
XIRQL: An XML Query Language Based on Information
Retrieval Concepts

Norbert Fuhr, Kai Großjohann
University of Dortmund, Germany

December 17, 2001

Abstract

Most proposals for XML query languages are based
on the data-centric view on XML and do not sup-
port uncertainty and vagueness, thus being insuit-
able for information retrieval (IR) of XML doc-
uments. Based on the document-centric view,
we present the query language XIRQL which im-
plements IR-related features such as weighting
and ranking, relevance-oriented search, datatypes
with vague predicates, and structural relativism.
XIRQL integrates these features by using ideas
from logic-based probabilistic IR models, in combi-
nation with concepts from the database area. For
processing XIRQL queries, a path algebra is pre-
sented which also serves as a starting point for
query optimization.

1 Introduction

More and more, XML is acknowledged as stan-
dard document format, especially for Web applica-
tions. In contrast to HTML which is mainly layout-
oriented, XML follows the fundamental concept of
separating the logical structure of a document from
its layout. The major purpose of XML markup is
the explicit representation of the logical structure
of a document (whereas the layout of a document
(type) is described in a separate style sheet).

Given the logical markup, different kinds of oper-
ations referring to the logical structure can be per-
formed on XML documents: Multiple views on a
document can be generated (e.g. for different audi-
ences), specific elements of an XML document can
be extracted, or documents fulfilling specific struc-
tural conditions can be retrieved from a document

base. Overall, if information is represented in XML
format, exchange of this information between dif-
ferent software systems (especially on the Web) is
simplified, thus supporting interoperability.

From an IR point of view, the role of XML as
the forthcoming standard format for fulltext doc-
uments offers new opportunities. Since XML sup-
ports logical markup of texts both at the macro
level (e.g. chapter, section, paragraph) and the mi-
cro level (e.g. MathML for mathematical formu-
las, CML for chemical formulas), retrieval methods
dealing with both kinds of markup should be devel-
oped. At the macro level, fulltext retrieval should
allow for selection of appropriate parts of a docu-
ment in response to a query, such as by returning
a section or a paragraph instead of the complete
document. At the micro level, specific similarity
operators for different types of text or data should
be provided (e.g. similarity of chemical structures,
phonetic similarity for person names).

Although a large number of query languages for
XML have been proposed in recent years, none of
them fully addresses the IR issues related to XML;
especially, the XQuery proposal of the W3C work-
ing group [Fernandez & Marsh 01] offers almost no
support for IR-oriented querying of XML sources.
There are only a few approaches that provide par-
tial solutions to the IR problem, namely by taking
into account the intrinsic imprecision and vague-
ness of IR; however, none of them is based on a
consistent model of uncertainty (see section 6).

In this paper, we present a new query language
XIRQL that combines the major concepts of XML
querying with those from IR. XIRQL is based on a
subset of XQuery, which we extend by IR concepts,
along with giving a consistent model for dealing

1

with the uncertainty issue.
In the following, we first briefly describe XML

and XML path expressions. Then we discuss the
problem of IR on XML documents, and present the
major concepts of our new query language XIRQL
(section 3). Section 4 describes the underlying al-
gebra for processing XIRQL queries, and section 5
deals with the transformation of XIRQL into alge-
bra expressions. A survey on related work is given
in section 6, followed by the final conclusions and
outlook.

2 XML retrieval

XML is a text-based markup language similar to
SGML. Text is enclosed in start tags and end tags
for markup, and the tag name provides information
on the kind of content enclosed. As an exception to
this rule, #PCDATA elements (plain text) have no
tags. Elements can be nested, as in the following
example:

<author><first>John</first>
<last>Smith</last></author>

Elements can also be assigned attributes,
which are given in the start tag, e.g. <date
format="ISO">2000-05-01</date>; here the
attribute name is format, and the attribute value
is ISO.

Following is an example XML document, which
also illustrates the tree structure resulting from the
nesting of elements. Figure 1 shows the correspond-
ing document tree (the dashed boxes are explained
later, in section 3.2).

<book class="H.3.3">
<author>John Smith</author>
<title>XML Retrieval</title>
<chapter>

<heading>Introduction</heading>
This text explains all about XML and IR.

</chapter>
<chapter>

<heading>
XML Query Language XQL

</heading>
<section>

<heading>Examples</heading>
</section>
<section>

<heading>Syntax</heading>

Now we describe the XQL syntax.
</section>

</chapter>
</book>

All XML documents have to be well-formed,
that is, the nesting of elements must be correct
(<a> is forbidden). In addition, a doc-
ument type definition (DTD) may be given, which
specifies the syntax of set of XML documents. An
XML document is valid if it conforms to the corre-
sponding DTD.

When our development of XIRQL started, we
chose the query language XQL ([Robie et al. 98],
[Robie et al. 99]) as starting point. The
XQuery proposal [Fernandez & Marsh 01] has
adopted a slight variant of XQL (XPath, see
[Clark & DeRose 99]) for its path expression part
(see section 6). Here we give a brief description of
XQL.

XQL retrieves elements (i.e. subtrees) of the
XML document fulfilling the specified condition.
The query heading retrieves the four differ-
ent heading elements from our example docu-
ment. Attributes are specified with a preced-
ing ‘@’ (e.g. @class). Context can be consid-
ered by means of the child operator ‘/’ between
two element names, so e.g. section/heading re-
trieves only headings occurring as children of
sections, whereas ‘//’ denotes descendants (e.g.
book//heading). Wildcards can be used for el-
ement names, as in chapter/*/heading. A ‘/’
at the beginning of a query refers to the root
node of documents (e.g. /book/title). The fil-
ter operator filters the set of nodes to its left.
For example, //chapter[heading] retrieves all
chapters which have a heading. (In contrast,
//chapter/heading retrieves only the heading el-
ements of these chapters.) Explicit reference to
the context node is possible by means of the
dot (.): //chapter[.//heading] searches for a
chapter containing a heading element as descen-
dant. Brackets are also used for subscripts indi-
cating the position of children within an element,
with separate counters for each element type; for
example //chapter/section[2] refers to the sec-
ond section in a chapter (which is the third child of
the second chapter in our example document).

In order to pose restrictions on the content of
elements and the value of attributes, comparisons

2

class="H.3.3"

author

John Smith

title

XML Retrieval Introduction

chapter

heading This. . .

heading

SyntaxExamples

heading

sectionheading

XML Query
Language XQL

section

We describe
syntax of XSL

chapter

book

Figure 1: Example XML document tree

can be formulated. For example, /book[author =
"John Smith"] refers to the value of the element
author, whereas /book[@class = "H.3.3"] com-
pares an attribute value with the specified string.
Besides strings, XQL also supports numbers and
dates as data types, along with additional compar-
ison operators like gt and lt (for > and <).

Subqueries can be combined by means of Boolean
operators and and or or be negated by means of
not.

For considering the sequence of elements, the
operators before and after can be used, as
in //chapter[section/heading = "Examples"
before section/heading = "Syntax"].

These features of XQL allow for flexible formu-
lation of conditions wrt. to structure and content
of XML documents. The result is always a set of
elements from the original document(s).

3 XIRQL concepts

3.1 Requirements

From an IR point of view, the combination of con-
tent with logical markup in XML offers the follow-
ing opportunities for enhancing IR functionality in
comparison to plain text:

• Queries referring to content only should re-
trieve relevant document parts according to
the logical structure, thus overcoming the lim-
itations of passage retrieval. The FERMI
model [Chiaramella et al. 96] suggests the fol-
lowing strategy for the retrieval of structured

(multimedia) documents: A system should al-
ways retrieve the most specific part of a docu-
ment answering the query.

• Based on the markup of specific elements,
high-precision searches can be performed that
look for content occurring in specific elements
(e.g. distinguishing between the sender and the
addressee of a letter, finding the definition of
a concept in a mathematics textbook).

• The concept of mixed content allows for the
combination of high precision searches with
plain text search. An element contains mixed
content if both plain text (#PCDATA) as well
as other elements may occur in it. Thus, it is
possible to mark up specific items occurring in
a text. For example, in an arts encyclopedia,
names of artists, places they worked, and ti-
tles of pieces of art may be marked up (thus
allowing for example, to search for Picasso’s
paintings of toreadors, avoiding passages men-
tioning Picasso’s frequent visits to bull-fights).

With respect to these requirements, XQL seems to
be a good starting point for IR on XML documents.
However, the following features should be added to
XQL:

Weighting. IR research has shown that document
term weighting as well as query term weight-
ing are necessary tools for effective retrieval in
textual documents. So comparisons in XQL re-
ferring to the text of elements should consider
index term weights. Furthermore, query term

3

weighting should also be possible, by introduc-
ing a weighted sum operator (e.g. 0.6 · "XML"
+ 0.4 · "retrieval"). These weights should be
used for computing an overall retrieval status
value for the elements retrieved, thus resulting
in a ranked list of elements.

Relevance-oriented search. The query lan-
guage should also support traditional IR
queries, where only the requested content is
specified, but not the type of elements to
be retrieved. In this case, the IR system
should be able to retrieve the most relevant
elements; following the FERMI multimedia
model cited above, this should be the most
specific element(s) that fulfill the query. In the
presence of weighted index terms, the tradeoff
between these weights and the specifity of
an answer has to be considered, e.g. by an
appropriate weighting scheme.

Data types and vague predicates. The stan-
dard IR approach for weighting supports vague
searches on plain text only. XML allows for
a fine grained markup of elements, and thus,
there should be the possibility to use special
search predicates for different types of ele-
ments. For example, for an element contain-
ing person names, similarity search for proper
names should be offered; in technical docu-
ments, elements containing measurement val-
ues should be searchable by means of the com-
parison predicates > and < operating on float-
ing point numbers. Thus, there should be the
possibility to have elements of different data
types, where each data type comes with a set
of specific search predicates. In order to sup-
port the intrinsic vagueness of IR, most of
these predicates should be vague (e.g. search
for measurements that were taken at about
20 ◦C).

