
XRANK: Ranked Keyword Search over XML Documents

Lin Guo Feng Shao Chavdar Botev Jayavel Shanmugasundaram

Department of Computer Science
Cornell University

{guolin, fshao, cbotev, jai}@cs.cornell.edu

ABSTRACT
We consider the problem of efficiently producing ranked results
for keyword search queries over hyperlinked XML documents.
Evaluating keyword search queries over hierarchical XML
documents, as opposed to (conceptually) flat HTML documents,
introduces many new challenges. First, XML keyword search
queries do not always return entire documents, but can return
deeply nested XML elements that contain the desired keywords.
Second, the nested structure of XML implies that the notion of
ranking is no longer at the granularity of a document, but at the
granularity of an XML element. Finally, the notion of keyword
proximity is more complex in the hierarchical XML data model. In
this paper, we present the XRANK system that is designed to
handle these novel features of XML keyword search. Our
experimental results show that XRANK offers both space and
performance benefits when compared with existing approaches. An
interesting feature of XRANK is that it naturally generalizes a
hyperlink based HTML search engine such as Google. XRANK
can thus be used to query a mix of HTML and XML documents.
1. INTRODUCTION
Keyword search querying has emerged as one of the most effective
paradigms for information discovery, especially over HTML
documents in the World Wide Web. One of the key advantages of
keyword search is simplicity – users do not have to learn a
complex query language, and can issue queries without any prior
knowledge about the structure of the underlying data. Since the
keyword search query interface is very flexible, queries may not
always be very focused and can return a potentially large number
of query results, especially when issued over large document
collections. Consequently, an important requirement for keyword
search is to rank the query results so that the most relevant results
appear first.

Despite the success of HTML-based keyword search engines,
certain limitations of the HTML data model make such systems
ineffective in many domains. These limitations stem from the fact
that HTML is a presentation language and hence cannot capture
much semantics. The XML data model addresses this limitation by
allowing for extensible element tags, which can be arbitrarily
nested to capture additional semantics. As an illustration, consider
the repository of conference and workshop proceedings shown in
Figure 1. Each conference/workshop has the full-text of all its
papers. In addition, information such as titles, references, sections
and sub-sections are explicitly captured using nested, application-
specific XML tags, which is not possible using HTML.

Given the nested, extensible element tags supported by XML, it is
natural to exploit this information for querying. One approach is to
use sophisticated query languages such as XQuery [34] to query
XML documents. While this approach can be very effective in

some cases, a downside is that users have to learn a complex query
language and understand the schema of underlying XML. An
alternative approach, and the one we consider in this paper, is to
retain the simple keyword search query interface, but exploit
XML’s tagged and nested structure during query processing.

Keyword searching over XML introduces many new challenges.
First, the result of the keyword search query is not always the
entire document, but can be a deeply nested XML element. As an
illustration, consider the keyword search query “XQL language”
over the document shown in Figure 1. The keywords occur in a
sub-section (line 15) and clearly, it will be good to return the XML
element corresponding to the sub-section rather than returning the
entire workshop proceedings (as would be done in a standard
HTML search). In general, XML keyword search results can be
arbitrarily nested elements, and returning the “deepest” node
containing the keywords usually gives more context information
(see also [16][29]).

Second, XML and HTML keyword search queries differ in how
query results are ranked. HTML search engines such as Google
usually rank documents based (partly) on their hyperlinked
structure [6][23]. Since XML keyword search queries can return
nested elements, ranking has to be done at the granularity of XML
elements, as opposed to entire XML documents. For example,
different papers in the XML document in Figure 1 can have
different rankings depending on the underlying hyperlinked
structure. Computing rankings at the granularity of elements is
complicated by the fact that the semantics of containment links
(relating parent and child elements) is very different from that of
hyperlinks (such as IDREFs and XLinks [34]). Consequently,
techniques for computing rankings solely based on hyperlinks
[6][23] are not directly applicable for nested XML elements.

Finally, the notion of proximity among keywords is more complex
for XML. In HTML, proximity among keywords translates directly
to the distance between keywords in a document. However, for
XML, the distance between keywords is just one measure of
proximity; the other measure of proximity is the distance between
keywords and the result XML element. As an illustration, consider
the keyword search query “Soffer XQL”. Although the keywords
“Soffer” (line 3) and “XQL” (line 6) do not occur very far apart,
the XML element containing both the keywords (the <workshop>
element) is not a direct parent (<subsection>) of either keyword,
and is thus not very proximal to either keyword. Intuitively, for
XML, we need to consider a two-dimensional proximity metric
involving both the keyword distance (i.e., width in the XML tree)
and ancestor distance (i.e., height in the XML tree).

