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ABSTRACT
A common approach to storage and retrieval of XML doc-
uments is to store them in a database, together with ma-
terialized views on their content. The advantage over ”na-
tive” XML storage managers seems to be that transactions
and concurrency are for free, next to other benefits. But
a closer look and preliminary experiments reveal that this
results in poor performance of concurrent queries and up-
dates. The reason is that database lock contention hinders
parallelism unnecessarily. We therefore investigate concur-
rency control at the semantic, i.e., XML level and describe a
respective transaction manager XMLTM. It features a new
locking protocol DGLOCK. It generalizes the protocol for
locking on directed acyclic graphs by adding simple predi-
cate locking on the content of elements, e.g., on their text.
Instead of using the original XML documents, we propose to
take advantage of an abstraction of the XML document col-
lection known as DataGuides. XMLTM allows to run XML
processing at the underlying database at low ANSI isolation
degrees and to release database locks early without sacri-
ficing correctness in this setting. We have built a complete
prototype system that is implemented on top of the XML
Extender for IBM DB2. Our evaluation shows that our ap-
proach consistently yields performance improvements by an
order of magnitude. We stress that our approach can also
be implemented within a native XML storage manager, and
we expect even better performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Relational databases, Textual databases, Transaction pro-
cessing
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1. INTRODUCTION
XML has emerged as the universal format for data ex-

change. Storage and retrieval from large XML document
collections is an important issue. XML is more and more
used in contexts that are mission-critical, such as e-com-
merce. We foresee applications that process XML queries
and updates concurrently and have strict requirements re-
garding consistency and reliability. One approach that seems
to meet all these requirements is to use relational database
technology. RDBMS vendors have extended their products
accordingly, in two directions: (1) The database system al-
lows to publish relational data as XML. (2) The database
system stores XML data, i.e., it maps XML documents to
database tables. A common distinction regarding (2) is be-
tween side tables and document tables. Side tables are the
result of shredding XML elements to database tables and
columns. Document tables in turn store complete XML doc-
uments as character-large-objects (CLOBs). Extensions of
the database engine allow for querying and updating the
XML documents stored as CLOBs. All XML solutions by
RDBMS vendors combine shredding and materialized views
on XML content with CLOB storage. This combination has
several advantages: (1) the relational query engine can be
used to efficiently process XML queries over the XML con-
tent stored in the side tables, and (2) access to the original
document is efficient as well. To keep side tables up-to-
date in the presence of updates, commercial implementa-
tions such as the one by IBM use triggers. They delete
the mapped content of the updated document from the side
tables and insert the updated content. Using a database
system in this way has many advantages, e.g., persistence,
buffering, or indexing come for free. However, relying solely
on the DBMS transaction mechanism to give the usual guar-
antees for access to XML data is not a good idea. An initial
experimental evaluation has revealed that this results in low
performance. The reason is unnecessary database lock con-
tention on document and side tables.

Example 1: Consider two concurrent transactions that
run over the document tables. The first transaction retrieves
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Figure 1: XML processing with XMLTM

all /description elements. The second one updates all /price
elements. Obviously, there is no conflict. But the transac-
tion manager of the database blocks one of them if a /price
and a /description element appear in the same document.
The same behavior occurs when the retrieval transaction is
processed on the side tables: side table maintenance by the
update transaction locks the side tables and hence blocks re-
trieval (or vice-versa). The effect is known as pseudo-conflict
in the literature [29], and it results in low inter-transaction
parallelism. �

For different, more specific application scenarios, semantic
concurrency control has solved these problems. I.e., it has
lead to a higher degree of parallelism and to significant per-
formance improvements, in particular if the rate of pseudo-
conflicts is high [1, 18]: The general idea is that a transac-
tion manager takes the application semantics into account
[26, 27]. This prevents from inconsistent flow of information
between concurrent transactions at the application level. It
also reduces the rate of pseudo-conflicts. This is because
it allows releasing locks at the storage manager early, i.e.,
before the transaction at the application level commits.

However, it is unclear how such a transaction manager
should look like when exploiting the ”semantics” of XML.
In particular, one must decide how to realize isolation and
atomicity in this particular context. Our contribution is the
design of a semantic transaction manager for XML, called
XMLTM, and its evaluation as a second-layer transaction
manager on top of an RDBMS.1 We assume that the un-
derlying storage manager2 supports transactions. In the
following, we refer to them as database transactions. This
assumption is not a restriction, because extending XMLTM
or the underlying system in this respect is easy [20].

XMLTM intercepts client requests, i.e., XML updates and

1We stress that the issue of designing such a transaction
manager is not confined to transaction management at the
second layer, but needs to be addressed whenever transac-
tional guarantees over XML data are required. However,
our evaluation and the presentation in this article from now
on focus on XMLTM as a second-layer transaction manager.
2The underlying storage manager does not need to be a
database, we just use the terms ’database’ and ’storage man-
ager’ as synonyms throughout this article.

queries to derive the semantic information to implement iso-
lation and atomicity of concurrent XML transactions (cf. Fig-
ure 1). An XML transaction is a transaction at the appli-
cation level that bundles one or several XML queries or up-
dates. XMLTM uses granular locking in combination with
predicate locking to guarantee correctness at the applica-
tion level. Consequently, database transactions only have to
guarantee consistency at the storage level. Hence, database
transactions can commit early and release their locks earlier.
We expect this to reduce lock contention and to increase
parallelism of concurrent XML transactions, compared to a
setting that uses only the transaction management of the
database system.