Structural relativism. XQL is closely tied to the
XML syntax, but it is possible to use syntac-
tically different XML variants to express the
same meaning. For example, a particular in-
formation could be encoded as an XML at-
tribute or as an XML element. As another
example, a user may wish to search for a value
of a specific datatype in a document (e.g. a
person name), without bothering about the el-

ement names. Thus, appropriate generaliza-
tions should be included in the query language.

In the remainder of this section, we describe con-
cepts for integrating the features listed above in
XIRQL.

3.2 Weighting

At first glance, extending XQL by a weighting
mechanism seems to be a straightforward. Assum-
ing probabilistic independence, the combination of
weights according to the different Boolean opera-
tors is obvious, thus leading to an overall weight for
any answer. However, there are two major prob-
lems that have to be solved first: 1) How should
terms in structured documents be weighted? 2)
What are the probabilistic events, i.e. which term
occurrences are identical, and which are indepen-
dent? Obviously, the answer to the second question
depends partly on the answer to the first one.

As we said before, classical IR models have
treated documents as atomic units, whereas XML
suggests a tree-like view of documents. One possi-
bility for term weighting in structured documents
would be the development of a completely new
weighting mechanism. Given the long experience
with weighting formulas for unstructured docu-
ments, such an approach would probably take a big
effort to achieve good performance; furthermore,
we would have to cope with the problem of partial
dependence of events (see below). As an alterna-
tive, we suggest to generalize the classical weight-
ing formulas. Thus, we have to define the “atomic”
units in XML documents that are to be treated like
atomic documents. The benefit of such a definition
is twofold:

1. Given these units, we can apply e.g. some kind
of tf · idf formula for term weighting.

2. For relevance-oriented search, where no type
of result element is specified, only these units
can be returned as answers, whereas other ele-
ments are not considered as meaningful results.

We start from the observation that text is contained
in the leaf nodes of the XML tree only. So these
leaves would be an obvious choice as atomic units.
However, this structure may be too fine-grained
(e.g. markup of each item in an enumeration list,

4

or markup of a single word in order to emphasize
it). A more appropriate solution is based on the
concept of index objects from the FERMI multime-
dia model: Given a hierarchic document structure,
only nodes of specific types form the roots of index
objects. In the case of XML, this means that we
have to specify the names of the elements that are
to be treated as index nodes. This definition can
be part of the XML Schema (see below).

From the weighting point of view, index objects
should be disjoint, such that each term occurrence
is considered only once. On the other hand, we
should allow for retrieval of results of different gran-
ularity: For very specific queries, a single paragraph
may contain the right answer, whereas more gen-
eral questions could be answered best by returning
a whole chapter of a book. Thus, nesting of index
objects should be possible. In order to combine
these two views, we first start with the most spe-
cific index nodes. For the higher-level index objects
comprising other index objects, only the text that
is not contained within the other index objects is
indexed. As an example, assume that we have de-
fined section, chapter and book elements as index
nodes in our example document; the corresponding
disjoint text units are marked as dashed boxes in
figure 1.

So we have a method for computing term
weights, and we can do relevance based search.
Now we have to solve the problem of combining
weights and structural conditions. For the follow-
ing examples, let us assume that there is a compar-
ison predicate cw (contains word) which tests for
word occurrence in an element. Now consider the
query
//section[heading cw "syntax"]
and assume that this word does not only occur
in the heading, but also multiple times within the
same index node (i.e. section). Here we first have
to decide about the interpretation of such a query:
Is it a content-related condition, or does the user
search for the occurrence of a specific string? In the
latter case, in would be reasonable to view the filter
part as a Boolean condition, for which only binary
weights are possible. We offer this possibility by
providing data types with a variety of predicates,
where some of them are Boolean and others are
vague (see below).

In the content-related interpretation, there are
two possibilities for computing the term weight:

We could either compute a weight for this specific
structural condition only, or we could use the
weight from the corresponding index node. In
the first case, there would be the problem of
computing the weight on the fly. Furthermore,
in case we have a query with multiple structural
conditions referring to the same term, it would
be very difficult to make sure that the weighting
mechanism considers each term occurrence at most
once. For example, when applying the query
/document[.//heading cw "XML" or
.//section//* cw "XML"]
to our example document, one can see that there
are several elements which fulfill both structural
conditions. In this simple case, one could just
count the total number of occurrences fulfilling
at least one of the two conditions before applying
a weighting function; in general, we would have
to compute weights for each of the conditions.
Using a probabilistic interpretation, however, the
(possible) partial overlapping of the underlying
occurrences would imply a partial dependence
of the probabilistic events associated with the
different query conditions; thus, it would not be
possible to specify a correct combination function
that leads to a point probability for the result.1

Besides these technical problems, we think that
the context should never be ignored in content-
oriented searches, even when structural conditions
are specified; these conditions should only work as
additional filters. So we take the term weight from
the index node. Thus the index node determines
the significance of a term in the context given by
the node.

With the term weights defined this way, we have
also solved the problem of independence/identity
of probabilistic events: Each term in each index
node represents a unique probabilistic event, and
all occurrences of a term within the same node
refer to the same event (e.g. both occurrences of
the word “syntax” in the last section of our example
document represent the same event). Assuming
unique node IDs, events can be identified by event
keys that are pairs [node ID, term]. For retrieval,
we assume that different events are independent.
That is, different terms are independent of each

1The only other possible solution would be to define each
term occurrence as probabilistic event — but then we ould
have to deal with the dependence of multiple occurrences of
a term in the same XML element.

5

other. Moreover, occurrences of the same term
in different index nodes are also independent of
each other. Following this idea, retrieval results
correspond to Boolean combinations of probabilis-
tic events which we call event expressions. For
example, a search for sections dealing with the
syntax of XQL could be specified as
//section[.//* cw "XQL" and .//* cw
"syntax"]
Here, our example document would yield the
conjunction [5, XQL] ∧ [5, syntax]. In contrast,
a query searching for this content in complete
documents would have to consider the occurrence
of the term “XQL” in two different index nodes,
thus leading to the Boolean expression
([3, XQL] ∨ [5, XQL]) ∧ [5, syntax].

For dealing with these Boolean expressions, we
adopt the idea of event keys and event expressions
described in [Fuhr & Rölleke 97]. Since the event
expressions form a Boolean algebra, we can trans-
form any event expression into disjunctive normal
form (DNF), that is:

e = C1 ∨ . . . ∨ Cn,

where the Ci are event atoms or conjunctions of
event atoms, and an event atom is either an event
key or a negated event key (n is the number of con-
juncts of the DNF). Then the inclusion-exclusion
formula (e.g. [Billingsley 79, p. 20]) yields the prob-
ability for this event expression as follows:

P (e) = P (C1 ∨ . . . ∨ Cn)

=
n∑

i=1

(−1)i−1

 ∑
1≤j1<

...<ji≤n

P (Cj1 ∧ . . . ∧ Cji
)

For example, the last example expression from
above would be transformed into
([3, XQL] ∧ [5, syntax]) ∨ ([5, XQL] ∧ [5, syntax]).
Then the resulting probability would be computed
as
P ([3, XQL]∧[5, syntax])+P ([5, XQL]∧[5, syntax])−
P ([3, XQL] ∧ [5, syntax] ∧ [5, XQL] ∧ [5, syntax]).
(Note the duplicate event in the last conjunction,
which can be eliminated due to idempotency).
Since different events are independent, the proba-
bility of the conjunctions can be expressed as the
product of the probabilities of the single events,
thus resulting in

P ([3, XQL]) · P ([5, syntax]) + P ([5, XQL]) ·
P ([5, syntax]) − −P ([3, XQL]) · P ([5, syntax]) ·
P ([5, XQL]).

Following the ideas from [Fuhr & Rölleke 97],
this approach can be easily extended in order to
allow for query term weighting. Assume that the
query for sections about XQL syntax would be
reformulated as
//section[0.6 · .//* cw "XQL" + 0.4 · .//*
cw "syntax"].
For each of the conditions combined by the
weighted sum operator, we introduce an addi-
tional event with a probability as specified in
the query (the sum of these probabilities must
not exceed 1). Let us assume that we identify
these events as pairs of an ID referring to the
weighted sum expression, and the corresponding
term. Furthermore, the operator ‘·’ is mapped
onto the logical conjunction, and ‘+’ onto dis-
junction. For the last section of our example
document, this would result in the event expres-
sion [q1, XQL]∧ [5, XQL]∨ [q1, syntax]∧ [5, syntax].
In order to yield the scalar product, we have to
assume that different query conditions belonging
to the same weighted sum expression are disjoint
events (e.g. P ([q1, XQL] ∧ [q1, syntax]) = 0). For
the last section of our example document, the final
probability would be computed as
P ([q1, XQL] ∧ [5, XQL]) + P ([q1, syntax] ∧
[5, syntax])−P ([q1, XQL]∧ [5, XQL]∧ [q1, syntax]∧
[5, syntax]).
Due to the disjointness of query conditions, the
probability of the last conjunct equals zero, and
thus we end up with the scalar product of query
and document term weights:
P ([q1, XQL]) · P ([5, XQL]) + P ([q1, syntax]) ·
P ([5, syntax]).

3.3 Relevance-oriented search

Above, we have described a method for combin-
ing weights and structural conditions. In contrast,
relevance-based search omits any structural condi-
tions; instead, we must be able to retrieve index
objects at all levels. The index weights of the most
specific index nodes are given directly. For retrieval
of the higher-level objects, we have to combine the
weights of the different text units contained. For
example, assume the following document structure,
where we list the weighted terms instead of the orig-

6

inal text:

<chapter> 0.3 XQL
<section> 0.5 example </section>
<section> 0.8 XQL 0.7 syntax </section>

</chapter>

A straightforward possibility would be the OR-
combination of the different weights for a single
term. However, searching for the term ‘XQL’ in
this example would retrieve the whole chapter in
the top rank, whereas the second section would be
given a lower weight. It can be easily shown that
this strategy always assigns the highest weight to
the most general element. This result contradicts
the structured document retrieval principle men-
tioned before. Thus, we adopt the concept of aug-
mentation from [Fuhr et al. 98]. For this purpose,
index term weights are downweighted (multiplied
by an augmentation weight) when they are prop-
agated upwards to the next index object. In our
example, using an augmentation weight of 0.6, the
retrieval weight of the chapter wrt. to the query
‘XQL’ would be 0.3+0.6 ·0.8−0.3 ·0.6 ·0.8 = 0.596,
thus ranking the section ahead of the chapter.

