -O3 code.f90 -L/usr/local/lib -lblas!

To use the CUBLAS routine (fortran.c is provided by NVIDIA): 
  gcc -O3 -DCUBLAS_USE_THUNKING -I/usr/local/cuda/include  -c  fortran.c!
  g95 -O3 -DCUBLAS code.f90 fortran.o -L/usr/local/cuda/lib  -lcublas!
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SGEMM example (Non-Thunking) 
! Define 3 single precision matrices A, B, C!

real , dimension(m1,m1):: A, B, C!

integer :: devPtrA, devPtrB, devPtrC, size_of_real=4!

. . .!

! Initialize A, B, C !

! Allocate matrices on GPU!

cublasAlloc(m1*m1, size_of_real, devPtrA)!

cublasAlloc(m1*m1, size_of_real, devPtrB)!

cublasAlloc(m1*m1, size_of_real, devPtrC)!

! Copy data from CPU to GPU!

cublasSetMatrix(m1, m1, size_of_real, A, m1, devPtrA, m1)!

cublasSetMatrix(m1, m1, size_of_real, B, m1, devPtrB, m1)!

cublasSetMatrix(m1, m1, size_of_real, C, m1, devPtrC, m1)!

! Call SGEMM in CUBLAS library using Non-Thunking interface!

! (library is expecting data in GPU memory)!

call cublasSGEMM ('n','n',m1,m1,m1,alpha,devPtrA,m1,devPtrB,m1,beta,devPtrC,m1)!

! Copy data from GPU to CPU!

cublasGetMatrix(m1, m1, size_of_real, devPtrC, m1, C, m1)!

! Free memory on device!

cublasFree(devPtrA)!

. . .!
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Pinned memory for Fortran 

use iso_c_binding!

! The allocation is performed by C function calls. Define the C pointer as!

! type (C_PTR)!
type(C_PTR) :: cptr_A, cptr_B, cptr_C!

! Define Fortran arrays as pointer.!

real, dimension(:,:), pointer :: A, B, C!

! Allocate memory with cudaMallocHost. !
! The Fortan arrays, now defined as pointers, are then associated with the!

! C pointers using the new interoperability defined in iso_c_binding. This!

! is equivalent to allocate(A(m1,m1)) !

res = cudaMallocHost ( cptr_A, m1*m1*sizeof(fp_kind) )!

call c_f_pointer ( cptr_A, A, (/ m1, m1 /) )!

! Use A as usual.!

! See example code for cudaMallocHost interface code!

•" Pinned memory provides a fast PCI-e transfer speed and enables overlapping 

data transfer and kernel execution 
•" Allocation needs to be done with cudaMallocHost!

•" Use Fortran 2003 features for interoperability with C 

http://www.nvidia.com/object/cuda_programming_tools.html  
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Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly 
data transfers

Even low parallelism computations can sometimes be 
faster than transferring back and forth to host
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Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude
Global/Local device memory 

Optimize for spatial locality in cached texture 
memory

In shared memory, avoid high-degree bank conflicts
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Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data 
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing
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Use Parallelism Efficiently

Partition your computation to keep the GPU 
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor

Registers, shared memory
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10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double



© NVIDIA Corporation 2009 9

Execution Model

Software Hardware

Threads are executed by thread processors

Thread

Thread 
Processor

Thread 
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on 
one multiprocessor - limited by multiprocessor 
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at 
one time
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Warps and Half Warps

Thread 
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-
thread warps

A warp is executed physically in 
parallel (SIMD) on a 
multiprocessor

Device 
Memory

=

A half-warp of 16 threads can 
coordinate global memory 
accesses into a single 
transaction
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Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor
Registers

Shared Memory
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory

Constant and Texture 
Caches
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Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application
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Host-Device Data Transfers

Device to host memory bandwidth much lower than 
device to device bandwidth

8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 
280)

Minimize transfers
Intermediate data can be allocated, operated on, and 
deallocated without ever copying them to host memory

Group transfers
One large transfer much better than many small ones
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Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce 
overall system performance

Test your systems and apps to learn their limits
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Overlapping Data Transfers and 
Computation

