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Abstract 

A major challenge in indexing unstructured hypertext data- 
bases is to automatically extract meta-data that enables 
structured search using topic taxonomies, circumvents key- 
word ambiguity, and improves the quality of search and 
profile-based routing and filtering. Therefore, an accurate 
classifier is an essential component of a hypertext database. 
Hyperlinks pose new problems not addressed in the exten- 
sive text classification literature. Links clearly contain high- 
quality semantic clues that are lost upon a purely term- 
based classifier, but exploiting link information is non-trivial 
because it is noisy. Naive use of terms in the link neigh- 
borhood of a document can even degrade accuracy. Our 
contribution is to propose robust statistical models and a 
relmation labeling technique for better classification by ex- 
ploiting link information in a small neighborhood around 
documents. Our technique also adapts gracefully to the 
fraction of neighboring documents having known topics. We 
experimented with pre-classified samples from Yahoo!’ and 
the US Patent Database2. In previous work, we developed a 
text classifier that misclassified only 13% of the documents 
in the well-known Reuters benchmark; this was comparable 
to the best results ever obtained. This classifier misclassified 
36% of the patents, indicating that classifying hypertext can 
be more difficult than classifying text. Naively using terms 
in neighboring documents increased error to 38%; our hy- 
pertext classifier reduced it to 21%. Results with the Yahoo! 
sample were more dramatic: the text classifier showed 68% 
error, whereas our hypertext classifier reduced this to only 
21%. 

1 Introduction 

Automatic identification of topics for unstructured docu- 
ments, also called supervised classijication or supervised cat- 
egorization, is an important operation for text databases. 
Topic identifiers constitute structured meta-data that can 
be used to index a text database. Such structuring helps 
circumvent keyword ambiguity and improves the quality of 
ad-hoc searching and browsing [4, 5, 12, 161 as well as profile- 
based routing of documents as in the so-called “push” or 
filtering services. 

Topic identification is one example of extracting struc- 
tured information from a semi-structured or unstructured 
source. This is becoming increasingly important as the web 
is expanding, search engines are proliferating, and text and 
hypertext are becoming standard data types supported by 
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most modern databases and extenders. Apart from answer- 
ing specific queries, which we call the retrieval problem, 
many text databases provide support for unsupervised and 
supervised categorization. The former we call clustering; the 
latter we call class$cation. In this paper we deal exclusively 
with the classification problem. A classifier is first provided 
a topic set (which may be flat or hierarchical) with sample 
training documents for each topic. Using these, the classifier 
learns the topics. Later, presented with new documents, it 
fmds the best matching topics. 

Text classification has been extensively researched in IR, 
but large-scale experiments have been largely restricted to 
homogeneous corpora, e.g., a set of financial articles from 
newspapers and magazines (e.g., TRECS and Reuters4), med- 
ical documents (MEDLINE6), etc. The vocabulary is coher- 
ent and the quality of authorship is high. For the Reuters 
dataset, classifiers based on rule induction or feature selec- 
tion classify 80% to 87% of the documents correctly [2,4, 381. 

The problem: Hypertext in general and the Web in partic- 
ular encourage diverse authorship, navigational and citation 
links, and short, fragmented documents whose topics can be 
determined only in the broader context of the local region 
of the link graph. Similar comments are valid for email and 
newsgroup articles, since references to earlier emails or post- 
ings can be considered as citations. The issue of classifica- 
tion based on non-local features (i.e. attributes not directly 
included in the document being classified) also looms large 
in other hyperlinked corpora, such as patents and academic 
publications and their citation graphs. 

Hypertext poses new challenges to automatic classifiers. 
This was evident from our early experiments (described later 
in detail). The same classifier that was 87% accurate for 
Reuters, tested on a sample of patents, correctly classified 
only 64% [4]. On a sample from Yahoo! the performance 
was even poorer: only 32% of the documents were classified 
correctly. This is comparable to a recent study by Sahami on 
a similar sample from Yahoo using a more detailed learning 
program that used Bayesian nets [18, 301. 

The text classifier performed poorly because web docu- 
ments are extremely diverse, featuring home pages, topical 
resource lists, hierarchical HTML documents generated au- 
tomatically from I4TEX, active pages with scripts and links, 
etc. Even within a broad area there is little consistency in 
vocabulary. Many web documents are very short, serving 
merely as a list of resource links. In the patent database, 
patents in the same class may have diverse authorship across 
time and assignees. 

Our contribution: This paper explores new ways in which 
information latent in hyperlinks can be exposed to a suit- 
ably designed classifier, so that the judgment of topic is 
based on information that is both local and non-local to 
the document. The end result is a hypertext classifier that 

3http://trec.nist.gov/data/docs~eng.html 
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achieves significantly improved accuracy at a moderate com- 
putational overhead. 

This is the hrst topic classification system known to us 
that combines textual and linkage features into a general 
statistical model to infer the topic of interlinked documents. 
(In $5, we will comment on the superficial similarity with a 
large body of work on hypertext retrievcal[8, 14, 22, 361 and 
discuss how both our problem and technique are essentially 
different.) 

Our exploration starts with an obvious idea for exploiting 
links commonly found in the aforesaid retrievel literature: 
including the text of a document’s neighbors (documents 
that cite or are cited by it) into it as if they were local 
terms and then running a classifier on this resulting pseudo- 
document. In our experiments with patents and Yahoo!, 
absorbing neighbor text performs Worse than classification 
based on local terms alone. One reason is that links from 
many pages point to pages from a diverse set of topics. There 
is significant linkage between related topics among patents, 
e.g. patents on voltage regulators refer frequently to those 
on electrical transmission, patents on frequency modulators 
cite those on oscillators, etc. Worse scenarios are seen on 
the web, often with completely unrelated topics, e.g., web 
pages of extremely diverse topics link to Netscape or “Free 
Speech Online.” 

Thus, link information is noisy, and consequently, the 
naive approach from retrieval research does not work reli- 
ably. Analysis of the failures leads us to a more general 
model for thinking about non-local features. It becomes 
clear that the topics of neighboring documents, and not nec- 
essarily their terms, determine linking behavior. Therefore, 
rather than directly use terms from the neighborhood, we 
develop a more elaborate model of hypertext in which the 
topic of a document determines (in a noisy way) the text in 
it as well as its propensity to link to documents from a set 
of related topics. 

If the topics, or classes, of all neighbors of the test docu- 
ment (that which is being classified) are known, this gives a 
simple classifier that is more accurate than text-based clas- 
sifiers. The more likely situation is that only a fraction 
of the documents in the test document’s neighborhood are 
pre-classified. Cur model above leads to a circularity in that 
case. Fortunately, a wealth of literature in Markov Random 
Field Theory [17, 28, 91 enables us to design an iterative 
algorithm that initiahy guesses the classes based on text 
alone, then updates them iteratively. The class assignment 
is guaranteed to converge if initiated sufficiently close to 8 
“consistent” configuration. 

Small neighborhoods, such as of radius l-2 links around 
the test document, appear adequate for significant improve- 
ments beyond text-based classifiers. For the patent corpus 
(which is already authored consistently) the new method 
cuts down classification error from 36% to 21%, a reduc- 
tion of 42%. The improvement for the Yahoo! corpus is 
more dramatic: text-based classification errs about 68% of 
the time, whereas our method has only 21% error, a reduc- 
tion of 70%. Combined with the fact that there are over 
2 million patents and 100 million web pages, our work rep- 
resents a significant step forward in robustness. Our method 
81SO shows a graceful variation of accuracy as the fraction of 
documents whose classes are pre-specified changes. The re- 
laxation scheme enhances accuracy even when no document 
in the neighborhood has a pre-specified class! 