For similar reasons as above, we use event keys
and expressions in order to implement a consistent
weighting process (e.g. equivalent query expressions
should result in the same weights for any given doc-
ument). In [Fuhr et al. 98], augmentation weights
(i.e. probabilistic events) are introduced by means
of probabilistic rules. In our case, we can attach
them to the root element of index nodes. Denot-
ing these events as index node number, the last re-
trieval example would result in the event expression
[1, XQL] ∨ [3] ∧ [3, XQL].

In the following, paths leading to index nodes
are denoted by ‘inode()’ and recursive search with
downweighting is indicated via ‘. . . ’. As an ex-
ample, the query /document//inode()[... cw
"XQL" and ... cw "syntax"] searches for index
nodes about ‘XQL’ and ‘syntax’, thus resulting in
the event expression ([1, XQL] ∨ [3] ∧ [3, XQL]) ∧
[2] ∧ [2, syntax].

In principle, augmentation weights may be dif-
ferent for each index node. A good compro-
mise between these specific weights and a single
global weight may be the definition of type-specific
weights, i.e. depending on the name of the index
node root element. The optimum choice betweeen

these possibilities will be subject to empirical in-
vestigations.

3.4 Data types and vague predicates

Given the possibility of fine-grained markup in
XML documents, we would like to exploit this
information in order to perform more specific
searches. For the content of certain elements, struc-
tural conditions are not sufficient, since the stan-
dard text search methods are inappropriate. For
example, in an arts encyclopedia, it would be pos-
sible to mark artist’s names, locations or dates.
Given this markup, one could imagine a query like
“Give me information about an artist whose name
is similar to Ulbrich and who worked around 1900
near Frankfort, Germany”, which should also re-
trieve an article mentioning Ernst Olbrich’s work
in Darmstadt, Germany, in 1899. Thus, we need
vague predicates for different kinds of data types
(e.g. person names, locations, dates). Besides
similarity (vague equality), additional datatype-
specific comparison operators should be provided
(e.g. ‘near’, <, >, or ‘broader’, ‘narrower’ and ‘re-
lated’ for terms from a classification or thesaurus).
In order to deal with vagueness, these predicates
should return a weight as a result of the compar-
ison between the query value and the value found
in the document.

The XML standard itself only distinguishes
between three datatypes, namely text, integer
and date. The XML Schema recommendation
[Fallside 01] extends these types towards atomic
types and constructors (tuple, set) that are typi-
cal for database systems.

For the document-oriented view, this notion of
data types is of limited use. This is due to the
fact that most of the data types relevant for IR
applications can hardly be specified at the syn-
tactic level (consider for instance names of a ge-
ographic locations, or English vs. French text). In
the context of XIRQL, data types are character-
ized by their sets of vague predicates (such as pho-
netic similarity of names, English vs. French stem-
ming). Thus, for supporting IR in XML docu-
ments, there should be a core set of appropriate
datatypes and there should be a mechanism for
adding application-specific datatypes.

Candidates for the core set are texts in differ-
ent languages, hierarchical classification schemes,

7

thesauri and person names. In order to perform
text searches, some knowledge about the kind of
text is necessary. Truncation and adjacency oper-
ators available in many IR systems are suitable for
western languages only (whereas XML in combina-
tion with unicode allows for coding of most writ-
ten languages). Therefore, language-specific predi-
cates, e.g. for dealing with stemming, noun phrases
and composite words should be provided. Since
many documents may contain elements in multiple
languages, the language problem should be han-
dled at the datatype level.2 Classification schemes
and thesauri are very popular now in many digital
library applications; thus, the relationships from
these schemes should be supported, e.g. by includ-
ing narrower or related terms in the search. Vague
predicates for this datatype should allow for auto-
matic inclusion of terms that are similar accord-
ing to the classification scheme. Person names
often pose problems in document search, as the
first and middle names may sometimes be initials
only (so, searching for “Jack Smith” should also re-
trieve “J. Smith”, with a reduced weight). A major
problem is the correct spelling of names, especially
when transliteration is involved (e.g. “Chebychef”);
thus, phonetic similarity or spelling-tolerant search
should be provided.

Application-specific datatypes must support the
similarity of the datatypes that are common in this
area. For example, in technical texts, measurement
values often play an important role; thus, dealing
with the different units, the linear ordering involved
(<) as well as similarity (vague equality) should be
supported (e.g. show me all measurements taken
at room temperature). For texts describing chem-
ical elements and compounds, it should be possi-
ble to search e.g. for elements of compounds, or to
search for common generalizations (e.g. search for
‘aluminum salts’, without the need to enumerate
them).

As a framework for dealing with these prob-
lems, we adopt the concept of datatypes in IR
from [Fuhr 99], where a datatype T is a pair con-
sisting of a domain |T | and a set of (vague com-
parison) predicates PT = {c1, . . . , cn}. Like in
other type systems, IR data types should also
be organized in a type hierarchy (e.g. Text –

2Cross-lingual retrieval should be implemented on top of
the retrieval language.

Western_Language – English), where the subtype
restricts the domain and/or provides additional
predicates (e.g. n-gram matching for general text,
plus adjacency and truncation for western lan-
guages, plus stemming and noun phrase search
for English). Through this mechanism, additional
datatypes can be defined easily by refining the ap-
propriate datatype (e.g. introduce French as refine-
ment of Western_Language)3.

In order to exploit these datatypes in retrieval,
the datatypes of the XML elements have to be
defined. Thus, in addition to the DTDs of
the documents, we need some schema informa-
tion. Although the XML Schema recommendation
[Fallside 01] is targeted towards the data-centric
view of XML, it can also be used for our purpose.
Most of the data types discussed above are simple
types in terms of XML Schema (i.e. have no in-
ternal structure), but do not belong to the builtin
types of XML Schema. Thus, they have to be de-
rived by means of restriction from the builtin types.
However, in most cases, it is not possible to give
necessary conditions for the restriction (e.g. En-
glish as a specialization of normalizedString). On
the other hand, XML Schema does not deal with
(vague) predicates of data types; they can be listed
as application info only and are treated like com-
ments by the schema processor.

By using XML Schema (although in a non-
standard way), our approach contrasts with the ini-
tial XQL proposal, which requires neither a schema
nor a DTD; thus, XQL can also handle well-formed
XML, whereas XIRQL is restricted to XML docu-
ments satisfying a given schema declaration. This
is a natural consequence of the fact that we want to
enhance the query semantics: Without additional
information, it is impossible to provide functions
like relevance-oriented search or vague predicates
for specific datatypes. As a minimum requirement,
XIRQL can also operate with valid XML docu-
ments only (where the DTD is given in the form
of an XML Schema that specifies only the DTD
structure, but no data types).

Another good reason for requiring valid XML
documents in order to perform IR is user guid-
ance. For a set of only well-formed XML docu-
ments, it would be very hard to formulate meaning-

3Please note that we make no additional assumptions
about the internal structure of the text datatype (and its
subtypes), like representing text as set or list of words.

8

ful XML queries. Without knowledge about docu-
ment structure or even element names, most queries
would retrieve no documents at all. On the other
hand, based on a schema, it is possible to guide
the user in the query formulation process. How-
ever, we should mention that we view the role of
XIRQL similar to the one that SQL plays in rela-
tional databases. Typical end users do not formu-
late queries in this language; usually, they are of-
fered some form for entering query conditions, from
which the user interface generates the correct query
syntax.

3.5 Document classes and hyper-
links

In many applications, documents will belong
to different schemas. For this reason, we as-
sume that a document base may contain differ-
ent document classes. All documents belonging
to a single class conform to the same schema.
When formulating a XIRQL query the name of
the document class addressed has to be speci-
fied first, (e.g. class(book)//chapter[heading
cw "XML"]). As syntactical sugar, the class decla-
ration can be omitted in case it is identical with the
name of the top-level element named in the query.

As a major extension over XQL, XIRQL also
supports hyperlinks. Along with the possibility
of different document classes in a document
base, this feature allows for powerful querying
of XML documents. For example, assume that
we have a document class article where cita-
tion references are given as links to the cited
article. Using the operator => for dereferenc-
ing, we can search for all articles that are cited
by at least one publication in the following
way: /article/citations/cite=>/article.
Selection criteria may occur on both sides of
the link. For example, searching for articles
by Jones cited by anybody can be accom-
plished by placing a restriction on the target
side: /article/citations/cite=>/article[au
= "Jones"]. The next example returns
results from the source side of the link,
where we search for papers by Smith citing
Jones’ articles: /article[au = "Smith" and
./citations/cite=>/article[au = "Jones"]].
Conceptually, this type of query can also be seen as
a way of following links in the ‘inverse’ direction.

Since XIRQL cannot construct new documents,
the result of a query is either an element from the
source side or from the target side, but not a com-
bination of both. If the link operator occurs within
a filter, the results are elements of the source doc-
ument class, otherwise from the target class. How-
ever, XIRQL allows for restrictions both on the
source and target side of a link.

For document bases with several document
classes, the classes of both the source and the tar-
get of a link must be specified in the query. As an
example, assume that we have the document class
book in addition to article. Then we would need
a second query for retrieving Jones’ books cited
in Smith’s articles: /article[au = "Smith" and
./citations/cite=>/book[au = "Jones"]].

