Exploiting and Introducing Parallelism for Efficient Object Detection

Mario Fritz
Rodrigo Benenson
Today

- Overview of techniques that make detection fast
- Exercise will be about optimizing already working pedestrian detector (1Hz -> 50Hz)
- First overview of recent success stories
Main tricks you should know of

- integral images -> fast feature computation
- sliding window detection -> parallelism
- boosted classifier -> cascade
- sparselets -> sharing of computation for multi class
- efficient search over scale -> Rodrigo
Recent Success Stories
Real-Time Human Pose Recognition in Parts from Single Depth Images (XBox Kinect Post Estimation) [Shotton] (best paper)

Figure 1. **Overview.** From an single input depth image, a per-pixel body part distribution is inferred. (Colors indicate the most likely part labels at each pixel, and correspond in the joint proposals). Local modes of this signal are estimated to give high-quality proposals for the 3D locations of body joints, even for multiple users.

Figure 2. **Synthetic and real data.** Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.
ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever
Geoffrey Hinton

University of Toronto
Canada

Paper with same name to appear in NIPS 2012
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

The second convolutional layer takes as input the (response-normalized and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5×5×48.

The third, fourth, and fifth convolutional layers are connected to one another without any intervening pooling or normalization layers. The third convolutional layer has 384 kernels of size 3×3×256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth convolutional layer has 384 kernels of size 3×3×192, and the fifth convolutional layer has 256 kernels of size 3×3×192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC make each training example impose 10 bits of constraint on the mapping from image to label, this turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms of data augmentation, both of which allow transformed images to be produced from the original images with very little computation, so the transformed images do not need to be stored on disk. In our implementation, the transformed images are generated in Python code on the CPU while the GPU is training on the previous batch of images. So these data augmentation schemes are, in effect, computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflections. We do this by extracting random 224×224 patches (and their horizontal reflections) from the 256×256 images and training our network on these extracted patches. This increases the size of our training set by a factor of 2048, though the resulting training examples are, of course, highly interdependent. Without this scheme, our network suffers from substantial overfitting, which would have forced us to use much smaller networks. At test time, the network makes a prediction by extracting five 224×224 patches (the four corner patches and the center patch) as well as their horizontal reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in training images. Specifically, we perform PCA on the set of RGB pixel values throughout the ImageNet training set. To each training image, we add multiples of the found principal components.

This is the reason why the input images in Figure 2 are 224×224×3-dimensional.

- Convolutional Network with 60 Million parameters
- Trained on RGB raw pixels (-mean)
- 15 % error on ImageNet challenge ... 10% lower than anybody else
Pedestrian detection at 100 frames per second (in the exercise)
Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool

Figure 1: Example result on the Bahnhof sequence. Green line indicates the stixels bottom, blue line the stixels top and the red boxes are the obtained detections.

Detector aspect	Relative speed	Absolute speed
Baseline detector (§2) | 1× | 1.38 Hz
+Single scale detector (§3) | 2× | 2.68 Hz
+Soft-cascade (§4) | 20× | 50 Hz
+Estimated ground plane (§5) | 2× | 100 Hz
+Estimated stixels (§5) | 1.35× | 135 Hz
Our monocular detector | - | 50 Hz
Our stereo (stixels) detector | - | 135 Hz

N models, 1 image scale
(a) Naive approach

1 model, N image scales
(b) Traditional approach

1 model, \(N/\kappa\) image scales
(c) FPDW approach

\(N/\kappa\) models, 1 image scale
(d) Our approach
Sliding Window Methods - Overview

- Sliding Window Based People Detection:

 Two Important Questions:
 1) which feature vector
 2) which classifier

 Today:
 - Viola Jones Face Detector
 - Haar Features
 - Boosting (cascade)
 - HOG Pedestrian Detector
 - HOG descriptor
 - linear SVM

 ‘slide’ detection window over all positions & scales
Rapid Object Detection Using a Boosted Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL
The Classical Face Detection Process

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Classifier is Learned from Labeled Data

- Training Data
 - 5000 faces
 - All frontal
 - 10^8 non faces
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose (rotation both in plane and out)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
What is novel about this approach?