Async and Stream APIs allow overlap of H2D or D2H 
data transfers with computation

CPU computation can overlap data transfers on all CUDA 
capable devices

Kernel computation can overlap data transfers on devices 
with “Concurrent copy and execution” (roughly compute 
capability >= 1.1)

Stream = sequence of operations that execute in 
order on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel 
launches
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Asynchronous Data Transfers 

Asynchronous host-device memory copy returns 
control immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream); 

requires pinned host memory (allocated with 
“cudaMallocHost”) 

Overlap CPU computation with data transfer
0 = default stream

cudaMemcpyAsync(a_d, a_h, size, 

cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a_d);

cpuFunction();
overlapped
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Overlapping kernel and data transfer

Requires:
“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls 
complete and cannot be overlapped

Example:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);
overlapped
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GPU/CPU Synchronization

Context based

cudaThreadSynchronize()
Blocks until all previously issued CUDA calls from a 
CPU thread complete

Stream based

cudaStreamSynchronize(stream)
Blocks until all CUDA calls issued to given stream 
complete

cudaStreamQuery(stream)
Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread
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GPU/CPU Synchronization

Stream based using events
Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded then GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing

cudaEventSynchronize(event)
Blocks until given event is recorded

cudaEventQuery(event)
Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread
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Zero copy

Access host memory directly from device code
Transfers are implicitly preformed as needed by device code

Introduced in CUDA 2.2

Check canMapHostMemory field of cudaDeviceProp 
variable

All set-up is done on host using mapped memory

cudaSetDeviceFlags(cudaDeviceMapHost);

...

cudaHostAlloc((void **)&a_h, nBytes, cudaHostAllocMapped);

cudaHostGetDevicePointer((void **)&a_d, (void *)a_h, 0);

for (i=0; i<N; i++) a_h[i] = i;

increment<<<grid, block>>>(a_d, N);

21
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Zero copy consideration

Integrated devices (that utilize CPU memory)
Zero copy is always a performance win

Check integrated field in cudaDeviceProp

Discrete devices
Data should be read/written from/to global memory only 
once

Data is not cached, each instance results in PCI-e transfer

Transactions should be coalesced

Potentially easier and faster alternative to using 
cudaMemcpyAsync

For example, can both read and write CPU memory from 
within one kernel

Note that current devices use pointers that are 32-
bit so there is a limit of 4GB per context
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Theoretical Bandwidth

Device Bandwidth of GTX 280

1107 * 10^6 *  (512 / 8) * 2 / 1024^3 =  131.9 GB/s

Specs report 141 GB/s 

Use 10^9 B/GB conversion rather than 1024^3

Whichever you use, be consistent

24

Memory
clock (Hz)

Memory
interface
(bytes)

DDR
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Effective Bandwidth

Effective Bandwidth (for copying array of N floats)

N * 4 B/element / 1024^3 * 2 / (time in secs) = GB/s

25

Array size
 (bytes)

Read and
write

B/GB
(or 10^9)
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Coalescing

Global Memory

Half-warp of threads

}  64B aligned segment (16 floats)

Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two) 
transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

Examples – float (32-bit) data

}128B aligned segment (32 floats)

27
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Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 
contiguous 128B segments for 128-bit words), not all threads need to 
participate

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions

28
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Coalescing
Compute capability 1.2 and higher

1 transaction - 64B segment

2 transactions - 64B and 32B segments 
1 transaction - 128B segment

Coalescing is achieved for any pattern of addresses that fits into a 
segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 
32- and 64-bit words

Smaller transactions may be issued to avoid wasted bandwidth due 
to unused words

29
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Coalescing Examples

30

Effective bandwidth of small kernels that copy data

Effects of offset and stride on performance

Two GPUs

GTX 280

Compute capability 1.3

Peak bandwidth of 141 GB/s

FX 5600

Compute capability 1.0

Peak bandwidth of 77 GB/s
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Coalescing Examples

31

__global__ void offsetCopy(float *odata, float* idata, 
                           int offset)
{
  int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
  odata[xid] = idata[xid];
}
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Coalescing Examples

32

__global__ void strideCopy(float *odata, float* idata, 
                           int stride)
{
  int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;
  odata[xid] = idata[xid];
}
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Coalescing Examples

33

Strided memory access is 
inherent in many 
multidimensional problems

Stride is generally large 
(>>18)

However ...