Hyperlinks may not only refer to complete doc-
uments, they may point to any element in any
document. For example, assume that there are
citation links pointing to chapters of books, and
we want so see the headings of these chapters
only: /article/citations/cite=>class(book)
chapter/heading.

In general, a query cannot follow links between
arbitrary document classes. At the schema level,
both the source and the target of a hyperlink are
XML elements. However, only the source element
must be specified explicitly in the XML Schema
definition, by using the builtin type URI.

3.6 Structural Relativism

Since typical queries in IR are vague, the query
language should also support vagueness in differ-
ent forms. Besides relevance-based search as de-
scribed above, relativism wrt. elements and at-
tributes seems to be an important feature. The
XQL distinction between attributes and elements
may not be relevant for many users. In XIRQL,
author searches an element, @author retrieves an
attribute and ~author is used for abstracting from
this distinction.

Another possible form of relativism is induced
by the introduction of datatypes. For example, we
may want to search for persons in documents, with-
out specifying their role (e.g. author, editor, refer-
enced author, subject of a biography) in these doc-
uments. Thus, we provide a mechanism for search-
ing for certain data types, regardless of their po-
sition in the XML document tree. For example,

9

#persname searches for all elements and attributes
of the datatype persname.

Further abstraction from the concrete XML syn-
tax is possible by introducing datatypes. For ex-
ample, a date value can be represented in various
forms in an XML document, as illustrated the fol-
lowing example:

<date year="2001" month="12" day="11"/>
<date>2001-12-11</date>
<date><year>2001</year>

<month>12</month>
<day>11</day></date>

With the ‘date’ datatype, users just specify the date
in a standard format in their query and don’t need
to know how dates happen to be represented in the
current document class.

3.7 XIRQL Syntax

In the previous sections, examples for XIRQL
queries have been presented. Table 1 gives a speci-
fication of the complete syntax using EBNF, which
is derived from the grammar for XQL. In addition
to literal character strings, the grammar uses the
following terminal symbols: ELEMENT matches
XML element names, ATTRIBUTE matches XML
attribute names, CLASS_NAME matches doc-
ument class names, STRING matches single-
quoted and double-quoted strings, and PREDI-
CATE matches predicate names such as e.g. cw or
clsim.

4 Processing XIRQL queries

In this section, we describe a path algebra for pro-
cessing XIRQL queries.

The major purpose of the description below is the
specification of the behavior of the different opera-
tors. But first, we give some basic definitions con-
cerning datatypes, the document base and event
expressions.

4.1 Schemas and paths

As mentioned above, XIRQL can only process XML
documents conforming to an XML Schema. How-
ever, since XIRQL offers no special operators for

dealing with complex types, we can use a simpli-
fied view on data types here. We treat all data
types as simple types, and only need to consider
the subtype relationship between types. Follow-
ing the notion of IR datatypes from [Fuhr 99], a
datatype T is a pair consisting of a domain |T | and
a set of (vague) predicates PT ; a subtype restricts
the domain and/or extends the set of predicates.

Definition 1 A data type T is a pair (|T |, PT),
where |T | is the domain and PT = {c1, . . . , cn}
is the set of (vague comparison) predicates, where
each predicate is a function ci:|T |×|T | → [0, 1]. Let
T denote the set of all data types, and D = ∪t∈T |T |
is the union of all domains.

Definition 2 The subtype relationship �T ⊂ T ×T
is a hierarchic relationship and a partial order on
T , which also fulfills the following condition:

T �T T ′ =⇒ |T | ⊆ |T ′| ∧ PT ⊇ PT ′ .

Let T> = (D, ∅) denote the top element, of which
all other types are subtypes.

From XIRQL’s point of view, complex datatypes
(e.g. a person name as a sequence of first name
and last name) have no internal structure, their
structure is hidden by the implementation of the
data type. Thus, complex data types usually will
be direct subtypes of the top element (except for
specializations of complex data types).

Based on this interpretation of datatypes,
XIRQL conditions referrring to the content of ele-
ments usually will address leaf nodes only. Internal
nodes will have complex data types, for which ap-
propriate predicates will not be available in most
cases. A major exception to this statement is the
invocation of functions for data type comparison
(e.g. the text() function), thus mapping a complex
data type into a simple one, for which XIRQL offers
appropriate predicates.

For modeling an XML document base, we draw
on ideas from the FERMI multimedia model as well
as from the XQuery semantics. Like with the latter,
we drop the distinction between XML elements and
attributes and refer to both of them as elements.

As with databases, a document base consists of
a schema and an instance. Similar to relational
databases containing multiple relations (or object-
oriented databases with multiple classes), we as-

10

Query ::= Sequence
Sequence ::= Disjunction

| Disjunction ("before" | "after") Sequence
Disjunction ::= Conjunction

| Conjunction "or" Disjunction
Conjunction ::= Negation

| Negation "and" Conjunction
Negation ::= Union

| "not" Negation
Union ::= Intersection

| Intersection UnionOp Union
UnionOp ::= "union" | "|"
Intersection ::= Comparison

| Comparison "intersect" Intersection
Comparison ::= Path | LValue CompOp RValue
CompOp ::= PREDICATE
LValue ::= Path
RValue ::= Path | Number | Text
Path ::= AbsolutePath | RelativePath
AbsolutePath ::= Root

| "/" RelativePath
| "//" RelativePath
| Class AbsolutePath

Class ::= "class(" CLASS_NAME ")"
RelativePath ::= Filter

| Filter "/" RelativePath
| Filter "//" RelativePath

Filter ::= Grouping
| Filter "[" IndexList "]"
| Filter "[" Subquery "]"
| Filter "=>" NameTest

NameTest ::= Class Element | Class | Element
IndexList ::= IndexArg

| IndexArg "," IndexList
IndexArg ::= Integer | Range
Range ::= Integer "-" Integer
Subquery ::= Sequence
Grouping ::= RelativeTerm | "(" Sequence ")"
RelativeTerm ::= "." | "..." | Element | Attribute
Element ::= ELEMENT | "*"
Attribute ::= "@" ATTRIBUTE
ParameterList ::= Parameter

| Parameter "," ParameterList
Parameter ::= Sequence | Number | Text
Text ::= STRING

Table 1: EBNF for XIRQL Syntax

11

sume that a document base contains multiple doc-
ument classes, where the documents of each class
conform to one document schema.

Since XIRQL only deals with the access to el-
ements of existing XML documents (without con-
structing new documents), we do not describe a
complete document model here. Thus we do not
address the issue of the structural constraints of
documents, we assume that they are given as a set
of semantic constraints which are not explained any
further.

Definition 3 A document base is a pair D =
(S, I), where S is the schema and I is the instance.

Definition 4 The schema of a document base is a
tuple

S = (S1, . . . , Sm)

with

Si = (Mi, Ni, Xi, τi, Ri) for i = 1 . . .m

where

Mi is the class name

Ni is a set of element names occurring in the DTD
of class Si, plus ‘/’ (the name of the root ele-
ment),

Xi ⊆ Ni is the set of element names of index node
roots,

τi is a mapping τ : Ni → T that specifies the data
type for each element name,

Ri is a set of semantic constraints that follows
from the XML Schema of class Si.

For specifying the instance of a document base,
we assume that each document class consists of a
set of XML elements having a name and content
of the datatype specified, with aggregative and se-
quential relationships in between.

In order to model hyperlinks, we have an ad-
ditional hyperlink relation on pairs of document
elements. Hyperlinks may occur within the same
document, between documents of the same class
or even between elements from different document
classes.

Definition 5 For a document base D = (S, I) with
schema S = (S1, . . . , Sm), the document base in-
stance I is a tuple

I = (C1, . . .Cm,H)

with

Ci = (Ei,≺i, κi, λi, νi, τi, δi) for i = 1 . . .m

where

Ei is a set of XML elements.

≺i ⊆ Ei ×Ei is an aggregative relation on Ei that
defines the hierarchical composition between el-
ements.

κi is a mapping Ei → N that describes the sequen-
tial order among elements that are children of
the same parent element.

λi is a mapping Ei → N that gives the relative
index among children with the same name that
belong to the same parent.

νi is a mapping Ei → Ni that gives the name of
each element.

δi is a mapping Ei → D yielding the content
of an element e with the restriction δi(e) ∈
|τi(νi(e))|.

H ⊆ E×E is the hyperlink relation, where

E =
m⋃

i=1

Ei

Furthermore, let κ = ∪m
i=1κi and λ = ∪m

i=1λi.

Between the elements E of a document class in-
stance, there is an aggregative relation ≺i that
models the parent-child relationship: e ≺i e′ if e
is the parent of e′. The function ν(e) gives us the
name of element e, and δ(e) gives the content of
leaf elements.

The sequential order among all children of a par-
ent node is given by the index function κi, which
also satisfies the condition e ≺i e′ ∧ e ≺i e′′ =⇒
(κi(e′) = κi(e′′) ⇐⇒ e = e′′). In addition,
the function λi gives the relative index for chil-
dren of the same type, thus satisfying the condi-
tion e ≺i e′ ∧ e ≺i e′′ ∧ λi(e′) = λi(e′′) =⇒ e′ =
e′′ ∨ νi(e′) 6= νi(e′′).

12

Due to the fact that XIRQL only allows for ac-
cessing document elements, the objects manipu-
lated by XIRQL are mainly paths, not complete
XML documents.

A path is a sequence of elements, where each pair
of adjacent elements is in the aggregative relation
≺i. Similar to the definition of the XQuery seman-
tics, we assume that there is a root element for
each document (with the special name ‘/’), which
has exactly one child, namely the top-level element
of the corresponding document class.

Definition 6 For a document class instance Ci =
(Ei,≺i, κi, λi, νi, τi, δi), a path is a list p =
(e0, e1, . . . , en) with n ≥ 0 and νi(e0) =‘/’ and ej ∈
Ei for 1 ≤ j ≤ n; in addition, for 1 ≤ k ≤ n − 1,
ek ≺i ek+1 ∧ @e′ : ek ≺i e′ ≺i ek+1. Let Ci denote
the set of all paths that can be formed from Ci, and
let C = ∪m

i=1Ci. (In the following, we will identify
the class name Mi with the set Ci.)