As part of XMLTM, we propose a locking protocol called
DGLOCK. It generalizes the well-known locking protocol for
directed acyclic graphs (DAG locking) [10] to processing of
XML data. The generalization is that it incorporates locking
on content constraints, e.g., keywords and text from queries
and documents, at arbitrary granularity. Another issue is
that using the graph structure of the XML data for locking
is not practical. This is because this structure is not directly
available anyhow since XML extensions map XML data to
relations. Instead, we propose to use DataGuides [7] as the
underlying structure for locking. The idea with DataGuides
is to create a summary of the structure of existing XML
documents. We deploy this data structure to perform fine-
grained locking without giving the locking algorithm ac-
cess to the XML documents themselves. Since DataGuides
may become big in size, the benefit in quantitative terms is
not clear. Our evaluation addresses this point (with posi-
tive results). Another important new optimization is that
XMLTM runs database transactions at a low ANSI isolation
degree without giving up serializability, as we will show.

For evaluation purposes, we have implemented XMLTM
on top of IBM DB2 with the XML Extender for DB2, and we
compare it to a setting where transactional guarantees rely
only on the transaction management of the database system.
XMLTM increases performance of concurrent querying and
updating of XML data by an order of magnitude. Further-
more, the overhead of DGLOCK is small in settings without
pseudo-conflicts, e.g., query-only workloads.

The remainder of this paper is as follows: Section 2 re-
views state-of-the-art XML extensions. Section 3 describes
our transaction manager XMLTM and our locking protocol
DGLOCK. Section 4 describes the experimental evaluation
of our prototype with IBM DB2 and its XML Extender, to-
gether with a detailed discussion. Section 5 covers related
work. Section 6 concludes.

2. XML DATABASE EXTENSIONS
This study evaluates XMLTM as a second-layer transac-

tion manager on top of a relational DBMS. Hence, this sec-
tion reviews the implementation of XML extensions. We
use IBM DB2 with the XML Extender as a running exam-
ple. Nevertheless, XML extensions only require from the
database system a data type to store large texts such as
CLOB.

Terminology. In this paper, we assume that XML doc-
uments are trees. The text of an XML document or simply
document text is the text together with the markup. The
graph representation of a document is the one defined by
the data model of the W3C XPath Recommendation [24].
Matches of a path expression are the sub-graphs of the graph
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Figure 2: Match of a path expression with an XML
document in graph representation

representation that qualify for the path expression. XML
contents are the parts of the document text that correspond
to the match.

Example 2: Figure 2 shows the match of the path ex-
pression /store/auction/price[. > 1000] in the document de-
picted. A path expression may have more than one match
per document. This is the case with path expression /store-
/auction/price[. > 1] and the document of the figure. �

Document Tables. XML extensions store XML docu-
ments in CLOB attributes. Additional methods, e.g., stored
procedures, implement the XML-specific functionality. Some
of these methods extract content from the XML documents.
They take a path expression as an input parameter. It spec-
ifies the content to be extracted. Other methods update the
XML documents. One input parameter again is a path ex-
pression. Another parameter specifies the new content to
replace the one referred to by the path expression. An SQL
statement can incorporate these XML-specific methods.

Example 3: The document table xmldata has a key and
an xmltext attribute (see Figure 3). With IBM DB2 and
its XML Extender, the following SQL statement retrieves
the key attribute and the content of all price elements and
converts price information to the data type double:

select key, x.returnedDouble

from xmldata,

table(db2xml.extractDoubles(

xmltext,’//price’)) as x

The following SQL statement updates price elements in
documents with a key value of D1:

update xmldata

set xmltext = db2xml.update(

xmltext,’//price’,’200’)

where key = D1 �
We refer to SQL statements for updating and querying

XML content as in Example 3 as requests. Clients compose
the requests and submit them to the system, as Figure 1
shows. For what follows, it is important that XML exten-
sions retrieve and update only the matches and their de-
scendant nodes: both requests from Example 3 for instance

key description price
D1 Floppy disk 0.20
D1 PC Pentium 4711.00

Side table

auction

key xmltext
D1 <store>

<auction>
<description>Floppy disk </description>
<price>0.20</price>
<shipping>UPS</shipping>

</auction>
<auction>

<description>PC Pentium </description>
<price>4711.00</price>
<shipping>FedEx</shipping>

</auction>
</store>
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Figure 3: Illustration of STORED

access only data in the sub-trees rooted at the nodes that
match the //price path expression.