Strided access to global 
memory can be avoided using 
shared memory
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Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing



© NVIDIA Corporation 2009 36

Shared Memory Architecture

Many threads accessing memory
Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle
A memory can service as many simultaneous 
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict 

Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Addressing Examples

No Bank Conflicts

Linear addressing 
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Addressing Examples

2-way Bank Conflicts

Linear addressing 
stride == 2

8-way Bank Conflicts

Linear addressing 
stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank 
conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no 
bank conflict

If all threads of a half-warp read the identical address, there is no 
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the 
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank
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Shared Memory Example: Transpose

40

Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to 
global memory

idata odata

Elements transposed by a half-warp of threads
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Naïve Transpose

Loads are coalesced, stores are not (strided by 
height) 

41

idata odata

__global__ void transposeNaive(float *odata, float* idata, 
                               int width, int height)
{
  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

  int index_in  = xIndex + width * yIndex;
  int index_out = yIndex + height * xIndex;

  odata[index_out] = idata[index_in];
}
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Coalescing through shared memory

Access columns of a tile in shared memory to write 
contiguous data to global memory

Requires __syncthreads() since threads access 

data in shared memory stored by other threads

42

Elements transposed by a half-warp of threads

idata odata

tile



__global__ void transposeCoalesced(float *odata, float *idata,      
                                   int width, int height)
{
  __shared__ float tile[TILE_DIM][TILE_DIM];

  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;  
  int index_in = xIndex + (yIndex)*width;

  xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
  yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
  int index_out = xIndex + (yIndex)*height;

  tile[threadIdx.y][threadIdx.x] = idata[index_in];
  
  __syncthreads();
  
  odata[index_out] = tile[threadIdx.x][threadIdx.y];
}

© NVIDIA Corporation 2009

Coalescing through shared memory

43
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Bank Conflicts in Transpose

16x16 shared memory tile of floats
Data in columns are in the same bank

16-way bank conflict reading columns in tile  

Solution - pad shared memory array
__shared__ float tile[TILE_DIM][TILE_DIM+1];

Data in anti-diagonals are in same bank 

44

Elements transposed by a half-warp of threads

idata odata

tile
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Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering
Linear / bilinear / trilinear 
Dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object
Kernel reads data by calling a fetch function
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Texture Addressing

Wrap

Out-of-bounds coordinate is 
wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is 
replaced with the closest 
boundary

0    1    2    3    4

1

2

3

0
(5.5, 1.5)

0    1    2    3    4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

0    1    2    3    4

1

2

3

0
(5.5, 1.5)
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CUDA Texture Types

Bound to linear
Global memory address is bound to a texture
Only 1D
Integer addressing
No filtering or addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture
1D, 2D, or 3D
Float addressing (size-based or normalized)
Filtering
Addressing modes (clamping, repeat)

Bound to pitch linear (CUDA 2.2)
Global memory address is bound to a texture
2D 
Float/integer addressing, filtering, and clamp/repeat 
addressing modes similar to CUDA arrays
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CUDA Texturing Steps

Host (CPU) code:
Allocate/obtain memory (global linear/pitch linear, or 
CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:
Fetch using texture reference

Linear memory textures: tex1Dfetch()

Array textures: tex1D() or tex2D() or tex3D()

Pitch linear: tex2D()



© NVIDIA Corporation 2009

Texture Example

50

__global__ void 
shiftCopy(float *odata, 
          float *idata, 
          int shift)
{
  int xid = blockIdx.x * blockDim.x
          + threadIdx.x;
  odata[xid] = idata[xid+shift];
}

texture <float> texRef;

__global__ void 
textureShiftCopy(float *odata, 
                 float *idata, 
                 int shift)
{
  int xid = blockIdx.x * blockDim.x 
          + threadIdx.x;
  odata[xid] = tex1Dfetch(texRef, xid+shift);
}
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Occupancy