Furthermore, let lst(p) = en and head(p) =
(e0, e1, . . . , en−1).

For two paths p = (e0, e1, . . . , en) and p′ =
(e′0, e

′
1, . . . , e

′
m) , we define the following relations

p ⊆ p′ if n ≤ m and ei = e′i for i = 0 . . . n,

p < p′ if ei = e′i for i = 0 . . . k for some k ≥ 0 with
k < min(n, m) and κ(ek+1) < κ(e′k+1).

Here p ⊆ p′ denotes containment of paths, i.e.
the element pointed to by p contains the element
pointed to by p′. p < p′ refers to the sequence of
elements, being true iff p points to an element that
comes before the element pointed to by p′.

In order to deal with weighting, we use event
keys to identify the probabilistic events and event
expressions to describe Boolean combinations of
events. In order to distinguish event expressions
from ordinary Boolean expressions, we use under-
lined Boolean operators for the event expressions.

Definition 7 A set of event keys EK is a set of
identifiers that also contains the special elements ⊥
(always false) and > (always true).

The set of event expressions EE is defined re-
cursively as the smallest set satisfying the following
conditions:

1. w ∈ EK→ w ∈ EE.

2. w ∈ EE→ ¬w ∈ EE.

3. w,w′ ∈ EE→ w ∧ w′ ∈ EE, w ∨ w′ ∈ EE

As shorthand for the disjunction w1∨w2∨ . . .∨wn,
we also use the notation

∨
i
wi.

4.2 Path algebra

The general idea for processing XIRQL queries is
the manipulation of sets of paths. Given a docu-
ment base, a query should produce a result set con-
sisting of pairs (path, event expression). The path
points to the XML element to be retrieved. Below,
we will show that we need a second path in order to
handle intermediate results. In a subsequent step,
the event expressions are used for computing the
probabilistic weight for each answer, as described
before. XIRQL operators take one or two result
sets as input and produce another result set as out-
put. This model is similar to query processing in
standard text retrieval, where inverted list entries
(consisting of document IDs and indexing weights)
are combined in order to produce a result list of
document IDs with weights. However, our path al-
gebra approach is flexible enough to allow for other
kinds of processing as well, e.g. using different kinds
of access paths or processing parts of the query by
scanning a set preselected of documents

First, we need a transformation operator from a
set of paths into a query result:

Definition 8 Let R denote a set of paths. Then
the operator ε is defined as:
ε(R) = {(p, p,>)|p ∈ R}. As a shorthand notation
for ε(R), we will write R in the following.

By applying ε onto the set of paths of a document
class, we get a starting point for the other opera-
tors.

In classical text retrieval, the basic operator is
single term retrieval: Given a term, it returns a
set of document IDs with weights. In our case, a
term corresponds to a triple (datatype, predicate,
comparison value). Since we are dealing with struc-
tured documents, the document ID is extended to
the path describing the element where the condition
matched. Instead of a simple weight, we return an
event key (with an associated weight), in order to
compute the resulting probability in a correct way.

Definition 9 Let e denote an element, T a
datatype, V ∈ |T | a comparison value and c̃

13

be the name of a predicate c ∈ PT . Then
event(v, e, T, c̃, V) is defined to be a function which
generates an event key with probability v for the re-
sult of applying the value selection condition T c̃ V
on the element e.

Note that we expect event(v, e, T, c̃, V) =
event(v, e′, T, c̃, V) if e and e′ are in the same in-
dex node. See the discussion on relevance-oriented
search in section 3.3 on page 7.

Definition 10 Let e, T , V , c̃, and v be as
in the previous definition. Furthermore, let
w = event(v, e, T, c̃, V). Then value selection
on a query result Q is defined as ω[T c̃ V](Q) =
{(p, r, w)|∃e∃v ∃w′ (p, r, w′) ∈ Q ∧ lst(r) = e ∧
τ(e) �T T ∧ c(V, δ(e)) = v ∧ w = w′ ∧
event(v, e, T, c̃, V)}

Query results consist of triples (process-
ing path, result path, event expressions).
As an example, consider the simple query
/*/chapter/section[heading cw "syntax"].
For our example document, value se-
lection would return two paths, namely
/book[1]/chapter[2]/section[2]/heading[1]
and /book[1]/chapter[2]/section[2]/
#PCDATA[1].4 In order to test the structural
conditions, we check them in a bottom-up way.
During this process, we have to distinguish be-
tween the path that leads to the result element (in
our case section elements) and the position in the
path where we test the next structural condition.
For illustrating this procedure, let us enclose the
processing path in parentheses, while the full path
always represents the (current) result path. As out-
put from value selection, the example paths from
above are both processing and result paths. Test-
ing for the heading condition in the filter, we get
the result (/book[1]/chapter[2]/section[2]).
Next, we have to test for the /section condi-
tion, without moving the result pointer, thus
giving us (/book[1]/chapter[2])/section[2].
In the same way, we test the /chapter condi-
tion and the condition /*, thus yielding finally
(/)book[1]/chapter[2]/section[2].

Now consider a variant of the query from above:
/*/chapter/section[./* cw "syntax"]. Here

4In our examples, we denote paths p = (e1, . . . , en)
by writing sequences of (ν(ei), λ(ei)) pairs, separated by
slashes.

the value selection would yield the same paths
as before, which would also both pass the filter.
Thus, our query result contains twice the path
(/book[1]/chapter[2]/section[2]). Now let
us look at the event expressions, which would be
the event key [5, syntax] in both cases.5 Logically,
when the result paths are equal, we have to form
the disjunction of the corresponding event keys,
thus eliminating the duplicate element of the result
in this case. As another example, consider the
query /*/chapter[.//* cw "XQL"], where value
selection would yield the path-event combinations
(/book[1]/chapter[2]/section[2]/#PCDATA[1],
[5, XQL]) and (/book[1]/chapter[2]/heading[1],
[3, XQL]). Here the test on the structural condition
/chapter would identify two equal paths, but
with different event keys, thus yielding the result
((/book[1])/chapter[2], [3, XQL] ∨ [5, XQL]).

The last problem concerning the evaluation of
structural conditions is the notation //; in this
case, we have to consider all possible subpaths of
each argument path. In contrast to other opera-
tors or conditions, this condition increases the size
of the result.

Based on these considerations, we can now give
the definition of the structural projection operator
Π and the structural selection operator σ (similar
to relational algebra, where projection modifies the
structure of the result, whereas selection only filters
elements from the input).

Definition 11 Let S denote a query result
and c = s[i] a condition, where i denotes a
set of indexes (which may also be empty) and
s is structural condition of the form ‘/’, ‘//’,
‘*’ or ‘a’ (where ‘a’ denotes an element name).
For a path p = (e0, e1, . . . , en), we define a function

proj(s[i], p) =

{
struc(s, p), if λ(en) ∈ i ∨ i = ∅
∅ otherwise.

5For illustration purposes, we keep the notation of event
keys more simple than required by the definition of the func-
tion event(.).

14

with struc(s, p) =

{(e0)} if s = / ∧ n = 0,
{(e0, e1, . . . , ej)|0 ≤ j ≤ n} if s = //,

{(e0, e1, . . . , en−1)} if s = a ∧ n ≥ 1∧
ν(en) = a,

{(e0, e1, . . . , en−1)} if s = ∗ ∧ n ≥ 1,
∅ otherwise.

Then we define the following operations

σ[c](S) = {(p, r, w)|∃p′ (p′, r, w) ∈ S ∧ p ∈
proj(c, p′)}

Π[.](S) = {(p, p, w)|T = {(p, r, w′) ∈ S} ∧ T 6=
∅ ∧ w =

∨
(p′,r′,w′)∈T

w′}

As shorthands for complex structural conditions, we
define

Π[c](S) := Π[.](σ[c](S)) and

σ[c/c′](S) := σ[c](σ[c′](S)) and

Π[c/c′](S) := Π[c](Π[c′](S))

For relevance-oriented search, we extend the defini-
tion of selection. We introduce the condition ‘/\’ as
a variant of the descendant operator ‘//’. The only
difference between the two operators lies in the con-
sideration of augmentation weights when paths are
truncated through the function struct(s, p): When-
ever we chop off an element (from the processing
path) which is an index node, then the correspond-
ing augmentation weight of this element e should
be considered. For this purpose, we assume that
augmentation weights are given as part of the class
instance.

Definition 12 For each document class instance
Ci, there is a function αi : Ei → EK that yields
a probabilistic event representing the augmentation
weight of elements, with the restriction νi(e) 6∈
Xi =⇒ αi(e) = >.

For two paths r ⊆ r′ ∈ Ci

with r = (e0, e1, . . . , en) and r′ =
(e0, e1, . . . , en, en+1, . . . , em), the function
rwi : Ci × Ci → EE is defined as follows:

rwi(r, r′) = > ∧
m∧

k=n+1

αi(ek)

Let S denote a query result with paths from class
Ci. Then relevance selection σ[/\](S) is defined as

σ[/\](S) = {(p, r, w)|T = {(p′, r′, w′)|p ∈
struc(//, p′) ∧ (p′, r′, w′) ∈ S} ∧ T 6= ∅ ∧ w =∨

(p′,r′,w′)∈T
(w′ ∧ rwi(p, p′))}

The definition of relevance selection handles the
weighting part of relevance-oriented search. In or-
der to retrieve only index nodes as answers, the
XIRQL query is transformed internally by list-
ing the names of index node elements as alter-
native types of answers. For example, the query
class(book)//inode() [... cw "XML"] would
be transformed into class(book)//(document |
chapter | section) [... cw "XML"].