The above novel aspects of XML keyword search have interesting
implications for the design of a search engine. In this paper, we

This is the submitted version of the paper that is to appear in SIGMOD 2003. The final camera-ready
version will be available in mid-March 2003.

01. <workshop date=”28 July 2000”>
02. <title> XML and IR: A SIGIR 2000 Workshop </title>
03. <editors> David Carmel, Yoelle Maarek, Aya Soffer </editors>
04. <proceedings>
05. <paper id=”1”>
06. <title> XQL and Proximal Nodes </title>
07. <author> Ricardo Baeza-Yates </author>
08. <author> Gonzalo Navarro </author>
09. <body>
10. <section name=”Introduction”>
11. Searching on structured text is more important …
12. </section>
13. <section name=”Implementing XQL Operations”>
14. <subsection name=”Path Expressions”>
15. At first sight, the XQL query language looks …
16. </subsection>
17. …
18. </section>
19. <cite ref=”2”>Querying XML in Xyleme</cite>
20. <cite xlink=”../paper/xmlql/”>A Query … </cite>
21. </body>
22. </paper>
23. <paper id=”2”>
24. <title> Querying XML in Xyleme </title>
25. …
26. </paper>
27. </proceedings>
28. </workshop>

describe the architecture, implementation and evaluation of the
XRANK system built to address the above requirements for
effective XML keyword search. Specifically, the contributions of
the paper are: (a) the problem definition and system architecture
for ranked keyword search over hierarchical and hyperlinked XML
documents (Section 2), (b) an algorithm for computing the ranking
of XML elements that takes into account both hyperlink and
containment edges (Section 3), (c) new inverted list index
structures and associated query processing algorithms for
evaluating XML keyword search queries (Section 4), and (d) an
experimental evaluation of XRANK and a comparison with
alternative approaches (Section 5).

One of our design goals was to naturally generalize a hyperlink
based HTML search engine such as Google [6]. XRANK is thus
designed such that when the number of levels in the XML
hierarchy is two (i.e., a document containing keywords), our
system behaves just like a HTML search engine. Thus, XRANK
allows for a graceful transition from HTML documents to XML
documents (such as in the World Wide Web and Corporate
Intranets) because it can handle both classes of documents using
the same framework.

2. DATA MODEL & QUERY SEMANTICS
In this section, we first briefly describe the XML data model and
then define the semantics for ranked keyword search queries over
hyperlinked XML documents.

2.1 XML Data Model
The eXtensible Markup Language (XML) is a hierarchical format
for data representation and exchange. An XML document consists
of nested XML elements starting with the root element. Each

element can have attributes and values, in addition to nested sub-
elements. Figure 1 shows an example XML document representing
the proceedings of a conference. The <workshop> element is the
root element, and it has <title>, <editors> and <proceedings> sub-
elements nested under it. The <conference> element also has the
date attribute whose value is “28 July 2000”. For ease of
exposition, we treat attributes as though they are sub-elements.

In addition to the hierarchical element structure, XML also
supports intra-document and inter-document references. Intra-
document references are represented using IDREFs [34]. An
example of an IDREF is shown in Figure 1, line 19, where one of
the papers in the proceedings references another paper in the same
proceedings. Inter-document references are represented using
XLink [34]. An example is shown in Figure 1, line 20, where a
paper in the proceedings references another paper in a different
conference. We refer to both IDREFs and XLinks as hyperlinks.

Based on the above discussion, we can define a collection of
hyperlinked XML documents to be a directed graph G = (V, CE,
HE), where V is the set of vertices that consists of XML elements
and values. CE is the set of containment edges relating vertices;
specifically, the edge (u, v)∈ CE iff v is a value/nested sub-element
of u. HE is the set of hyperlink edges relating vertices; and the
edge (u, v) ∈ HE iff u contains a hyperlink reference to v. Vertex u
is an ancestor of a vertex v if there is a sequence of containment
edges that lead from u to v. The predicate contains(v, k) is true if
the vertex v (directly or indirectly) contains the keyword k.

2.2 Keyword Query Results
We now define the results of keyword search queries over XML
documents (we defer the notion of ranking the results until the next
section). We support two different semantics for keyword search
queries. Under conjunctive keyword query semantics, elements that
contain all of the query keywords are returned. Under disjunctive
keyword query semantics, elements that contain at least one of the
query keywords are returned. In the interest of space, we focus on
conjunctive keyword query semantics in this paper.