Thread instructions are executed sequentially, so 
executing other warps is the only way to hide 
latencies and keep the hardware busy

Occupancy = Number of warps running concurrently 
on a multiprocessor divided by maximum number of 
warps that can run concurrently

Limited by resource usage:
Registers

Shared memory
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Blocks per Grid Heuristics

# of blocks > # of multiprocessors
So all multiprocessors have at least one block to execute

# of blocks / # of multiprocessors > 2
Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the 
hardware busy

Subject to resource availability – registers, shared memory

# of blocks > 100 to scale to future devices
Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations
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Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios: CUDA:   PTX:

To completely hide the latency: 
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

Threads do not have to belong to the same thread block

add.f32   $f3, $f1, $f2

add.f32   $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32  $f3, [$r31+0] 

add.f32           $f3, $f3, $f4

s_data[0] += 3;
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Register Pressure

Hide latency by using more threads per 
multiprocessor

Limiting Factors:
Number of registers per kernel

8K/16K per multiprocessor, partitioned among concurrent 
threads

Amount of shared memory

16KB per multiprocessor, partitioned among concurrent 
threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow
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Occupancy Calculator
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Optimizing threads per block

Choose threads per block as a multiple of warp size
Avoid wasting computation on under-populated warps

Facilitates coalescing

More threads per block != higher occupancy
Granularity of allocation

Eg. compute capability 1.1 (max 768 threads/multiprocessor)

512 threads/block => 66% occupancy

256 threads/block can have 100% occupancy

Heuristics
Minimum: 64 threads per block

Only if multiple concurrent blocks 

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!
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Occupancy != Performance

Increasing occupancy does not necessarily increase 
performance

BUT…

Low-occupancy multiprocessors cannot adequately 
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available 
parallelism)
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Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
# of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and 
ATLAS)

“Experiment” mode discovers and saves optimal 
configuration
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CUDA Instruction Performance

Instruction cycles (per warp) = sum of
Operand read cycles

Instruction execution cycles

Result update cycles

Therefore instruction throughput depends on
Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
1.3 GHz on the Tesla C1060, for example
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Maximizing Instruction Throughput

Maximize use of high-bandwidth memory
Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

Optimize performance by overlapping memory 
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads
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Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-

bit int multiply

Integer divide and modulo are more expensive
Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor 
is a power of 2!

Useful trick: foo%n==foo&(n-1) if n is a power of 2
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Runtime Math Library

There are two types of runtime math operations in 
single precision

__funcf(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sinf(x), __expf(x), __powf(x,y)

funcf() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sinf(x), expf(x), powf(x,y)

The -use_fast_math compiler option forces every 

funcf() to compile to __funcf()
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GPU results may not match CPU

Many variables: hardware, compiler, optimization 
settings

CPU operations aren’t strictly limited to 0.5 ulp
Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!
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FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point 
addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially 
change the order of operations

Parallel results may not exactly match sequential 
results

This is not specific to GPU or CUDA – inherent part of 
parallel execution
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Control Flow Instructions

Main performance concern with branching is 
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a 
function of thread ID

Example with divergence: 
if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:
if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size
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Summary

GPU hardware can achieve great performance on 
data-parallel computations if you follow a few 
simple guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

Explore other memory spaces

Texture

Constant

Reduce bank conflicts
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Driver API 

! "Up to this point the host code we’ve seen has been from 
the runtime API 
! " Runtime API: cuda*() functions 

! " Driver API: cu*() functions 

! "Advantages: 
! " No dependency on runtime library 

! "More control over devices 

! "One CPU thread can control multiple GPUs 

! " No C extensions in host code, so you can use something other than 
the default host CPU compiler (e.g. icc, etc.) 