The binary operators are fairly straightforward:
we combine two elements if they contain identi-
cal result and processing paths, and the event ex-
pressions are combined according to the seman-
tics of the operator. As a variant of intersection,
the subpath operator ‘/’ only considers equality of
processing paths and then takes the result path
from its right argument. As an example, con-
sider the query /book[@class clsim "H.3.3"]/
chapter[./heading cw "XQL"]. For our exam-
ple document, the first filter condition would pro-
duce the path (/book[1]), whereas the second fil-
ter and the subsequent test on /chapter would
yield (/book[1])/chapter[2]. The subpath oper-
ator would produce the second path as result (plus
the conjunction of the corresponding event expres-
sions).

Like in relational algebra, negation in XIRQL
queries is mapped onto difference of intermediate
results. If no other argument is given, we form the
difference to the complete database; for example,
the query /document[not title] searching for all
documents that have no title is transformed into
σ[/document](R−Π[title](R))

For the XIRQL operators before and after, the
corresponding algebra operators < and > are pro-
cessed by means of pairwise comparison of paths
using the relation ‘<’.

Definition 13 Let S and T denote two query re-
sults. Then we define the following operations:

S ∩ T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧
(p, r, w′′) ∈ T ∧ w = w′ ∧ w′′}

S/T = {(p, r, w)|∃w′∃w′′ (p, r′, w′) ∈ S ∧
(p, r, w′′) ∈ T ∧ w = w′ ∧ w′′}

15

S ∪ T = {(p, r, w)||∃w′∃w′′ (p, r, w′) ∈ S ∧
∃(p, r, w′′) ∈ T ∧w = w′∨w′′∨∃(p, r, w) ∈ S∧
@(p, r, w′) ∈ T∃(p, r, w) ∈ T ∧ @(p, r, w′) ∈ S}

S − T = {(p, r, w)|∃w′ (p, r, w′) ∈ S ∧
((∃w′′ (p, r, w′′) ∈ T ∧ w = w′ ∨ ¬w′′) ∨
((@w′′(p, r, w′′) ∈ T) ∧ w = w′))}.

S < T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧
(p′, r′, w′′) ∈ T ∧ w = w′ ∧ w′′ ∧ r < r′}.

S > T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧
(p′, r′, w′′) ∈ T ∧ w = w′ ∧ w′′ ∧ r′ < r}.

α · S + β · T = {(p, r, w)|)∃w′∃w′′ (p, r, w′) ∈ S ∧
(p, r, w′′) ∈ T ∧ w = α̃ ∧ w′ ∨ β̃ ∧ w′′) ∨
(∃w′ (p, r, w′) ∈ S ∧ (@w′′(p, r, w′′) ∈ T) ∧w =
α̃ ∧ w′) ∨ (∃w′′(p, r, w′′) ∈ T ∧ (@w′(p, r, w′) ∈
S) ∧ w = β̃ ∧ w′′)}

In the definition of the weighted sum operator, α̃
and β̃ denote query-specific event keys with the cor-
responding probabilities α and β.

With the operators described so far, we can al-
ready transform most XIRQL queries into combi-
nations of XIRQL operators. We give two examples
illustrating this process:
/book//section[title cw "syntax" and
#PCDATA cw "XQL"] is mapped onto

σ[/book//section](

Π[title](ω[text cw "syntax"](R)) ∩
Π[#PCDATA](ω[text cw "XQL"](R)))

/book[@class clsim "H.3.3"]/chapter[
./heading cw "XQL"] can be expressed as

σ[/book](Π[@class](ω[class clsim "H.3.3"](R)) /

(σ[chapter](Π[heading](ω[text cw "XQL"](R)))))

Details of the transformation process are de-
scribed in the next section.

For following hyperlinks and for comparing the
values of two XML elements, we need two addi-
tional operators. Since they are similar to joins in
relational databases, we also call them join opera-
tors. In order to follow hypertext links, we define
link join:

Definition 14 For a document base instance I =
(C1, . . .Cm,H) and two query results R,S, the fol-
lowing link join operations are defined:

R => S := {(s, s′, w′′)|∃r∃r′∃w∃w′ (r′, s) ∈ H ∧
(r, r′, w) ∈ R ∧ (s, s′, w′) ∈ S ∧ w′′ = w ∧ w′}

R >= S := {(r, r′, w′′)|∃s∃s′∃w∃w′ (r′, s′) ∈ H ∧
(r, r′, w) ∈ R ∧ (s, s′, w′) ∈ S ∧ w′′ = w ∧ w′}

Note that the => operator refers to the pro-
cessing path of the target, whereas the >=
operator uses the target’s result path. In the
former case, we want to be able to follow the
link and navigate down to a more specific el-
ement, and this can be accomplished only by
referring to the processing path. As an example
for this problem, assume that we have a class
article containing citation references are given
as links; searching for authors of articles cited
by anybody can be accomplished by the query:
/article/citations/cite=>/article/au,
with the corresponding path algebra expres-
sion (σ[/article/citations/cite](article)) =>
σ[/article/au](article). For focusing on the
source side of the link, assume a query
searching for papers citing Jones’ articles:
/article[citations/cite=>/article[au
= "Jones"]], which yields in path alge-
bra: σ[/article](Π[citations/cite](article >=
(σ[/article/au](ω[persname = "Jones"](article))))).

The value join operator is similar to value se-
lection, but instead of comparing a constant value
specified in the query with the value of an element,
it compares the value of two elements.

Definition 15 Let T denote a datatype, c̃ be the
name of a predicate c ∈ PT and the function
event(.) be defined as in definition 10. For two
query results R and S the value join operator is
defined as

R on[T c̃] S = {(p, r, w)|∃p′′∃r′′∃w′∃w′′∃e′∃e′′∃v
(p, r, w′) ∈ R ∧ (p′′, r′′, w′′) ∈ S ∧ e′ = lst(r) ∧
e′′ = lst(r′′) ∧ c(δ(e′), δ(e′′)) = v ∧ w = w′ ∧
w′′ ∧ event(v, e′, T, c̃, δ(e′′))}.

We need the value join for the case where the
comparison operator in a filter expression is not a
literal, but another XML element. For example,
the query book[editor=./chapter/author]
searches for books where the editor is also the
author of one of its chapters, which yields in our
algebra:
σ[book](Π[.](σ[editor](R) on[persname=]
(σ[chapter](σ[author](R)))).

16

4.3 Processing path algebra expres-
sions

In terms of database systems, here we have de-
scribed the logical algebra only. The actual imple-
mentation of query processing has to be based on
a physical algebra, where the operators make addi-
tional assumptions e.g. about the availability of ac-
cess paths and the sorting order of objects. A major
task of the query optimization step is the mapping
of logical operators onto appropriate physical oper-
ators; in addition, the logical algebraic expression
can be optimized first. For this purpose, we have
to identify transformation rules of the path algebra
that keep the result unchanged, e.g.

σ[c](S ∩ T) −→ σ[c](S) ∩ σ[c](T)
σ[c](ω[s](Q)) ←→ ω[s](σ[c](Q))

The first rule tells us that we can move a struc-
tural selection inside the arguments of an inter-
section operator, (e.g. for reducing the size of in-
termediate results). The second rule allows us to
exchange the processing order of structural and
value selections; this may be useful for exploit-
ing the nature of the access paths available (e.g.
value-oriented inverted lists vs. structure-oriented
access paths). After developing the complete path
algebra, we can apply standard query optimization
techniques from the area of database systems (see
e.g. [Jarke & Koch 84]); however, since most users
are interested in the top-ranking documents only,
additional work may be necessary in order to mod-
ify the query optimization step accordingly.

5 Conversion and implementa-
tion

5.1 Conversion to logical algebra
In most cases, the mapping from XIRQL queries
to path algebra expressions is fairly obvious, but
in some cases, complex transformations are needed.
Some examples for the relationship between XIRQL
and the path algebra are presented in the other sec-
tions of this paper; this section contains a set of
rules for converting any XIRQL query to an equiv-
alent path algebra expression. The XIRQL query
should be parsed according to the EBNF given in
table 1, then the top-level element of the parse tree

should be matched against the rules shown in table
2, in turn, until one of them matches. From there,
subtrees of the parse tree should be matched, and
so on, until the whole query is converted.

For example, the query /book/au = "Smith"
would be parsed as an instance of the rule “Com-
parison ::= LValue CompOp RValue”, which can be
found in the transformation rules as x op V, so that
line 16 applies.

The transformation is specified as a function
“cvt” of three arguments. The first argument is
the query fragment to process, the second argu-
ment is a “source specification”, and the last ar-
gument is a Boolean value which says whether we
are inside a XIRQL ‘filter’ operator (square brack-
ets [], EBNF rule “Filter ::= Filter "[" Subquery
"]"”). We will use the variable infilter when talk-
ing about this Boolean value. When converting a
full XIRQL query, i.e. an expression satisfying the
“Query” nonterminal given in the EBNF, the value
of infilter should be false.

The source specification can be an arbitrary path
algebra expression, or it can be a class name Mi,
which is identified with ε(Ci), Ci being the set of
paths in that document class. The implementation
assures that some class name is always passed to
the cvt function; the user can choose which class
name that should be.

For notational convenience, we also introduce
some shortcuts. It turns out that some rules come
in pairs; the only difference is that one rule uses
Π where the other uses σ, and the value of infilter
is different. To avoid having to write (almost) the
same rule twice, we will write θ which is understood
to mean Π if the value of infilter is true, whereas
it means σ if the value of infilter is false.

The same principle applies to dealing with links.
We will write
 which is understood to mean >=
if infilter is true, whereas it means => if infilter
is false.

And finally, some variables on the left hand side
of a rule have a restricted set of values. We use a, b,
l, r, and x, for arbitrary XIRQL (sub-)queries, but
elem is restricted to element names (or attribute
names or wildcards). So for example the rule for
elem / r only applies if the left hand side of the /
operator is indeed an element name. The vague
predicates op from XIRQL (e.g. cw or clsim) are
mapped onto the corresponding predicate � of the
algebra.