Organization of the paper: In $2 we start with the basics 
of fast text classification, data structures, algorithms, and 
design decisions. Then we introduce the complications ofhy- 
perlinks, and show how simplistic ideas of dealing with these 

Figure 1: Taxonomies used in our experiments. 

complications fail. 83 and $4 are the key sections where we 
develop our models and algorithms. Experimental evalua- 
tion is included in these sections to present a progression of 
ideas and resulting improvements. We review related work 
in $5 and conclude in $6. 

2 Hypertext classification basics 

In traditional text classification, the object being classified 
is a self-contained document. A document is a sequence of 
terms. Here and elsewhere we will ignore sectioning and for- 
matting cues. During training, documents are supplied to 
the classifier with attached preassigned classes. The clas- 
sifier develops models for the classes, a process also cahed 
learning. During testing, the classifier must assign classes 
to previously unseen documents. 

This section has three parts. In the first part we describe 
our data sets. In the second part we will review pure text- 
based classification. We will describe the basic classification 
engine, the statistics that are collected, and how these are 
used to infer topics for new documents. In the third part we 
will discuss the essential complication that hypertext brings 
into the previous setup. A hypertext document is not self- 
contained. It has in-neighbors (other documents citing it) 
and out-neighbors (documents it cites). These, and their 
neighbors in turn, and so on, form a hypertext graph. For 
both training and testing, this graph is the view that the 
classifier has of the corpus. This is quite different from ex- 
isting literature on classifying structured relational records 
with self-contained attributes. Assuming an ideal classifier, 
we can propose 8n elaborate adaptation of the term-based 
model to the hypertext setting, but it becomes clear that 
in practice, this will not be feasible. The rest of the paper 
develops an alternative approach that is successful. 

2.1 Datasets for evaluation 

We used two manually pre-classified hyperlinked corpora for 
our experiments. The first is a sample from IBM’s Patent 
Server database. Our topic hierarchy has 3 first level nodes 
and 12 leaves, shown in Figure 1 (a). Compared to Reuters, 
these topics were chosen to pose a more difficult topic recog- 
nition problem: there is a large vocabulary overlap and 
cross-linkage between the topics. For each leaf, 630 ran- 
domly selected documents were chosen for training and 300 
for testing. Our second corpus is a sample of about 20,000 
documents taken from Yahoo! At the time of sampling, the 
top level of Yahoo! had 13 classes, shown in Figure 1 (b). 
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Figure 2: The basic classification engine TAPER at the core of the 
new classifier that uses both links and terms. A term is any unique 
ID, so we can freely substitute words, phrases, or class names for 
a term. We can even run two copies of TAPER, one using only 
text, the other using only links, and combine the information. 

+Binary CBernoulli 

6o r-------- --. I 

0 100 200 300 400 
#Features 

Figure 3: TAPER constructs, for all internal nodes cg in the 
topic taxonomy, a graph as shown above in one pass over the 
part of the training corpus set aside for model validation. The 
curve plots error rate against the size of F, the chosen feature set. 
It typically decreases as useful features are brought into F, and 
then increases as F starts to include noise. F should be set at 
the minimum error point. The Bernoulli model performed better 
than the binary model in our experiments on a text-only classifier. 
Bernoulli has a lower error rate and less sensitivity to picking too 
many features. 

For later experiments based only on hypedinks, a subset 
about 900 of the 20,000 documents was used. 

2.2 Text classification 

All of the link-based classification techniques will be built 
on top of a core classifier called TAPER’ that we have built. 
TAPER was used for text classification, but is built so that 
the notion of a document is very general: it is a multiset 

6TAPER stands for Taxonomy And Path Enhanced Retrieval. 

of arbitrary tokens. TAPER learns a topic tree from sam- 
ple training documents. Documents belonging to multiple 
topics are logically copied into each topic. Given a new doc- 
ument, the goal is to find the best matching topics from 
the tree, starting at the root. In this process, each internal 
node represents a decision point where a classifier specific 
to that internal node matches the document with the im- 
mediate children of that node. TAPER constructs a diverse 
set of classifiers specifically suited to each internal node. A 
sketch of the system is shown in Figure 2. Here we will 
briefly discuss the feature selection and the class models. 

Training starts with scanning the documents and col- 
lecting term statistics. We reiterate, in anticipation of the 
following sections, that as far as TAPER is concerned, a 
term is a 32-bit ID, which could represent a word, a phrase, 
words from a linked document, etc. This and later phases 
of TAPER are heavily optimized to handle up to 2a2 tokens 
and documents and 216 topic nodes. For lack of space, such 
details of system design and implementation are omitted; 
they can be found in our earlier work [4]. 

The next step after scanning is called feature selection. 
Fix an internal node co and its children c,ci, ~2, etc., and 
consider the classifier at CO, whose goal is to route documents 
into those subtrees that best match a test document. Some 
terms are better than others for this purpose because they 
occur significantly more frequently in a few classes compared 
to the others. These terms are good discriminators; the 
others are noise, and should be discarded before the classifier 
forms document models for the classes. Note that these good 
discriminators can be diverse for different internal nodes. 

Finding the best discriminators depends on the statisti- 
cal model one assumes the data is drawn from. Many pro- 
posed models for text, related to Poisson and multinomial 
processes, exist in the literature. Unfortunately, for most 
such models, finding exactly the optimal subset of terms 
out of a lexicon of 50,000-100,000 terms appears impracti- 
cal. In our system, rather than search for arbitrary subsets, 
we first order the terms by decreasing ability to separate the 
classes; one notion of such ability that we have derived from 
the Pattern Recognition literature [lo] and found effective, 
is the following score: 

score(t) = 
~,,,,, (P(Q 2 t) - cL(c21 t,)” 

C,~Cd~c(f(t,d,c)-~(~it))2’ (‘) 

where c, c’, cl, c2 are children of internal node CO, f(t, d, c) 
is the number of times term t occurs in document d in the 
training set of class c, with document length normalized to 1, 

and P(G t) = & CdEc f(t, d, c). We compute the score of all 
terms, order the terms by decreasing score, and pick a set 
F of terms that is a prefix of the above sequence that gives 
the best classification accuracy over a (random) validation 
set (Figures 2 and 3). 

After feature selection, a classifier is associated with each 
cc. Suppose cc has children cl, . , CL. Given a class model, 
the classifier at co estimates model parameters for each child. 
When a new document is input, the classifier evaluates, us- 
ing the class models and Bayes’s law, the posteriori prob- 
ability of the document being generated from each child 
c E {Cl,..., CL} in turn, given it was generated from CO. 
We use very simple document models for large scale com- 
putational efficiency. In the Bernoulli model, every class c 
has an associated coin with as many sides as there are terms 
in the lexicon. Each face of the coin corresponds to some 
term t and has some success probability e(c, t), estimated 
using f(t, d, c) and additional statistics collected during the 
document scanning step. A document in the class is gener- 
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ated by repeatedly Sipping the coin and writing down the 
term corresponding to the face that turns up. Assuming this 
model, we have: 

Pr[d E Clot Fl = 
ff(c) JJ,,,“F qc, qnCdvt) 

c,, R(C~) n,,,,, qct, t)n(W ’ (2) 

where B(c, t) is the probability that “face” t turns up when 
“coin” c is tossed. n(c) is the prior probability of class c, 
typically, the fraction of documents in the training or testing 
set that are from class c. n(d, t) is the number of times term 
t occurred in document d. The details of the estimation of 
0 have been described elsewhere [4]. An alternative binary 
model truncates n(d, t), the number of times term t occurs 
in document d, to a (0, 1) value [18]. The estimation of 0 
changes slightly, but much of the above framework remains 
unchanged. Classification over the entire taxonomy can then 
be posed as a shortest path problem on the taxonomy. We 
omit the details. 