! " PTX Just-In-Time (JIT) compilation 

! "Parallel Thread eXecution (PTX) is our virtual ISA (more on this later) 

! "Disadvantages: 
! " No device emulation 

! " More verbose code 

! "Device code is identical whether you use the runtime or 
driver API 

2 
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Initialization and Device Management 

! "Must initialize with cuInit() before any other call 

! "Device management: 

int deviceCount;!
cuDeviceGetCount(&deviceCount);!
int device;!
for (int device = 0; device < deviceCount; ++device)!
{!
  CUdevice cuDevice;!
  cuDeviceGet(&cuDevice, device);!
  int major, minor;!
  cuDeviceComputeCapability(&major, &minor, cuDevice);!
}!

3 
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Context Management 

! "CUDA context analogous to CPU process 
! " Each context has its own address space 

! "Context created with cuCtxCreate()!

! "A host CPU thread can only have one context current at a 
time 

! "Each host CPU thread can have a stack of current contexts 

! "cuCtxPopCurrent() and cuCtxPushCurrent() can be 
used to detach and push a context to a new thread 

! "cuCtxAttach() and cuCtxDetach() increment and 
decrement the usage count and allow for interoperability of 
code in the same context (e.g. libraries) 

4 
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Module Management 

! "Modules are dynamically loadable pieces of device code, 
analogous to DLLs or shared libraries 

! "For example to load a module and get a handle to a kernel: 

! "A module may contain binaries (a .cubin file) or PTX code 
that will be Just-In-Time (JIT) compiled 

CUmodule cuModule;!
cuModuleLoad(&cuModule, “myModule.cubin”);!
CUfunction cuFunction;!
cuModuleGetFunction(&cuFunction, cuModule, “myKernel”); !

5 
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Execution control 

cuFuncSetBlockShape(cuFunction, blockWidth, blockHeight, 1);!
int offset = 0;!
int i;!
cuParamSeti(cuFunction, offset, i);!
offset += sizeof(i);!
float f;!
cuParamSetf(cuFunction, offset, f);!
offset += sizeof(f);!
char data[32];!
cuParamSetv(cuFunction, offset, (void*)data, sizeof(data));!
offset += sizeof(data);!
cuParamSetSize(cuFunction, offset);!
cuFuncSetSharedSize(cuFunction, numElements * sizeof(float));!
cuLaunchGrid(cuFunction, gridWidth, gridHeight);!

6 
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Memory management 

! "Linear memory is managed using cuMemAlloc() and 
cuMemFree()!

! "Synchronous copies between host and device 

CUdeviceptr devPtr;!
cuMemAlloc(&devPtr, 256 * sizeof(float)); !

cuMemcpyHtoD(devPtr, hostPtr, bytes);!
cuMemcpyDtoH(hostPtr, devPtr, bytes);!

7 
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Summary of Runtime and Driver API 

! "The runtime API is probably the best place to start for 
virtually all developers 

! "Easy to migrate to driver API if/when it is needed 

! "Anything which can be done in the runtime API can 
also be done in the driver API, but not vice versa (e.g. 
migrate a context) 

! "Much, much more information on both APIs in the 
CUDA Reference Manual 

8 
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OpenCL Objectives 

! "Open, royalty-free standard for heterogeneous 

parallel computing  

! "Applicable to CPUs, GPUs, Cell, etc. 

! "Cross-vendor software portability to a wide range of 

hardware 

! "Support for a wide diversity of applications 

! "From embedded and mobile software through consumer 
applications to HPC solutions 
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Timeline 

! "Six months from proposal to released specification 

! "Apple’s Mac OS X Snow Leopard will include 

OpenCL 

! "Multiple OpenCL implementations expected in the 

next 12 months 
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Design Requirements 

! "Use all computational resources in system  

! "Efficient C-based parallel programming model 

! "Abstract the specifics of underlying hardware 

! "Abstraction is low-level and high-performance but 

device-portable 

! "Approachable – but primarily targeted at expert developers 

! "Ecosystem foundation – no middleware or “convenience” 

functions 

! "Drive future hardware requirements 

! "Floating point precision requirements 

! "Applicable to both consumer and HPC applications 
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Anatomy 

! "Language Specification 
! "C-based cross-platform programming interface 

! "Subset of ISO C99 with language extensions 

! "Well-defined numerical accuracy 

! "JIT/Online or offline compilation and build of compute kernel 
executables 

! "Includes a rich set of built-in functions 

! "Platform Layer API 
! "A hardware abstraction layer over diverse computational resources 

