
Automatic segmentation of text into structured records

Vinayak Borkar
∗

Kaustubh Deshmukh
†

Sunita Sarawagi
‡

Indian Institute of Technology, Bombay

ABSTRACT
In this paper we present a method for automatically seg-
menting unformatted text records into structured elements.
Several useful data sources today are human-generated as
continuous text whereas convenient usage requires the data
to be organized as structured records. A prime motivation
is the warehouse address cleaning problem of transforming
dirty addresses stored in large corporate databases as a sin-
gle text field into subfields like “City” and “Street”. Ex-
isting tools rely on hand-tuned, domain-specific rule-based
systems.

We describe a tool datamold that learns to automati-
cally extract structure when seeded with a small number of
training examples. The tool enhances on Hidden Markov
Models (HMM) to build a powerful probabilistic model that
corroborates multiple sources of information including, the
sequence of elements, their length distribution, distinguish-
ing words from the vocabulary and an optional external data
dictionary. Experiments on real-life datasets yielded accu-
racy of 90% on Asian addresses and 99% on US addresses.
In contrast, existing information extraction methods based
on rule-learning techniques yielded considerably lower accu-
racy.

1. INTRODUCTION
Several useful structured data sources exist today as con-

tinuous text primarily because humans find it easier to cre-
ate them that way. Examples are postal addresses, bibli-
ography records, classified ads and phone lists. All these
applications have the property that the data has an im-
plicit schema consisting of a set of attributes — for example
postal addresses comprise of elements like “street”, “city”
and “zip” and bibliography records comprise of elements like

∗Supported partially by the IBM Research Fellowship
†Author’s current affiliation: University of Washington
Seattle, USA
‡Contact author: sunita@it.iitb.ernet.in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

“author-names”, “title” and “page-numbers”. However, the
text string itself is generated by concatenating values of the
different attributes without any explicit separator amongst
them. The order of attributes is not fixed and not all at-
tributes are present in all instances.

These properties make the problem of extracting struc-
ture from such text different from both the general problem
of information extraction from natural language documents
and the popular problem of generating wrappers to extract
structure from HTML documents. In the first case, the goal
is to extract semantic entities from natural language docu-
ments based on linguistic constraints [14, 29]. Often only
a small fraction of the text forms part of the structured
schema. In the second case of wrapper generation, syntactic
cues present as HTML tags are used extensively to define
rules for structure extraction [17, 6, 11, 20, 25, 7, 22, 24].
The HTML tags in pages tend to be highly regular because
the pages are often machine-generated [17, 7]. In contrast,
in our case most data is human generated and hence highly
irregular.

We elaborate on two applications, where text segmenta-
tion is useful.

1.1 International postal addresses
Large customer-oriented organizations like banks, tele-

phone companies and universities collect millions of unfor-
matted address records. Each address record is typically
provided by a different person and thus subject to the vari-
ation in style that occurs from person to person. Dur-
ing warehouse construction, all these addresses are cleaned
and converted to a standard consistent format with dupli-
cates removed. This is a multi-step process. The first step,
called Address Elementization [15], is where addresses are
segmented into a fixed set of structured elements. For exam-
ple an address string ‘‘18100 New Hamshire Ave. Silver

Spring, MD 20861’’ can be segmented into five structured
elements as follows:

House Number : 18100
Street Name : New Hamshire Ave.
City : Silver Spring
State : MD
Zip : 20861

The second step called Address Standardization is where ab-
breviations (like “Ave.”) get converted to a canonical for-
mat and spelling mistakes get corrected. This is followed by
the Deduplication or Householding phase where all addresses
belonging to the same household are brought together. The
quality of both these phases can be considerably enhanced
by first elementizing the addresses correctly.

Address text
[Segmented address]

0 M. J Muller, 71, route de Longwy L-4750 PETANGE
[recipient: M. J Muller] [House#: 71,]
[Street: route de Longwy] [Zip: L-4750] [city:PETANGE]

1 Viale Europa, 22 00144-ROMA RM
[Street: Viale Europa,] [House#: 22] [City: ROMA]
[Province: RM] [Zip: 00144-]

2 7D-Brijdham Bangur Nagar Goregaon (W) Bombay 400 090
[House#: 7D-] [Building: Brijdham]
[Colony: Bangur Nagar] [Area: Goregaon (W)]
[City: Bombay] [Zip: 400 090]

3 18100 New Hamshire Ave. Silver Spring, MD 20861
[House#: 18100], [Street: New Hamshire Ave.],
[City: Silver Spring,], [State: MD], [Zip: 20861]

Table 1: Sample addresses from different countries.
The first line shows the unformatted address and
the second line shows the address broken into its
elements

Existing commercial tools [10] rely on hand-written rules
coupled with a massive database of cities, states and zip
codes. These methods work for the region they are devel-
oped and do not extend to other domains. A lot of manual
work has to be performed in rewriting these rules when shift-
ing domains. Postal addresses in different parts of the world
often have drastically different structures. In some countries
zip codes are five digit numbers whereas in others they are
allowed to have strings. In Table 1 we show some example
addresses1 along with their elementized forms from differ-
ent regions of the world. Not only do address formats differ
from country to country, even within a city, addresses can
have widely different formats. The problem is more chal-
lenging in large developing countries that do not follow the
templatized western address schemes. There is no uniform
numbering of buildings, the reliance on ad hoc descriptive
landmarks is common, state abbreviations are not standard-
ized, spelling mistakes are rampant and zip codes optional.
Given the wide variety of patterns, it is clear that manual
rule-based tools will not scale with the expanding globaliza-
tion of business.

In spite of the commercial importance of this problem and
the challenges it offers, research in the area has been lim-
ited because researchers view this as a largely labor-intensive
task. One exception is the merge/purge problem for dedu-
plicating address records [12, 23]. We believe and show in
the paper that address elementization is another problem
that can benefit from principled research.

1.2 Bibliography records
A second motivating example is cleaning bibliographic

records for the construction of citation indices like Cite-
seer2 [19]. This requires extracting from the end of each
research paper, the list of references and matching each ref-
erence to a database of entries. References appear in differ-
ent formats in different documents. As an example, we show
in the table below the various forms in which the classical
“Selinger, Query optimization” paper is referred 3.

1obtained from http://bitboost.com/ref/
international-address-formats.html, November 2000
2http://citeseer.nj.nec.com/cs, Nov 2000
3Obtained from Citeseer by searching for ”Access and Path
and Selection and Relational” (October 2000)

1. McGraw-Hill. Selinger, P.; Astrahan, M.; Chamber-
lin, D.; Lorie, R.; and Price, T. 1979. Access path
selection in a relational database management sys-
tem. In SIGMOD ’79.

2. In VLDB-96, 251–262. Selinger, P.; Astrahan, M.;
Chamberlin, D.; Lorie, R.; and Price, T. 1979. Ac-
cess path selection in a relational database manage-
ment system. In SIGMOD ’79.

3. Patricia G. Selinger, et al. Access path selection in a
relational database management system. In Proceed-
ings of the ACM SIGMOD Conference, pages 23–34,
1979.

4. Access path selection in a relational database man-
agement system. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages 23#34,
Boston, USA, May 1979.