Side Tables. Consider again the first SQL statement
of Example 3. With the mechanisms described so far, the
query engine inspects all documents even if only very few
of them contain price information. To speed up queries, ad-
ditional database tables – so-called side-tables – materialize
views on the content of XML documents.

Literature has proposed various mapping schemes, i.e.,
side table definition schemes that differ in the number and
layout of the side tables. The mappings that are commer-
cially available are simple variants of so-called STORED
queries [3]. Several STORED queries specify an XML-to-
RDBMS mapping. Such a query consists of a FROM and
a STORE clause, as Figure 3 shows. The FROM clause
matches a pattern with a given XML document. For each
match, the STORE clause creates a tuple in the side table
based on the current variable bindings. This approach is not
restricted to one document table and one side table only.

Given a query, two situations may occur: (1) the side
tables alone contain all the data necessary to evaluate the
query. Then an SQL statement over the side tables is suf-
ficient. (2) The side tables alone do not suffice. They only
allow to identify a superset of the documents in the query
result, the so-called candidates. A query that identifies the
candidates is a subsuming query.

Example 4: Consider the database schema from Figure 3
together with the following query for IBM DB2.

select x.returnedVarchar,

y.returnedDouble

from xmldata as z,

table(db2xml.extractVarchar(

xmltext,’//shipping’ )) as x,

table(db2xml.extractDouble(

xmltext,’//price’)) as y

where z.key in

(select key from auction

where price < 50)

and y.returnedDouble < 50

This request selects information about low-priced auctions.
But the ’shipping’ information is not available in side tables.
The query has to fetch it from the document table. The



query select key from auction where price < 50 is a subsuming
query. �

When it comes to updates, side tables and document
tables have to be consistent. IBM’s implementation uses
database triggers on the document tables.

Performance Issues and Shortcomings. We have car-
ried out a detailed analysis of XML extensions using the data
set provided with the XML benchmark [19]. Response times
with concurrent updating and querying are very low when
relying solely on the transaction management functionality
of the database system (see Section 4 for numbers). The ex-
planation is that lock contention hinders inter-transaction
parallelism. The following section says how we have ad-
dressed these issues.

3. TRANSACTION MANAGEMENT FOR
CONCURRENT XML PROCESSING

Transactions are a key concept to guarantee reliability of
information systems and data consistency in the presence of
system failures and interleaved access to shared data. When
using XML in contexts that are mission-critical, transac-
tional guarantees are indispensable as well. They enable
the application programmer to group a set of requests that
require isolation and atomicity to a transaction. With XML
stored in an off-the-shelf RDBMS, there are two ways to
provide these guarantees. The first one – denoted as the flat
transaction model – relies only on the transaction processing
functionality of the database. No further implementation ef-
fort is necessary. The alternative is transaction management
at the application level [18, 28]. With this model, a set of
requests that require isolation and atomicity forms a global
transaction or a transaction at the application level. An ad-
ditional transaction manager on top of the storage manager
decomposes such a transaction into independent subtransac-
tions, so-called database transactions, and schedules them.
To do so, it considers the application semantics, i.e., the con-
flicts at the application level. A database transaction can
commit early, i.e., before the end of its global transaction,
and therefore can release its locks early in order to increase
parallelism without sacrificing correctness.

To compare the two alternatives in the context of XML,
we have designed and implemented XMLTM, a transaction
manager for efficient concurrent processing of XML queries
and updates. The global transactions with XMLTM are
XML transactions that comprise XML queries and updates.
XMLTM intercepts the client requests to derive their seman-
tic information, to keep track of global transactions, and to
control the database transactions. XMLTM maps a request
to a set of so-called operations, one for each candidate doc-
ument. Each operation runs as a storage manager trans-
action. We will show that they can run at a lower ANSI
isolation degree [10]. This optimization, together with early
release of locks at the storage manager, should lead to much
less lock contention when deploying XMLTM on top of ex-
isting XML extensions.

XMLTM does not rely on the semantics of a specific in-
terface. The only ’restrictions’ with our work in turn are
that (1) XML is the underlying data format, and (2) there
is a distinction between read and write operations.

3.1 Isolation at the XML Level
Isolation means that there is no inconsistent flow of in-

formation between concurrent global transactions. A flow
of information is inconsistent if the schedule of the global
transactions is not serializable. With conflict serializability
as correctness criterion, locking is a common technique to
ensure correctness [2]. XMLTM is based on locking as well.

3.1.1 The DGLOCK Protocol
XMLTM implements the locking protocol DGLOCK, a

new protocol proposed in this article. In this context, we
make the following distinction between constraints of re-
quests: structural constraints, i.e., constraints on the struc-
ture of documents, versus content constraints, i.e., constraints
on the content of elements. To give an example, consider
path expression /store/auction/price[. > 1000] (cf. Exam-
ple 2): /store/auction/price is a structural constraint while
[price > 1000] is a content constraint. Structural constraints
are constraints on the type level, content constraints are
on the instance level. The main innovation of DGLOCK
is that it takes both kinds of constraints into account: to
cope with structure constraints, DGLOCK takes over the
idea of granular locking on directed acyclic graphs (DAGs
for short) [10] – but applies it to the DataGuide, rather than
to the documents themselves. Predicates on the nodes of the
DataGuide in turn allow to deal with content constraints.
When XMLTM intercepts a request, it determines its struc-
tural constraints, its content and therefore also its content
constraints.