! "Query, select and initialize compute devices 

! "Create compute contexts and work-queues 

! "Runtime API 
! "Execute compute kernels 

! "Manage scheduling, compute, and memory resources 
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Memory Model 

Compute Unit 1 

Private 
Memory 

Private 
Memory 

Work Item 1 Work Item M 

Compute Unit N 

Private 
Memory 

Private 
Memory 

Work Item 1 Work Item M 

Local Memory Local Memory 

Global / Constant Memory Data Cache 

Global Memory 

Compute Device Memory 

Compute Device 

PE PE PE PE 
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Decoder Ring 

Compute Unit 1 

Private 
Memory 

Private 
Memory 

Work Item 1 Work Item M 

Compute Unit N 

Private 
Memory 

Private 
Memory 

Work Item 1 Work Item M 

Local Memory Local Memory 

Global / Constant Memory Data Cache 

Global Memory 

Compute Device Memory 

Compute Device 

PE PE PE PE 

Multiprocessor 

Registers Registers 

Thread 

Processor 

Thread 

Processor 

Multiprocessor 

Registers Registers 

Thread 

Processor 

Thread 

Processor 

Shared Memory Shared Memory 

Global / Constant Memory Data Cache 

Global/Local Memory 

Compute Device Memory 

Compute Device 

CUDA C OpenCL 
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Kernel Execution 

! "Total number of work-items = Gx * Gy 

! "Size of each work-group = Sx * Sy 

! "Global ID can be computed from work-group ID and local ID 
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Basic Program Structure 

! "Host program 

! "Query compute devices 

! "Create contexts 

! "Create memory objects associated to contexts 

! "Compile and create kernel program objects 

! "Issue commands to command-queue 

! "Synchronization of commands 

! "Clean up OpenCL resources 

! "Kernels 

! "C code with some restrictions and extensions 

Platform Layer 

Runtime 

Language 
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Memory Objects 

! "Buffer objects 
! "1D collection of objects (like C arrays) 

! "Scalar types & Vector types, as well as user-defined Structures 

! "Buffer objects accessed via pointers in the kernel 

! "Image objects 
! "2D or 3D texture, frame-buffer, or images 

! "Must be addressed through built-in functions 

! "Sampler objects 
! "Describe how to sample an image in the kernel 

! "Addressing modes 

! "Filtering modes 
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Language Highlights 

! "Function qualifiers 

! "“__kernel” qualifier declares a function as a kernel 

! "Address space qualifiers 

! "__global, __local, __constant, __private 

! "Work-item functions 

! "Query work-item identifiers 

! "get_work_dim() 

! "get_global_id(), get_local_id(), get_group_id() 

! "Image functions 

! "Images must be accessed through built-in functions 

! "Reads/writes performed through sampler objects from host or 

defined in source 

! "Synchronization functions 

! "Barriers - all work-items within a work-group must execute the 

barrier function before any work-item can continue 



© NVIDIA Corporation 2008 

Optional Extensions 

! "Extensions are optional features exposed through OpenCL 

! "The OpenCL working group has already approved many 

extensions that are supported by the OpenCL specification: 

! "Double precision floating-point types 

! "Built-in functions to support doubles 

! "Atomic functions 

! "3D Image writes 

! "Byte addressable stores (write to pointers with 

     types < 32-bits) 

! "Built-in functions to support half types  
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Vector Addition Example 

! "Query compute devices 

! "Create Context and Queue 

! "Create memory objects associated to contexts 

! "Compile and create kernel program objects 

! "Issue commands to command-queue 

! "Synchronization of commands 

! "Clean up OpenCL resources 
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Kernel Code 

const char* cVectorAdd[ ] = !
{!
    "__kernel void VectorAdd(",!
    "    __global const float* a,",!
    "    __global const float* b,",!
    "    __global float* c)",!
    "{",!
    "        int iGID = get_global_id(0);",!
    "        c[iGID] = a[iGID] + b[iGID];",!
    "}"!
};!
const int SOURCE_NUM_LINES = sizeof(cVectorAdd)/sizeof(cVectorAdd[0]);!
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Declarations 