Figure 3 compares classification error against IF], the 
size of the feature set, for binary and Bernoulli models for 
a node in the US Patent topic tree; similar results are seen 
for Reuters newswire and Web documents. Based on these 
observations we fix the core classifier to use the Bernoulli 
model for the rest of the paper. 

2.3 The complications of hypertext 

We will now discuss how hyperlinked documents upset the 
self-contained, clean document models above. 

2.3.1 Statistical foundations: the basic model 

We begin by laying a statistical foundation for our analy- 
sis. We consider the corpus to be a set of documents (also 
called nodes) A = {6,, i = 1,2,. . . , n} and these are linked 
by directed links i + j. Let G(A) be the graph defined by 
these documents and links, and let A = A(G) be the asso- 
ciated adjacency matrix: A = {a,,} where at3 = 1 if the 
link i + j exists and a,3 = 0 if it doesn’t. Let 7% represent 
the text of document i and let T = {r,} represent the entire 
collection of text corresponding to A. Each 7% is a sequence 
{7r,Ij= l,..., n,} of tokens. Tokens include terms, format- 
ting controls, and links. We will ignore formatting controls, 
and deal with citations separately from terms. For most of 
the paper, we will also use T as a multiset rather than a 
sequence. 

When a classifier is being trained, its input is not merely 
a set of documents, but this graph and an assignment from 
nodes to class labels. When the classifier has to label a new 
document, it has as input not only that document, but also 
some neighborhood of that node in the graph, and is free to 
make use of any information in this neighborhood, perhaps 
the whole corpus. 

We want to classify the documents A into a set of classes 
or categories F = {r,,i = 1,2,. . , m). Let c1 be the class 
assignment of document i and let C = {c,} the set of class 
assignments for the entire collection A. Assuming that there 
is a probability distribution for such collections, we want to 
choose C such that Pr(C]G,T) is maximum. This consti- 
tutes a Bayes Classifier, which gives the minimum expected 
error rate over all classifiers [lo]. Pr(C]G, T) can be decom- 
posed using Bayes rule: 

Pr[CIG,T] = $@$# = wj, (3) 
where Pr[G, 2’1 = co, Pr[G, TIC’] Pr[C’]. 

Because Pr(G,T) is not a function of C, it will suffice to 
choose C to maximize Pr(G, TIC) P,(C). In some cases the 

categories of some of the documents will be known. To indi- 
cate this we divide C into two disjoint sets: CK (the known 
classes) and Cv (the unknown classes). In these terms the 
classification problem is that of selecting CV to maximize 
Pr(Cu]CK, G, 7’). In many cases (e.g. where the document 
collection is the entire web) we only care about a subset of 
the classes in Cu. 

In order to perform the estimation of C~J we need a form 
for Pr(C, G, T). It is extremely unlikely that we can obtain a 
known function for this. Thus, we will have to estimate it. In 
order to do that we must assume some functional form that 
will have parameters that must be estimated. (We should 
point out that even so-called “non-parametric” forms have 
this property.) In reality, of course, it will be impractical 
to attempt to estimate a form for Pr(CvlCK, G, T) where 
{CK, G, T} appear as a simple list of all the associated values 
(e.g. links and terms). A big part of the challenge in fmding 
such a form is to fmd a set of features that extract in a 
condensed form that information most useful for performing 
categorization. In addition to the definition and selection 
of features another device for simplifying the computation 
and estimation associated with Pr(CvJCK, G, T) is to make 
certain independence assumptions. These are frequently not 
correct (as will be case here) but making them can be seen 
to constitute a kind of approximation. Ultimately, of course, 
their validity will be judged by the accuracy of the associated 
classification obtained. 

In this general framework all the information contained 
in CK, G and T is potentially useful in classifying a single 
document 6,. Making use of all this information, however, is 
both computationally infeasible and of questionable value. 
The strong intuition one has is that the relevance of vari- 
ous aspects (classes, links and terms) of these have falls off 
rapidly with distance (number of links) from 6,. 

2.3.2 Using text from neighbors 

With the above discussion in mind, we begin with an ex- 
amination of the usefulness of terms from neighboring docu- 
ments. Consider a hypertext document 6,. (For the moment 
we consider a document to be a multiset, not a sequence, of 
terms.) We can transform 6, into a super-document 6: that 
includes not only the terms in 6; but all terms in the hy- 
pertext graph, in a specially tagged fashion (otherwise all 
documents would be identical). Thus, cat in 6, remains cat 
in 6:. If 6, points to a,, which has term cat in it, the special 
term OQcat is added to 6:. The “0” signifies an out-link. 
Similarly, the term cat appearing in a page pointing to 6, 
is added to 6: as IOcat. If 6, points to 6, and bk, where 
bk contains term cat, the special term IOQcat appears in 6,. 
Prefixes like 0100 are tags to separate the original terms from 
these engineered features. This seems preferable to merging 
both local and non-local terms into the same space, as done 
in earlier retrieval research [8, 14, 22, 361. 

In qualitative terms, it is conceivable that a classifier 
loses no necessary information when presented with 6: (which 
is now gigantic) rather than 6, and its associated corpus 
graph. We can let a feature selection process automati- 
cally decide the importance of all these features, and throw 
out the noise. Given an adequate volume of training data 
(and the time to make use of it) the worst that the inclu- 
sion of these additional terms can do is to have no effect on 
classification accuracy, but we might expect it to result in 
some improvement. Intuitively, we would expect that terms 
in nearby neighbors will be used by the classifier, whereas 
terms that are far away in the graph will be discarded as 
noise. In practical situations, however, this may not neces- 
sarily be the case. This can be seen as a signal-to-noise issue; 
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there may be so many irrelevant terms that fitting-the-noise 
effects could become inevitable with realistic training corpus 
sizes. We next experiment on these initial ideas. 

3 The radius-one specialization 

Our experimental setup will have the following flavor. Dur- 
ing training, each sample document will have a preassigned 
class, and the classifier will be permitted to explore any 
neighborhood of the sample and know the assigned classes of 
any document in the neighborhood. During testing, the test 
document’s class will be hidden. Furthermore, we will con- 
trol and vary the fraction of documents in the neighborhood 
whose pre-assigned classes are “exposed” to the classifier on 
demand. The exposed documents will be chosen uniformly 
at random from the neighborhood that the classifier chooses 
to explore to classify the test document. 

During testing, the algorithms will have the following 
general form. First, the classifier will grow a neighborhood 
graph around the test document. It will then use features 
directly, or derived from, the neighborhood to classify the 
test document. In the case where all immediate neighbors 
of the test document are exposed, this completes the algo- 
rithm ($3.1 and $3.3). The case where only a fraction of the 
neighborhood is exposed is dealt with in $3.4. We design an 
algorithm that bootstraps off a text-only classifier, and then 
iteratively updates the classes of documents in the neigh- 
borhood until stability is achieved. This update is done by 
a classifier that combines local and non-local information. 
In this paper, in the interest of computational feasibility, 
we restrict non-local features to within a radius of one or 
two. A typical academic paper, a patent in the US Patent 
Database, and an average web page all have typically more 
than ten citations or out-links. Thus a radius-one neighbor- 
hood already has the potential to slow down a classifier by a 
significant factor, unless the classifier is engineered carefully. 
Note that the radius of the initial neighborhood is unrelated 
to, and can be larger than, the “radius of influence” dis- 
cussed above. 