One might have expected the transaction manager to lock
the nodes in the graph representation of the documents.
Previous work on object bases has already investigated the
problem of locking on a graph, see [17] among others. These
approaches are only viable if the graph is physically avail-
able. But this is typically not the case with any practical
representation of XML data. Consequently, DGLOCK only
relies on the much weaker assumption that a complete sum-
mary of the structure of the documents is available. Com-
plete means that each label path in the document collection
is also part of the summary. The DataGuide is a structure
that has this characteristic [6, 7] by definition: for each label
path in the data, the same path also occurs in the DataGuide
exactly once. Furthermore, a DataGuide is concise, i.e., it
does not contain any other label paths. In what follows, we
also assume that a DataGuide has exactly one root. If this
is not the case, one can always add a virtual root.

DGLOCK implements serializability by a two-phase lock-
ing protocol on the nodes of the Data Guide: Each new re-
quest dynamically acquires the needed locks immediately af-
ter its invocation, and the concurrency control releases them
at the end of the transaction (strict two-phase locking). In
addition to the usual differentiation between shared locks (S
locks), exclusive locks (X locks), and intention locks (IS and
IX ), which reflect the intention of the request to place S re-
spectively X locks at a finer granularity, DGLOCK provides
for annotations of locks with simple predicates. Here, sim-
ple predicates are conjunctions of comparisons of the form
x θ const with θ ∈ {=,∈, �=,≤, . . . }. The difference be-
tween the compatibility matrix used by DGLOCK to decide
whether a lock is granted, displayed in Table 13, and the
one of DAG locking is as follows: The DGLOCK-matrix
does not contain strict incompatibilities; an incompatibility
occurs only if the predicates of locks already granted and

3SIX locks are a combination of a shared lock and an inten-
tion lock for exclusive access to finer granularities.



Granted

Requested None IS IX S SIX X

IS + + + + + P
IX + + + P P P
S + + P + P P

SIX + + P P P P
X + P P P P P

Table 1: DGLOCK lock compatibility – compatibil-
ities marked as ’+’, predicate tests as ’P ’

the one of the lock requested are not compliant, or if a lock
does not have a predicate annotation. More formally, let
predgranted

1 , . . . , predgranted
n denote the read resp. write sets

of those predicates that annotate the locks already granted,
and let predreq denote the one of the lock requested. The
lock is granted only if P ≡ (

�
i predgranted

i ) ∩ predreq = ∅.
Having said this, DGLOCK performs the following steps

for a new request s:

1. Extract the constraints: obtain all path expressions E
in s that lead to data that is queried or updated by
s, i.e., extract the structural constraints. Annotate
each node of each element of E with the predicate that
reflects the respective content constraint.

2. Compute the set N of all nodes of the Data Guide
that match any e ∈ E , differentiating between nodes
updated and those that are only read.

3. For each n ∈ N perform the following operations using
the lock compatibility matrix:

(a) If node n is updated by s, acquire IX locks on
all nodes along all paths that lead from the root
to n taking the annotations of the nodes of the
DataGuide and the ones of e into account.4 Re-
quest the locks in the order of increasing distance
from the root, i.e., from the root to n. Then ac-
quire an X lock on n, again taking the annota-
tions into account.

(b) If node n is only read by s, acquire IS locks on
all nodes along at least one path that leads from
the root to n. Then acquire an S lock on n. As
with IX and X locks, acquire the locks from the
root to n taking the annotations into account.

If two locks are not compatible, the concurrency control
delays the new lock request. The transaction is blocked un-
til the transaction with the incompatible lock has released
its lock. Deadlock detection aborts a transaction if it sub-
mits a request for a lock that leads to a cyclic lock waiting
condition. Our implementation of the lock manager follows
the one described in [10].

Example 5: Figure 4 shows a DataGuide for the docu-
ment from Figure 3. Transaction T1 retrieves XML content
from the locations given by path expression /store/auction-
[price > 5]/description. Transaction T2 in turn uses path
expression /store/auction[price < 0.5]/price to set the respec-
tive price values to ’4’. XMLTM runs T1 and T2 concurrently

4Note that even though XML documents in this paper are
trees, the DataGuide is not necessarily a tree as well.
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Figure 4: Locking on the DataGuide

since all locks granted with DGLOCK are compatible, as
Figure 4 (left) shows. �

Note that locking at coarser granularity both for struc-
tural and content constraints is feasible as well. This is par-
ticularly appropriate if the hierarchy of the DataGuide has
too many levels such that lock management would become
too tedious. Regarding structural constraints, this means
that one uses the S or X locks instead of intention locks
already at ancestor nodes. Then the locks at their child
nodes are obsolete. When it comes to content constraints,
the analogous idea is to annotate nodes that are higher up
in the hierarchy. The following example illustrates this.

