
XIRQL: A Query Language for Information Retrieval
in XML Documents ∗

Norbert Fuhr
University of Dortmund, Germany

fuhr@ls6.cs.uni-dortmund.de

Kai Großjohann
University of Dortmund, Germany

grossjoh@ls6.cs.uni-dortmund.de

ABSTRACT
Based on the document-centric view of XML, we present the
query language XIRQL. Current proposals for XML query
languages lack most IR-related features, which are weight-
ing and ranking, relevance-oriented search, datatypes with
vague predicates, and semantic relativism. XIRQL inte-
grates these features by using ideas from logic-based prob-
abilistic IR models, in combination with concepts from the
database area. For processing XIRQL queries, a path al-
gebra is presented, that also serves as a starting point for
query optimization.

1. INTRODUCTION
With the steady growth of the WWW, retrieval of Web

documents becomes more and more important. HTML,
however, provides for visual rather than semantic markup.
Information systems need information about the logical struc-
ture as a prerequisite for interoperability of Web-based in-
formation systems.

In order to overcome these difficulties, the WWW con-
sortium (W3C) developed the XML (extended markup lan-
guage) standard. Given such a standard, the next step is the
definition of a query language that allows for formulation of
queries with respect to the logical structure. However, there
are two different views on XML which both should be sup-
ported:

• The document-centric view focuses on XML applica-
tions exchanging (structured) documents in the tra-
ditional sense, i.e. markup mainly serves for exposing
the logical structure of a document.

• The data-centric view uses XML for exchanging data
in a structured form, like classical EDI applications
(for orders, bills and the like), spreadsheets or even
whole databases.

∗This work was funded in part by the German BMBF
project “Carmen” (grant no. 08SFC01).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’01,September 9–12, New Orleans, Louisiana, USA.
Copyright 2001 ACM 1-58113-331-6/01/0009 ...$5.00.

Comparing these two views, it becomes clear that a query
language for the data-centric view should be very much
in the line of database query languages (see e.g. [8], [5]),
whereas the document-centric view should be supported by
a language that builds on concepts developed in the area of
information retrieval (IR).1

Roughly speaking, there are two kinds of IR approaches
that deal with the retrieval of structured documents:

• The structural approach enriches text search by con-
ditions relating to the document structure, e.g. that
words should occur in certain parts of a document, or
that a condition should be fulfilled in a document part
preceding the part satisfying another condition. The
paper [18] gives a good survey on these approaches.
However, all these approaches are restricted to Boolean
retrieval, so no weighting of index terms and no rank-
ing is considered.

• Content-based approaches aim at the retrieval of the
most relevant part of a document with respect to a
given query. In the absence of explicit structural in-
formation, passage retrieval has been investigated by
several researches (see for instance [12]). Here the sys-
tem determines a sequence of sentences from the orig-
inal document that best fit the query.

Only a few researchers have dealt with the combination of
explicit structural information and content-based retrieval.
The paper [17] uses belief networks for determining the most
relevant part of structural documents, but allows only for
plain text queries, without structural conditions. The FERMI
multimedia model [6] presents a general framework for re-
levance-based retrieval of documents. This model formu-
lates the structured document retrieval principle : A system
should always retrieve the most specific part of a document
answering a query. [14] and [10] describe refinements of this
approach based on different logical models.

Comparing all these approaches, it turns out that they
address different facets of the the XML retrieval problem,
but there is no approach that combines the important issues:
The data-centric view as well as the structural approach in
IR only deal with the structural aspects, but do not support
any kind of weighting or ranking. On the other hand, the
content-based IR approaches address the weighting issue,
but do not allow for structural conditions.

1The W3C list of requirements for an XML query language
[4] lists the ability for processing simple text conditions as
the only IR-related feature besides 18 features that follow
from the data-centric view.

In this paper, we present a new query language that com-
bines the structural and the content based approach. We
illustrate the problems raised by such a combination, and
we describe the new concepts for solving these issues.

In the following, we first briefly describe XML and the
query language XQL. Then we discuss the problem of IR on
XML documents, and elaborate the features missing from
XQL. Based on this discussion, we introduce our new query
language XIRQL, and we describe an algebra for processing
XIRQL queries. Finally, we give an outlook on future work.

2. XML RETRIEVAL
XML is a text-based markup language similar to SGML.

Text is enclosed in start tags and end tags for markup, and
the tag name provides information on the kind of content
enclosed. As an exception to this rule, #PCDATA elements
(plain text) have no tags. Elements can be nested, as in the
following example:

<author><first>John</first>

<last>Smith</last></author>

Elements also can be assigned attributes, which are given in
the start tag, e.g. <date format="ISO">2000-05-01</date>;
here the attribute name is format, and the attribute value is
ISO.

Following is an example XML document, which also il-
lustrates the tree structure resulting from the nesting of el-
ements. Figure 1 shows the corresponding document tree
(the dashed boxes are explained later).

<book class="H.3.3">

<author>John Smith</author>

<title>XML Retrieval</title>

<chapter>

<heading>Introduction</heading>

This text explains all about XML and IR.

</chapter>

<chapter>

<heading>

XML Query Language XQL

</heading>

<section>

<heading>Examples</heading>

</section>

<section>

<heading>Syntax</heading>

Now we describe the XQL syntax.

</section>

</chapter>

</book>

All XML documents have to be well-formed, that is, the
nesting of elements must be correct (e.g. <a> is
forbidden). In addition, a document type definition (DTD)
may be given, which specifies the syntax of set of XML doc-
uments. An XML document is valid, if it conforms to the
corresponding DTD.