• Feature set (… is huge about 16,000,000 features)
• Efficient feature selection using AdaBoost
• New image representation: Integral Image
• Cascaded Classifier for rapid detection
 – Hierarchy of Attentional Filters

The combination of these ideas yields the fastest known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
“Rectangle filters”

Similar to Haar wavelets

Differences between sums of pixels in adjacent rectangles

\[h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases} \]

\[160,000 \times 100 = 16,000,000 \]

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Integral Image

• Define the Integral Image

\[I'(x, y) = \sum_{x' \leq x} \sum_{y' \leq y} I(x', y') \]

• Any rectangular sum can be computed in constant time:

\[D = 1 + 4 - (2 + 3) = A + (A + B + C + D) - (A + C + A + B) = D \]

• Rectangle features can be computed as differences between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Huge “Library” of Filters

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Constructing Classifiers

• Perceptron yields a sufficiently powerful classifier

\[C(x) = \theta \left(\sum_i \alpha_i h_i(x) + b \right) \]

• Use AdaBoost to efficiently choose best features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost
(Freund & Shapire ’95)

\[f(x) = \theta \left(\sum_t \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{\text{error}_t}{1 - \text{error}_t} \right) \]

Initial uniform weight on training examples

Incorrect classifications re-weighted more heavily

Final classifier is weighted combination of weak classifiers

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost (Freund & Shapire 95)

• Given examples \((x_1, y_1), \ldots, (x_N, y_N)\) where \(y_i = 0, 1\) for negative and positive examples respectively.
• Initialize weights \(w_{t=1,i} = 1/N\)

• For \(t=1, \ldots, T\)
 • Normalize the weights, \(w_{t,i} = w_{t,i} / \sum_{j=1}^{N} w_{t,j}\)
 • Find a weak learner, i.e. a hypothesis, \(h_t(x)\) with weighted error less than .5
 • Calculate the error of \(h_t: e_t = \sum w_{t,i} | h_t(x_i) - y_i |\)
 • Update the weights: \(w_{t,i} = w_{t,i} B_t^{(1-d_i)}\) where \(B_t = e_t / (1 - e_t)\) and \(d_i = 0\) if example \(x_i\) is classified correctly, \(d_i = 1\) otherwise.

• The final strong classifier is

\[
h(x) = \begin{cases}
1 & \text{if } \sum_{t=1}^{T} \alpha_t h_t(x) > 0.5 \sum_{t=1}^{T} \alpha_t \\
0 & \text{otherwise}
\end{cases}
\]

where \(\alpha_t = \log(1 / B_t)\)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost for Efficient Feature Selection

• Our Features = Weak Classifiers
• For each round of boosting:
 – Evaluate each rectangle filter on each example
 – Sort examples by filter values
 – Select best threshold for each filter (min error)
 • Sorted list can be quickly scanned for the optimal threshold
 – Select best filter/threshold combination
 – Weight on this feature is a simple function of error rate
 – Reweight examples
 – (There are many tricks to make this more efficient.)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084 false positives.

Not quite competitive...

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Trading Speed for Accuracy

- Given a nested set of classifier hypothesis classes

- Computational Risk Minimization

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Experiment: Simple Cascaded Classifier

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
• A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.

• A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 – using data from previous stage.