5. Price #1979#. #Access path selection in a rela-
tional database management system,” ACM SIG-
MOD International Conf. on Management of Data,
pp. 23#34., 1979.

6. SIAM Journal of Computing, 17(6):1253–1262.
Selinger, G., Astrahan, M., Chamberlin, D., Lorie,
R., and Price, T. (1979). Access Path Selection in
a Relational Database Management System. In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 23–34.

7. Selinger et al. Access Path Selection in a Relational
Database System.” In Proceedings of the ACM SIG-
MOD International Conference on the Management
of Data, 1979.

Existing methods for matching records rely on rule-based,
manual heuristics. The matching algorithm can be made
more robust after individual fields are extracted as observed
by the authors of Citeseer in [19]:

“While CiteSeer’s current algorithm is suffi-
cient for practical use, it could be improved in
many ways. For example, the use of machine
learning techniques and probabilistic estimation
based on training sets of known bibliographic
data may boost performance.”

The Selinger paper Citeseer had 283 total references. Cite-
seer wrongly classified them as thirteen different papers,
seven of which are shown in the above list. They indeed
appear very different overall. However, a closer examina-
tion reveals that in all references the “Title” and “Year”
fields are the same and in most at least one author is com-
mon. Hence a field level match on Title, Year and Author
instead of an approximate record level match would be more
accurate. The extracted fields could also enable a better
structured search instead of the current record-level search.

The field extraction problem is non-trivial in this case be-
cause of the high variance in the structure of the record. Au-
thor is not the first field in all cases. The year field appears
within parenthesis for some, at the end for others. Comma
separates some fields but comma is also used to separate last
names from first names. A dot usually appears at the end
of title but also appears after abbreviations. Several fields
like location, month and page-numbers are optional.

1.3 Our Approach
We have developed a tool datamold for automatically

segmenting such data starting from a small seed set of ex-
ample segmented records. The core of datamold is a pow-
erful statistical technique called Hidden Markov Modeling
(HMM).

http://bitboost.com/ref/international-address-formats.html
http://bitboost.com/ref/international-address-formats.html
http://citeseer.nj.nec.com/cs

1.3.1 Hidden Markov Models
A Hidden Markov Model (HMM) is a probabilistic finite

state automaton [26, 27] comprising of a set of states, a
finite dictionary of discrete output symbols, and edges de-
noting transitions from one state to another. Each edge is
associated with a transition probability value. Each state
emits one symbol in the dictionary from a probability dis-
tribution for that state. There are two special states: a start
state and an end state. Beginning from the start state, a
HMM generates an output sequence O = o1, o2, . . . , ok by
making k transitions from one state to the next until the
end state is reached. The ith symbol oi is generated by the
ith state based on that state’s probability distribution of the
dictionary symbols. In general, an output sequence can be
generated through multiple paths each with some probabil-
ity. The sum of these probabilities is the total probability
of generating the output sequence. The HMM thus induces
a probability distribution on sequences of symbols chosen
from a discrete dictionary. The training data helps learn
this distribution. During testing, the HMM outputs the
most probable state transitions that could have generated
an output sequence.

HMMs, while relatively new to the structure extraction
task, have been used with much success for speech and hand-
writing recognition tasks [27] and for natural language tasks
like parts-of-speech tagging [16]. In spite of the general prin-
ciples being known, applying it to our text segmentation
problem required new enhancements and experimentation
& validation on real-life data. We list our main enhance-
ments.

• We developed a nested model for learning the struc-
ture of the HMM — the outer HMM captures the se-
quencing relationship amongst elements and the in-
ner HMMs learn the finer structure within each ele-
ment. An important design issue in deploying a HMM
is choosing the right structure of the model. There is
no established method for doing this optimally. Our
nested model provides a practical method to search
amongst the exponential number of possibilities.

• We introduce the concept of a taxonomy on the sym-
bols (words, numbers, delimiters) appearing in the train-
ing sequence and show how to generalize the dictionary
of each HMM state to a level that provides the highest
accuracy.

• We show how to integrate an external database into
the basic HMM model. We propose an optimal mod-
ification to the classical Viterbi algorithm (used for
finding the most likely path in an HMM) to incorpo-
rate relationships imposed by an external database.

The final model after incorporating all the enhancements,
provides a powerful segmentation tool that combines infor-
mation about different aspects of the record, including,

• Characteristic words in each element: The dictionary
along with the symbol hierarchy learns characteristic
words in each element intuitively capturing patterns
of the form “words like street appear in road-names”
and “house-numbers usually consist of digits”.

• Number of symbols in each element: Sometimes, records
can be segmented based on typical lengths of different
elements. For example, “title” fields are long whereas
“location” names are small. The inner HMMs and the
transition probabilities capture this information.

Elements
1. House-#
2. Street
 .
E. Country

Database

Trained-model

Training
data
1. …..
2. …..

 .

T. …...

Test data

Structured
record

Taxonomy

DATAMOLD
Training phase

Figure 1: An overview of the working of datamold.

• Partial ordering amongst elements: Most often there
is a partial ordering amongst elements: for example,
“house number” appears earlier on in the address record
than “zipcode”. The transition probabilities and the
structure of the outer HMM helps learn this informa-
tion.

• Non-overlapping elements: Our approach attempts to
simultaneously identify all the elements of a record.
Thus, the different inner HMMs corroborate each other’s
finding to pick the segmentation that is globally opti-
mal. This is in contrast to systems that extract each
element in isolation, for example, as proposed in [5,
8].

Experiments on real-life address and bibliography datasets
yield very encouraging results. We achieved accuracies of
99.2% on US addresses after training on just 50 instances
and 89% on a considerably more complicated Asian address
dataset. In contrast, a well-known information extraction
method based on rule-learning yielded accuracy of 97% and
50% on the two datasets respectively. On a bibliography
dataset the accuracy was 87% (with 100 training instances)
with our method and 43% with the rule learning method.

The HMM-based approach thus provides a principled way
to combine all the above information to segment data based
on the maximization of a single objective function. Most
tools proposed recently are rule-based systems [1, 5, 25, 17]
that rely on heuristics to control the order in which rules are
fired and extract each element in isolation exploiting only
some of the above information. Other advantages with the
HMM approach is that it can handle new data robustly, is
computationally efficient and is easy for humans to interpret
and tweak.

Outline. The rest of the paper is organized as follows. In
Section 2 we present a detailed description of datamold. In
Section 3 we present experimental results. In Section 4 we
present related work and finally conclude in Section 5.

2. SEGMENTING TEXT USING DATAMOLD
In Figure 1 we present an overview of the working of data-

mold. The input to datamold is a fixed set of E elements
of the form “House #”, “Street” and “City” and a collec-
tion of T example addresses that have been segmented into
one or more of these elements. We do not assume any fixed
ordering amongst the elements nor are all elements required
to be present in all addresses. Two other optional inputs
to the training process are first, a taxonomy on the syntax
of symbols in the training data and second, a database of
relationship amongst symbols. The role of these additional
information is discussed later in Sections 2.4 and 2.5. data-

0.40
0.67

0.05

0.75

0.13

0.21Building Name
0.47

State

0.50

Pincode

House No. Road

Start

City

End

0.92

0.12 0.35

0.22

0.10 0.28

0.20

0.08

0.35

0.10

0.25

0.12

0.05

0.35

Area

0.3

0.320.2

0.38

0.33

0.2

0.15

Landmark 0.45

Figure 2: Structure of a typical naive HMM

mold uses the example segmented records to output a model
that when presented with any unseen text segments it into
one or more of its constituent elements.