As starting point for developing XIRQL, we have cho-
sen XQL, which we describe briefly in the following (for the
details see [19]). XQL retrieves elements (i.e. subtrees) of
the XML document fulfilling the specified condition. The
query heading retrieves the four different heading elements
from our example document. Attributes are specified with

a preceding ‘@’ (e.g. @class). Context can be considered
by means of the child operator ‘/’ between two element
names, so section/heading retrieves only headings occur-
ring as children of sections, whereas ‘//’ denotes descendants
(book//heading). Wildcards can be used for element names,
as in chapter/*/heading. A ‘/’ at the beginning of a query
refers to the root node of documents (/book/title). The
filter operator filters the set of nodes to its left. For exam-
ple, //chapter[heading] retrieves all chapters which have
a heading. (In contrast, //chapter/heading retrieves only
the heading elements of these chapters). Explicit reference
to the context node is possible by means of the dot (.), e.g.
//chapter[.//heading] searches for a chapter containing
a heading element as descendant. Brackets are also used
for subscripts, which indicate position of children within an
element, as in //chapter/section[2].

In order to pose restrictions on the content of elements and
the value of attributes, comparisons can be formulated. For
example, /book[author="John Smith"] refers to the value
of the element author, whereas /book[@class="H.3.3"] com-
pares an attribute value with the specified string. Besides
strings, XQL also supports numbers and dates as data types,
along with additional comparison operators like gt and
lt (for > and <).

Subqueries can be combined by means of Boolean opera-
tors and and or or be negated by means of not.

These features of XQL allow for flexible formulation of
conditions wrt. to structure and content of XML documents.
The result is always a set of elements from the original docu-
ment(s). So XQL follows the document-centric view. Other
XML query languages, such as XML-QL [8], focus on the
data-centric view, offering a wide variety of operators for
restructuring the result as well as aggregation operators,
similar to standard database query languages like SQL or
OQL. XQuery [1], the current working draft of the XML
Query working group at the W3 Consortium, combines the
features of XQL with those of XML-QL and thus supports
both the document-centric and the data-centric view. Ex-
tending XQL with IR features is a first step towards extend-
ing XQuery in that direction.

3. XIRQL CONCEPTS

3.1 Requirements
The discussion from above has shown that XQL seems to

be a good starting point for IR on XML documents. How-
ever, from an IR point of view, the following features are
missing in XQL:

Weighting. IR research has shown that document term
weighting as well as query term weighting are neces-
sary tools for effective retrieval in textual documents.
So comparisons in XQL referring to the text of ele-
ments should consider index term weights. Further-
more, query term weighting also should be possible, by
introducing a weighted sum operator (e.g. 0.6·“XML”+
0.4·“retrieval”). These weights should be used for com-
puting an overall retrieval status value for the elements
retrieved, thus resulting in a ranked list of elements.

Relevance-oriented search. The query language also
should support traditional IR queries, where only the
requested content is specified, but not the type of el-
ements to be retrieved. In this case, the IR system

class="H.3.3"

author

John Smith

title

XML Retrieval Introduction

chapter

heading This. . .

heading

SyntaxExamples

heading

sectionheading

XML Query
Language XQL

section

We describe
syntax of XSL

chapter

book

Figure 1: Example XML document tree

should be able to retrieve the most relevant elements;
following the FERMI multimedia model cited above,
this should be the most specific element(s) that fulfill
the query. In the presence of weighted index terms,
the tradeoff between these weights and the specificial-
ness of an answer has to be considered, for example by
an appropriate weighting scheme.

Data types and vague predicates. Whereas the standard
IR approach only deals with one data type, name plain
text, XML provides a way to explicitly mark up data
items of various data types. Hence, there should be
a way to express vague searches for these data types,
too. For example, similarity search for proper names
should be supported for XML elements containing per-
son names. Numerical ‘less’ and ‘greater’ predicates
should be provided for elements containing technical
measurements, say. Each supported data type should
come with a specific set of search predicates, most of
which should be vague.

Semantic relativism. XQL is closely tied to the XML syn-
tax, but it is possible to use syntactically different
XML variants to express the same kind of meaning.
For example, a particular information item could be
encoded as an XML attribute or as an XML element.
In some cases, a user may wish to search for a value
of a specific datatype in a document (e.g. a person
name), without bothering about the element names.
Thus, appropriate generalizations should be included
in the query language.

In the remainder of this section, we describe concepts for in-
tegrating the features listed above in XIRQL. Due to space
limitations, we do not specify the complete syntax of XIRQL;
instead, we focus on the extensions to XQL.

3.2 Weighting
At first glance, extending XQL by a weighting mecha-

nism seems to be straightforward. Assuming probabilistic
independence, the combination of weights according to the
different Boolean operators is obvious, thus leading to an
overall weight for any answer; such an approach has been
described in [20]. However, there are two major problems

that have to be solved first: 1) How should terms in struc-
tured documents be weighted? 2) What are the probabilistic
events, i.e. which term occurrences are identical, and which
are independent? Obviously, the answer to the second ques-
tion depends partly on the answer to the first one.

As we said before, classical IR models have treated doc-
uments as atomic units, whereas XML suggests a tree-like
view of documents. One possibility for term weighting in
structured documents would be the development of a com-
pletely new weighting mechanism. Given the long experi-
ence with weighting formulas for unstructured documents,
such an approach would probably take a big effort in order
to achieve good performance; furthermore, we would have
to cope with the problem of partial dependence of events
(see below). As an alternative, we suggest to generalize the
classical weighting formulas. Thus, we have to define the
“atomic” units in XML documents that are to be treated
like atomic documents. The benefit of such a definition is
twofold:

1. Given these units, we can apply some kind of tf·idf
formula, say, for term weighting.

2. For relevance-oriented search, where no type of result
element is specified, only these units can be returned
as answers, whereas other elements are not considered
as meaningful results.