cl_context cxMainContext;       // OpenCL context!
cl_command_queue cqCommandQue;  // OpenCL command que!
cl_device_id* cdDevices;        // OpenCL device list    !
cl_program cpProgram;           // OpenCL program!
cl_kernel ckKernel;             // OpenCL kernel!
cl_mem cmMemObjs[3];            // OpenCL memory buffer objects!
cl_int ciErrNum = 0; ! !  //  Error code var!
size_t szGlobalWorkSize[1];     //  Global # of work items!
size_t szLocalWorkSize[1];      //  # of Work Items in Work Group!
size_t szParmDataBytes; !  //  byte length of parameter storage!
size_t szKernelLength; !  //  byte Length of kernel code!
int iTestN = 10000; ! !  //  Length of demo test vectors!
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Contexts and Queues 

// create the OpenCL context on a GPU device!
cxMainContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,!
                                        NULL, NULL, NULL);!

// get the list of GPU devices associated with context!
clGetContextInfo(cxMainContext, CL_CONTEXT_DEVICES, 0, NULL,!
                 &szParmDataBytes);!
cdDevices = (cl_device_id*) malloc(szParmDataBytes);!
clGetContextInfo(cxMainContext, CL_CONTEXT_DEVICES, szParmDataBytes,!
                 cdDevices, NULL);!

// create a command-queue!
cqCommandQue = clCreateCommandQueue (cxMainContext, cdDevices[0],!
                                     0, NULL);!
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Create Memory Objects 

// allocate the first source buffer memory object!
cmMemObjs[0] = clCreateBuffer (cxMainContext, !

! ! !CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, !
! ! !sizeof(cl_float) * iTestN, srcA, NULL);!

// allocate the second source buffer memory object!
cmMemObjs[1] = clCreateBuffer (cxMainContext, !

! ! !CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, !
! ! !sizeof(cl_float) * iTestN, srcB, NULL);!

// allocate the destination buffer memory object!
cmMemObjs[2] = clCreateBuffer (cxMainContext, CL_MEM_WRITE_ONLY, !

! ! !sizeof(cl_float) * iTestN, NULL, NULL);!
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Create Program and Kernel 

// create the program from OpenCL C source string array!
cpProgram = clCreateProgramWithSource (cxMainContext, SOURCE_NUM_LINES, !

! ! !                  cVectorAdd, NULL, &ciErrNum);!

// build the program!
ciErrNum = clBuildProgram (cpProgram, 0, NULL, NULL, NULL, NULL);!

// create the kernel!
ckKernel = clCreateKernel (cpProgram, "VectorAdd", &ciErrNum);!

// set the kernel argument values!
ciErrNum = clSetKernelArg (ckKernel, 0, sizeof(cl_mem),!
                           (void*)&cmMemObjs[0] );!
ciErrNum |= clSetKernelArg (ckKernel, 1, sizeof(cl_mem),!
                            (void*)&cmMemObjs[1] );!
ciErrNum |= clSetKernelArg (ckKernel, 2, sizeof(cl_mem),!
                            (void*)&cmMemObjs[2] );!
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Launch Kernel and Read Results 

// set work-item dimensions!
szGlobalWorkSize[0] = iTestN;!
szLocalWorkSize[0]= 1;!

// execute kernel!
ciErrNum = clEnqueueNDRangeKernel(cqCommandQue, ckKernel, 1, NULL,!
 ! ! ! !    szGlobalWorkSize, szLocalWorkSize, !

! ! !             0, NULL, NULL);!

// read output!
ciErrNum = clEnqueueReadBuffer(cqCommandQue, cmMemObjs[2], CL_TRUE,!
 ! ! ! ! 0, iTestN * sizeof(cl_float), dst,!
                               0, NULL, NULL);!
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Cleanup 

// release kernel, program, and memory objects!
DeleteMemobjs (cmMemObjs, 3);!
free (cdDevices);!
clReleaseKernel (ckKernel);!
clReleaseProgram (cpProgram);!
clReleaseCommandQueue (cqCommandQue);!
clReleaseContext (cxMainContext);!