2.1 HMMs for text segmentation
The basic HMM model as described in Section 1.3.1con-

sists of:

• a set of n states,

• a dictionary of m output symbols,

• an n × n transition matrix A where the ijth element
aij is the probability of making a transition from state
i to state j, and

• a n × m emission matrix B where entry bjk denotes
the probability of emitting the k-th output symbol in
state j.

This basic HMM model needs to be augmented for seg-
menting free text into the constituent elements. Let E be
the total number of elements into which the text has to be
segmented. Each state of the HMM is marked with exactly
one of these E elements, although more than one state could
be marked with the same element. The training data con-
sists of a sequence of element-symbol pairs. This imposes
the restriction that for each pair 〈e, s〉 the symbol s can only
be emitted from a state marked with element e.

In Figure 2 we show a typical HMM for address segmen-
tation. The number of states n is 10 and the edge labels
depict the state transition probabilities (A Matrix). For ex-
ample, the probability of an address beginning with House
Number is 0.92 and that of seeing a City after Road is 0.22.
The dictionary and the emission probabilities are not shown
for compactness.

Training a HMM. The parameters of the HMM comprising
of the number of states n, the set of symbols in the dictionary
m, the edge transition matrix A and the emission probabil-
ity matrix B are learnt from training data. The training of
an HMM has two phases. In the first phase we choose the
structure of the HMM, that is, the number of states n and
edges amongst states and train the dictionary. Normally,
training the dictionary is easy, it is just the union all words,
digits and delimiters appearing in the training data. In Sec-
tion 2.4 we present further refinements on the dictionary.
In the second phase we learn the transition and emission
probabilities assuming a fixed structure of the HMM. We
first concentrate on this phase in Section 2.2 and discuss
structure learning in Section 2.3.

Using the HMM for testing.Given an output symbol se-
quence O = o1, o2, . . . , ok, we want to associate each symbol
with an element. Since each state in the HMM is associated

with exactly one element, we associate each symbol with
the state that emitted the symbol. Hence we need to find
a path of length k from the start state to the end state,
such that the ith symbol oi is emitted by the ith state in
the path. In general, an output sequence can be generated
through multiple paths each with some probability. We as-
sume the Viterbi approximation and say that the path hav-
ing the highest probability is the one which generated the
output sequence. Given n states and a sequence of length
k, there can be O(kn) possible paths that the sequence can
go through. This exponential complexity is cut down to
O(kn2) by the famous dynamic programming-based Viterbi
Algorithm [27]. Readers familiar with the algorithm can skip
the next section.

2.1.1 The Viterbi algorithm
Given an output sequence O = o1, o2, . . . , ok of length k

and an HMM having n states, we want to find out the most
probable state sequence from the start state to the end state
which generates O.

Let 0 and n+ 1 denote the special start and end states.
Let vs(i) be the probability of the most probable path for

the prefix o1, o2, . . . oi of O that ends with state s.
We begin at the start state labeled 0. Thus, initially

v0(0) = 1, vk(0) = 0, k 6= 0

Subsequent values are found using the following recursive
formulation:

vs(i) = bs(oi) max
1≤r≤n

{arsvr(i− 1)}, 1 ≤ s ≤ n, 1 ≤ i ≤ k (1)

where bs(oi) is the probability of emitting the i-th symbol
oi at state s and ars is the transition probability from state
r to state s. The maximum is taken over all states of the
HMM.

The probability of the most probable path that generates
the output sequence O is given by

vn+1 = max
1≤r≤n

ar(n+1)vr(k)

the actual path can be gotten by storing the argmax at
each step. This formulation can be easily implemented as a
dynamic programming algorithm running in O(kn2) time.

2.2 Learning transition and emission proba-
bilities

The goal of the training process is to learn matrices A and
B such that the probability of the HMM generating these
training sequences is maximized. Each training sequence
consists of a series of element-symbol pairs. The structure
of the HMM is fixed and each state is marked with one
of the E elements. This restricts the states to which the
symbols of a training sequence can be mapped. Consider two
cases. In the first case, there is exactly one path from the
start to the end state for all training sequences. The second
case is where there is more than one valid path. All HMM
structures we discuss in the paper satisfy the first condition
of having a unique path. Hence we do not discuss this case
further. In the first case, the transition probabilities can be
calculated using the Maximum Likelihood approach on all
training sequences. Accordingly, the probability of making
a transition from state i to state j is the ratio of the number
of transitions made from state i to state j in the training

data to the total number of transitions made from state i.
This can be written as:

aij =
Number of transitions from state i to state j

Total number of transitions out of state i
(2)

The emission probabilities are computed similarly. The prob-
ability of emitting symbol k in state j is the ratio of the
number of times symbol k was emitted in state j to the to-
tal number of symbols emitted in the state. This can be
written as:

bjk =
Number of times the k-th symbol emitted at state j

Total number of symbols emitted at state j
(3)

Computationally, training the A and B matrix involves
making a single pass over all input training sequences, map-
ping each sequence to its unique path in the HMM and
adding up the counts for each transition that it makes and
output symbol it generates.

Smoothing.The above formula for emission probabilities
needs to be refined when the training data is insufficient.
Often during testing we encounter words that have not been
seen during training. The above formula will assign a proba-
bility of zero for such symbols causing the final probability to
be zero irrespective of the probability values elsewhere in the
path. Hence assigning a correct probability to the unknown
words is important. The traditional method for smoothing
is Laplace smoothing [18] according to which Equation 3
will be modified to add one to the numerator and m to the
denominator. Thus, an unseen symbol k, in state j will be
assigned probability 1

Tj+m
where Tj is the denominator of

Equation 3 and stands for the total number of tokens seen in
state j. We found this smoothing method unsuitable in our
case. An element like “road name”, that during training has
seen more distinct words than an element like “Country”, is
expected to also encounter unseen symbols more frequently
during testing. Laplace smoothing does not capture this in-
tuition. We use a method called absolute discounting. In
this method we subtract a small value, say x from the proba-
bility of all known mj distinct words seen in state j. We then
distribute the accumulated probability equality amongst all
unknown values. Thus, the probability of an unknown sym-
bol is

mjx

m−mj
and for a known symbol k is bjk−x where bjk is

as calculated in Equation 3. There is no theory about how
to choose the best value of x. We pick x as 1

Tj+m
.

2.3 Learning Structure
In general, it is difficult to get the optimal number of

states in the HMM. We first present a naive model and later
present a more elaborate nested model that is used in data-

mold.

2.3.1 Naive Model
A naive way to model the HMM is to have as many states

as the number of elements E, and completely connect these
E states. To this we add a start state with transitions from
it to every other state, and an end state with transitions to
it, from every other state.

In Figure 2 we presented an example HMM for a typical
address dataset of an Asian metropolis. For simplicity, only
the important states have been shown. As mentioned ear-
lier, the numbers on the edges represent the corresponding

transition probabilities. The self loops are used to capture
elements with more than one token.