17

cvt(., src, infilter) = src

cvt(..., src, infilter) = Π[.](σ[/\](src))
cvt(elem, src, infilter) = θ[elem](src)

cvt(/elem, src, infilter) = θ[/](θ[elem](src))
cvt(�elem, src, infilter) = θ[elem](src)

cvt(/x, src, infilter) = θ[/](cvt(x, src, infilter))
cvt(�x, src, infilter) = cvt(x, src, infilter)

cvt(class(Mi) / x, src, infilter) = cvt(/x,Mi, infilter)
cvt(class(Mi) � x, src, infilter) = cvt(�x,Mi, infilter)

cvt(l and r, src, infilter) = cvt(l, src, infilter) ∩ cvt(r, src, infilter)
cvt(l or r, src, infilter) = cvt(l, src, infilter) ∪ cvt(r, src, infilter)

cvt(l and not r, src, infilter) = cvt(l, src, infilter)− cvt(r, src, infilter)
cvt(not x, src, infilter) = src− cvt(x, src, infilter)

cvt(l before r, src, infilter) = cvt(l, src, infilter) < cvt(r, src, infilter)
cvt(l after r, src, infilter) = cvt(l, src, infilter) > cvt(r, src, infilter)

cvt(x op V, src, infilter) = cvt(x, ω[T � V](src), infilter)
cvt(x op y, src, false) = cvt(x, src, false) on[T�] cvt(y, src, false)

cvt(x op y, src, true) = Π[.](cvt(x, src, false) on[T�] cvt(y, src, false))
cvt(elem[r], src, infilter) = θ[elem](cvt(r, src, true))

cvt(elem / r, src, infilter) =

θ[elem](cvt(a, src, infilter))
 b

if cvt(r, src, infilter) = (a
 b)
θ[elem](cvt(r, src, infilter)) otherwise

cvt(elem � r, src, infilter) =

θ[�](θ[elem](cvt(a, src, infilter)))
 b

if cvt(r, src, infilter) = (a
 b)
θ[�](θ[elem](cvt(r, src, infilter))) otherwise

cvt(. / r, src, infilter) = cvt(r, src, infilter)

cvt(. � r, src, infilter) =

{
θ[�](cvt(a, src, infilter))
 b if cvt(r, src, infilter) = (a
 b)
θ[�](cvt(r, src, infilter)) otherwise

cvt(fl[fr] / r, src, infilter) =

(cvt(fl[fr], src, infilter) / cvt(a, src, infilter))
 b

if cvt(r, src, infilter) = (a
 b)
(cvt(fl[fr], src, infilter) / cvt(r, src, infilter))

otherwise

cvt(fl[fr] � r, src, infilter) =

(cvt(fl[fr], src, infilter) / θ[�](cvt(a, src, infilter)))
 b

if θ[�](cvt(r, src, infilter)) = (a
 b)
cvt(fl[fr], src, infilter) / θ[�](cvt(r, src, infilter))

otherwise

cvt(x=>class(Mi)elem / r, src, infilter) = cvt(x, src, true)
 θ[elem](cvt(r, Mi, infilter))

Table 2: Transformation rules

18

Most of these rules are fairly straight-forward,
but there are two areas of dissimilarity between
XIRQL and the path algebra which require special
treatment. The first area concerns the class(X)
syntactical element and the second one concerns
the treatment of links.

From a high-level point of view, a XIRQL query
can be viewed as a sequence of ‘steps’, separated
by slashes (or double slashes, as the case may be).
In the simple case, where each step is just an ele-
ment name, the query is converted into a sequence
of σ operators. For example, the query /a/b/c is
parsed as /(a/(b/(c))). However, if the XIRQL
query specifies a document class via class(X) on
the very left, then the class name needs to be used
as the input of the right-most σ operator. The con-
version rules are designed in such a way that a class
name from the class(X) operator is passed down
the chain of slashes until it reaches the right-most
element name, which can then be directly converted
to a σ operator. In the example, class(X)/a/b/c
would be parsed as class(X)/(a/b/c), and
cvt(class(X)/(a/b/c), src, false) is evaluated
by evaluating cvt(/(a/b/c), X, false). This
is then evaluated as σ[/](x) where x =
cvt(a/b/c, X, false), and so on.

The XIRQL syntax for dealing with links was
adopted from the XQuery specification. According
to this specification, a link is an edge in the XML
“tree”, similar to the edges from a parent node to a
child node. Just like the "/" operator can be used
to follow an edge from a parent node to a child
node, the "=>" operator can be used to follow a
link from one node to the other. Thus, the "=>"
operator is simply part of a ‘step’. But in the path
algebra, the operators Π and σ which are used for
parent/child edges are unary operators whereas the
operators >= and => for links are binary opera-
tors. Additionally, the "=>" operator in XIRQL
binds rather tightly, whereas the >= and => path
algebra operators have low precedence. This differ-
ence needs to be accomodated in the transforma-
tion rules.

Consider as an example a document base
comprising two document classes, one class for
documents and one for person descriptions.
Suppose that the author is stored, in the ‘doc-
ument’ class, as a link to one of the ‘person’
documents. Then the query class(document)/
article/author=>class(person)/name/family

will result in a list of all family names of article
authors. This can be thought of navigating from
the article root node to the author child,
from there to follow the link to the ‘person’
class, to go to the name child node in that
class, and from there to the family child node.
But the corresponding path algebra expression
would be σ[article](σ[author](document)) =>
σ[name](σ[family](person)).

The rules are designed in such a way that the
algorithm first ‘looks’ to see if a "=>" operator ap-
pears. This is achieved by having all rules that deal
with slash-like operators ‘look ahead’ at the right
hand side to see if the conversion produces a
 (=>
or >=) expression. If that is the case, these oper-
ators ‘pull’ the link operator
 ‘up’ in the result.

We think that the current syntax for dealing with
links was not chosen thoughtfully. Instead of view-
ing links as being similar to path steps, it would be
more appropriate to treat them like binary opera-
tors with low precedence (i.e. similar to the before
and after operators). Since links can be followed
in both directions, they are dissimilar to path steps.
Due to the fact that links often connect different
documents, a low precedence for the link operator
would yield a better separation of the query parts
addressing the individual documents. Our path al-
gebra matches this view, whereas the current syn-
tax of XIRQL (as well as that of XQuery) does not.

5.2 Implementation

Based on the concepts described in this paper,
we have implemented a retrieval engine named
HyREX (Hypermedia Retrieval Engine for X ML).
In order to set up a document base with HyREX,
first the XML Schema descriptions (along with the
HyREX-specific application information) for the
documents must be specified. Given the document
base schema, the system accepts XML documents,
indexes them and creates its internal index struc-
tures. (Currently, we use B∗-trees and variants of
inverted lists for this purpose.) Following this step,
the HyREX server accepts XIRQL queries and re-
turns pointers to the elements retrieved.

In order to use HyREX as a standalone retrieval
system, we have developed a simple (Web-based)
user interface (HyGate) that accepts query formu-
lations either in XIRQL or based on application-
specific forms, sends the query to the server and

19

receives result lists as well as single result elements.
For presenting the output in HyGate, the docu-
ment base administrator has to specify appropri-
ate XSLT stylesheets, both for the results survey
page(s) and the display of single result elements.

HyREX is designed as an extensible IR architec-
ture. The whole system is open source, written in
Perl (with minor parts in C). For specific applica-
tions, new datatypes cam be added to the system,
possibly together with new index structures.

6 Related work

Looking at the broad variety of XML applications
and systems that are currently under development,
one can see that there are in fact two different views
on XML:

• The document-centric view focuses on struc-
tured documents in the traditional sense
(based on concepts from electronic publishing,
especially SGML). Here XML is used for log-
ical markup of texts both at the macro level
(e.g. chapter, section, paragraph) and the mi-
cro level (e.g. MathML for mathematical for-
mulas, CML for chemical formulas).

• The data-centric view uses XML for exchang-
ing formatted data in a generic, serialized form
between different applications (e.g. spread-
sheets, database records). This is especially
important for e-business applications (e.g. for
exchanging orders, bills).

In both views, there is a need for a query lan-
guage for XML. However, the requirements for
such a language are very much view-dependent:

• The document-centric view requires a query
language that mainly supports selection based
on conditions with respect to both structure
and content, taking into account the intrinsic
uncertainty and vagueness of content-based re-
trieval.

• The data-centric view asks for a query lan-
guage that allows for selection as well as re-
structuring (of result documents) and aggre-
gation operators (e.g. count, sum).

Unfortunately, the W3C working group on
XML query languages has focused on the data-
centric view only, thus ignoring most issues re-
lated to IR. Following earlier proposals for XML
query languages like XML-QL [Deutsch et al. 98]
or Quilt [Chamberlin et al. 00], the proposed query
language XQuery [Fernandez & Marsh 01] draws
heavily on concepts from query languages for
object-oriented databases (e.g. OQL) or semistruc-
tured data (e.g. Lorel [Abiteboul et al. 97]). Due
to this origin, XQuery has a much higher expres-
siveness than XQL. XQL (and XIRQL) offer only
selection operators, thus results are always com-
plete elements of the original documents. In con-
trast, XQuery also provides operators for restruc-
turing results as well as for computing aggregations
(count, sum, avg, max, min).

A typical XQuery expression has the following
structure:

FOR PathExpression
WHERE AdditionalSelectionCriteria
RETURN ResultConstruction

Here PathExpression may contain one or more path
expressions as in XQL, where each expression is
bound to a variable. Thus, the FOR clause re-
turns ordered lists of tuples of bound variables.
The WHERE clause prunes these lists of tuples by
testing additional criteria. Finally, the RETURN
clause allows for the construction of arbitrary XML
documents by combining constant text with the
content of the variables.