Consider a keyword search query consisting of n keywords k1,…,
kn. Let N = {1, …, n} and R0 ={v| v ∈ V ∧ ∀i∈N contains(v, ki) }.
The query result is the union of the following two disjoint sets:

1) { v | v ∈ R0 ∧ ∀c (v, c) ∈ CE � c ∉ R0 }

2) { v | ∃c ((v, c) ∈ CE ∧ c ∈ R0)
 ∧ ∃d,i ((v, d) ∈ CE ∧ d ∉ R0 ∧ i ∈ N ∧ contains(d, ki))}

Intuitively, (1) is the set of nodes that contain all of the query
keywords, such that none of its children (and hence, descendants)
contain all of the query keywords. (1) ensures that only the most
specific results are returned to the user. For example, in Figure 1,
the query ‘XQL language’ will return the corresponding
<subsection> (lines 14-16). However, the <section> and <body>
ancestors will not be returned because they have a descendant
(<subsection>) that contains all of the query keywords.

The definition of (2) is subtler, and it ensures that every query
keyword instance is represented in the query result. Intuitively, (2)
is the set of nodes that have at least one child that contains all the
query keywords, and at least one other child that contains some
other instances of the query keywords. This condition is best
explained with an example. Consider again the query ‘XQL

Figure 1: An Example XML Document

language’. If we just considered the set (1), the <paper> element
(line 5) would not appear in the result because one of its
descendants (<subsection>) appears in the result. However, the
keyword ‘XQL’ appears in the <title> sub-element (line 6) of
<paper>, and this keyword is not represented in any of the result
elements in (1). Therefore, we include the <paper> element in the
result set because it is the least ancestor of the keyword ‘XQL’ (in
<title>) that also contains the other query keywords.

Note that we only consider containment edges when defining the
results of a keyword search query. This is similar to many HTML
document keyword search paradigms, where only the documents
that contain the desired keywords are returned. Hyperlinks are
mainly used to compute the ranking of the query results. The only
exception is anchor text, which we assume is contained in the
element pointed to by the corresponding hyperlink edge; this is
similar to the strategy used in Google [6].

While returning nested XML elements provides more context
information, it also poses interesting user-interface challenges. As
an illustration, consider the keyword search query ‘XML
workshop’ issued over the document in Figure 1. A result for this
query is the <title> element. However, the title element may be too
specific for the user because it does not present any information
about whether it is a title of a book, journal or workshop. One
solution is to allow the user to navigate up to the ancestors of the
query result to get more context information when desired.
Another solution, originally proposed in the context of keyword
searching graph databases [4][13], is to predefine a set of “answer
nodes” AN. As an example of the latter approach, a domain expert
can determine that only <workshop>, <section>, and <subsection>
elements are in AN, and consequently, only these elements can be
the result of a keyword search query. An interesting application of
pre-defining a set of answer nodes is to query a mix of XML and
HTML documents. All the HTML tags (that are used for
presentation purposes) are excluded from the AN set, and hence,
the result set contains only entire HTML documents.

XRANK supports both user navigation for context information and
the ability to pre-define answer nodes. Note that pre-defining
answer nodes for XML documents may require knowledge of the
domain and underlying XML schema. If such knowledge is not
available, all XML elements can be treated as potential answer
nodes. For the rest of this paper, we assume that every element is
an answer node.

2.3 Ranking Keyword Query Results
We now turn to the issue of ranking the results of keyword search
queries over XML documents. We first described some desired
properties of the ranking function before defining it more formally.

2.3.1 Ranking Function: Desired Properties
We believe that a ranking function for keyword search queries over
a large collection of hyperlinked XML documents should have the
following properties:

1) Result specificity: The ranking function should rank more
specific results higher than less specific results. For example, in
Figure 1, a <subsection> result (which means that all query
keywords are in the same subsection) should be ranked higher than
a <section> result (which means that the query keywords occur in
different subsections). This is one dimension of result proximity.

2) Keyword proximity: The ranking function should take the
proximity of the query keywords into account. This is the other
dimension of result proximity. Note that a result can have high
keyword proximity and low specificity, and vice-versa.

3) Hyperlink Awareness: The ranking function should use the
hyperlinked structure of XML documents. For example, in Figure
1, widely referenced papers should be ranked higher.

While traditional information retrieval systems [28] and HTML
search engines [6] take 2 and 3 into account, 1 is specific to XML
keyword search. Some recent work on searching graph databases
[4][13] considers a variant of 1 and some part of 3, but does not
consider 2. Our goal in this section is to formalize the notion of
ranking for XML elements by taking all of the above factors into
account. Further, we would like the generalization to also work for
HTML documents (where 1 is not of concern).