Example 6: Consider again the DataGuide for the doc-
ument from Figure 3 with transactions T3 and T4. T3 re-
trieves XML content using path expression /store/auction-
[price < 5 AND contains(./description, ’XML’ )]. T4 in turn
changes all description contents from ’Web’ to ’XML’ using
path expression /store/auction[./description = ’Web’)]. As
Figure 4 (right) shows, T4 is not granted the X lock on auc-
tion since its predicate description=’XML’ derived from the
new content is incompatible with the shared lock held by
T3. �

Choice of DataGuide. In what follows, we compare
different kinds of DataGuides, notably minimal ones and
strong ones [7], with regard to their suitability for our pur-
poses. Minimal DataGuides have the characteristic that
the number of nodes is minimal. Given that there is ex-
actly one root, strong DataGuides have a tree structure, and
there is a one-to-one correspondence between label paths
and nodes of the DataGuide. DGLOCK is correct inde-
pendent of these specializations of the notion of DataGuide.
Strong DataGuides however are preferred for two reasons.
The first one is that Step 3(a) of DGLOCK has to lock
only one path per node because of the tree structure. The
other reason is a lower degree of lock contention. With a
DataGuide that is not strong, a lock on one of its nodes
would lock several label paths in the general case.

Expectations. We expect our locking protocol to al-
low for more parallelism of concurrent global transactions
than the flat model. On the one hand, the blocking situa-
tion described in Example 1 does not occur. Furthermore,
we expect that locking based on both structure and con-
tent gives way to a low degree of lock contention and a high



degree of concurrency. On the other hand, the lock man-
agement on the DataGuide leads to an additional overhead,
namely locking overhead and additional effort to maintain
the DataGuide (if not already available for other purposes),
and it is not clear whether DGLOCK actually improves
performance. The experimental evaluation addresses these
questions.

3.1.2 Reducing the Degree of Isolation
The objective of this subsection is to reduce the isolation

degree at the storage level in order to have better perfor-
mance: DGLOCK is based on the ’repeatable read’ charac-
teristic of ANSI isolation degree 3. The following optimiza-
tion is based on the observation that database transactions
with XMLTM do not read data objects repeatedly. This
is in contrast to XML transactions at the application level
where DGLOCK implements the repeatable read property
for XML transactions at the higher level. This allows to run
database transactions at ANSI isolation degree 2, i.e., ’read
committed’. It differs from isolation degree 3 only in that it
does not give us repeatable reads while incurring less locking
overhead at the storage level. However, note that we cannot
go below isolation degree 2 for the following reason: side-
table maintenance within a storage manager transaction up-
dates more than one tuple in the general case. For instance,
think of a database transaction that deletes a side-table tu-
ple and inserts a new one. Other database transactions may
not see the intermediate state. This requires isolation level
’read committed’.

3.2 Atomicity at the XML Level
Atomicity means that all updates of a transaction are ei-

ther executed to completion or not at all. Atomicity is typ-
ically implemented by means of recovery. When a transac-
tion manager at the application level decomposes a global
transaction into several database transactions that commit
independently of each other, it must comprise recovery func-
tionality as well. To do so, XMLTM implements undo-
recovery for XML transactions at the application level [10].
Undo-recovery is necessary to compensate the effects of early
commits when a global transaction aborts. Atomicity of
single database transactions instead is implemented by the
storage manager.

Undo recovery requires to log begin-of-transaction and
end-of-transaction markers. Each such marker also carries
the identifier that was assigned to the global transaction at
its beginning. This allows to determine the global transac-
tions that have not completed, i.e., whose end-of-transaction
marker is missing, in case of a crash. Undo-recovery aborts
these transactions and compensates their effects. Compen-
sation means that the effects of already committed stor-
age level transactions are undone if their global transaction
aborts. XMLTM now implements this aspect of recovery as
follows: To allow for compensation, XMLTM writes the up-
dated subtrees of the document to the log before the changes
of a request come into effect. This yields a before-image,
to be restored when undoing a transaction. In addition,
XMLTM also logs the parameters of the update requests,
namely the path expression and the new content. This al-
lows to compute the compensation operation in case of re-
covery.

Example 7: Consider an XML transaction with a request
to update the price of item ’4711’ to 10.00. XMLTM logs

its path expression /store/auction[itemid = ’4711’]/price and
the before-image of the price. The compensation operation
of the request is thus an update request with the same path
expression but with the old price as given by the before-
image. �

It remains to be said what happens to the side tables:
triggers keep derived information such as side tables up-to-
date. The update of a document and the triggers run in the
same storage level transaction. This guarantees that XML
documents and their mapped XML content are mutually
consistent. Hence, XMLTM does not need to log changes of
side table content.

To sum up this subsection, recall that the basic alterna-
tive to XMLTM is the flat transaction model. It has the ad-
vantage that the additional effort for logging of potentially
large before images is not necessary. The downside is that
an early commit of the database transaction is not feasible
and lock contention is higher. Our experimental evaluation
investigates this tradeoff for workloads of concurrent XML
updates and queries.