We start from the observation that text is contained in the
leaf nodes of the XML tree only. So these leaves would be
an obvious choice as atomic units. However, this structure
may be too fine-grained (e.g. markup of each item in an
enumeration list, or markup of a single word in order to
emphasize it). A more appropriate solution is based on the
concept of index objects from the FERMI multimedia model:
Given a hierarchic document structure, only nodes of specific
types form the roots of index objects. In the case of XML,
this means that we have to specify the names of the elements
that are to be treated as index nodes. This definition can
be part of an extended XML DTD.

From the weighting point of view, index objects should
be disjoint, such that each term occurrence is considered
only once. On the other hand, we should allow for retrieval
results of different granularity: For very specific queries,
a single paragraph may contain the right answer, whereas

more general questions could be answered best by returning
a whole chapter of a book. Thus, nesting of index objects
should be possible. In order to combine these two views,
we first start with the most specific index nodes. For the
higher-level index objects comprising other index objects,
only the text that is not contained within the other index
objects is indexed. As an example, assume that we have
defined section, chapter and book elements as index nodes
in our example document; the corresponding disjoint text
units are marked as dashed boxes in figure 1.

So we have a method for computing term weights, and
we can do relevance based search. Now we have to solve the
problem of combining weights and structural conditions. For
the following examples, let us assume that there is a com-
parison predicate cw (contains word) which tests for word
occurrence in an element. Now consider the query
//section[heading cw "syntax"]

and assume that this word does not only occur in the head-
ing, but also multiple times within the same index node (i.e.
section). Here we first have to decide about the interpre-
tation of such a query: Is it a content-related condition, or
does the user search for the occurrence of a specific string?
In the latter case, it would be reasonable to view the filter
part as a Boolean condition, for which only binary weights
are possible. We offer this possibility by means of data types
with vague predicates (see below).

In the content-related interpretation, there are two pos-
sibilities for computing the term weight: We could either
compute a weight for this specific structural condition only,
or we could use the weight from the corresponding index
node. In the first case, there would be the problem of com-
puting the weight on the fly. Furthermore, in case we have
a query with multiple structural conditions referring to the
same term, it would be very difficult to make sure that
the weighting mechanism considers each term occurrence at
most once. For example, when applying the query
/book[.//heading cw "XML" or .//section//*

cw "XML"]

to our example document, one can see that there are several
elements which fulfill both structural conditions. In this
simple case, one could just count the total number of oc-
currences fulfilling at least one of the two conditions before
applying a weighting function; in general, we would have to
compute weights for each of the conditions. Using a proba-
bilistic interpretation, however, the (possible) partial over-
lapping of the underlying occurrences would imply a partial
dependence of the probabilistic events associated with the
different query conditions; thus, it would not be possible to
specify a correct combination function that leads to a point
probability for the result.2 Besides these technical prob-
lems, we think that the context should never be ignored in
content-oriented searches, even when structural conditions
are specified; these conditions should only work as addi-
tional filters. So we take the term weight from the index
node. Thus the index node determines the significance of a
term in the context given by the node.

With the term weights defined this way, we also have
solved the problem of independence/identity of probabilistic
events: Each term in each index node represents a unique

2The only other possible solution would be to define each
term occurrence as probabilistic event — but then we would
have to deal with the dependence of multiple occurrences of
a term in the same XML element.

probabilistic event, and all occurrences of a term within the
same node refer to the same event (e.g. both occurrences of
the word “syntax” in the last section of our example docu-
ment represent the same event). Assuming unique node IDs,
events can be identified by event keys that are pairs [node
ID, term]. For retrieval, we assume that different events
are independent. That is, different terms are independent
of each other. Moreover, occurrences of the same term in
different index nodes are also independent of each other.
Following this idea, retrieval results correspond to Boolean
combinations of probabilistic events which we call event ex-
pressions. For example, a search for sections dealing with
the syntax of XQL could be specified as
//section[.//* cw "XQL" and .//* cw "syntax"]

Here our example document would yield the conjunction
[5, XQL] ∧ [5, syntax]. In contrast, a query searching for
this content in complete documents would have to consider
the occurrence of the term “XQL” in two different index
nodes, thus leading to the Boolean expression
([3, XQL] ∨ [5, XQL]) ∧ [5, syntax].

For dealing with these Boolean expressions, we adopt the
idea of event keys and event expressions described in [11].
Since the event expressions form a Boolean algebra, we can
transform any event expression into disjunctive normal form
(DNF), that is:

e = C1 ∨ . . . ∨ Cn,

where the Ci are event atoms or conjunctions of event atoms,
and an event atom is either an event key or a negated event
key (n is the number of conjuncts of the DNF). Then the
inclusion-exclusion formula (e.g. [3, p. 20]) yields the prob-
ability for this event expression as follows:

P (e) = P (C1 ∨ . . . ∨ Cn)

=
nX

i=1

(−1)i−1

0
B@ X

1≤j1<
...<ji≤n

P (Cj1 ∧ . . . ∧ Cji)

1
CA

For example, the last example expression from above
would be transformed into [3, XQL] ∧ [5, syntax] ∨
[5, XQL] ∧ [5, syntax]. Then the resulting probabil-
ity would be computed as P ([3, XQL] ∧ [5, syntax]) +
P ([5, XQL] ∧ [5, syntax]) − P ([3, XQL] ∧ [5, syntax] ∧
[5, XQL] ∧ [5, syntax]). (Note the duplicate event in the
last conjunction, which can be eliminated due to idempo-
tency.) Since different events are independent, the proba-
bility of the conjunctions can be expressed as the product
of the probabilities of the single events, thus resulting in
P ([3, XQL]) ·P ([5, syntax])+P ([5, XQL]) ·P ([5, syntax])−
P ([3, XQL]) · P ([5, syntax]) · P ([5, XQL]).