3.1 Experiments with text from neighbors 

Perhaps the most obvious approach to implementing a ?a- 
dius of influence” of one is to use terms from the immediate 
neighbors of the test document as if they were in the test 
document itself. In view of the discussion in §2, we pro- 
pose the following alternatives. We run the experiments 
on the patent corpus, starting with the most favorable set- 
ting where all neighbors of training and test documents have 
known classes. 

Local: For both training and testing, a pure term-based 
classifier was used on the text of each patent itself. 
Thus, no use is made of hyperlinks. This is the base- 
line. 

Local+Nbr: For both training and testing, the complete 
text of all its neighbors (patents that cite it as well as 
patents it cites) is first concatenated with the text of 
each patent. The result is input to a pure term-based 
classifier. 

Local+TagNbr: Same as above, but the terms absorbed 
from neighbors are distinguished from original local 
terms by tags, so that the classifier can distinguish 
between the signal content of local vs. non-local terms. 

Figure 4 shows the results. Two disappointing observa- 
tions emerge. First, the error rate increases from 36% to 

Figure 4: Result of classification using local and neighbors’ terms, 
tagged and untagged. For the patent corpus, neighbor text is 
worse than local text, and tagging does not help. 

38.3% when neighbor text is used, in our experiments. Sec- 
ond, tagging shows very small improvement. We can pro- 
vide the following explanations and comments after careful 
scrutiny of the results. Although these observations are for 
our particular corpus, the problems may arise in other hy- 
perlinked corpora as well, e.g., Salton and Zhang found that 
inclusion of cited titles can add spurious words that degrade 
retrieval quality [33] (also see $5). 

Why did neighbor text do worse? Even after feature se 
lection, there was too much of it (an average patent 
has over 5-10 neighbors), and their term distribution 
was not sufficiently similar to the distribution of the 
“true” class of the patent (which has to happen if this 
trick is to work well). We found frequent cross-linkage 
between different classes in patents and certainly the 
web (“this site is best viewed using...“); also see the 
discussion in $1. Including terms from such neighbors 
might easily lead to complete misclassification. 

Why did tagging not help? Tagging splits a term into 
many forms and can make it relatively rare, even if the 
corresponding untagged term is not as rare. Dimen- 
sionality of text is already uncomfortably large com- 
pared to typical training set sizes. We further chal- 
lenged the classifier with many more features but not 
more documents. Although an ideal classifier should 
do no worse on Local+TagNbr compared to Local, our 
heuristic feature selection and approximate class mod- 
els got overwhelmed by the signal-to-noise ratio. 

Are there simple fixes to these problems? We seem to 
run into a cntch-$2 situation on both counts. Consider first 
the problem of the original document 6, getting swamped 
with terms from “large” neighbors. One may propose vari- 
ous term weighting schemes; e.g. include terms in 6, itself 
each with weight 1, terms in radius-one neighbors each with 
weight i, terms in radius-two neighbors with weight f , and 
so on. At what rate should the weights decay? Depend- 
ing on this rate, spurious terms may be included, leading to 
misclassification (if the non-local terms have high weight) or 
informative remote terms may be neglected. 

Next, consider the “noisy” neighbor scenario. It is clear 
that there are at least some links that lead to useful neigh- 
bors, but how can we identify these? A simple heuristic is to 
restrict the expansion to out-links within the site or domain. 
This will miss valuable information in at least two forms: 
a highly informative link from the Database group at the 
University of Wisconsin to IBM Almaden will be ignored, 
as will be the observation that many Stanford students link 
to both UW and IBM Database groups, thus inducing an 
implicit topical similarity between them. 
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3.2 Feature engineering 

It is clear from the above discussion that it will be imprac- 
tical and not very useful to use all the text in T (the whole 
corpus) to classify a single document. At the other extreme, 
most text-classification algorithms/systems use only the text 
7, contained in the document 6,. For corpora that are not 
hyperlinked, this is all that is available to use in perform- 
ing the classification. We may find it useful to use more 
that just the text T, to classify S,, however, and we hope 
to find some “happy medium” between these two extremes. 
How can we do this while favoring our classifier with a good 
signal-to-noise ratio? 

A similar problem appears in inductive logic program- 
ming [23]. Suppose we are given a relational table, or sev- 
eral tables, containing information about patients with hy- 
pertension. Apart from local attributes of a person such as 
age and weight, there can be other attributes such as father 
and mother, whose records we shall assume are also in the 
database. Assuming there is a relation between lineage and 
hypertension, we wish to use the latter fields for inducing 
rules to classify patients as having high or low risk of heart 
attack. To do this, we can augment each record with fields 
from records of the parents. Rather than using raw data 
from the related records, one can pre-process those raw at- 
tribute values into a synthesized feature. One example is 
whether the parent was classified as high or low risk. This 
is called feature engineering [l]. 

3.3 Using class information from pre-classified neighbors 

Noting that text from neighbors is too noisy to help classi- 
fication, we reflect on the process and rationale for citation 
in the first place. In this section, we explore the follow- 
ing thesis: if the classes for all documents neighboring 6, 
were known, replacing each hyperhnk in a; with the class 
ID of the corresponding document, could provide a highly 
distilled and adequate (for classification) representation of 
6,‘s neighborhood. 

In order to make use of the neighbor class labels in this 
way, we need an appropriate class$er. The general/ideal 
form for this classifier is that shown in equation (3). As 
we mentioned previously, we can drop Pr(G, T) and simply 
choose (in principle) C to maximize Pr(G,T]C)Pr(C) = 
Pr(G, T, C). This is fine if we know the functions Pr(G, TIC) 
and P,(C) and we have a computationally feasible proce- 
dure for finding the global maximum of their product as 
a fnnction of C. Even if we don’t know these functions 
a priori, if we know their functional/parametric forms and 
have a suitable learning procedure (to estimate the param- 
eter values) and a feasible optimization procedure, we can 
still achieve this. The usual situation is significantly less 
ideal however. We must frequently “guess” the functional 
forms, selecting those that (1) we believe to have sufficient 
degrees of freedom to describe the necessary inter-class de- 
cision boundaries; and (2) for which we have feasible learn- 
ing (estimation) and optimization algorithms. In a specific 
problem it will not, in general, be possible to satisfy both of 
these simultaneously. This may be due to the models and 
algorithms at our disposal or the more fundamental prob- 
lem of “intrinsic confusion” where the classes overlap in the 
feature space corresponding to the features we have chosen 
for performing classification. 