4. EXPERIMENTAL EVALUATION
We have carried out numerous experiments to assess our

solution. We want to find out if it really improves perfor-
mance of concurrent queries and updates of XML data. We
compare response times and throughput of client requests
with XMLTM to those with the flat transaction model. An-
other important question is the effect of the size of the doc-
ument text.

The following subsections only discuss our most promi-
nent results. For further results see [9].

4.1 Experimental Setup
XML Documents. The XML documents in our experi-

ments have been created with the document generator xml-
gen of the XML benchmark project [19]. The scaling factor
was 1.0 (standard), i.e., 100 MB of XML data. For our
experiments, we have generated three different collections
distributing the XML data over 100, 1,000, and 10,000 doc-
uments. The average document size with these collections is
1,000 KB, 100 KB, and 10 KB, respectively. The database
size with the document tables and the side tables is the same
with each collection, namely about 300 MB, including side
tables and indexes. We store the XML document texts in a
document table xmldata as discussed in Section 2. Figure 5
shows an excerpt of the DataGuide for our experimental
data. Nodes whose complete content has been mapped to
side tables are marked grey. Content from further nodes
not shown in the figure has also been mapped to the side ta-
bles. In total, our experimental database setting comprises
18 side tables. The DataGuide in Figure 5 is also the one
that we have used for locking with XMLTM.

Workload. The experiments work with two streams of
transactions. One stream queries the XML documents, the
other one invokes updates. Our study focuses on a conserva-
tive setting where transactions always contain one request.
Longer transactions would result in a higher degree of lock
contention and let XMLTM appear in a better light. Each
stream immediately submits a new request when it has re-
ceived the result of the previous one, i.e., there is no think
time. This models the worst case for response time and
throughput, as compared to a setting with think times. Our
experiments revealed that our workload already exhausts
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the resources of the standard PC that we used in our study.
We have synthetically generated the requests similarly to
the queries of the XML Benchmark [19]. Since [19] does not
cover updates, we generated a set of update requests. They
mimick requests of an online auction such as converting an
open auction to a closed auction, adding or increasing a bid
for some offer, or changing shipment types. All requests
comprise a subsuming query over one or several side tables,
and each request accesses one or several documents.

Hardware and Software. We have run our experiments
on an off-the-shelf PC with one Intel Celeron Processor and
512 MB of RAM. The PC runs the Microsoft Windows 2000
Advanced Server operating system software. XMLTM has
been implemented a set of Microsoft COM+ components.
The DBMS is IBM DB2 V7.1 with the XML Extender for
DB2. The database buffer size of DB2 adjusts dynamically
to the current workload, which is the default option under
Windows 2000. With XMLTM, our benchmarking environ-
ment routes all requests, i.e., queries and updates from the
client streams, through the COM+ components that imple-
ment XMLTM (see Figure 1). With the flat transaction
model in turn, the requests go directly to the storage man-
ager. In both settings, response times and throughput are
measured at the clients. When testing XMLTM, response
times also include the overhead required to maintain the
DataGuide.

4.2 Outcome and Discussion of the Experi-
ments

XML Processing with Side Tables: Effect of Trans-
action Management and Document Size. Our first
series of experiments investigates performance of XML pro-
cessing in the presence of side tables. Figure 6 graphs aver-
age response times and throughput for the collections with
100, 1,000, and 10,000 documents. Note that the figure uses
a log-scale axis for response times and throughput. This will
also be the case with most figures that follow. A first obser-
vation is that the performance of XML processing increases
with smaller document sizes: updates with flat transactions
for instance yield average response times of nearly 700 sec-
onds with 100 large documents. With 10,000 small docu-
ments, it is only 100 seconds per update request. The rea-
son is the following: for each candidate, the IBM DB2 XML
Extender loads the complete document text into an inter-

nal representation to process an update or a query. This
incurs less overhead for smaller documents and explains the
performance gain for smaller document sizes. Similar obser-
vations hold for all response times and throughput curves
both with flat transactions and XMLTM transactions. So
far, this is what one would expect. But a closer look at our
results reveals that the benefit from smaller document sizes
depends on the choice of the transaction manager. Query
performance with XMLTM transactions increases by more
than an order of magnitude from document size 1,000 KB
to 10 KB. Flat transactions instead yield an improvement
by a factor of 4 only. The effect on update performance in
turn is somewhat different: flat transactions yield an im-
provement by a factor of 7 from document size 1,000 KB
to 10 KB. With XMLTM transactions, it is only 4. Sum-
ming up, XMLTM transactions yield higher response times
of update requests for any document size as compared to
flat transactions. Update throughput with flat transactions
typically is twice the one of XMLTM transactions. The
reason is that updating with XMLTM transactions incurs
overhead for the additional logging and commit processing.
With XMLTM transactions, our transaction manager writes
a before image to the log before updating the document.
Our current version of the implementation simply takes the
complete document text as the before-image. Clearly, more
fine-grained before-images, as described in Example 7, lead
to less overhead for logging. We are currently extending our
implementation in this respect.