Following the ideas from [11], this approach can be easily
extended in order to allow for query term weighting. As-
sume that the query for sections about XQL syntax would
be reformulated as
//section[0.6 · .//* cw "XQL" + 0.4 · .//* cw

"syntax"].
For each of the conditions combined by the weighted sum
operator, we introduce an additional event with a proba-
bility as specified in the query (the sum of these probabil-
ities must not exceed 1). Let us assume that we identify
these events as pairs of an ID referring to the weighted sum
expression, and the corresponding term. Furthermore, the
operator ‘·’ is mapped onto the logical conjunction, and ‘+’

onto disjunction. For the last section of our example docu-
ment, this would result in the event expression [q1, XQL] ∧
[5, XQL] ∨ [q1, syntax] ∧ [5, syntax]. In order to yield the
scalar product, we have to assume that different query con-
ditions belonging to the same weighted sum expression are
disjoint events (e.g. P ([q1, XQL] ∧ [q1, syntax]) = 0). For
the last section of our example document, the final proba-
bility would be computed as
P ([q1, XQL] ∧ [5, XQL]) + P ([q1, syntax] ∧ [5, syntax]) −
P ([q1, XQL] ∧ [5, XQL] ∧ [q1, syntax] ∧ [5, syntax]).
Due to the disjointness of query conditions, the probability
of the last conjunct equals 0, and thus we end up with the
scalar product of query and document term weights:
P ([q1, XQL])·P ([5, XQL])+P ([q1, syntax])·P ([5, syntax]).

3.3 Relevance-oriented search
Above, we have described a method for combining weights

and structural conditions. In contrast, relevance-based
search omits any structural conditions; instead, we must be
able to retrieve index objects at all levels. The index weights
of the most specific index nodes are given directly. For re-
trieval of the higher-level objects, we have to combine the
weights of the different text units contained. For example,
assume the following document structure, where we list the
weighted terms instead of the original text:

<chapter> 0.3 XQL

<section> 0.5 example </section>

<section> 0.8 XQL 0.7 syntax </section>

</chapter>

A straightforward possibility would be the OR-combination
of the different weights for a single term. However, search-
ing for the term ‘XQL’ in this example would retrieve the
whole chapter in the top rank, whereas the second section
would be given a lower weight. This result contradicts the
structured document retrieval principle mentioned before.
Thus, we adopt the concept of augmentation from [10]. For
this purpose, index term weights are downweighted (multi-
plied by an augmentation weight) when they are propagated
upwards to the next index object.

In [10], augmentation weights (i.e. probabilistic events)
are introduced by means of probabilistic rules. In our
case, we can attach them to the root element of index
nodes. Denoting these events as index node number, the
last retrieval example would result in the event expression
[1, XQL]∨ [3] ∧ [3, XQL]. Using an augmentation weight of
0.6 for the event [3], the corresponding probability is com-
puted as P ([1, XQL]) +P ([3]) ·P ([3, XQL])−P ([1, XQL]) ·
P ([3]) · P ([3, XQL]) = 0.3 + 0.6 · 0.8− 0.3 · 0.6 · 0.8 = 0.636,
ranking the section ahead of the chapter.

In the following, paths leading to index nodes are
denoted by ‘/\’. As an example, the query /\[./*
cw "XQL" and ./* cw "syntax"] searches for in-
dex nodes about ‘XQL’ and ‘syntax’, thus resulting in the
event expression ([1, XQL]∨[3]∧[3, XQL])∧[2]∧[2, syntax].

In principle, augmentation weights may be different for
each index node. A good compromise between these specific
weights and a single global weight may be the definition
of type-specific weights, i.e. depending on the name of the
index node root element. The optimum choice betweeen
these possibilities will be subject to empirical evaluations.

3.4 Data types and vague predicates
Given the possibility of fine-grained markup in XML doc-

uments, we would like to exploit this information in order
to perform more specific searches. For the content of certain
elements, structural conditions are not sufficient, since the
standard text search methods are inappropriate. For exam-
ple, in an arts encyclopedia, it would be possible to mark
e.g. artist’s names, locations or dates. Given this markup,
one could imagine a query like “Give me information about
an artist whose name is similar to Ulbrich and who worked
around 1900 near Frankfort, Germany”, which should also
retrieve an article mentioning Ernst Olbrich’s work in Darm-
stadt, Germany in 1899. Thus, we need vague predicates
for different kinds of data types (e.g. person names, loca-
tions, dates). Besides similarity (vague equality), additional
datatype-specific comparison operators should be provided
(e.g. ‘near’, <, >, or ‘broader’, ‘narrower’ and ‘related’ for
terms from a classification or thesaurus). In order to deal
with vagueness, these predicates should return a weight as
a result of the comparison between the query value and the
value found in the document.

The XML standard itself only distinguishes between three
datatypes, namely text, integer and date. The XML schema
recommendation3 extends these types towards atomic types
and constructors (tuple, set) that are typical for database
systems. For the document-oriented view, most of these
data types are useless. In order to support IR in XML doc-
uments, there should be a core set of appropriate datatypes.
Furthermore, a mechanism for introducing application-
specific datatypes should be provided. Text, classification
schemes, thesauri, and person names could be supported in
the core set. XML, being based on Unicode, allows for cod-
ing almost any language in the world, so different subtypes of
‘text’ should be provided to support the various languages.
Operations such as stemming and searching for noun phrases
and compound words are language-specific. Vague predi-
cates for classification schemes and thesauri should allow
for automatic inclusion of related and similar terms. Person
names should be searchable by phonetic similarity to com-
pensate for spelling differences due to, for instance, translit-
eration (“Chebychef”). Different documents provide differ-
ent detail, so searching for, say, “Jack Smith” should find
“J. Smith” as well, with a reduced weight.

Application-specific datatypes must support the similarity
of the datatypes that are common in this area. For example,
in technical texts, measurement values often play an impor-
tant role; thus, dealing with the different units, the linear
ordering involved (<) as well as similarity (vague equality)
should be supported (e.g. show me all measurements taken
at room temperature). For texts describing chemical ele-
ments and compounds, it should be possible to search, say,
for elements of compound, or to search for common general-
izations (e.g. search for ‘aluminum salts’, without the need
to enumerate them).