2.3.2 Ranking Function: Definition
We now define the ranking function for keyword search queries
over XML documents. For the purposes of this section, we will
just assume that ElemRank(v) is the objective importance of an
XML element v computed using the underlying hyperlinked
structure. Conceptually, ElemRank is similar to Google’s
PageRank [6], except that ElemRank is defined at the granularity
of an element and takes the nested structure of XML into account.
More details on ElemRank are presented in Section 3.

Consider a keyword search query Q = (k1, k2, …, kn) and the
corresponding result set R. Now consider a result element v1 ∈ R.
We first define the ranking of v1 with respect to one query keyword
ki, r(v1, ki), before defining the overall rank, rank(v1, Q).

2.3.2.1 Ranking with respect to one keyword
By the definition of R, we know that contains(v1, ki) is true for
every ki, Hence, there is a sequence of containment edges of the
form (v1, v2), (v2, v3), …, (vn-1, vn) such that vn directly contains ki.
We define:

1
1)(),(r −×= n

ni decayvElemRankkv

Intuitively, the rank of v1 with respect to a keyword ki is
ElemRank(vn), where vn directly contains ki, scaled appropriately to
account for the specificity of the result. When the result element v1
directly contains the keyword (i.e., v1 = vn), the rank is just the
ElemRank of the result element. When the result element indirectly
contains the keyword (i.e., v1 ≠vn), the rank is scaled down by a
factor decay for each level. decay is a parameter that can be set to a
value in the range 0 to 1.

The astute reader may have noticed that r(v1, ki) does not depend
on the ElemRank of the result node v1, except when v1 = vn. We
chose to have r(v1, ki) depend on the ElemRank of vn rather than
the ElemRank of v1 for the following two reasons. First, by scaling
down the same quantity - ElemRank(vn) - we ensure that less
specific results indeed get lower ranks. Second, as we shall see in
Section 3, the ElemRank(vn) is in fact related to ElemRank(v1) due
to certain properties of containment edges.

In the above formula, we have implicitly assumed that the query
keyword ki occurs only once in the result element. In case there are
multiple (say, m) occurrences of ki, we first compute the rank for

each occurrence using the above formula. Let the computed ranks
be r1, r2, …, rm. The combined rank is:

)r ..., ,r ,f(r)k,(vr̂ m21i1 =

Here f is some aggregation function. In most of our experiments, f
= max, but other choices (such as f = sum) are also supported.

2.3.2.2 Overall Ranking
The overall ranking of a result element v1 for query Q = (k1, k2, …,
kn) is computed as follows.

),...,,,(),(ˆ),(211
1

11 n
ni

i kkkvpkvrQvR ×
�
�

�

�

�
�

�

�
= �

≤≤

The overall ranking is the sum of the ranks with respect to each
query keyword, multiplied by a measure of keyword proximity
p(v1, k1, k2, …, kn). We currently set the keyword proximity to be
inversely proportional to the minimum window size that contains
all the query keywords in v1 (the maximum value of keyword
proximity is 1 and minimum value is 0.2). Clearly, other
combination functions to produce the overall rank are also
possible. XRANK is general enough to handle any combination
function so long as the first factor in the above formula is
monotone with respect to individual keyword ranks (the reason for
the monotone restriction will be clarified in Section 4.3). In some
cases, users may also wish to assign different weights to different
keywords, in which case the individual keyword ranks are
weighted accordingly.

2.4 XRANK System Architecture
The components of the XRANK system are shown in Figure 2.
The ElemRank Computation module computes the ElemRanks of
XML elements. The ElemRanks are then combined with ancestor
information to generate an index structure called HDIL (Hybrid
Dewey Inverted List). The Query Evaluator module evaluates
queries using HDIL, and returns ranked results. In subsequent
sections, we describe these components in more detail.

3. COMPUTING ElemRanks
We now consider the problem of computing ElemRanks for XML
elements. As mentioned earlier, ElemRank is a measure of the
objective importance of an XML element, amd is computed based
on the hyperlinked structure of XML documents. ElemRank is
similar to Google’s PageRank, but is computed at the granularity
of an element and takes the nested structure of XML into account.
Note that we need to compute ranks at the granularity of elements
because different elements in the same XML document can have
very different ranks. For example, in Figure 1, the importance of
different <paper> elements can vary widely.

We now develop our ElemRank algorithm as a series of
refinements to the PageRank algorithm [6] (these also work for
query-dependent algorithms like HITS [23]). The refinements
retain the original ranking semantics for HTML documents, and
also help identify the main differences between computing ranks
for HTML and XML documents. We also evaluate the
computational cost of our algorithm on real and synthetic datasets.