This model captures the ordering relationship amongst
elements. However, because it has just one state per ele-
ment, it ignores any sequential relationship amongst words
in the same element. For example, most road names end
with words like “Road”, “Street”, or “Avenue”. Treating
an element as a single state does not capture this structure.
Also for country names like “New Zealand” both “New” and
“Zealand” will be outputs of the same state. This state will
accept “Zealand New” with the same probability as “New
Zealand”. The other problem is that it learns only a lim-
ited kind of distribution on the number of words per ele-
ment. For example, if 50% elements have one word and
the rest 50% have three words each, then the naive model
will create a single state with a self loop of probability 0.5.
This accepts elements of length 1, 2, 3 . . . k with probabil-
ity 1

2
, 1

4
, 1

8
. . . 1

2k
respectively. In contrast for the training

data the corresponding probabilities are 1
2
, 0, 1

2
, . . . , 0. We

overcome these drawbacks in the next model.

2.3.2 Nested model
In this model, we have a nested structure of the HMM.

Each element has its own inner HMM which captures its
internal structure. An outer HMM captures the sequencing
relationship amongst elements treating each inner HMM as
a single state.

The HMM is learnt in a hierarchical manner in two stages.
In the first stage we learn the outer HMM. In this stage, the
training data is treated as a sequence of elements ignoring
all details of the length of each element and the words it
contains. These sequences are used to train the outer HMM.

In the second stage we learn the structure of the inner
HMMs. The training data for each element is the sequence
of all distinct tokens (word, delimiter, digit) in the element.

Start End

Figure 3: A four length Parallel Path structure

S E S E S E

Figure 4: Merging a four state path with a three
state path

An element typically has a variable number of tokens. For
example, city-names most frequently have one token but
sometimes have two or more tokens. We handle such vari-
ability automatically by choosing a parallel path structure
(Figure 3) for each inner HMMs. In the Figure, the start
and end states are dummy nodes to mark the two end points
of an element. All records of length one will pass through
the first path, length two will go through the second path
and so on. The last path captures all records with four or
more tokens. We next describe how the structure of the

000.. ...999

3-digits

00000.. ..99999

5-digits

0..99 0000..9999 000000..

Others

Numbers

A.. ..z

Chars

aa..

Multi-letter

Words

. , / - + ? #

Delimiters

All

Figure 5: An example taxonomy on symbols.

HMM in terms of the number of paths and the position of
the state with the self loop is chosen from the training data.

Initially, we create as many paths as the number of dis-
tinct token counts. This might leave some paths with insuf-
ficient training examples resulting in a poorly trained dic-
tionary. We merge such paths to its neighboring path as
follows. Starting with the longest path, we merge each path
to the next smaller path as long as it improves the objective
function described in the next paragraph. Merge of a k state
path to a k−1 state path as shown in the example in Figure 4
requires us to pick the one state that will not be merged.
We try out all possible k choices of this state and choose
the one that gives the best value of the objective function.
At the end we pick the largest path and replace any parallel
path within it with a self-loop (as shown in the last diagram
in Figure 4) so that paths longer than the longest path in
the training data can be accepted.

Objective function .An inner HMM is good if it accepts
the part of the symbol sequence belonging to itself and re-
jects the part not belonging to itself. Therefore, the best in-
ner HMM cannot be found independently for each element.
Another subtlety in choosing a good structure for the inner
HMM is that, an inner HMM does not need to learn to re-
ject all tokens – only the tokens that belong to an adjacent
element.

We therefore learn each inner HMM in conjunction with
others that are adjacent to it. Initially, all inner HMMs
are unpruned. Starting from one end, we pick the HMM h
of the first element and HMMs of all other elements that
transition to and from this element. We first attempt to
prune h. For this, we truncate the training data to the part
that is relevant to all the selected elements. Two paths of
HMM h are merged only if the accuracy of segmenting the
training data does not decrease. After pruning h to the right
size, we prune the next inner unpruned HMM that it points
to in the same manner and so on.

2.4 Hierarchical feature selection
One issue during the training phase is what constitutes

the symbols in the dictionary. A reasonable first approach
is to treat each distinct word, number or delimiter in the
training data as a token. Thus, in the address 18100 New

Hamshire Ave. Silver Spring, MD 20861 we have 10 to-
kens: six words, two numbers and two delimiters “,” and “.”.
Intuitively, though we expect the specific number “18100”
to be unimportant as far as we know that it is a number and
not a word. Similarly, for the zip code field the specific value
“20816” is not important; what matters perhaps is that it
is a 5-digit number. How do we automatically make such
decisions?

We propose that the features be arranged in a hierarchy.
An example taxonomy is shown in Figure 5 where at the top-

S 1 2 3 E

3 0.3
45 0.3
66 0.3

A 0.7
C 0.2

B 0.6
C 0.3

0.4

0.6

0.7

0.3

1 1

Figure 6: An example HMM to motivate the
need for feature selection.

Numbers

A.. ..z

Chars

aa..

Multi-letter

Words Delimiters

All

Figure 7: Taxonomy of Figure 5 after
being pruned for best performance.

most level there is no distinction amongst symbols; at the
next level they are divided into “Numbers”, “Words” and
“Delimiters”; “Numbers” are divided based on their length
as “3-digit”, “5-digit” or any other length numbers; and so
on. Such taxonomy is part of a one-time static information
input to datamold. The training data is used to automat-
ically choose the optimum frontier of the taxonomy. Higher
levels loose distinctiveness and lower levels are hard to gen-
eralize and require more training data. We need a middle
ground.

We motivate the need for feature selection through a small
HMM in Figure 6 with three states and a start state and an
end state. The dictionary of each state and the associated
emission probability is shown in the box above each state.
Thus, the dictionary of state 2 has two symbols A and C
with non-zero probability 0.7 and 0.2 respectively whereas
for state 1 only the three numbers 3, 45 and 66 had nonzero
probability.

Each state assigns the same probability of α = 0.1 to
unknown symbols. Suppose, if we get a test sequence of
the form (90, D). Then, this HMM will assign it to states
(2,3) because the emission probability of symbols 90 and D
that are unknown to all states will be the same and tran-
sition probability of the (2,3) is highest. Intuitively, how-
ever we expect digits to be assigned to state 1. Suppose
instead through feature selection we transformed all indi-
vidual numbers to a special token “#” that stood for all
digits. Then dictionary of state 1 contains just one symbol
“#” with probability 0.9. Then the probability of the path
(1,3) becomes 0.4×0.9×0.3×0.1 that is higher than that of
path (2,3) at 0.6×0.1×1.0×0.1. In contrast, if we attempt
to convert the symbols A,B,C to a single symbol “@” de-
noting all letters, then the dictionary of both states 2 and 3
become the same containing a single symbol “@” with prob-
ability 0.9. In this case, we have lost the distinction that in
state 2 letter “A” is more likely and in state “3” letter “B”
is more likely. In the extreme, if we replace all numbers and
letters by the single symbol “All” at the topmost level, then
it is like not having a dictionary at all. The best path is
chosen based simply on the structure of the HMM and the

edge transition probabilities. In this case all two and three
token sequences will be mapped to states (2, 3) and (1, 2, 3)
respectively.