As a framework for dealing with these problems, we adopt
the concept of datatypes in IR from [9], where a datatype
T is a pair consisting of a domain |T | and a set of (vague
comparison) predicates CT = {c1, . . . , cn}. It is useful
to introduce an inheritance hierarchy (e.g. Text – West-
ern Language – English), where the subtype restricts the do-
main and/or provides additional predicates. Through this

3http://www.w3.org/TR/xmlschema-0/

mechanism, additional datatypes can be defined easily by
refining the appropriate datatype (e.g. introduce French as
refinement of Western Language).4

In order to exploit these datatypes in retrieval, the data-
types of the XML elements have to be defined. This should
happen at the DTD level, as part of an extended XML DTD.

Together with the specification of index nodes, we have
two issues that require an extended DTD. This approach
contrasts with the initial XQL proposal, where no DTD
is required; thus, XQL also can handle well-formed XML,
whereas XIRQL is restricted to valid XML documents. This
is a natural consequence of the fact that we want to en-
hance the query semantics: Without additional information,
it is impossible to provide functions like relevance-oriented
search or vague predicates for specific datatypes.

Another good reason for requiring valid XML documents
in order to perform IR is user guidance. For a set of only
well-formed XML documents, it would be very hard to for-
mulate meaningful XML queries. Without knowledge about
document structure or even element names, most queries
would retrieve no documents at all. On the other hand,
based on a DTD, it is possible to guide the user in the query
formulation process. However, we should mention that we
view the role of XIRQL similar to the one that SQL plays
in relational databases. Typical end users do not formulate
queries in this language; usually, they are offered some form
for entering query conditions, from which the user interface
generates the correct query syntax.

3.5 Semantic Relativism
Since typical queries in IR are vague, the query language

also should support vagueness in different forms. Besides
relevance-based search as described above, relativism wrt.
elements and attributes seems to be an important feature.
The XQL distinction between attributes and elements may
not be relevant for many users. In XIRQL, author searches
an element, @author retrieves an attribute and ~author is
used for abstracting from this distinction.

Another possible form of relativism is induced by the in-
troduction of datatypes. For example, we may want to
search for persons in documents, without specifying their
role (e.g. author, editor, referenced author subject of a biog-
raphy) in these documents. Thus, we provide a mechanism
for searching for certain data types, regardless of their po-
sition in the XML document tree. For example, #persname
searches for all elements and attributes of the datatype per-
sname.

4. PROCESSING XIRQL QUERIES
In this section, we describe a path algebra for processing

XIRQL queries. Due to space limitation, we only describe
the major concepts. We do not give a formal specification of
the transformation of XIRQL queries into the algebra. Fur-
thermore, some specific features of XIRQL are not addressed
here (e.g. indexes and weighted sum).

The major purpose of the description below is the speci-
fication of the behavior of the different operators. First, we
give some basic definitions concerning datatypes, the docu-
ment base and event expressions.

4Please note that we make no additional assumptions about
the internal structure of the text datatype (and its sub-
types), like representing text as set or list of words.

As mentioned before, we use the notion of IR datatypes
from [9], where a datatype T is a pair consisting of a domain
|T | and a set of (vague) predicates CT ; a subtype restricts
the domain and/or extends the set of predicates.

Definition 1. A data type T is a pair (|T |, CT), where
|T | is the domain and CT = {c1, . . . , cn} is the set of (vague
comparison) predicates, where each predicate is a function
ci:|T | × |T | → [0, 1]. Let T denote the set of all data types,
and D = ∪t∈T |T | be the union of all domains.

Definition 2. The subtype relationship �T⊂ T ×T is a
hierarchic relationship and a partial order on T , which also
fulfills the following condition:

T �T T ′ ⇒ |T | ⊆ |T ′| ∧ CT ⊇ CT ′ .

Let T> = (D, ∅) denote the top element, of which all other
types are subtypes.

For modeling an XML document base, we modify the
FERMI multimedia model appropriately. In the follow-
ing, we drop the distinction between XML elements and
attributes and refer to both of them as elements.

Like in the database field, a document base consists of a
schema and an instance. In our case, the schema is given
by the extended DTD. That is, we have information about
the structure of valid XML documents plus the datatype
information. For value-based retrieval we are only interested
in the leaf elements that have a nonempty content; thus we
assume that all other elements are assigned the datatype
T>. Since the structural constraints are irrelevant for the
topic of this paper, we assume that they are given as a set
of semantic constraints which are not explained any further
(see R in Definition 4 below).

Definition 3. A document base is a pair D = (S, I),
where S is the schema and I is the instance.

Definition 4. The schema of a document base is a tuple

S = (N, ι, X, τ, R),

where: N is a set of element names occurring in the DTD, ι
is the name of the root element, X ⊆ N is the set of element
names of index node roots, τ is a mapping τ : N → T that
specifies the data type for each element name, and R is a set
of semantic constraints that follows from the DTD.

For specifying the instance of a document base, we assume
that it consists of a set of XML elements having a name and
possibly data as content, with aggregative and sequential
relationships in between. In order to keep our model simple,
we do not explicitly specify the notion of a document here.5

Definition 5. The document base instance I is a tuple

I = (E,≺str,≺seq , ν, τ, δ)

where: E is a set of XML elements; ≺str is an aggregative
relation on E that defines the hierarchical composition be-
tween elements; ≺seq is a partial order on E that describes
the sequential order among elements; ν is a mapping E → N
that gives the name of each element; δ is a partial mapping
E → D yielding the content of an element e if ν(e) ∈ L,
with the restriction δ(e) ∈ |τ (ν(e))|.
5Documents should be modeled as disjoint subsets of E, and
the relations ≺str and ≺seq only contain pairs of elements
belonging to the same document.