As a simple example illustrating the expressive-
ness of XQuery, assume that we have a whole class
of documents of type book, and we would like to
have a kind of excerpt documents, containing only
the titles and headings of a each book. This can be
accomplished by means of the the following XQuery
formulation

FOR $a in class("book")
RETURN

{<excerpt> <title> $a/title </title>
FOR $b in $a//heading
RETURN {<heading> $b </heading>}
</excerpt>}

In contrast, the XQL query
/book/(title|heading) would return single
title and heading elements only, without

20

the possibility of collecting them in excerpt
documents.

In principle, XQL is a subset of XQuery (with
minor syntactical differences), supporting only the
FOR clause with a single path expression. Thus, an
XQL query can be rewritten in XQuery as FOR $a
in XQLquery RETURN $a. Since XIRQL is based
on XQL, it can be seen as an extension of a subset
of XQuery in order to support IR.

As the only feature supporting information re-
trieval in XML, XQuery supports querying for sin-
gle words in texts. There is no possibility for
weighting or ranking, no support for vague query
conditions, and no operator for relevance-oriented
search. XIRQL fills this gap for a subset of the
XQuery language.

In information retrieval, previous work on struc-
tured documents has focused on two major issues:

• The structural approach enriches text search
by conditions relating to the document struc-
ture, e.g. that words should occur in certain
parts of a document, or that a condition should
be fulfilled in a document part preceding the
part satisfying another condition. The paper
[Navarro & Baeza-Yates 97] gives a good sur-
vey on these approaches. However, all these
approaches are restricted to Boolean retrieval,
so no weighting of index terms and no ranking
are considered.

• Content-based approaches aim at the retrieval
of the most relevant part of a document with
respect to a given query. In the absence of ex-
plicit structural information, passage retrieval
has been investigated by several researches (see
e.g. [Hearst & Plaunt 93]). Here the system
determines a sequence of sentences from the
original document that fit the query best.

Only a few researchers have dealt with the
combination of explicit structural informa-
tion and content-based retrieval. The pa-
per [Myaeng et al. 98] uses belief networks
for determining the most relevant part of
structural documents, but allows only for
plain text queries, without structural con-
ditions. The FERMI multimedia model
[Chiaramella et al. 96] mentioned before is
a general framework for relevance-based re-
trieval of documents. [Lalmas 97] and

[Fuhr et al. 98] describe refinements of this ap-
proach based on different logical models.

Comparing the different approaches described
above, it turns out that they address different facets
of the the XML retrieval problem, but there is no
approach that solves all the important issues: The
data-centric view as well as the structural approach
in IR only deal with the structural aspects, but do
not support any kind of weighting or ranking. On
the other hand, the content-based IR approaches
address the weighting issue, but do not allow for
structural conditions.

Only a few researchers have tried to combine
structural conditions with weighting. The pa-
per [Theobald & Weikum 00] extends XML-QL by
weighted document indexing; however, this ap-
proach is not based on a consistent probabilis-
tic model. As another approach based on XML-
QL, [Chinenyanga & Kushmerik 01] introduces an
operator for text similarity search on XML doc-
uments; so this extension supports only a very
specific type of queries. A nice theoretical con-
cept for vagueness with respect to both value con-
ditions and structural conditions is proposed in
[Schlieder & Meuss 00]; however, the underlying
query language is rather restricted.

The path algebra approach for processing
XIRQL is similar to the proximal nodes model de-
scribed in [Navarro & Baeza-Yates 97]. (The close
relationship between XQL and proximal nodes is
discussed in [Baeza-Yates & Navarro 00].) How-
ever, we give a more formal specification of the
semantics of the different operators and we also
consider hyperlinks. Furthermore, we extend this
model by dealing with datatypes and weighting.

7 Conclusions and outlook

In this paper, we have described a new query lan-
guage for information retrieval in XML documents.
Current proposals for XML query languages lack
most IR-related features, which are weighting and
ranking, relevance-oriented search, datatypes with
vague predicates, and structural relativism. We
have presented the new query language XIRQL
which integrates all these features, and we have
described the concepts that are necessary in order
to arrive at a consistent model for XML retrieval.

21

For processing XIRQL queries, we have specified a
path algebra, which also serves as a starting point
for query optimization.

In order to use XIRQL for retrieval, there are a
number of open issues. At the system level, there
is the question of appropriate access methods and
query processing strategies. For the user interface,
it is not clear in which form end users should for-
mulate their queries. Currently, we are investigat-
ing both menu-based strategies as well as methods
based on the concept of query by example. Also,
the presentation of results poses a number of prob-
lems. Since several result elements may belong to
the same document (some results even may con-
tain others), presentation as a simple ranked list
may not be appropriate. For a single result ele-
ment, there is the question if this element should
be shown out of context, or within the context of
the document it belongs to. In the latter case, there
is the question how this context should be displayed
(logical structure vs. layout structure).

A major goal of our work is the integration of
XIRQL into the forthcoming standard XML query
language. For this purpose, we are working on a
probabilistic version of the full XQuery language.

References

Abiteboul, S.; Quass, D.; McHugh, J.;
Widom, J.; Wiener, J. (1997). The Lorel
query language for semistructured data. Inter-
national Journal on Digital Libraries 1(1), pages
68–88.

Baeza-Yates, R.; Navarro, G. (2000).
XQL and Proximal Nodes. In: Proceed-
ings ACM SIGIR 2000 Workshop on XML
and Information Retrieval. ACM. http:
//www.haifa.il.ibm.com/sigir00-xml/
final-papers/RBaetza/att1.htm.

Billingsley, P. (1979). Probability and Measure.
John Wiley & Sons, Inc, New York.

Chamberlin, D.; Robie, J.; Florescu,
D. (2000). Quilt: An XML query lan-
guage for heterogeneous data sources. In:
WebDB (Informal Proceedings), pages 53–
62. http://www.almaden.ibm.com/cs/people/
chamberlin/quilt_lncs.pdf.

Chiaramella, Y.; Mulhem, P.; Fourel,
F. (1996). A Model for Multimedia
Information Retrieval. Technical report,
FERMI ESPRIT BRA 8134, University of
Glasgow. http://www.dcs.gla.ac.uk/fermi/
tech_reports/reports/fermi96-4.ps.gz.

Chinenyanga, T.; Kushmerik, N. (2001). Ex-
pressive Retrieval from XML documents. In:
Proceedings of the 24th Annual International
Conference on Research and development in In-
formation Retrieval, pages 163–171. ACM, New
York.

Clark, J.; DeRose, S. (1999). XML Path Lan-
guage (XPath) Version 1.0. http://www.w3.
org/TR/xpath.

Croft et al. (ed.) (1998). Proceedings of the
21st Annual International ACM SIGIR Confer-
ence on Research and Development in Informa-
tion Retrieval, New York. ACM.

Deutsch, A.; Fernandez, M.; Florescu,
D.; Levy, A.; Suciu, D. (1998). XML-
QL: A Query Language for XML. In
[Marchiori 98]. http://www.w3.org/TR/1998/
NOTE-xml-ql-19980819/.

Fallside, D. (2001). XML Schema Part
0: Primer. http://www.w3.org/TR/
xmlschema-0/.

Fernandez, M.; Marsh, J. (2001). XQuery
1.0 and XPath 2.0 Data Model. http://www.
w3.org/TR/query-datamodel/.

Fuhr, N.; Rölleke, T. (1997). A Proba-
bilistic Relational Algebra for the Integration
of Information Retrieval and Database Sys-
tems. ACM Transactions on Information Sys-
tems 14(1), pages 32–66.

Fuhr, N. (1999). Towards Data Abstraction in
Networked Information Retrieval Systems. Infor-
mation Processing and Management 35(2), pages
101–119.

Fuhr, N.; Gövert, N.; Rölleke, T. (1998). DO-
LORES: A System for Logic-Based Retrieval of
Multimedia Objects. In [Croft et al. 98], pages
257–265.

22

Hearst, M.; Plaunt, C. (1993). Subtopic
Structuring for Full-Length Document Access.
In: Proceedings of the Sixteenth Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 59–
68. ACM, New York.

Jarke, M.; Koch, J. (1984). Query Optimization
in Database Systems. ACM Computing Surveys
16, pages 111–152.

Lalmas, M. (1997). Dempster-Shafer’s The-
ory of Evidence Applied to Structured Docu-
ments: Modelling Uncertainty. In: Belkin, N. J.;
Narasimhalu, A. D.; Willet, P. (eds.): Proceed-
ings of the 20th Annual International ACM SI-
GIR Conference on Research and Development
in Information Retrieval, pages 110–118. ACM,
New York.

Marchiori, M. (ed.) (1998). QL’98 — The Query
Languages Workshop. W3C. http://www.w3.
org/TandS/QL/QL98/.

Myaeng, S.; Jang, D.-H.; Kim, M.-S.; Zhoo,
Z.-C. (1998). A Flexible Model for Retrieval
of SGML Documents. In [Croft et al. 98], pages
138–145.

Navarro, G.; Baeza-Yates, R. (1997). Proximal
nodes: a model to query document databases by
content and structure. ACM Transactions on In-
formation Systems 15(4), pages 400–435.

Robie, J.; Lapp, J.; Schach, D. (1998). XML
Query Language (XQL). In [Marchiori 98].
http://www.w3.org/TandS/QL/QL98/pp/xql.
html.

Robie, J.; Derksen, E.; Fankhauser, P.;
Howland, E.; Huck, G.; Macherius, I.;
Murata, M.; Resnick, M.; Schöning, H.
(1999). XQL (XML Query Language). http:
//www.ibiblio.org/xql/xql-proposal.html.

Schlieder, T.; Meuss, M. (2000). Result Rank-
ing for Structured Queries against XML Docu-
ments. In: First DELOS workshop on Informa-
tion Seeking, Searching and Querying in Digital
Libraries.

Theobald, A.; Weikum, G. (2000). Adding
Relevance to XML. In: 3rd Interna-
tional Workshop on the Web and Databases

(WebDB). http://www-dbs.cs.uni-sb.de/
papers/webdb2000.ps.

23