3.1 Algorithm for Computing ElemRank
The algorithm for computing PageRanks [9] of HTML documents
works by repeated applications of the following formula (Nd is the

total number of documents, and Nh(v) is the number of out-going
hyperlinks from document v):

� ∈
×+−=

HEvu hd uN
up

d
N

d
vp

),()(
)(1

)(

As shown, the PageRank of a document v, p(v), is the sum of two
probabilities. The first is the probability (1-d)/Nd of visiting v at
random (d is a parameter of the algorithm, usually set to 0.85). The
second is the probability of visiting v by navigating through other
documents. In the second case, the probability is calculated as the
sum of the normalized PageRanks of all documents that point to v,
multiplied by d, the probability of navigation [6].

Let us now try to directly adapt this formula for use with XML
documents by mapping each element to a document, and by
mapping all edges (IDREF, XLink and containment edges) to
hyperlink edges. One of the main problems with this adaptation is
that hyperlinks are treated as directed edges, and the PageRank
propagates along only one direction1 [6]. This unidirectional
PageRank propagation for HTML documents corresponds to the
intuition that if an important page p1 points to a page p2, then p2
is likely to be important. However, if p1 points to an important
page p3, that does not tell us anything about the importance of p1
(consider relatively obscure HTML pages that point to Yahoo).

In the case of containment edges, however, there is a tighter
coupling between the elements. As an illustration, consider the
XML document in Figure 1. If a paper element has a high
ElemRank, then it is natural that the sections of the paper also have
high ElemRanks; this corresponds to forward ElemRank
propagation along containment edges. In addition, if a workshop
contains many papers that have high ElemRanks, then the
workshop should also have a high ElemRank; this corresponds to
reverse ElemRank propagation. More generally, containment
implies a tighter relationship (the corresponding elements are
present in the same document) than hyperlinks, and hence argues
for a bi-directional transfer of ElemRanks.

A simple solution is to add reverse containment edges, as shown
below. e(v) is used to denote the ElemRank of an element v.

()�
∈

++
×+−=

Evu che uNuN
ue

d
N

d
ve

),(
1)()(

)(1
)(

1 This is typical of most algorithms for hyperlinked HTML

documents. For example, the HITS algorithm [23] propagates all
authority values along the same direction (only a different
measure, hub values, is propagated along the reverse direction).

Figure 2: XRANK Architecture

ElemRank Computation Hybrid Dewey
Inverted List

Query Evaluator
Input XML Documents

XML Elements
with ElemRanks

Keyword query Ranked Results

Data access

Ne is the total number of XML elements, Nc(u) is the number of
children contained by u, and E = HE ∪ CE ∪ CE-1, where CE-1 is
the set of reverse containment edges.

While the above formula supports bi-directional transfer of
ElemRanks along containment edges, it still has a shortcoming - it
does not distinguish between containment and hyperlink edges
when computing ElemRanks. As an illustration, consider a paper
that has few sections and many references. As per the above
formula, the ElemRank of the paper are uniformly distributed
among all the sections and references. Thus, the larger the number
of references in a paper, the less important each section of the
paper is likely to be, which is not very intuitive. In general, the
problem is hyper-links and containment edges are treated similarly,
even though these two factors are usually independent. This argues
for discrimination between containment and hyperlink edges
when computing ElemRanks, as shown below.

��
−∪∈∈

+
++−−=

1),(

2
),(

1
21

1)(
)(

)(
)(1

)(
CECEvu cHEvu he uN

ue
d

uN
ue

d
N

dd
ve

d1 and d2 are the probabilities of navigating through hyperlinks and
containment links, respectively.

The above formula still has a problem – it weights forward and
reverse containment relationships similarly. To see why this is a
problem, consider again the example in Figure 1. If a paper has
many sections, then we would like the ElemRank of each section to
be a fraction of the ElemRank of the whole paper. More generally,
ElemRanks of sub-elements should be inversely proportional to the
number of sibling sub-elements, as captured in the above formula.
However, the ElemRank of a parent element should be directly
proportional to the aggregate of the ElemRanks of its sub-elements.
For instance, a workshop that contains many important papers
should have a higher ElemRank than a workshop that contains only
one important paper. This semantics of aggregate ElemRanks for
reverse containment relationships is not captured above.

We now present our final formula that addresses the above issues.
d1, d2, and d3 are the probabilities of navigating through
hyperlinks, forward containment edges, and reverse containment
edges, respectively. Nde(v) is the number of elements in the XML
documents containing the element v.

���
−∈∈∈

+++
×

−−−
=

1),(),(
32

),(
1

321)(
)(

)(
)(

)(
)(

1
)(

CEvuCEvu cHEvu hded
ued

uN
ue

d
uN

ue
d

vNN
ddd

ve

Note that we have also scaled down the first term (the probability
of randomly visiting an element) by the number of elements in the
document. This scaling ensures that ElemRank propagation along
reverse containment edges is not biased towards large documents.