Between the elements E of a document base instance, there
is an aggregative relation ≺str that models the child-parent
relationship: e ≺str e′ if e is a child of e′. The sequential
relationship ≺seq describes the order among all children of
a parent node: e ≺seq e′ if e and e′ are children of the same
parent element and e′ follows e. The function ν(e) gives us
the name of element e, and δ(e) gives the content of leaf
elements.

The general idea for processing XIRQL queries is the ma-
nipulation of sets of paths. This approach is similar to the
proximal nodes model [18].6 However, we give a more formal
specification of the semantics of the different operators. Fur-
thermore, we extend this model by dealing with datatypes
and weighting.

A path is a sequence of elements, where each pair of sub-
sequent elements is in the aggregative relation ≺str. In ad-
dition, each path starts with a dummy element o which is
introduced in order to simplify subsequent definitions.

Definition 6. For a document base instance I =
(E,≺str,≺seq , ν, τ, δ), a path is a list p = (e0, e1, . . . , en)
with n ≥ 0 and e0 = o (the dummy element). Un-
less n = 0, the following also must hold: ν(e1) = ι and
ei ∈ E for 1 ≤ i ≤ n; in addition, for 1 ≤ j ≤ n − 1,
ej+1 ≺str ej ∧¬∃e′ : ej+1 ≺str e′ ≺str ej. Let P denote the
set of all paths that can be formed from I.

Furthermore, let lst(p) = en and head(p) =
(e0, e1, . . . , en−1).

In order to deal with weighting, we are using event keys
and event expressions. The former identify the probabilistic
events, whereas the latter describe Boolean combinations
of events. In order to distinguish event expressions from
ordinary Boolean expressions, we use underlined Boolean
operators for the former.

Definition 7. A set of event keys EK is a set of identi-
fiers, that also contains the special elements ⊥ (always false)
and > (always true).

The set of event expressions EE is defined recursively:

1. w ∈ EK→ w ∈ EE.

2. w ∈ EE→ ¬w ∈ EE.

3. w, w′ ∈ EE→ w ∧ w′ ∈ EE and w ∨ w′ ∈ EE

4. These are all event expressions.

As shorthand for the disjunction w1 ∨w2 ∨ . . .∨wn, we also
use the notation

W
i
wi.

Based on the notion of paths and event expressions, we can
now discuss the notion of XIRQL queries. Given a docu-
ment base, a query should produce a result set consisting of
pairs (path, event expression). The path points to the XML
element to be retrieved. Below, we will show that we need
a second path in order to handle intermediate results. In
a subsequent step, the event expressions are used for com-
puting the probabilistic weight for each answer, as described
before. XIRQL operators take one or two result sets as in-
put and produce another result set as output. This model is
similar to query processing in standard text retrieval, where

6The close relationship between XQL and proximal nodes is
discussed in [2].

inverted list entries (consisting of document IDs and index-
ing weights) are combined in order to produce a result list
of document IDs with weights. However, our path algebra
approach is flexible enough to allow for other kinds of pro-
cessing as well, e.g. using different kinds of access paths or
processing parts of the query by scanning a set preselected
of documents

First, we need a transformation operator from a set of
paths into a query result:

Definition 8. Let R denote a set of paths. Then the
operator ε is defined as:
ε(R) = {(p, p,>)|p ∈ R}

By applying ε onto the set P of all paths, we can get a
starting point for the other operators.

In classical text retrieval, the basic operator is single term
retrieval: Given a term, it returns a set of document IDs
with weights. In our case, a term corresponds to a triple
(datatype, predicate, comparison value). Since we are deal-
ing with structured documents, the document ID is extended
to the path describing the element where the condition
matched. Instead of a simple weight, we return an event
key (with an associated weight), in order to compute the
resulting probability in a correct way.

Definition 9. Let T denote a datatype, V ∈ |T | a com-
parison value and c̃ be the name of a predicate c ∈ CT . Fur-
thermore, let w = event(v, e, T, c̃, V) denote a function that
generates an event key with probability v for the result of
applying the value selection condition [T c̃ V] on the element
e. Then value selection on a query result Q is defined as
ω[T c̃ V](Q) = {(p, r, w)|(p, r,w′) ∈ Q ∧ lst(r) = e∧ τ (e) �T
T ∧ c(V, δ(e)) = v ∧ w = w′ ∧ event(v, e, T, c̃, V)}

Query results consist of triples (processing path, re-
sult path, event expressions). As an example, con-
sider the simple query /*/chapter/section[heading

cw "syntax"]. For our example document, value
selection would return two paths, namely /book[1]/

chapter[2]/section[2]/heading[1]/#PCDATA[1] and
/book[1]/chapter[2]/section[2]/#PCDATA[1] (in our
examples, we use relative indexes for identifying the ele-
ments). In order to test the structural conditions, we check
them in a bottom-up way. During this process, we have
to distinguish between the path that leads to the result
element (in our case section elements) and the position
in the path where we test the next structural condition.
For illustrating this procedure, let us enclose the processing
path in parentheses, while the full path always represents
the (current) result path. As output from value selection,
the example paths from above are both processing and
result paths. Testing for the heading condition in the filter,
we get the result (/book[1]/chapter[2]/section[2]).
Next, we have to test for the /section condition, without
moving the result pointer, thus giving us (/book[1]/

chapter[2])/section[2]. In the same way, we test the
/chapter condition and the condition /*, thus yielding
finally ()/book[1]/chapter[2]/section[2].