• A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
A Real-time Face Detection System

Training faces: 4916 face images (24 x 24 pixels) plus vertical flips for a total of 9832 faces

Training non-faces: 350 million sub-windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10, 25, 25, 50, 50, 50, 75, 100, …, 200, …

Final classifier contains 6061 features.
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with 507 faces and about 75 million sub-windows.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Comparison to Other Systems

<table>
<thead>
<tr>
<th>False Detections</th>
<th>10</th>
<th>31</th>
<th>50</th>
<th>65</th>
<th>78</th>
<th>95</th>
<th>110</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola-Jones</td>
<td>76.1</td>
<td>88.4</td>
<td>91.4</td>
<td>92.0</td>
<td>92.1</td>
<td>92.9</td>
<td>93.1</td>
<td>93.9</td>
</tr>
<tr>
<td>Viola-Jones</td>
<td>81.1</td>
<td>89.7</td>
<td>92.1</td>
<td>93.1</td>
<td>93.1</td>
<td>93.2</td>
<td>93.7</td>
<td>93.7</td>
</tr>
<tr>
<td>Viola-Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(voting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowley-Baluja-</td>
<td>83.2</td>
<td>86.0</td>
<td></td>
<td></td>
<td></td>
<td>89.2</td>
<td>90.1</td>
<td></td>
</tr>
<tr>
<td>Kanade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneiderman-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Speed of Face Detector

Speed is proportional to the average number of features computed per sub-window.

On the MIT+CMU test set, an average of 9 features out of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image takes about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
More Examples

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Conclusions

• We [they] have developed the fastest known face detector for gray scale images

• Three contributions with broad applicability
 – Cascaded classifier yields rapid classification
 – AdaBoost as an extremely efficient feature selector
 – Rectangle Features + Integral Image can be used for rapid image analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Viola Jones Detector

• try it out
 ▸ implementations available, e.g. opencv
 ▸ works in real-time on reasonable image sizes
HOG Pedestrian Detector
Goals & Applications of HOG

- **Original Goal:**
 - Detect and Localize people in Images and Videos

- **Applications:**
 - Images, films & multi-media analysis
 - Pedestrian detection for autonomous cars
 - Visual surveillance, behavior analysis
Difficulties of People / Object Detection

• Some of the Difficulties
 ‣ Wide variety of articulated poses
 ‣ Variable appearance and clothing
 ‣ Complex backgrounds
 ‣ Unconstrained illumination
 ‣ Occlusions, different scales
 ‣ Videos sequences involves motion of the subject, the camera and the objects in the background

• Main assumption for HOG: upright fully visible people
Sliding Window Methods - Overview

- Sliding Window Based People Detection:

 Two Important Questions:
 1) which feature vector
 2) which classifier

Today:
- Viola Jones Face Detector
 - Haar Features
 - Boosting (cascade)
- HOG Pedestrian Detector
 - HOG descriptor
 - linear SVM
HOG: Static Feature Extraction

Input Image

Detection Window

- Normalise gamma
- Compute gradients
- Weighted vote in spatial & orientation cells
- Contrast normalise over overlapping spatial cells
- Collect HOGs over detection window
- Linear SVM

Feature vector $f = [\ldots, \ldots, \ldots]$
Overview of Learning

Bootstrapping:
Retraining reduces false positives by an order of magnitude!
Sparselet Model for Efficient Multiclass Object Detection

Hyun-Oh Song1, Stefan Zickler2, Tim Althoff1, Ross Girshick3, Christopher Geyer2, Mario Fritz4, Pedro Felzenszwalb5, Trevor Darrell1

1 UC Berkeley 2 iRobot 3 UChicago 4 MPI 5 Brown
Motivation

- Deformable Part Model [Felzenszwalb] and variants still one of the strongest detectors
- Not particularly fast
 - Lots of parts & convolutions
 - Detectors evaluated in isolation
- Goal:
 - intermediate representation that shares computation across classes
 - leverage power of GPUs by parallel execution
 - realize different performance-speed-tradeoffs
 - Explore offline setting (post-hoc detection)
Deformable Part Model: The Big Picture

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed at different resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root location. We show the responses and transformed responses for the "head" and "right shoulder" parts. Note how the "head" filter is more discriminative. The combined scores clearly show two good hypotheses for the object at this scale.
Main Idea

- Intermediate Representation that allows to share computation between parts
- True part responses can be reconstructed from a sparse subset of the basis
- General concept: exploit redundancy when doing lots of convolutions

Fig. 1: Top: System concept. Middle row: example bicycle detection and true part filter convolution response for the wheel part from the bicycle model. Bottom row: reconstructed responses from SVD and sparselets respectively using 20 bases. Our method still maintains the specificity of the part (high response at the wheel) while SVD reconstruction fails to maintain the sharpness. Best viewed in color.