While we have motivated ElemRank using the example in Figure
1, it also has a more general interpretation in the context of random
walks over XML graphs (this is a generalization of the random
walk interpretation in [6]). Consider a random surfer over a
hyperlinked XML graph. At each instant, the surfer visits an
element e, and performs one of the following actions: (1) with
probability 1-d1-d2-d3, he jumps to a random document, and then
to a random element within the document, (2) with probability d1,
he follows a hyper-link from e, (3) with probability d2, he follows a
containment edge to one of e’s children, and (4) with probability
d3, he goes to e’s parent element. Given this model, e(v) is exactly
the probability of finding the random surfer in element v.

In most XML/HTML document collections, certain elements may
not have hyperlinks, others may not have child elements, and some
others (the document roots) may not have parent elements. In such
cases, the probability of navigation (d1+d2+d3) is proportionally
split among the available alternatives. The proof of convergence
for the ElemRank computation is similar to that described in [23],
and is omitted in the interest of space.

3.2 Experimental Results
We ran the ElemRank computation algorithm on both real (DBLP)
and synthetic (XMark [30]) datasets. The experiments were run
using a 1.7GHz Pentium processor with 1GB of main memory and
30GB of disk space. We set the parameters d1 = 0.35, d2 = 0.25, d3
= 0.25, and set the convergence threshold to 0.00005. The
computation for the entire (124MB) DBLP dataset and 113MB
XMark dataset converged within 10 and 5 minutes, respectively.
This suggests that computing ElemRanks at the granularity of
elements (as opposed to the granularity of a document) is feasible
for reasonably large XML document collections. We have not tried
to compute ElemRanks for document collections of the scale of the
World Wide Web, mainly because the WWW does not contain
such large XML collections (yet). However, we believe that the
proposed algorithm will be applicable for large-scale XML
repositories because the ElemRank computation is done offline,
and does not affect keyword query evaluation time (see Figure 2).

In Section 5, we will present anecdotal evidence that ElemRanks
computed using the above parameter settings, used with keyword
proximity information, produces intuitive overall rankings. We
have also varied the values of d1, d2, and d3, and found that while it
changes the relative weighting of hyperlinks and containment
edges, it does not have a significant effect on algorithm
convergence time.

4. EFFICIENTLY EVALUATING XML
KEYWORD SEARCH QUERIES
We now turn to the main focus of this paper, which is efficiently
producing ranked results for XML keyword search queries. This
section is more general in scope than the previous section in that it
does not depend on a particular method for computing XML
element ranks. Although we shall use ElemRank to illustrate our
techniques, they are applicable to other ways of ranking XML
elements, such as those using text tf-idf measures [28][32]. We
first present a naïve approach as a motivation for our techniques.

4.1 Naïve Approach
One main difference between XML and HTML keyword search is
the granularity of the query results – XML keyword search returns
elements while HTML keyword search returns entire documents.
Thus, one way to do XML keyword search is to treat each element
as a document, and use regular document-oriented keyword search
methods. This approach, however, has the following problems.

1) Space overhead. Inverted list indices [28] are typically used to
speed up the evaluation of keyword search queries. An inverted list
contains for each keyword, the list of documents that contain the
keyword. A naïve adaptation of inverted lists for XML elements
would contain for each keyword, the list of elements that contain
the keyword. This would result in a large space overhead because
each inverted list would not only contain the XML element that

directly contains the keyword, but would also redundantly contain
all of its ancestors (because they too contain the keyword).

2) Spurious query results. The naïve approach ignores ancestor-
descendant relationships and treats all elements as though they are
independent documents. Thus, if a sub-element appears in the
query result, all of its ancestors will also appear in the query result
(because if a sub-element contains the query keywords, all of its
ancestors will also contain the query keywords). This will generate
spurious query results, and will not correspond to our desired
semantics for XML keyword search (see Section 2.2).

3) Inaccurate ranking of results. Existing approaches do not take
result specificity into account when ranking results (Section 2.3.1).

We now present data structures and query-processing techniques
that address the above limitations of the naïve approach.

4.2 Dewey Inverted List (DIL)
One of the drawbacks of the naïve approach is that it decouples the
representation of ancestors and descendants. Consequently, it
suffers from increased space overhead (because ancestor
information is replicated) and spurious query results (because
every ancestor of a query result is also returned). We now describe
the Dewey encoding of element IDs, which jointly captures
ancestor and descendant information.