First, we consider the problem of classifying a single doc- 
ument 6,, for which we assume that we know all the classes 
of all its immediate neighbors. To perform this classification 
we will use the usual Bayes classifier. That is, we choose c, 
to maximize Pr(c,]N%), where, in this context, N, repre- 

sents the collection of aI1 the known class labels of all the 
neighbor documents. This collection can be further decom- 
posed into in-neighbors and out-neighbors: N, = {Z,, 0;). 
Manipulation of this using Bayes’ Law, as was done in equa- 
tion (3) for C, leaves us with the problem of choosing cZ to 
maximize: 

Pr(N,Jc,) Pr(c,) (4 
Our estimate for Pr(cl) is simply the frequency of the class 
ct in the training corpus. For Pr(N;]c,) we will assume 
independence of all the neighbor classes. That is: 

Pr(ni,lcl) (5) 

= l-I@, Pr(cllc,,j -+ i) j$,Eo, Pr(ckIc,,i + j). 

We will use the following notation to represent the terms in 
these products: 

7r(c,) f WC,), 
+(c,,c31Z) E Pr(c,(c,,j -+ i), 

4(c,, ~10) z Pr(c, ]c,, j -+ i), 
n(r,, ;]Z) - #in-neighbors of 6, labeled ‘yJ 

n(~~, i]O) z #out-neighbors of 6, labeled r3 
Using this notation and rewriting equation (5) as a product 
over classes rather than neighbors yields the following form 
for equation (4): 

Pr(N,(ci) Pr(ct) (6) 

= 7r(c,) n,“=, [q5(yj, c11Z)]“(7j+1z) [+(7,, c~JU)]“(~J~~~~). 

3.4 Iterative relaxation labeling of hypertext graphs 

In $3.1 we investigated the problem of classifying a hyper- 
text document using both its own text and that of its neigh- 
bors. Then, in $3.3, rather than using individual terms from 
neighbors, we investigated the problem of using the class la- 
bels of preclassified neighbors. In this section, we examine 
using all three (document text, neighbor text and neighbor 
classes), but in the more realistic setting wherein only some 
or none of the neighbor classes are known. In those cases 
where the neighbor classes are known a priori we will use 
those class labels as the sole feature representation of the 
associated documents. Where the neighbor classes are not 
known, on the other hand, we will indirectly use the text 
and link structure of the entire collection A in a type of 
relaxation labeling scheme. 

Before we consider this complete problem, we discuss 
the combined use of known neighbor classes and terms from 
only the document to be classified. We assume that there is 
no direct coupling between the text of a document and the 
classes of its neighbors. We assume only an indirect coupling 
through the class of the document itself. This assumption 
can be expressed precisely using conditional probabilities: 

Pr[Nt, r,Ic,] = Pr[h/iIc,] Pr[r,Ic,]. (7) 
Following the discussion of previous sections, the resulting 
classifier can be written as: 

where the Bernoulli forms for the components of this equa- 
tion can be obtained from equations (2), (6) and 7 is a 
dummy class-label variable for c,. 

If all the classes of the neighbors are known a priori, 
this is the classifier we would use. If, as is usually the case, 
some or all of the neighbor classes are unknown, how do we 
proceed? We do not wish to ignore the unclassified pages, 
so we need a bootstrap mechanism: we fist classify the un- 
classified documents from the neighborhood (for example by 
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using a terms-only classifier) and then use this knowledge to 
classify the given document, in the same way as described 
above. This procedure can be performed iteratively, to in- 
crease the quality of the classification. This iteration con- 
stitutes a kind a relaxation labeling, a technique that has 
been applied in the computer vision and image processing 
fields [17, 281. 

Let AK symbolize everything that is known about A. 
Using our previous notation, AK = {G, T, CK}. Using this 
we want to estimate the unknown classes Cu. Let Au repre- 
sent the corresponding documents (i.e. those whose classes 
are unknown). If we are seeking to classify a single docu- 
ment 6,, we would like to choose c1 to maximize Pr(ciIAK). 
Note that, letting NY zz N, n A,, this can be expressed 
as: 

Pr(c;lAK) = ENpEn, Pr(c,, N,“lAK) (9) 

= CNYE% Pr(cllNp, AK) Pr(NFll&c), 
where 62, is the set of all possible class labelings of the doc- 
uments in N,. There are mk of these where k is the number 
of documents in N,. To make this formula more manageable 
we make the following approximations/assumptions: 

1. Limited range of influence: 

Pr(c*JN,U, AK) = Pr(c,JN?,N?), 

where N;” = N, n AK. This is equivalent to assuming 
a first-order Markov Random Field [6]. 

2. Independence among the neighbor class probabilities: 

Pr(N~lbr) = &+,q Pr(c,lAK). 

(It is desirable to remove the latter assumption via a de- 
tailed experimental study of neighbor class distributions.) 
We observe that with these approximations the collection of 
all such equations (9) constitute a coupled system of equa- 
tions in which the variables are the probability estimates: 
{Pr(c,lAK), i = 1,2,. . . , n}, which suggests the following 
iterative solution: 

Pr(c,lAK)(“‘) (10) 

= ~N:Go, [ Pr(c,INY, N3 J-I 6,ENy WC, lAK)cr)] I 

where r is the iteration index. 
This relaxation is guaranteed to converge to a locally 

consistent assignment provided it is initiated “close enough” 
to such a consistent state [28]. 

Note that AK includes all the text T, the link struc- 
ture G and the known classes CK and that N;” includes the 
corresponding subsets of these. The way in which this in- 
formation is applied in this estimation problem is controlled 
by the function Pr(cj Ini,“, NY). In the work described here 
we use the Bernoulli forms of equations (2) and (6). A pseu- 
docode sketch follows: 

Construct a radius-r subgraph G,(&) around 60 
Assign initial classes to all 6 E G,(~o) using local text 
Iterate until consistent: 

Recompute the class for each d based on 
local text and class of neighbors 

Some further approximations are made to make evaluation 
of the sum in equation (10) tractable. These will be de- 
scribed in the sequel. A final note regarding equation (9). 
It was written in terms of only the immediate neighbors 
N; = {fl,N:}, b u 1 can be extended to larger neigh- t ‘t 
borhoods, i.e., link distance two and beyond. This would 
constitute a higher-order Markov Random Field assumption. 

Link Piwlx Teti+Pmfix 

Figure 5: Comparison of error rates for Text, Link, Prefix and 
Tcxt+Prefix. 

3.5 Experiments and performance 

We complete this section on unit “radius of influence” with 
a series of experiments on patents. The first set will deal 
with the case where the classifier can query the “true” class 
of any document except for the one that is being classified. 
The goal will be to design a classifier that can use both local 
text and links to immediate neighbors to advantage. We call 
this the completely supervised scenario. In the second part, 
we will assume the more realistic scenario in which the true 
classes of only a fraction of the documents in the vicinity 
of the test document are known to the classifier. This will 
involve the relaxation scheme described earlier, and will be 
called the partially supervised scenario. 

3.5.1 The completely supervised case 

We compare the following options using the patent corpus. 

Text: Only local text was used for training and testing. 

Link: The only document features are the class names of 
neighboring patents. In the Patent Server (as well as, 
say, Yahoo), class names are paths in a topic hierarchy, 
looking like this: 

C~~ICMETAL mwNc1 
[xl [PROJECTILE 14nK1~cl 

CYlC.BuIlet or shot.1 
CZlC..Jacketed or composite1 

(Here the fist [] contains the numeric class code and 
the second [] contains a descriptive string.) Our fea- 
tures are the full path names, e.g. /29/X/Y/Z. Note 
that these paths can be longer and therefore more fo- 
cused than our a-level dataset. 

Prefix: We include all prefixes of the class paths of neigh- 
bors as features, i.e. all of /29, /29/X, /29/X/Y, and 
/29/X/Y/Z. The reason for this will become clear in a 
moment. 