Pre-processing

Reconstruction

Experimentally, we evaluate our methods using the PASCAL VOC, ImageNet, and TRECVID MED datasets: we show 1) real-time performance on PASCAL VOC using 20 categories on a laptop computer, 2) that a sparselet
Main Idea

- Reconstruction and convolutions are carried out in parallel on GPU
Sparselets: Sparse Representation for Part Filters

\[
\min_{\alpha_{i,j}, Z_j} \sum_{i=1}^{N} \left\| P_i - \sum_{j=1}^{J} \alpha_{i,j} Z_j \right\|_2^2
\]

subject to
\[
\left\| \alpha_i \right\|_0 \leq \epsilon \quad \forall i = 1, \ldots, N
\]
\[
\left\| Z_j \right\|_2^2 \leq 1 \quad \forall j = 1, \ldots, J
\]

- part filters: \(P_i \in \mathbb{R}^{p \times p \times h} \)
- activations: \(\alpha_i \in \mathbb{R}^J \)
- sparselet: \(Z_j \in \mathbb{R}^{p \times p \times h} \)
- maximum number of activations \(\epsilon \)
Sparselets: Sparse Representation for Part Filters

- Reconstruction of filter responses from sparselet filters

\[
\Psi * P_i = \Psi * \left(\sum_j \alpha_{ij} D_j \right) = \sum_j \alpha_{ij} (\Psi * D_j)
\]

- Efficient sparse matrix multiplication

\[
\begin{bmatrix}
-\Psi * P_1 - \\
-\Psi * P_2 - \\
\vdots \\
-\Psi * P_n - \\
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n \\
\end{bmatrix}
= A M
\]

- Reconstructed DPM score

\[
\text{score}_{\text{recon}}(\omega) = m_0(\omega) + \sum_{i=1}^{N} \max_{\delta} s_i(\omega + \delta) - d_i(\delta)
\]

where

\[
s_i(\omega) = \sum_{j=1}^{D} \alpha_{ij} (\Psi(\omega) * D_j).
\]
Speedup

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#filters</th>
<th>#features</th>
<th>Patch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online scenario</td>
<td>(Nhp^2)</td>
<td>(N)</td>
<td>(hp)</td>
</tr>
<tr>
<td>Traditional</td>
<td>(Dhp^2) + (N\mathbb{E}[|\alpha_i|_0])</td>
<td>(N)</td>
<td>(hp)</td>
</tr>
<tr>
<td>Sparselet</td>
<td>(Dhp^2) + (N\mathbb{E}[|\alpha_i|_0])</td>
<td>(N)</td>
<td>(hp)</td>
</tr>
<tr>
<td>Offline/posthoc scenario</td>
<td>(\frac{hp^2}{\mathbb{E}[|\alpha_i|_0]})</td>
<td>(N)</td>
<td>(hp)</td>
</tr>
</tbody>
</table>

- **Example:**
 - 6x6 part, average activation of 20 at least 10x speedup
Speed Ups

- 640x480 resolution
- 60 classes obtained by repetition of VOC
- dashed extrapolation

Method

- method can realize different trade-offs by choosing number of basis and reconstruction quality
- orange: posthoc, retrieval setting
- 25x for online; 35x for offline
Generalization Performance

- averaged AP performance vs. number of coefficients
- training dictionary on PASCAL; learn and test on ImageNet