Consider the tree representation of an XML document, where each
element is assigned a number that represents its relative position
among its siblings. The path vector of the numbers from the root to
an element uniquely identifies the element, and can be used as the
element ID. Figure 3 shows how Dewey elements IDs are
generated for the XML document in Figure 1. An interesting
feature of Dewey IDs is that the ID of an ancestor is a prefix of the
ID of a descendant. Consequently, ancestor-descendant
relationships are implicitly captured in the Dewey ID.

The idea of Dewey IDs is not new, and it has been used in the
context of general knowledge classification, tree addressing [20],
querying LDAP hierarchies [22] and ordered XML data [31]. Our
focus, however, is to use Dewey IDs to support XML keyword
search. As we shall see shortly, this new problem setting requires
the development of novel algorithms.

4.2.1 DIL: Data Structure
Figure 4 shows the Dewey Inverted List (DIL) for the XML tree in
Figure 3. The inverted list for a keyword k contains the Dewey IDs

of all the XML elements that directly contain the keyword k. To
handle multiple documents, the first component of each Dewey ID
is the document ID. Associated with each Dewey ID entry in DIL
is the ElemRank of the corresponding XML element, and the list of
positions where the keyword k appears in that element (posList).
The entries are sorted by the Dewey IDs. Since DIL only stores the
IDs of elements that directly contain the keyword, its size is likely
to be much smaller than the size of the naïve inverted list.

The observant reader might have noticed that even though DIL has
a smaller number of entries, the size of each Dewey ID is larger.
Fortunately, it turns out that the space overhead of Dewey IDs is
more than offset by the space savings obtained by storing a smaller
number of entries (we will present experimental results to validate
this claim in Section 5). The relatively modest space overhead of
Dewey IDs is attributable to the fact that each component of the
Dewey ID is the relative position of an element with respect to its
siblings. Consequently, a small number of bits are usually
sufficient to encode each component of a Dewey id.

4.2.2 DIL: Query Processing
While DIL reduces space, it introduces new challenges for query
processing. First, unlike traditional inverted list processing, one
cannot simply do an equality merge-join of the query keyword
inverted lists because the result IDs have to be inferred from the
IDs of descendants. Second, spurious results must be suppressed.
We now describe an algorithm that addresses these issues, and
works in a single pass over the query keyword inverted lists.

The key idea is to merge the query keyword inverted lists, and
simultaneously compute the longest common prefix of the Dewey
IDs in the different lists. Since each prefix of a Dewey ID is the ID
of an ancestor, computing the longest common prefix will
automatically compute the ID of the deepest ancestor that contains
the query keywords (this corresponds to computing sets (1) and (2)
in Section 2.2). Since the inverted lists are sorted on the Dewey
ID, all the common ancestors are clustered together, and this
computation can be done in a single pass over the inverted lists.

The pseudo-code for the query processing algorithm is shown in
Figure 5. The inputs to the algorithm are n query keywords (k1, …,
kn), and the desired number of top-ranked query results (m). The
algorithm works for n > 1, and the case where n = 1 is handled as a
(simple) special case. The algorithm maintains two data structures,
the result heap and the Dewey stack. The result heap keeps track of
the top m results seen so far. The Dewey stack stores the ID, rank
and position list of the current Dewey ID, and also keeps track of
the longest common prefixes computed during the merge of the
inverted lists.

Figure 3: Dewey IDs

Figure 4: Dewey Inverted List

<workshop>

0.0date 0.1<title>

0

0.2<editors> 0.3<proceedings>

28 July … XML and … David Carmel …

0.3.0<paper> 0.3.1<paper> …

0.3.0.0<title> 0.3.0.1<author> … …

XQL and … Ricardo …

XQL 5.0.3.0.0 85 32

Dew
ey

 Id
El

em
Ran

k
Po

sit
io

n
List

6.0.3.8.3 38 89
Sorted by
Dewey Id

… ……

Ricardo 5.0.3.0.1 82 38

8.2.1.4.2 99 52
Sorted by
Dewey Id

… ……

… (other keywords)

91

D
ew

ey

5 56
0

3
0

0

R
an

k[
1]

32

85

77
68

61 32

32
32

32

Po
sL

is
t[

1]

Po
te

nt
ia

lR
es

ul
t

1

0
0

0
0

Po
sL

is
t[

2]

R
an

k[
2]

D
ew

ey

5 56
0
3

0

1

R
an

k[
1]

32

77

68
61 32

32

32

Po
sL

is
t[

1]

Po
te

nt
ia

lR
es

ul
t

0

1

0
0
038

38
38
38

38

Po
sL

is
t[

2]

54

R
an

k[
2]

82

74
66
60

(a) (b)

D
ew

ey

5 56
0

3
0

0

R
an

k[
1]