Text+Prefix: We run two copies of TAPER, one that only 
uses local text, and another that uses only the class 
prefixes as above. Then the probabilities are combined 
as if the joint distribution of term and link frequency 
is product of their marginal distributions. This gives 
a hybrid classifier. 

The results are shown in Figure 5. The text baseline, as 
before, is 36% error. Using links in the form of full paths 
gives negligible benefit; the error is 34%. However, a dra- 
matic effect is seen with Prefix: the error drops to 22.1%. 
The combined TextSPrefix model improves on this slightly 
to give a final error rate of only 21%. 
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-logR[neighbor i is from class I] 

-logR(neighbo;iis from class2j 

Figure 6: Exponentially many paths determine one neighbor con- 
figuration each, but we can prune the sum over configurations to 
only include those that have the highest probability. These cor- 
respond to the shortest 0 -+ Ic paths in the graph. 

This is an example where the feature selection mecha- 
nism of TAPER is exploited well. Link performs worse than 
expected because the features (full class paths) are too de- 
tailed and occur too rarely to become strong signals. How- 
ever, when we expose all the prefixes to TAPER, it is free to 
discard paths that are too short (almost equally frequent in 
all documents) or too long (too infrequent to be statistically 
significant). 

3.5.2 The partially supervised case 

Finally we study the realistic scenario in which only a frac- 
tion of the documents in the vicinity of a test document have 
classes known to the classifier. The foundations of the iter- 
ative relaxation-based classification has already been laid in 
$3.4. Here we add some comments about implementation. 

Each of these neighbors of 6, can potentially belong to 
any class. Thus there is a large number of possible assign- 
ments of the neighbors to classes. If there are Ic neighbors 
and ]I?] classes, the neighbors could be in any of ]J?lk config- 
urations, and that many terms in the sum shown in equa- 
tion (10). As per earlier discussion in the completely super- 
vised case, we assume that the probability of a tixed class 
assignment JJ ‘,” is the product of probabilities of the appro- 
priate class assignment of each neighbor of &. Similarly, 
the corn 

I: hl 
letel supervised case gives us a rec$e to estimate 

Pr[c, ]Ni; , N, 1, once the configuration of N, IS fixed. The 
only problem is that the sum has an enormous number of 
terms. 

Luckily, most of the configurations are highly improba- 
ble. Consider the graph in Figure 6. For simplicity, let there 
be IT’] = 2 classes. There are nodes numbered 0,. . , k, and 
two edges from node i - 1 to i. One edge corresponds to the 
case where the i-th neighbor belongs to class yr, the other, 
for class 7s. Suppose we annotated these edges with edge 
weights which are the negative of the logarithm of the prob- 
ability of the respective class assignment. Then the shortest 
path from 0 to k corresponds to the largest probability con- 
figuration. 

Observe that although there are 2k neighbor configura- 
tions, it is easy to find the highest probability configuration 
in time O(k log k + k/I’/) time via a shortest path computa- 
tion. It also turns out that we can extract the shortest P 
paths in time O(k]l?l + k log k + Plog P) [ll]. We have not 
observed any adverse effects of such truncation of (10) on 
the accuracy of classification. Typically, after the top two or 
three class choices, the remaining classes have probabilities 
as low as 1O-so and can be ignored. On the other hand, the 
large range of numbers encountered during the computation 
requires some care with the floating point computations so 
as not to lose precision. 

Figure 7( ) h a s ows the results of the iterative relaxation 
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Figure 7: (a) Results of relaxation labeling based hypertext clas- 
sification. The x-axis is the percentage of documents in the neigh- 
borhood of the test document whose true classes are revealed to 
the classifier on demand; these are chosen uniformly at random 
from the neighborhood. The y-axis if the error rate for three 
schemes. One uses local text only, and is thus not really a relax- 
ation scheme. The others use links, and both links and text, in the 
iterative step. Both are “seeded” by a text-only classifier. (b) A 
class-by-class break-down of the differences in accuracy between 
Text and Link+Text. 

labeling-based classifier. In the graph, the x-axis is the per- 
centage of documents in the neighborhood of the test doc- 
ument with known classes. The y-axis if the error rate for 
three schemes. Since the text-based classifier does not use 
links, its error rate is fixed. There are a number of inter- 
esting points to note about the other lines in the graph. 
Obviously, adding link information is significantly boosting 
accuracy, cutting down error by up to 42%. More impor- 
tantly, the benefits are seen even when only a relatively 
small fraction of the neighborhood has known classes, and 
there is a graceful variation in the overall accuracy as this 
fraction varies. The text-based and text-and-link-based clas- 
sifiers use of the order of 50,000 features. In contrast, the 
link-based classifier uses only 15 (for this taxonomy). Thus 
it has a tiny footprint and is very fast. However, it does 
well only ‘when a reasonably large fraction of the neighbor- 
hood has known classes. TextSLink always beats Link by 
some margin, but this is quite small at the completely super- 
vised end of the spectrum. Text+Link is also stabilized by 
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Figure 8: The phenomenon of pages that bridge topics across 
length-two paths. The second diagrams shows how one may try 
to exploit locality in the topics on bridge pages. 

text at the extreme where the neighborhood is completely 
unknown. It is the more stable relaxation method, but is 
computationally somewhat more expensive. 

What is most intriguing is that even in the most unja- 
vorable setting of zero knowledge about the neighborhood, 
using only a link-based iteration scheme, and seeding it only 
once using local terms, a small but visible increase in accu- 
racy is seen (between Text and Link at 0%). This gain is 
entirely from implicit constraints imposed on the probability 
models by the link structure. 

Also shown in Figure 7(b) is a break-up of the perfor- 
mance over the 12 different leaf patent classes. Perhaps it 
should come as no surprise that the improvement is diverse; 
in cases it is negative. This depends on the linkage behavior 
between different classes. It is interesting that apart from 
greatly reducing average error across classes, the relaxation 
scheme also reduces (by about 26%) the average deviation 
of error across the classes. 

4 The radius-two specialization 

In a homogeneous corpus such as the Patent database, it 
is meaningful to assign each patent to a class, and to esti- 
mate parameters like the expected fraction of outlinks from 
documents in one class that point to documents belonging 
to another class. In contrast, the Web is so diverse that no 
topic taxonomy can hope to capture all topics in sufficient 
detail. There will always be documents, in the vicinity of 
the documents of interest to us or to the classifier, that can- 
not. be meaningfully classified into the “known universe.” A 
cursory measurement shows that only about 19% of Yahoo! 
documents have an in-link from some other Yahoo! docu- 
ment. Only 28% have an out-link to some Yahoo! document 
and about 40% have some link with another Yahoo! page. 

Exploring larger neighborhoods on the Web can be futile 
and dangerous. The benefits of finding a few known neigh- 
bors may be offset by noise, or worse, strong but incorrect 
signals collected in the process. For example, a large frac- 
tion of web pages point to popular sites like Netscape or 
AltsVista, even though the topic of these sites may be com- 
pletely unrelated. This may not be fixed by a static list of 
“stopwordl) sites, since different sites may assume this role 
for different topics. 