Now consider a variant of the query from above: /*/

chapter/section[./* cw "syntax"]. Here the value
selection would yield the same paths as before, which would
also both pass the filter. Thus, our query result contains
twice the path (/book[1]/chapter[2]/section[2]). Now
let us look at the event expressions, which would be the

event key [5, syntax] in both cases.7 Logically, when the
result paths are equal, we have to form the disjunction of
the corresponding event keys, thus eliminating the duplicate
element of the result in this case. As another example,
consider the query /*/chapter[.//* cw "XQL"], where
value selection would yield the path-event combinations
(/book[1]/chapter[2]/section[2]/#PCDATA[1],
[5, XQL]) and (/book[1]/chapter[2]/heading[1],
[3, XQL]). Here the test on the structural condi-
tion /chapter would identify two equal paths, but
with different event keys, thus yielding the result
((/book[1])/chapter[2],
[3, XQL] ∨ [5, XQL]).

The last problem concerning the evaluation of structural
conditions is the notation //; in this case, we have to con-
sider all possible subpaths of each argument path. In con-
trast to other operators or conditions, this condition in-
creases the size of the result.

Based on these considerations, we can now give the defi-
nition of the structural projection operator Π and the struc-
tural selection operator σ (similar to relational algebra,
where projection also modifies the structure of the result,
whereas selection only filters elements from the input).

Definition 10. Let S denote a query result and c a
structural condition of the form ‘/’, ‘//’, ‘/*’ or ‘/a’
(where ‘a’ denotes an element name). For a path p =
(e0, e1, . . . , en), we define a function
proj(c, p) =8>>>>>>>><
>>>>>>>>:

{(e0)} if c = ‘/’ ∧ n = 0

{(e0, e1, . . . , ej)|0 ≤ j ≤ n} if c = ‘//’,

{(e0, e1, . . . , en−1)} if c = ‘/a’ ∧ n ≥ 1∧
ν(en) = a,

{(e0, e1, . . . , en−1)} if c = ‘/*’ ∧ n ≥ 1,

∅ otherwise.

Then we define the following operations
Π[c](S) = {(r, r,w)|T = {(p′, r′, w′)|r ∈ proj(c, r′)∧

(p′, r′, w′) ∈ S} ∧ T 6= ∅ ∧ w =
W

(p′,r′,w′)∈T
w′}

σ[c](S) = {(p, r,w)|(p′, r,w) ∈ S ∧ p ∈ proj(c, p′)}}

The binary operators are fairly straightforward: we combine
two elements, if they contain identical result and processing
paths, and the event expressions are combined according to
the semantics of the operator. As a variant of intersection,
the subpath operator ’/’ only considers equality of process-
ing paths and then takes the result path from its right ar-
gument. As an example, consider the query /book [@class

$clsim$ "H.3.3"] /chapter [./heading cw

"XQL"] For our example document, the first filter condi-
tion would produce the path (/book[1]), whereas the sec-
ond filter and the subsequent test on /chapter would yield
(/book[1])/chapter[2]. The subpath operator would pro-
duce the second path as result (plus the conjunction of the
corresponding event expressions).

Like in relational algebra, negation in XIRQL queries
is mapped onto difference of intermediate results. If no
other argument is given, we form the difference to the com-
plete database; for example, the query /book[not title]

7For illustration purposes, we keep the notation of event
keys more simple than required by the definition of the func-
tion event(.).

searching for all documents that have no title is transformed
into σ[/book](ε(P))− σ[/book](Π[/title](ε(P)))

Definition 11. Let S and T denote two query results.
Then we define the following operations:

S ∩ T = {(p, r, w|∃(p, r, w′) ∈ S ∧ ∃(p, r, w′′) ∈ T ∧ w =
w′ ∧ w′′}

S/T = {(p, r, w|∃(p, r′, w′) ∈ S ∧ ∃(p, r, w′′) ∈ T ∧ w =
w′ ∧ w′′}

S ∪ T = {(p, r, w)|∃(p, r, w′) ∈ S ∧ ∃(p, r, w′′) ∈ T ∧ w =
w′ ∨ w′′ ∨
∃(p, r, w) ∈ S ∧ ¬∃(p, r, w′) ∈ T
∃(p, r, w) ∈ T ∧ ¬∃(p, r,w′) ∈ S}

S − T = {(p, r, w)|∃(p, r, w′) ∈ S ∧ ∃(p, r,w′′) ∈ T ∧ w =
w′ ∨ ¬w′′ ∨
∃(p, r, w′) ∈ S ∧ ¬∃(p, r,w′′) ∈ T ∧ w = w′

Finally, we specify the relevance selection operator for
relevance-oriented search. Its definition is similar to pro-
jection for the descendant operator, but it yields only paths
leading to index nodes, and it adds events corresponding to
augmentation weights to the event expression.

Definition 12. For ν(e) ∈ X (names of root elements of
index nodes) let rw(e) denote a function that gives the aug-
mentation weight for e along with the corresponding event.
Then relevance selection is defined as

%(Q) =

(
%̃(Q) ∪ %(Π[/∗](Q)) if Q 6= ∅
∅ otherwise

where %̃ is defined as
%̃(Q) = {(r, r, w)|(p′, r′, w′) ∈ Q∧lst(r′) = e∧ν(e) ∈ X∧r =
head(r′) ∧ w = rw(w′) ∧ w′}.
Based on these specifications, we can transform XIRQL
queries into combinations of XIRQL operators. We give two
examples illustrating this process:
/book//section[title cw "syntax" and

#PCDATA cw "XQL"] is mapped onto σ[/](σ[/book](σ[//]
(σ[/section](Π[/title](ω[text cw “syntax”](ε(P)) ∩
Π[#PCDATA] (ω[text cw “XQL”](ε(P))))))))
/book [@class $clsim$ "H.3.3"] /chapter

[./heading cw "XQL"] can be expressed as
σ[/](σ[/book](Π[@class](ω[class $clsim$ “H.3.3”](ε(P)))
/(σ[/chapter](Π[/heading](ω[text cw “XQL”](ε(P)))))))

It should be obvious that the transformation step is rather
straightforward, only negation requires some special atten-
tion.