Regarding commit processing, recall that XMLTM com-
mits the database transaction after each document update.
This is not the case with flat transactions. But the down-
side of these long running flat transactions is lock contention
on the document table and the side tables. This unneces-
sarily blocks queries, as Figure 6 shows: query throughput
with XMLTM transactions and an average document size of
10 KB is more than an order of magnitude higher than with
flat transactions. Moreover, we allow database transactions
with XMLTM transactions to run at ANSI isolation degree 2
(’read committed’) since DGLOCK already guarantees the
repeatable read property at the application level. Flat trans-
actions in turn must run at ANSI isolation degree 3 (’serial-
izable’). A single update request deletes and inserts to many
side tables, and the database lock manager places an X lock
on the side tables. This seriously hinders concurrent query
requests. We have performed a more detailed analysis of this
effect using the IBM DB2 Lock Monitor. It has shown that
queries and updates with flat transactions typically form a
convoy [10]: queries wait for the current update request to
finish. Then the queries are processed. The following query
waits until the following update request has finished, and
so on. The Lock Monitor also points out another reason
why XMLTM outperforms the flat transaction model: the
volume of data required for locking with flat transactions
is huge. For instance, a transaction that updates a typi-
cal document with 1.8 MB of XML text data requires more
than 1,000 database locks, and the size of the lock list is
more than 80 KB. Now consider a transaction that updates
several, say n, documents. Then these numbers increase by
a factor of n. With less than 20 KB locking data for the
update request, the overhead of DGLOCK is significantly
smaller.

XML Processing with Side Tables: Effect of Con-
flict Ratio. A follow-up question on these results is how
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Figure 6: Update and query performance with side tables: response times (left) – throughput (right)
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Figure 7: Update and query performance with/without side tables: response times (left) – throughput (right)

the conflict ratio between requests affects blocking with flat
transactions. We have run experiments with two differ-
ent access patterns, investigating again response times and
throughput. The first access pattern has a document table
conflict ratio of 80%. In our terminology, that means that
the write sets on the document table for 4 out of 5 update
requests overlap with at least one read set of the concurrent
queries. The second type of access pattern has a document
table conflict ratio of 20%. Our hypothesis was that the sec-
ond access pattern leads to better query performance. We
were surprised to find out that it does not hold true. This
has to do with both side table maintenance and the locking
strategy of the database: in case of an update, the triggers
maintain the side tables. The current implementation of
the XML Extender deletes all information of the document
from all side tables and inserts the updated version of the
document text. The database lock manager therefore places
X locks at the table level on the side tables independently
of the document table conflict ratio.

XML Processing without Side Tables. Another se-
ries of experiments has compared performance in a setting
with side tables to one without. Figure 7 reports on the out-
come with different document sizes using flat transactions.
Note that this figure is not log-scale. Our first observation
relates to the effect of document size. The results are as
expected with small documents, i.e., with 10 KB per docu-
ment: query and update performance without side tables is
more than 6 times lower than with side tables. The results

for larger documents with 100 KB per document reflect this
finding. Having side tables improves performance by a fac-
tor of 2. However, side tables do not increase performance
with a document size of 1,000 KB.

We conducted an additional series of experiments to shed
more light on this surprising finding. Using the same work-
loads, these experiments measure individual response times
and throughput statistics of operations. In other words,
we have measured the performance of updating a document
or performing a query operation on it (response time) as
well as the number of such operations performed per second
(throughput). Performance of update operations is signif-
icantly lower with side tables than without (cf. Figure 8).
The reason is that side tables require maintenance in case
of an update. Side table maintenance is included in the
numbers in the figure. Hence, the figure tells us that the
overhead is close to an order of magnitude with large docu-
ments and even more with smaller ones.

However, the benefit from side tables, i.e., fewer candi-
dates (cf. Section 2), does not compensate this effect for
large document sizes. Without side tables, the query pro-
cessor has to fetch all documents stored. With side tables in
turn, the situation is more differentiated, as a further inves-
tigation has shown: with small document sizes the candidate
set is two orders of magnitude smaller than the total num-
ber of documents. With large documents instead, the size
of the candidate set is about 20% of all documents. Recall
our previous result that the overhead of a document update



Response Time Document Operations - No Side Tables

0.01

0.1

1

10

100

100 docs * 1000KB 1000 docs * 100KB 10000 docs * 10KB

document collections

se
co

n
d

s
p

er
d

o
cu

m
en

t

Side tables: document retrieval No side tables: document retrieval
Side tables: document update No side tables: document update

Throughput Document Operations - No Side Tables

0.01

0.1

1

10

100

100 docs * 1000KB 1000 docs * 100KB 10000 docs * 10KB

document collections

d
o

cu
m

en
ts

p
er

se
co

n
d

Side tables: document retrieval No side tables: document retrieval
Side tables: document update No side tables: document update

Figure 8: Performance of document operations with/without side tables: response times (left) – throughput
(right)

with large document sizes is nearly an order of magnitude.
In combination with the experiments on the size of the can-
didate set, this explains why updates for large documents
perform better without side tables.