The above example showed that it helps to generalize sym-
bols in the training data to a higher level in some cases but
not always. datamold uses the following method to choose
the right level. The available segmented data is divided into
two parts: training and validation. Normally, we set aside
one-third of the total data for validation. First we train
the dictionary with all symbols at their original detailed
level as seen in the training part. Next we use the valida-
tion dataset to choose the right level of the taxonomy. The
procedure is similar to how decision trees are pruned using
cross-validation to avoid overfitting. Starting from the bot-
tom we prune the tree at various levels in turn and check the
accuracy on the validation data. The highest accuracy sub-
tree is chosen. This process does not require training data
to be scanned again since the higher level dictionaries can
be formed from lower level symbols. Thus, each validation
step is fast.

In Figure 7 we show an example frontier that yielded high-
est accuracy on one of our real-life address datasets for the
feature tree of Figure 5. Thus all individual numbers are
converted to a single special token representing numbers.
All delimiters are converted to another special symbol and
everything else is left as it is. This conversion is done during
a preprocessing step on input data sequences.

The feature taxonomy is also used to modify the smooth-
ing method described in Section 2.2. For unknown symbols,
instead of doing absolute discounting over all the symbols in
the dictionary, we find the first ancestor with non-zero prob-
ability and do absolute discounting over children of that fea-
ture. Thus, if we find an unknown symbol say “Fairyland”
then we do absolute discounting only over multi-letter words
in that state instead of all symbols. This leads to a closer
approximation of the unknown probability.

2.5 Integrating a Partial Database
Sometimes, in addition to the training data we might have

a database of richer semantic relationship amongst symbols
of different elements. For address data we might have a
hierarchical database of countries, the states in each country
and the cities in each state. Similarly, for bibliography data,
conference names, location and year could be related. Such
information constraints the combination of values that are
allowed in different elements and could be useful in finding
the right assignment of symbols to states. For example,
some address formats allow both the state name and country
name to be optional. Thus, a city name could be followed
by either a state or a country name. Suppose we get an
address ending with (C,X) where C has been established to
be a city name. If X occurs both in the state and country
dictionary, the HMM may not be able to correctly pick the
right element. However, this confusion would not arise if we
had access to a database that established that country X
has a city called C and that state X does not have any city
called C.

Incorporating dependency information as implied by hier-
archies is hard in HMMs because the output and transition
probabilities of a state depends only on that state and is in-
dependent of the output symbols of the previous state. The
Viterbi algorithm, used for efficiently finding the optimum
path of a test sequence through a HMM, crucially relies on

this property in its dynamic programming formulation. In
this section, we present a modification of the algorithm for
handling the above forms of dependencies.

This part requires an understanding of the Viterbi algo-
rithm as explained in Section 2.1.1. We present our modi-
fication in the following section.

2.5.1 Our modification to Viterbi
As mentioned in Section 2.1.1, Viterbi finds the most

probable path for a prefix o1, o2, . . . , oi of O ending at state
s using the following recursive formula.

vs(i) = bs(oi) max
1≤r≤n

{arsvr(i− 1)}, 1 ≤ s ≤ n, 1 ≤ i ≤ k

where vs(i) is the probability of the most probable path for
the prefix ending at state s. We modify the above formu-
lation to restrict exploring paths that are invalid given the
database of semantic relationships amongst symbols of dif-
ferent elements. In the modified algorithm, we model these
semantic constraints as a pair of symbol-state assignments
that are invalid. Suppose at the ith step we find that the as-
signment 〈s, oi〉 conflicts with an earlier assignment 〈s′, oj〉
(for some j < i) in the best path from the start state to s.
We change Equation 1 so that instead of taking a max over
all states we disallow those that are invalid. We reduce the
number of lookups by doing the checks only for the winning
value. After finding the max on all states we check if the
corresponding path is valid. If not, we take the second high-
est value, check for its validity and so on until a valid path
is found. If all paths to s are invalid than vs(i) is 0.

This modification ensures that the path output by Viterbi
is valid. Unfortunately, the optimality of the solution is no
longer guaranteed. The reason Viterbi works is that the
best path for generating the ith output symbol is indepen-
dent of the exact path from the first to (i−1)th symbol. We
violate this basic assumption — an earlier assignment is af-
fecting later assignments. We propose a second adjustment
to ensure optimality in spite of such violations.

If in the Viterbi equation above if the best path to some
state r involved an assignment 〈s′, oj〉 (for some j < i)
that conflicted with the ith assignment 〈s, oi〉, we re-evaluate
vr(i−1) while disallowing state s′ in the jth time step. Call
this new value vr(i−1|no crs(i−1)) where crs(i−1) denotes
the state in the best path vr(i−1) that conflicts with 〈s, oi〉.

Thus, the value vs(i) is evaluated by taking the maxi-
mum over all states whose best paths do not conflict with
assignment 〈s, oi〉. If they do conflict for some state r, we re-
evaluate a different value vr(i−1|no crs(i−1)) and evaluate
max over that. Now, equation 1 changes to

vs(i) = bs(oi) max
1≤r≤n

{
{arsvr(i− 1) if no conflict with 〈s, oi〉
arsvr(i− 1|{no crs(i− 1)}) otherwise} (4)

In evaluating vr(i−1|{no crs(i−1)}), some other assignment
might be found to be illegal. That is appended to the set
of disallowed assignments forming a list of size greater than
one.

This modification returns the optimal valid path. Thus,
any form of semantic constraint amongst symbols can be
enforced. The constraints are closely integrated with the
search for the best path in the HMM. This is considerably
superior to a decoupled approach where the database lookup
to check for validity is performed after the best assignment
has been found by the HMM.

Dataset Number of Number of Number of
elements (E) training test instances

instances
US addresses 6 250 490
Student address 16 650 1738
Company address 6 250 519

Table 2: Datasets used for the experiments

3. EXPERIMENTAL RESULTS
We measure the efficacy of the proposed techniques on

real-life address datasets and bibliography databases. We
compare our results with prior work on information extrac-
tion using rule-learning methods. We quantify the benefits
of the nested HMM structure and the hierarchical feature
selection steps and measure the sensitivity of our results to
the number of training instances.

We do not concern much with running time issues. Our
Nested HMM contains less than hundred states, so classifi-
cation time for addresses using Viterbi is very small. The
training time is also within practical limits — our largest
dataset completed within an hour.

3.1 Datasets
We consider three different real-life address sources as

summarized in Table 2.

US addresses.The US address dataset consisted of 740 ad-
dresses downloaded from an internet yellow-page directory4.
The addresses were segmented into six elements: House No,

Box No. Road Name, City, State, Zip as shown in Fig-
ure 8.

Student address.This dataset consisted of 2388 home ad-
dresses of students in the author’s University . These ad-
dresses were partitioned into 16 elements (described in Fig-
ure 10) based on the postal format of the country. The ad-
dresses in this set do not have the kind of regularity found
in US addresses.

Company address.This dataset consisted of 769 addresses
of customers of a major national bank in a large Asian
metropolis. The address was segmented into six elements:
Care Of, House Name, Road Name, Area, City, Zipcode

as shown in Figure 9.
For the experiments all the data instances were first man-

ually segmented into its constituent elements. In each set,
one-third of the dataset was used for training and the re-
maining two-thirds used for testing as summarized in Ta-
ble 2.