(a) 20 PASCAL categories
(b) 9 PASCAL categories
(c) 9 ImageNet categories

Fig. 4: Results on held-out evaluation on PASCAL VOC2007 [19] and ImageNet [21] dataset. Y-axes show class averaged AP. X-axes represent number of bases used in reconstruction for SVD and sparselets. Red and purple line means original cascade and nearest neighbor of parts reconstruction. Orange and cyan show sparselet and SVD reconstruction respectively.
Generalization to New Classes: Retrieval Setting

pre-processing

PASCAL

DPM_car

DPM_horse

\[
\text{part model dictionary}
\]

image database

\[
\ast
\]

intermediate representation

reconstruct

decompose

query time

TRECVID MED

jeep detections

DPM_jeep

IMAGENET

Don't Look Back: Post-hoc Category Detection via Sparse Reconstruction
Final Experiment

- PASCAL -> Dictionary
- Imagenet -> Object Classes
- Detection on TRECVID
- Precompute Representation
- 35x speedup with GPU

TRECVID dataset

manually selected object classes related to events: sailboat, bread, cake, candle, fish, goat, jeep, scissors, and tire
Demo
Conclusion

• General formulation to share computation and exploit correlations

• Total detection speedup up to 25x

• PASCAL VOC detection in real-time

• Offline-retrieval task up to 35x speedup
Rodrigo Benenson
100 classifiers to detect a single class

Rodrigo Benenson
Part III
50 classifiers are faster than 1
Third version: detector is the bottleneck

Milliseconds per frame
INRIA dataset

fastHOG
~10 Hz on GPU
[Viola & Jones 2004]

Parts Model
[Felzenszwalb 2008]

ChnFtrs/FPDW
~5 Hz on CPU
[Dollar 2009+2010]
EXPLAIN HOW CHNFTRS WORK (versus HOG)
mention speed on GPU: ~3 Hz
score = w_1 \cdot h_1 +
\[\text{score} = w_1 \cdot h_1 + w_2 \cdot h_2 + \]
score = \sum_{n=1}^{N} \left(w_n \cdot h_n \right)

[ChnFtrs, Dollar et al. 2009]

(\sim 3 \text{ Hz on GPU})
What slows down fastHOG?

[Prisacariu and Reid 2009]
How to make
features computation
 faster?
One template cannot detect at multiple scales
Traditionally, features are computed many times ~50 scales
Traditionally, features are computed many times ~50 scales
We invert the relation

1 model, 50 image scales

50 models, 1 image scale
Training one model per scale is too expensive

~50 scales
We propose a method to reduce training time 10x

5 models, 1 image scale ≈ 50 models, 1 image scale
Features can be approximated across scales

≈ 5 scales ≈ 50 scales

[Dollar et al. 2010]
We transfer test time computation to training time

1 model, 5 image scales

5 models, 1 image scale

(3x reduction in features computation)
At runtime, we use as many models as scales

5 models, 1 image scale ≈ 50 models, 1 image scale
Detecting without resizing provides quality.
Detecting without resizing provides speed

Monocular 50 Hz

Stereo with stixels 160 Hz, 80 Hz on laptop
ETH's dataset results have less variance than INRIA's.
Tasks for the exercise

- Take version 0 of Rodrigos code and optimize
- This should roughly take you from 1Hz to 50Hz
- Note that there is a license on the code!

- Current code is cmake & linux
- Compiling on win might be tricky
- If you have an MPI or IMPRS account
 - you can use one of our GPU machines (ruegen, ganymede (open))
- If there is no way for you - tell us and we try to get you an account
Tasks for the exercise

• figure out right number of threads
 ▸ nvcc compiler flag --ptxas-options=-v

• implement cascade
• parallelize execution over scales
• pre-read all 3 decision values for tree stump
• experiment with texture and global memory (in the code)
• look into additional optimizations
• extra points for fixing exception at the end of code ;)
• vary stride

• always check output (detections)