5. RELATED WORK
Processing of concurrent querying and update of XML

data has received only little attention so far. This section
first covers previous work on this problem. We then com-
ment on alternatives to store XML documents. Using com-
mercial database systems as storage managers for XML re-
quires to map XML content to the database. We also discuss
previous work on this issue.

Transactional Guarantees for Processing of XML.
Relatively little previous work has dealt with updates in
the XML context. So far, only [23] has explicitly consid-
ered respective declarative mechanisms, extending XQuery
[25]. They also provide experimental results for an imple-
mentation on top of a relational database system. [23] only
deals with updates in isolation. There is no concurrency of
queries or updates. Closest to our work is [11] that inves-
tigates isolation of simple DOM operations on single XML
documents. The authors define commutativity of these op-
erations when accessing the same node of the document
and derive alternatives for pessimistic and optimistic con-
currency control. XMLTM in turn is more general and is
applicable to a broader range of application scenarios, for
several reasons: DGLOCK does not assume a fixed API for
conflict definition in order to guarantee serializability and
does not rely on a particular storage layout. In contrast to
[11], our current work also takes recovery into account. Fi-
nally, [11] does not have an experimental evaluation. Our
own previous work in the XML context [8] does not deal
with XML-specific queries and updates and is less general
as well.

XML Repositories. A meaningful classification5 of XML
repositories is into (1) extensions of commercial RDBMSs,
(2) native XML stores [13, 22, 30], and (3) hybrid approaches,
e.g., [4]. A common approach when extending database
systems is to use SQL to access XML data, e.g., [12, 15,
16]. CLOB attributes of conventional database tables store
the XML documents. Specialized operators extend the re-

5See http://www.xmldb.org/faqs.html

spective SQL dialect while their implementation provides
the XML-specific functionality. XPath expressions typically
specify the patterns to access XML content [24]. However,
all of these proposals suffer from a low degree of concurrency
of updates and queries. Our locking protocol DGLOCK
solves this problem. XMLTM, which incorporates DGLOCK,
has the nice characteristic that it is applicable with all of the
aforementioned approaches (and systems).

Several approaches how to map XML content to databases
have been proposed, e.g., [3, 5, 21]. Implementations that
are commercially available deploy simple variants of the STO-
RED mapping [3]. A notable difference is that the commer-
cial implementations also store the original document texts,
as opposed to overflow graphs in [3]. Of course, our experi-
ments could not take all of those mappings into account, but
on the logical level XMLTM is independent from the partic-
ular mapping scheme. Briefly, a general quantitative result
has been that XMLTM is most advantageous when (1) the
locking scheme of the storage manager does not reflect the
XML semantics, or (2) the degree of redundancy, i.e., vol-
ume of XML content stored in the side tables, is high. XML
extensions use triggers to keep mapped XML content and
original document mutually consistent. This means that
they update the materialized view in the same transaction.
Hence, we do not need to deal with serializability of accesses
to the views and to the original data, as discussed in [14].

6. CONCLUSIONS
Efficient concurrent processing of updates and queries of

XML data in a consistent and reliable way is an important
practical problem. XML extensions of commercial database
systems perform poorly in this respect due to lock con-
tention. Our contribution is the design and implementa-
tion of XMLTM, a transaction manager for concurrent pro-
cessing of XML data, and its evaluation as a second-layer
transaction manager on top of XML extensions. Building
on previous work on locking in DAGs [10], we propose a
granular locking technique DGLOCK that implements iso-
lation for concurrent XML processing. DGLOCK captures
both the structural conditions and the content predicates of
requests and places locks on the DataGuide. When imple-
mented on top of a database system, DGLOCK allows to
perform an early commit of the database transactions that
implement XML requests and to run them at a lower ANSI



isolation degree. This avoids lock contention. Our experi-
ments have shown that query performance with XMLTM is
better by more than an order of magnitude than with the
flat transaction model without sacrificing correctness. We
stress that the range of applications of DGLOCK is broad
and not limited to the setup evaluated in this study. For
instance, DGLOCK can be part of a native XML storage
manager implementation. It can also be part of an inte-
grated database solution. This holds even though our work
shows that it is not necessary to build an XML extension
from scratch to implement XMLTM. Adding relatively lit-
tle code on top of the database system and an off-the-shelf
XML extension is sufficient.

The reader should note that our study does not address
the issue of physical design. We simply rely on XML-to-
database mapping schemes that are part of current XML
extensions. The significant performance gains observed in
the experiments can be fully attributed to increased paral-
lelism with XMLTM. A further important result of our ex-
perimental evaluation is that the size of the XML document
text does not affect the rate of pseudo-conflicts with flat
transactions. As a consequence, the performance improve-
ments with XMLTM even increase with small documents.

Given the results of this study, locking in the context
of XML should take the semantics of XML into account
to increase concurrency of XML processing, similarly to
DGLOCK.
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