In terms of database systems, here we have described the
logical algebra only. The actual implementation of query
processing has to be based on a physical algebra, where the
operators make additional assumptions, like about the avail-
ability of access paths and the sorting order of objects. A
major task of the query optimization step is the mapping
of logical operators onto appropriate physical operators; in
addition, the logical algebraic expression can be optimized
first. For this purpose, we have to identify transformation
rules of the path algebra that keep the result unchanged (as
in relational algebra, some of these rules only hold in one
direction [15]), e.g.

Π[c](S ∩ T) −→ Π[c](S) ∩ Π[c](T)

σ[c](ω[s](Q)) ←→ ω[s](σ[c](Q))

The first rule tells us that we can move a projection inside
the arguments of an intersection operator, (e.g. for reduc-
ing the size of intermediate results), but not vice versa (e.g.
when c = ‘/*’). The second rule allows us to exchange the
processing order of structural and value selections; this may
be useful for exploiting the nature of the access paths avail-
able (e.g. value-oriented inverted lists vs. structure-oriented
access paths). After developing the complete path algebra,
we can apply standard query optimization techniques from
the area of database systems (see e.g. [13]); however, since
most users are interested in the top-ranking documents only,
additional work may be necessary in order to modify the
query optimization step accordingly.

5. CONCLUSIONS AND OUTLOOK
In this paper, we have described a new query language for

information retrieval in XML documents. Current propos-
als for XML query languages lack most IR-related features,
which are weighting and ranking, relevance-oriented search,
datatypes with vague predicates, and semantic relativism.
We have presented the new query language XIRQL which
integrates all these features, and we have described the con-
cepts that are necessary in order to arrive at a consistent
model for XML retrieval. For processing XIRQL queries,
we have described a path algebra, which also serves as a
starting point for query optimization. In parallel, XIRQL
can be extended to include the data-centric features from
XQuery.

We have implemented a first prototype retrieval engine
that accepts XIRQL queries, transforms them into a path
algebra expression and then processes this expression. Cur-
rently, we are using a simple extension of inverted files as
access method. In order to achieve efficiency, we will inves-
tigate different kinds of access methods and different pro-
cessing strategies, which will form the basis for query opti-
mization. This work is part of a project that will develop
an open source retrieval engine for XML retrieval, especially
for digital libraries. Further research is necessary to make
the full functionality of XIRQL accessible to the end-user;
form-based interfaces to execute queries with a predefined
structure are easily built, however.

6. REFERENCES
[1] XQuery: A query language for XML, Feb. 2001.

http://www.w3.org/TR/xquery/.

[2] R. Baeza-Yates and G. Navarro. XQL and proximal
nodes. In Proceedings ACM SIGIR 2000 Workshop on
XML and Information Retrieval, 2000.
http://www.haifa.il.ibm.com/sigir00-xml/

final-papers/RBaetza/att1.htm.

[3] P. Billingsley. Probability and Measure. Wiley Series in
Probability and Mathematical Statistics. John Wiley
& Sons, Inc, New York, 1979.

[4] D. Chamberlin, F. Fankhauser, M. Marchiori, and
J. Robie. XML query requirements, 2000.
http://www.w3.org/TR/xmlquery-req.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML query language for heterogeneous data sources.
In WebDB (Informal Proceedings), pages 53–62, 2000.
http://www.almaden.ibm.com/cs/people/

chamberlin/quilt_lncs.pdf.

[6] Y. Chiaramella, P. Mulhem, and F. Fourel. A model
for multimedia information retrieval. Technical report,
FERMI ESPRIT BRA 8134, University of Glasgow,
Apr. 1996. http://www.dcs.gla.ac.uk/fermi/tech\
_reports/reports/fermi96-4.ps.gz.

[7] Croft et al., editor. Proceedings of the 21st Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, New York,
1998. ACM.

[8] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. XML-QL: A query language for XML. In
Marchiori [16]. http:
//www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[9] N. Fuhr. Towards data abstraction in networked
information retrieval systems. Information Processing
and Management, 35(2):101–119, 1999.

[10] N. Fuhr, N. Gövert, and T. Rölleke. Dolores: A
system for logic-based retrieval of multimedia objects.
In Croft et al. [7], pages 257–265.

[11] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Transactions on Information
Systems, 14(1):32–66, 1997.

[12] M. Hearst and C. Plaunt. Subtopic structuring for
full-length document access. In Proceedings of the
Sixteenth Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 59–68, New York, 1993.
ACM.

[13] M. Jarke and J. Koch. Query optimization in database
systems. ACM Computing Surveys, 16:111–152, 1984.

[14] M. Lalmas. Dempster-Shafer’s theory of evidence
applied to structured documents: Modelling
uncertainty. In N. J. Belkin, A. D. Narasimhalu, and
P. Willet, editors, Proceedings of the 20th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
110–118, New York, 1997. ACM.

[15] D. Maier. Relational Database Theory. Computer
Science Press, Rockville, Md., 1983.

[16] M. Marchiori, editor. QL’98 — The Query Languages
Workshop. W3C, Dec. 1998.
http://www.w3.org/TandS/QL/QL98/.

[17] S. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C. Zhoo. A
flexible model for retrieval of sgml documents. In
Croft et al. [7], pages 138–145.

[18] G. Navarro and R. Baeza-Yates. Proximal nodes: a
model to query document databases by content and
structure. ACM Transactions on Information Systems,
15(4):400–435, 1997.

[19] J. Robie, J. Lapp, and D. Schach. XML query
language (XQL). In Marchiori [16].
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[20] A. Theobald and G. Weikum. Adding relevance to
XML. In 3rd International Workshop on the Web and
Databases (WebDB), 2000. http:
//www-dbs.cs.uni-sb.de/papers/webdb2000.ps.