All tokens were converted to lower case. Each word, digit
and delimiter in the address formed a separate token to the
HMM. Each record was preprocessed into its corresponding
higher-level representation using the automatic preprocess-
ing technique described in Section 2.4. The tree in Figure 5
was used for this preprocessing.

3.2 Overall accuracy measures
We obtained accuracy of 99%, 88.9% and 83.7% on the

US, Student and Company dataset respectively. The Asian

4http://www.superpages.com/

addresses have a much higher complexity compared to the
US addresses. The company dataset had lower accuracy be-
cause of several errors in the segmentation of data that was
handed to us. We dig further into the element-wise accuracy
figures to better understand the behavior of datamold.

In Tables 8, 10, 9 we show the precision and recall values
for individual elements. The second column is the total num-
ber of tokens over all test data for that element. The pre-
cision column shows what percentage of the tokens tagged
as that element actually belong to the element. The recall
column shows the number of tokens correctly tagged as a
percentage of the actual number of tokens for that element.

The table shows that there is a wide variance in the pre-
cision of each element. Fortunately, elements like “Designa-
tion”, “Building Names” and “Landmarks” in Table 10, on
which accuracy is low also happen to be less important and
occur infrequently in both the training and test sequences.
The scarcity of data prevents them from getting trained
properly. Also these elements tend to get confused with
each other. Elements like Building names, Landmarks and
Society are often hard to distinguish even for a human be-
ing. For landmarks, some help is provided by the first word
which usually is “Near” or “Opp.” but it is difficult to judge
where the landmark ends, unless it has been seen before.

For the company dataset most of the loss in accuracy hap-
pened because of the confusion amongst the first three el-
ements arising out of the errors in the training data. Ele-
ments that were clearly road-names were wrongly tagged as
house-names in the training data

3.3 Comparing different automatic approaches
We compare the performance of datamold with the fol-

lowing three automated approaches.

Naive-HMM. This is the HMM model described in Sec-
tion 2.3.1 with just one state per element. Otherwise it
includes all the other optimizations of datamold including
feature selection and smoothing. The purpose here is to
evaluate the benefit of the nested HMM model.

Independent-HMM.In this approach, for each element we
train a separate HMM to extract just its part from a text
record, independent of all other elements. Each indepen-
dent HMM has a prefix and suffix state to absorb the text
before and after its own segment. Otherwise the structure
of the HMM is similar to what we used in the inner HMMs.
Unlike the nested-model there is no outer HMM to capture
the dependency amongst elements. The independent HMMs
learn the relative location in the address where their ele-
ment appears through the self-loop transition probabilities
of the prefix and suffix states. This is similar to the ap-
proach used in [8] for extracting location and timings from
talk announcements.

Feature selection and smoothing is done exactly as in
datamold. The main idea here is to evaluate the bene-
fit of simultaneously tagging all the elements of a record
exploiting the sequential relationship amongst the elements
using the outer HMM.

Rule-learner.We compare HMM-based approaches with
a rule learner, Rapier [5]. (The code is freely download-

Element Tokens Precision Recall
present (%) (%)

House No. 427 99.3 99.765
Po Box 10 57.142 40.0
Road Name 1268 99.449 99.763
City 611 100.0 99.509
State 490 100.0 100.0
Zipcode 490 100.0 100.0
Overall 3296 99.605 99.605

Figure 8: US addresses

Element Tokens Precision Recall
present (%) (%)

CareOf 278 90.604 48.561
House Address 2145 77.343 88.484
Road Name 1646 78.153 73.025
Area 808 91.7 83.415
City 527 99.81 100.0
Zip Code 519 100.0 100.0
Overall 5923 83.656 83.656

Figure 9: Company addresses

Element Tokens Precision Recall
present (%) (%)

Care Of 281 98.091 91.459
Department 99 100.0 20.202
Designation 98 45.098 23.469
House No. 3306 95.681 90.471
Bldg. Name 1702 73.204 77.849
Society 3012 76.554 85.856
Road Name 2454 84.815 88.997
Landmark 443 88.338 68.397
Area 2364 93.277 89.805
P O 231 86.473 77.489
City 1785 96.561 97.535
Village 40 100.0 13.333
District 138 93.333 81.159
State 231 96.38 92.207
Country 20 100.0 45.0
Zipcode 3042 99.967 99.934
Overall 19246 88.901 88.901

Figure 10: Student addresses

Figure 11: Precision and recall values for different datasets shown broken down into the constituent elements.

Student Data Company Data US Data
0

20

40

60

80

100

A
cc

ur
ac

y

�

Naive HMM

Independent HMM

Rapier

DATAMOLD

Figure 12: Comparison of four different methods of
text segmentation

able on the internet 5). Rapier is a bottom-up inductive
learning system for finding information extract rules. It has
been tested on several domains and found to be competitive.
It uses techniques from inductive logic programming and
finds patterns that include constraints on the words, part-
of-speech tags, and semantic classes present in the text in
and around the tag. Like the Independent-HMM approach
it also extracts each tag in isolation of the rest.

Figure 12 shows a comparison of the accuracy of the four
methods Naive-HMM, Independent-HMM, Rule-learner and
datamold. Accuracy is defined as the number of tokens
correctly assigned to its element as a fraction of the total
number of tokens in the test instance. The number of train-
ing and test instance for each dataset is as shown in Table 2.
We can make the following observations from these results.

• The Independent-HMM approach is significantly worse
than datamold because of the loss of valuable se-
quence information. For example, in the former case

5http://www.cs.utexas.edu/users/ml/rapier.html,
November 2000

Student Data Company Data US Data
0

20

40

60

80

100

A
cc

ur
ac

y

�

No feature selection

Digits collapsed

Numbers collapsed

Numbers+Characters collapsed

Figure 13: Accuracy by generalizing features at var-
ious levels of the feature taxonomy of Figure 5

there is no restriction that tags cannot overlap — thus
the same part of the address could be tagged as being
part of two different elements. With a single HMM the
different tags corroborate each other’s finding to pick
the segmentation that is globally optimal.

• Naive-HMM gives 3% to 10% lower accuracy than the
nested-HMM approach of datamold. This shows the
benefit of a detailed HMM for learning the finer struc-
ture of each element.

• The accuracy of Rapier is considerably lower than data-

mold. Rapier leaves many tokens untagged by not
assigning them to any of the elements. Thus it has
low recall. However, the precision of Rapier was found
to be competitive to our method — 89.2%, 88%, and
98.3% for Student, Company and US datasets respec-
tively. The overall accuracy is acceptable only for US
addresses where the address format is regular enough
to be amenable to rule-based processing. For the com-
plicated sixteen-element Student dataset such rule-based
processing could not successfully tag all elements.

3.4 Effect of feature selection
In the graphs in Figure 13 we study the effect of choos-

http://www.cs.utexas.edu/users/ml/rapier.html

ing features at different levels of the taxonomy tree shown
in Figure 5. For each dataset, the first bar shows accuracy
without any feature selection, i.e, all features are at the low-
est level of the taxonomy tree. The second bar is where indi-
vidual numbers are grouped based on the number of digits it
contains. The third bar is where all numbers are represented
as a single symbol irrespective of their length. Finally, the
fourth bar is where all individual letters are also aggregated
to a single special token. For the Student dataset, the high-
est accuracy is achieved by the third option that gives a 4%
boast in accuracy over not doing any feature selection. The
other two datasets also show a slight boast in accuracy with
feature selection.