4.1 Bridges 

Co-citation is a well-studied phenomenon in linked corpora, 
such as academic papers [32]. Documents that cite or are 
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Figure 9: Is there locality of topic in out-link sequences? Plotted 
above is the percentage of cases for which outlinks at a fixed 
offset from a given outlink point to some document of the same 
topic as the given document at offset 0. There appears to be a 
positive “background” probability that even long list of outlinks 
are coherent, and the bridge page contains links mostly to one 
topic. But there are also pages where the topic of outlinks drifts 
from topic to topic; this is revealed by the noticeable peak near 
zero. It is interesting that the peak is not at zero. The explanation 
we can offer is that the outlink to the most popular pages occur 
later in a document. 

cited by many common documents may be regarded as sim- 
ilar, much as documents sharing many terms are adjudged 
similar. Citation-based similarity, or a combination of cita- 
tion and term-based similarity, can then be used to perform 
unsupervised clustering of documents [40]. 

These common documents hint that two or more pages 
have the same class, while not committing what that class 
could be. We call these documents bridges. Figure 8(a) 
illustrates the scenario. Two documents 61 and 62 are said 
to be bridge-connected if there exists a document p pointing 
to both 61 and &; /3 is the bridge. To go from 61 to 62 one 
traverses edge (p,&) against its direction and then @,a~). 
We call this an IO-path because we follow an Jnlink to p 
followed by an Qutlink. We call p an IO- bridge for 61 and 62. 

Thus there are four ways to go to a neighbor two links 
away. The choice of IO-paths, out of II, 00, IO, and 01, is 
guided by domain knowledge. The difference between I and 
II, or 0 and 00, is one of degree. Of IO and 01, we claim 
that IO is more meaningful. (Consider perhaps some 80% 
of the Web today 01-bridged to each other because they all 
point to Netscape.) Fortunately, IO-bridges abound on the 
web. In fact, every topical “resource page” is a potential 
bridge. The Yahoo! and Infoseek sites thus include thou- 
sands of bridges on all sorts of topics. The results of the 
following experiment hints that bridges can be a powerful 
support for link-based classification. 

Experiment: For each page 6 in our Yahoo! sample, we 
consider all pages 61 . .6k pointing to it. For our purpose, 
we regard each page 6, as an ordered list 0, containing the 
out-links of 6,. Some of the out-links in 0, point to pages 
not known to Yahoo!, but some others are. For each out- 
link in 0, which pointed to a web page 6’ # 6 contained in 
Yahoo, we checked if the class of 6 and 6’ are the same; if 
so we call the pair (15,s’) coherent. Denote (6’ - S)o, to be 
the difference between the positions of S and 6’ in 0,. This 
is negative if the out-link to 6’ occurs before that to 6 and 
vice-versa. Finally, for each integer offset D we computed 
a fraction of coherent pairs among all pairs (a’, 6) for which 
(S’ - 6)o, = D for some i. (See Figure 8(b).) 

The results are shown on Figure 9. The graph plots an 
estimate of the probability of staying on the same topic as 
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b as we move off before and after the link to 6 in some page 
pointing to 6. Two aspects of the graph are worth noting. 
First, the probability appears not to vanish to zero as we 
move farther away from the link to 6; this means that many 
long bridges are almost pure: they point to pages from the 
same Yahoo! topic. The second is that there is a peak near 
zero, which implies that outlinks near the one to 6 are more 
likely to be the same topic as 6. We discuss how to exploit 
the former property in the rest of this section; in the next 
we deal with impure bridges. 

TAPER with IO-bridges: In our general framework, a neigh- 
borhood is grown around the test document and then classes 
are assigned iteratively to each document in a manner in- 
fluenced by other documents in its “radius of influence.” In 
33, this radius was at most one. Here we will use IO-bridges 
to exert influence at radius two. Our experimental setup is 
as follows. 

1. We consider a sample of documents from Yahoo! such 
that each is IO-bridged to at least one other page in 
Yahoo! (In this experiment we do not consider nor- 
mal terms as features at all, so we need pages that 
have links to them.) We randomly divide this set 
into 70% for training and 30% for testing. This gave 
us about 594 training and about 255 testing docu- 
ments. Whereas this is not nearly enough for text- 
based classification, our small feature space made this 
small dataset usable. 

For training, we use the following features from each 
document 6. We look at all the documents in the train- 
ing or testing set that are IO-bridged to the document 
under scrutiny. These have known class paths in topic 
taxonomy. We take all prefixes of these paths and con- 
struct an engineered document 6’. 

For testing, we use the class paths for all documents in 
the training set that are IO-bridged, but not the test 
set. 

These features are input to TAPER as usual. 

We compare the above scheme with a purely term- 
based classification of the same test set using TAPER, 
and the same training set as above. 

The results are shown in Figure 10 (the set of middle 
bars). Owing to a variety of factors (fewer terms per docu- 
ment, diverse authorship, unused hype&&s) the pure term- 
based classifier performs rather poorly, having an error rate 
of 68%. Furthermore, this error rate was achieved at a large 
feature set size of over 14,000 terms. It appears that this 
may be a basic limitation of text-based classification; a more 
detailed learning program that used Bayesian nets showed 
comparable performance with a comparable sample from Ya- 
hoo! [30]. In contrast, the IO-bridge based classifier has 
excellent performance: it uses only 14 features (the class 
labels) and has only 25% error! 

4.2 Locality in bridges 

Sometimes an IO-bridge may not be “pure”; it may include 
a sequence of topics, with many out-links for each topic. 
Thus we may need to segment such a bridge into segments, 
each of which points to pages with a coherent topic. E.g., a 
personal hotlist may have a list of Physics resources followed 
by a list of Math resources. 

Segmenting a web page into intervals corresponding to 
coherent topics appears to be a difficult task. In Machine 
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Figure 10: Comparison of a pure term-based classifier with two 
versions of a pure link-based classifier that uses IO-bridges. The 
link-based classifiers uses orders of magnitude fewer features (14 
as against 14,000). The first one uses IO-bridges; it reduces error 
rate from 68% to 25%. The second one exploits locality in IO- 
bridges; it reduces error rate further to only 21%. This happens 
at some cost of “coverage”: whereas a pure text-based classifi- 
cation will accept any document and assign it some class, the 
two link-based classifiers will have enough information to draw a 
conclusion respectively 75% and 62% of the time. 

Learning, algorithms have been discovered for solving re- 
lated but simpler problems, such as segmenting a sequence 
of coin toss outcomes (using a number of hidden coins) 
such that each segment is likely to be generated by a single 
coin [15]. These algorithms already have high complexity 
which makes them inapplicable in our context. 

Therefore, we resort to following approximate approach. 
We define two sets of features: one which is guaranteed to 
contain all bridge information but can contain additional 
noise, and the second which consists almost exclusively of 
bridge information but is likely to be incomplete. The for- 
mer option was already explored in the previous section, 
where we depended on TAPER to bring out the signal de- 
spite the noise. Here we will explore the latter option. 

IO-bridges with locality: More specifically, a class ID c is 
included as a “feature” for page 6 if the following holds: 
There exists an IO-bridge p pointing to 6 with three out- 
links 6beforc, 6, baftsr in that order, where the classes of 6beforc 
and ktcr are known and equal, and no out-links between 
them point to a document with a known class. In other 
words, we take all pages p pointing to 6 and check if the 
classes of the closest classified pages before and after the 
link to 6 equal; if so, we include that class as a feature in 
the engineered page 6’. 

Observe that here we are trading coverage for precision 
here. Some useful features at radius two may be lost, but a 
feature that makes it into 6’ is very likely to be very valuable. 
Figure 9 indicates that with probability at least 0.4, links 
out of IO-bridges go to a single topic; therefore, a feature 
in 6’ can be noise only if the topic changed at least twice 
between 6bcfore and &tt,, is adequately small. 