Multi-GPU 
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Why Multi-GPU Programming? 

! "Many systems contain multiple GPUs: 

! "Servers (Tesla/Quadro servers and desksides) 

! "Desktops (2- and 3-way SLI desktops, GX2 boards) 

! "Laptops (hybrid SLI) 

! "Additional processing power 

! "Increasing processing throughput 

! "Additional memory 

! "Some problems do not fit within a single GPU memory 

2 
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Multi-GPU Memory 

! "GPUs do not share global memory 

! "One GPU cannot access another GPUs memory directly 

! "Inter-GPU communication 

! "Application code is responsible for moving data between 
GPUs 

! "Data travels across the PCIe bus 

! "Even when GPUs are connected to the same PCIe switch 

3 
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CPU-GPU Context 

! "A CPU-GPU context must be established before 

calls are issued to the GPU 

! "CUDA resources are allocated per context 

! "A context is established by: 

! "The first CUDA call that changes state 

! "cudaMalloc, cudaMemcpy, kernel launch, ... 

! " On device 0, unless there is a cudaSetDevice(...) call 

! "A context is destroyed by one of: 

! "Explicit cudaThreadExit() call 

! "Host thread terminating 

4 
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Run-Time API Device Management: 

! "A host thread can maintain one context at a time 

! "GPU is part of the context and cannot be changed once a 

context is established 

! "Need as many host threads as GPUs 

! "Note that multiple host threads can establish contexts 

with the same GPU 

! "Driver handles time-sharing and resource partitioning 

! "GPUs have consecutive integer IDs, starting with 0 

! "Device management calls: 

! "cudaGetDeviceCount( int *num_devices ) 

! "cudaSetDevice( int device_id ) 

! "cudaGetDevice( int *current_device_id ) 

! "cudaThreadExit( ) 

5 
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Choosing a Device 

! "Properties for a given device can be queried 

! "No context is necessary or is created 

! "cudaGetDeviceProperties(cudaDeviceProp *properties, int 
device_id) 

! "This is useful when a system contains different GPUs 

! "Default behavior: 

! "Device 0 is chosen when no explicit cudaSetDevice is 

called 

! "Note this will cause multiple contexts with the same GPU 

! "Except when driver is in the exclusive mode (details later) 

6 
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Ensuring One Context Per GPU 

! "Two ways to achieve: 

! "Application-control 

! "Driver-control 

! "Application-control: 

! "Host threads negotiate which GPUs to use 

! "For example, OpenMP threads set device based on 

OpenMPI thread ID 

! "Pitfall: different applications are not aware of each other’s 

GPU usage 

7 
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Driver-control (Exclusive Mode) 

! "To use exclusive mode: 

! "Driver: set the GPU to exclusive mode using SMI 

! "SMI (System Management Tool) is provided with Linux 

drivers 

! "Application: do not explicitly set the GPU in the 

application 

! "Behavior: 

! "Driver will implicitly set a GPU with no contexts 

! "Implicit context creation will fail if all GPUs have contexts 

! "The first state-changing CUDA call will fail and return an 

error 

! "Device mode can be checked by querying its 

properties 

8 
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Inter-GPU Communication 

! "Application is responsible for moving data between 

GPUs: 

! "Copy data from GPU to host thread A 

! "Copy data from host thread A to host thread B 

! "Use any CPU library (MPI, ...) 

! "Copy data from host thread B to its GPU 

! "Use asynchronous memcopies to overlap kernel 

execution with data copies 

! "Lightweight host threads (OpenMP, pthreads) can 

reduce host-side copies by sharing pinned memory 

! "Allocate with cudaHostAlloc(...) 

9 
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Performance Example: 3DFD 

! "Fixed x and y dimensions, varying z 

! "Data is partitioned among GPUs along z 
! "Computation increases with z, communication stays 

constant 

10 
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Performance Example: 3DFD 

! "Single GPU performance is 3,000 MPoints/s 

! "Note that 8x scaling is sustained at z > 1,300 

! "Exactly where computation exceeds communication 

11 