3.5 Effect of training dataset size on accuracy
The size of the training data is an important concern in

all extraction tasks that require manual effort in tagging
the instances. In most such information extraction prob-
lems, untagged data is plentiful but tagged data to serve
as training records is scarce and requires human effort. We
study the amount of training effort needed to achieve peak
performance.

In Figure 17 we show accuracies for different sizes of train-
ing data with datamold. The test data for each point in
the graph is the total available data as show in Figure 2
minus the data used for training. The results show that
HMMs are fast learners. For US addresses (Figure 14), just
50 addresses achieved the peak accuracy of 99.5% on 690
test instances and just 10 addresses yielded an accuracy of
91%. For the Student dataset (Figure 15) with 150 training
addresses we get 85% accuracy on 2238 addresses and with
300 addresses reach 89% accuracy on the remaining 2088
addresses. Further increasing the training size only slightly
boasts the accuracy. Similar trend is observed for the Com-
pany dataset in Figure 16.

3.6 Experiments on Bibliography data
The results so far were based on postal addresses. We

verify the generality of datamold by using it for segmenting
bibliography references.

The bibliography entries were obtained from two sources.
The first source was a collection of PDF files whose refer-
ences were known to have been generated using bibtex. We
extracted the text part of the references in the PDF file
(using screen cut and paste), so that each entry was a text
string without any of the latex formating tags. The second
source was bibliographic references from Citeseer 6. Citeseer
data was chosen to also include examples of references not
necessarily generated by bibtex.

The training set had 100 references and the test set had
205 references and the number of elements was 10 as shown
in Table 3. The results on datamold and Rapier are shown
in Table 3. datamold yields an accuracy of 87.3% whereas
Rapier although provides high precision suffers on the Re-
call. datamold tags all tokens — therefore the overall recall
is equal to overall precision. In contrast Rapier leaves many
tokens untagged causing the overall accuracy to drop.

The experiments showed that datamold is an effective
tool for accurate segmentation of real-life datasets chosen
from three very different domains: US addresses, irregular
Asian addresses and bibliographic records. The results are

6http://citeseer.nj.nec.com/

datamold Rapier
Element Tokens Prec. Recall Prec. Recall

present (%) (%) (%) (%)
Author 1174 88.07 86.20 0.00 0.00
Title 1591 90.26 97.86 92.60 51.31
Conference 1248 81.94 90.87 92.87 70.32
Volume 158 96.43 85.44 0.00 0.00
Pages 336 91.52 93.15 0.00 0.00
Year 191 99.46 96.86 98.31 93.09
Month 66 100.00 95.45 100.00 100.00
Organization 80 86.21 31.25 0.00 0.00
Publisher 127 66.97 57.48 0.00 0.00
Address 93 75.56 36.56 0.00 0.00
Type 35 81.82 25.71 0.00 0.00
School 13 42.86 23.08 0.00 0.00
Note 24 100.00 37.50 0.00 0.00
Editor 168 77.14 48.21 0.00 0.00
Overall 5304 87.35 87.35 93.46 36.48

Table 3: Accuracy of datamold and Rapier on bibtex
data

considerably better than state of the art rule learning sys-
tems especially for the more complicated domains. The ex-
periments also established the usefulness of the nested HMM
model and feature selection. An analysis of the effect of
training data size on accuracy established that HMMs are
fast learners and in most cases 10% of the available seg-
mented examples was enough to reach within 1% of the peak
accuracy.

4. RELATED WORK
The problem of extracting structure from unstructured

documents can be addressed at various levels of complex-
ity. On one extreme is the classical semantics extraction
problem from free text using sophisticated natural language
processing [5]. The other more approachable problem is
structure extraction based on syntactic patterns. A pop-
ular subproblem in this space is extracting structured fields
from HTML documents. Wrappers, as these are popularly
called, do shallow information extraction based on syntac-
tic cues present as HTML tags. Except for a few initial
systems like TSIMMIS [11] and ARANEUS [22] that are
based on manual approaches, most of the recent ones follow
the same learn-from-example approach. Example systems
of these kind are WEIN [17], SoftMealy [13], Stalker [25, 3],
W4F [2], XWrap [20] and [7].

Many of these systems assume that the HTML is a reg-
ular list of multi-attribute data as would be machine gen-
erated from a database. WEIN [17], one of the early wrap-
pers, deploys a rule-based system to find the left and right
HTML tags to separate attributes. Stalker [25] follows the
same rule-based technique but hierarchically learns to iden-
tify finer and finer structure of the document. The extrac-
tion for members within the same hierarchy are learnt inde-
pendently like in WEIN. Softmealy [13] learns to simulta-
neously extract multiple elements like we do but they use a
deterministic finite state automata (DFAs). DFAs are sim-
pler than HMMs since transitions and output symbols do
not have probabilities associated with them. When there is
ambiguity in the rules of two out-going edges, they rely on
external heuristics to decide which one to pick. In contrast
an HMM will explore both possibilities and pick the one that
gives highest total probability.

h

0
�

200
�

400
�

600
�

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

�

Figure 14: US addresses

0
�

200
�

400
�

600
�

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

�

Figure 15: Student Addresses

0
�

200
�

400
�

600
�

No. of training instances

0

20

40

60

80

100

A
cc

ur
ac

y

�

Figure 16: Company Addresses

Figure 17: Effect of training data size on accuracy for different datasets

Our problem instances are far more irregular — order of
fields is not fixed, not all fields are present in all examples,
demarcation between fields is often not present. Also wrap-
pers rely extensively on HTML separator tag and give only
secondary importance to the words in the element itself and
the length distribution of the words.

We next discuss related work in the more challenging area
of information extraction from free text. We discussed in
Section 3 Rapier [5], a bottom-up rule learning algorithm.
Another rule-based algorithm is Whisk presented in [29].
Nodose [1] is a semi-automated free-text wrapper where the
user manually specifies a set of candidate rules for pattern
extraction and the system follows a simple generate and ver-
ify hypothesis model to find the best pattern.

Hidden Markov Models [8, 9, 28, 21, 4] have been de-
ployed for a few information extraction tasks like extracting
“Dates” and “Locations” from talk announcements [9], ex-
tracting names and numeric entities like price from free text
documents [4], extracting tags like “Title”, “Author” and
“Affiliation”from headers of computer science research pa-
pers. Of these all except [28] extract independent HMMs
for each tag in isolation of the others like in Rapier and
Whisk [29]. In our experiments we found the independent
HMM approach to be inferior to the single HMM approach
used in datamold. Also, datamold has a number of en-
hancements over the the basic HMM model used in [28] in-
cluding, feature selection on a concept hierarchy of the in-
put tokens, incorporating database dependencies through a
modified Viterbi algorithm and the nested practical struc-
ture learning algorithm.

5. CONCLUSION
In this paper we presented an automated approach for

segmenting unformatted text into a set of structured ele-
ments. This has applications in the crucial address cleaning
phase of warehouse construction, reference matching phase
of automated citation graph construction and generically in
constructing structured queryable databases from unformat-
ted records.

Recently there has been a lot of interest in extracting
structure from HTML documents. The text segmentation
problem is different and more challenging in that separa-
tors between elements is rarely present and data is highly
irregular because most of it is human generated — often by
different people at different times.