Having defined this new engineered feature set, we eval- 
uated their quality on the set of 849 Yahoo pages described 
earlier. The classification error rate was only 21% (of the 
pages that had non-empty feature sets under the above fea- 
ture engineering rule). This is shown in Figure 10. Here, 
again, the number offeatures used was 14, against the 14,000 
of the term-based classifier. 

As mentioned before, the dramatic boost in accuracy is 
at some cost of coverage: some documents end up having 
no features at all under the somewhat stringent feature en- 
gineering rule. Whereas the coverage of pure text-based 
classification is lOO%, that of IO-bridges is 75%, and that 
of IO-bridges with locality is 62%. This is also shown in 
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Figure 11: Relevance ranking using inference networks. 

Figure 10. This is consistent with our rationale behind the 
choice of these features: IO-bridges with locality is of higher 
quality than IO-bridges; however the latter contains more in- 
formation and therefore can be used to classify more pages. 

5 Related work 

We discuss three areas of research related to our work: text 
and hypertext information retrieval, machine learning in 
contexts other than text or hypertext, and computer vision 
and pattern recognition. 

5.1 Hypertext and information retrieval 

Hypertext analysis has been extensively researched long be- 
fore the Web existed. Starting in 1975, Kwok, in a series of 
papers [lQ, 20, 211, proposed a measure of document simi- 
larity based on the degree of term intersection with titles of 
cited documents. Using a small set of 37 medical abstracts, 
Kwok showed that using citation titles leads to good clus- 
ter separation. Althought these are the papers most related 
to our work, they do not deal with statistical procedures 
for feature selection or hierarchical classification based on a 
model of hyperlinks as we do. 

The idea of using non-local terms from linked documents 
has also been used in a large number of papers on retrieval. 
In 1963, Salton [31] proposed using terms associated by cita- 
tion for retrieval, but later experiments by Salton and oth- 
ers [22, 331 raised the following issue that we address in this 
paper: 

Important terms may be supplied in some instances, 
producing substantial performance improvements, in other 
cases, the process adds indifferent or poor terms to the 
content description No theory exists which would 
help in distinguishing valuable term associations from 
less valuable ona. 

Since then, many authors have used variants of this ap- 
proach on different corpora, with varying success. Croft 
and Turtle had mild success with the CACM and CISI cor- 
pora [8]. With the same corpora, Savoy proposed a scheme 
in which artificial links are added at query time through 
relevance feedback; this showed a more significant improve- 
ment [34, 35, 361. F’rei and Steiger annotated links with 
frequent terms from the source and target documents to en- 
hance retrieval in UNIX manuals [13, 141. Smith and Chang 
used captions from HTML pages to construct a text index 
for searching for embedded images on the Web [39]. 

Index terms collected from documents and their linked 
neighborhoods have been used in vector-space retrieval sys- 
tems [31] and systems based on inference networks. We 
discuss the latter approach in some detail. Lucarella and 

Zanzi [24] propose a rule-based inference framework based 
on a set of predicates. Similar relations between queries, 
terms, and documents are captured by a four-layer directed 
acyclic Bayesian network used by Croft and %rtle [7, 81, 
shown in Figure 11. The layers represent documents, terms, 
a query, and the user’s “information need.” Some of these 
relations are shown below: 

Croft&Turtle Lucarella&Zanzi 
- query q is about subject c 

about(node,concept) document d is about subject c 
synonym(conceptl.concept2) subject c1 is related to subject cz 

cites(nodel.node2) - 

It is important to distinguish between the physical links rep- 
resented by cites and the edges in the inference network, 
represented by the above relations. (E.g., on the web, the 
link graph has cycles, whereas an inference network is nec- 
essarily acyclic.) During retrieval, each document node in 
the inference network is set to TRUE in turn and the prob- 
ability of that document satisfying the information need is 
evaluated using the inference network. The documents are 
then presented, sorted by decreasing probability. Citations 
are handled by introducing “evidence” nodes that reinforce 
terms in documents linked to the document being evaluated. 

Notice that about(node,concept) is an input to the in- 
ference (edges connecting the top two layers); the inference 
does not influence the strength of this relation. These works 
do not discuss how to compute the about relation; they use 
simple weighting schemes to estimate how important a term 
is in a document. No notion of learning associations between 
topics/concepts and terms is proposed. 

These systems retrieve and rank by relevance, in addi- 
tion to documents that contain query terms, those that are 
neighbors to such documents. In systems that retrieve doc- 
uments in response to any ad-hoc query it is not adequate 
to regard this retrieval problem as a supervised 2-way clas- 
sification (relevant vs. not relevant). Such systems must be 
able to respond to queries for which they have never encoun- 
tered training data. 

In contrast, our system learns relations between pre- 
defined concepts and observable hypertext features such as 
terms and local link structure, and is therefore different from 
the prior art. Also note that our problem required further 
sophistication compared to non-local term absorption. 

5.2 Machine learning and data mining 

Decision tree classifiers such as CART [3] are widely used 
for classifying numerical and categorical data. These have 
been adapted to scale to large relational databases for data 
mining purposes [25, 371. These typically work on a sin- 
gle relational table giving attributes of each entity (e.g., a 
customer). However, little appears to have been done with 
relationships between entities. In the case where entities 
are patients, this could be useful in, say, diagnosing dis- 
eases. This is a very difficult problem in general; a few 
specific situations have been handled in the inductive logic 
programming literature [29,26, 27,231. However, these tech- 
niques have not yet been applied to large-scale data mining 
scenarios [l]. Another difference is the difference in dimen- 
sionality [4]. Decision-tree classifiers handle up to hundreds 
of features or attributes, whereas text corpora often have a 
lexicon in the hundred thousands. 

5.3 Computer vision and pattern recognition 

Some of our methods are inspired by image-analysis litera- 
ture. Relaxation labeling and Markov Random fields have 
been used in attacking the problems of edge detection, image 
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restoration (noise removal), image segmentation (grouping 
pixels into contiguous regions) and region labeling (assign- 
ing labels to the regions produced by a segmentation process, 
frequently in the context of object recognition). Our prob- 
lem is a generalization of these. In our case there can be 
many classes, including topic taxonomies; an average docu- 
ment has many more neighbors than have pixels or regions 
in images; and the classes of documents’ neighbors provide 
information in an indirect way: pixels near edge pixels are 
more likely to be edge pixels, but patents citing patents on 
antennas can also be about transmitters. In pattern recog- 
nition, pixel classification is studied in a more general con- 
text of relaxation labeling and the convergence properties 
of relaxation-labeling algorithms are studied using Markov 
random fields [17, 28, 91. 

6 Conclusion 

We have developed new methods for automatically classify- 
ing hypertext into a given topic hierarchy, using an iterative 
relaxation algorithm. After bootstrapping off 8 text-based 
classifier, we use both local text in a document, as well as 
the distribution of the estimated classes of other documents 
in its neighborhood, to refine the class distribution of the 
document being classified. Using even a small neighbor- 
hood around the test document significantly boosts classifi- 
cation accuracy, reducing error up to 70% from text-based 
classifiers. Our method also handles the case where only a 
fraction of the neighborhood is pre-classified. Even when no 
document in the neighborhood is pre-specified, our method 
improves on term-based classifiers. In future we plan to 
explore better estimates of the class-conditional probability 
distributions of the features and better heuristics to explore 
larger neighborhood graphs to further improve our accuracy. 
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