We propose a practical method based on the powerful Hid-
den Markov Modeling technique. The basic HMM method
had to be extended in various ways to solve practical in-
formation extraction tasks. We proposed a nested two-level
model for learning the structure of the HMM. We intro-
duce a concept hierarchy on the input features for robust
smoothing and automatic feature selection. We provide
means for tightly integrating information derived from ex-
ternal databases into the basic HMM-based optimizations
through a modified optimal Viterbi algorithm. The result
is a unified learning model that can simultaneously tag el-
ements exploiting cues from several sources, including, fre-
quently occurring words within an element, partial sequen-
tial relationship amongst elements, length distribution of
elements, and external databases of relationship amongst
symbols. This global optimization driven approach is a de-
parture from existing rule-based systems for information ex-
traction that rely on heuristics to control the order in which
rules are fired and extract each element in isolation exploit-
ing only a subset of the information that an HMM can ex-
ploit.

Experiments on real-life address and bibliography datasets
yield accuracies ranging from 84% and 89% on two compli-
cated datasets of Asian addresses to 99.6% on templatized
western addresses and 87.3% on bibliography records. These
results were found to be considerably better than a state-
of-the-art rule-learning algorithm for information extraction
in free text documents. Further experiments proved that
HMMs are fast learners and with just 50 to 100 training
instances we get close to the maximum accuracy.

Given the encouraging results and the intuitive, human-
interpretable nature of the model we believe that the HMM
approach is an effective method for several practical infor-
mation extraction problems.

Future work in the area include correcting and allowing
for spelling mistakes in the data, automatically supplying
missing fields for some records and exploiting active learning
methods to reduce the amount of training data that needs
to be manually tagged.

Acknowledgements.We would like to acknowledge the con-

tribution of Vijay R. Borkar, Satya Sundar Sahoo and Mamata

Desai who painstakingly hand-tagged the test data. We are also

indebted to Arvind R. Hulgeri for his constructive suggestions.

6. REFERENCES
[1] B. Aldelberg. Nodose: A tool for semi-automatically

extracting structured and semistructured data from
text documents. In SIGMOD, 1998.

[2] Arnaud Sahuguet and Fabien Azavant. Building
light-weight wrappers for legacy Web data-sources
using W4F. In International Conference on Very
Large Databases (VLDB), 1999.

[3] G. Barish, Y.-S. Chen, D. DiPasquo, C. A. Knoblock,
S. Minton, I. Muslea, and C. Shahabi. Theaterloc:
Using information integration technology to rapidly
build virtual applications. In Intl. Conf. on Data
Engineering ICDE, pages 681–682, 2000.

[4] D. M. Bikel, S. Miller, R. Schwartz, and
R. Weischedel. Nymble: a high-performance learning
name-finder. In Proceedings of ANLP-97, pages
194–201, 1997.

[5] M. E. Califf and R. J. Mooney. Relational learning of
pattern-match rules for information extraction. In
Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-99), pages 328–334, July
1999.

[6] A. Crespo, J. Jannink, E. Neuhold, M. Rys, and
R. Studer. A survey of semi-automatic extraction and
transformation.
http://www-db.stanford.edu/ crespo/publications/.

[7] D. W. Embley, Y. S. Jiang, and Y.-K. Ng.
Record-boundary discovery in web documents. In
SIGMOD 1999, Proceedings ACM SIGMOD
International Conference on Management of Data,
June 1-3, 1999, Philadephia, Pennsylvania, USA,
pages 467–478, 1999.

[8] D. Freitag and A. McCallum. Information extraction
using HMMs and shrinkage. In Papers from the
AAAI-99 Workshop on Machine Learning for
Information Extraction, pages 31–36, 1999.

[9] D. Freitag and A. McCallum. Information extraction
with HMM structures learned by stochastic
optimization. In Proceedings of the AAAI 2000, 2000.

[10] H. Galhardas.
http://caravel.inria.fr/ galharda/cleaning.html.

[11] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting semistructure information
from the web. In Workshop on mangement of
semistructured data, 1997.

[12] M. A. Hernandez and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
ACM SIGMOD, 1995.

[13] C.-N. Hsu and M.-T. Dung. Generating finite-state
transducers for semistructured data extraction from
the web. Information Systems Special Issue on
Semistructured Data, 23(8), 1998.

[14] S. Huffman. Learning information extraction patterns
from examples. In S. Wermter, G. Scheler, and
E. Riloff, editors, Proceedings of the 1995 IJCAI
Workshop on New Approaches to Learning for Natural
Language Processing., 1995.

[15] R. Kimball. Dealing with dirty data. Intelligent
Enterprise, September 1996.
http://www.intelligententerprise.com/.

[16] J. Kupiec. Robust part of speech tagging using a
hidden Markov model. Computer Speech and

Language, 6:225–242, 1992.

[17] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper
induction for information extraction. In Proceedings of
IJCAI, 1997.

[18] P.-S. Laplace. Philosophical Essays on Probabilities.
Springer-Verlag, New York, 1995. Translated by
A. I. Dale from the 5th French edition of 1825.

[19] S. Lawrence, C. L. Giles, and K. Bollacker. Digital
libraries and autonomous citation indexing. IEEE
Computer, 32(6):67–71, 1999.

[20] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled
wrapper construction system for web information
sources. In International Conference on Data
Engineering (ICDE), pages 611–621, 2000.

[21] A. McCallum, D. Freitag, and F. Pereira”. Maximum
entropy markov models for information extraction and
segmentation. In In proceedings of ICML-2000, 2000.

[22] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the
era of xml. In IEEE Data Engineering Bullettin,
Special Issue on XML. IEEE, September 1999.

[23] A. E. Monge and C. P. Elkan. The field matching
problem: Algorithms and applications. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), 1996.

[24] I. Muslea. Extraction patterns for information
extraction tasks: A survey. In The AAAI-99
Workshop on Machine Learning for Information
Extraction, 1999.

[25] I. Muslea, S. Minton, and C. A. Knoblock. A
hierarchical approach to wrapper induction. In
Proceedings of the Third International Conference on
Autonomous Agents, Seattle, WA, 1999.

[26] L. Rabiner. A tutorial on Hidden Markov Models and
selected applications in speech recognition. In
Proceedings of the IEEE, 77(2), 1989.

[27] L. Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition, chapter 6. Prentice-Hall, 1993.

[28] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning Hidden Markov Model structure for
information extraction. In Papers from the AAAI-99
Workshop on Machine Learning for Information
Extraction, pages 37–42, 1999.

[29] S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine Learning,
34, 1999.

	Introduction
	International postal addresses
	Bibliography records
	Our Approach
	Hidden Markov Models

	Segmenting text using DATAMOLD
	HMMs for text segmentation
	The Viterbi algorithm

	Learning transition and emission probabilities
	Learning Structure
	Naive Model
	Nested model

	Hierarchical feature selection
	Integrating a Partial Database
	Our modification to Viterbi

	Experimental Results
	Datasets
	Overall accuracy measures
	Comparing different automatic approaches
	Effect of feature selection
	Effect of training dataset size on accuracy
	Experiments on Bibliography data

	Related Work
	Conclusion
	REFERENCES -9pt