32

85

77
68

61 32

32
32

32

Po
sL

is
t[

1]

Po
te

nt
ia

lR
es

ul
t

1

0
0

0
0

Po
sL

is
t[

2]

R
an

k[
2]

D
ew

ey

5 56
0
3

0

1

R
an

k[
1]

32

77

68
61 32

32

32

Po
sL

is
t[

1]

Po
te

nt
ia

lR
es

ul
t

0

1

0
0
038

38
38
38

38

Po
sL

is
t[

2]

54

R
an

k[
2]

82

74
66
60

(a) (b)

01. procedure EvaluateQuery (k1, k2, …, kn, m) returns idList
02. // k1 … kn are the query keywords, m is the desired number of query results
03. // invertedList[i] is the inverted list for keyword ki

04. resultHeap = empty; // Intialize the result heap of size m
05. deweyStack = empty; // Initialize the Dewey stack

06. while (eof has not been reached on all inverted lists) {

07. // Read the next entry from the inverted list having the smallest DeweyID
08. find ilIndex such that the next entry of invertedList[ilIndex] is the smallest DeweyID
09. currentEntry = invertedList[ilIndex].nextEntry;

10. // Find the longest common prefix between deweyStack and currentEntry.deweyId
11. find largest lcp such that deweyStack[i] = currentEntry.deweyId[i], 1 <= i <= lcp

12. // Pop non-matching entries in the Dewey stack; add to result heap if appropriate
13. while (deweyStack.size > lcp) {
14. stackEntry = deweyStack.pop();
15. if (stackEntry.potentialResult and stackEntry.posList non-empty for all keywords)
{
16. compute overall rank using formula in Section 2.3.2.2
17. if overall rank is among top m seen so far, add deweyStack ID to resultHeap
18. }
19. }

20. // Update the rank and position lists of the longest common prefix entries
21. for (all i such that 1 <= i <= lcp) {
22. deweyStack[i].rank[ilIndex] = rank computed using formula in Section 2.3.2.1
23. deweyStack[i].posList[ilIndex] += currentEntry.posList;
24. }

25. // Add non-matching components of currentEntry.deweyId to deweyStack
26. for (all i such that mcp < i <= currDeweyIdLen) {
27. stackEntry.rank[ilIndex] = rank computed using formula in Section 2.3.2.1;
28. stackEntry.posList[ilIndex] = currentEntry.posList;
29. deweyStack.push(deweyStackEntry);
30. }

31. // Set the longest common prefix entry to be a potential result
32. deweyStack[lcp].potentialResult = true;
33. } // End of looping over all inverted lists

34. pop entries of deweyStack and add to result heap if appropriate (similar to lines 13-19)
35. return ids in resultHeap;

The algorithm works by merging the inverted lists by the Dewey
ID (lines 6-9), and computing the longest common prefix of the
current entry and the previous entry stored in the Dewey stack
(lines 10-11). It then pops all the Dewey stack components that are
not part in the common prefix (lines 12-19), and if any of the
popped components are potential query results, they are added to
the result heap (lines 15-18). The current entry is then pushed onto
the Dewey stack and the ranks and posLists are updated
accordingly (lines 20-30). The longest common prefix is set to be a
potential result (lines 31-32). The longest common prefix will be
added to the output heap in a later loop when it is popped from the
Dewey stack (lines 15-18).

We now walk through the algorithm
using an example. Consider the DIL
shown in Figure 4, and consider the
keyword search query ‘XQL Ricardo’.
The algorithm first reads the entry with
the smallest Dewey ID - 5.0.3.0.0. Since
the Dewey stack is initially empty, the
longest common prefix is empty, and the
Dewey ID components are simply
pushed onto the stack, with the
appropriate rank and posList fields (lines
25-32). The state of the stack is shown
in Figure 6(a). Note that the ranks of the
ancestors (prefixes) have been scaled
down as per the ranking function
(Section 2.3.2.1).

The algorithm then reads the next
smallest entry, which is Dewey ID
5.0.3.0.1 in the ‘Ricardo’ inverted list.
The longest common prefix (5.0.3.0) of
the current entry and the Dewey stack is
determined (lines 10-11), and non-
matching entries are popped from the
stack (12-19). The ranks and position
lists of the longest common prefix
components are updated (lines 20-24),
and the longest common prefix is also
marked as a potential result (line 31-32).
The current state of the Dewey stack is
shown in Figure 6(b). Note that
ancestors of the longest common prefix
are not marked as potential results,

thereby eliminating spurious results.

The algorithm then reads the next
smallest Dewey ID (6.0.3.8.3). Since the longest common prefix
with the Dewey stack is empty, it pops the contents of the stack
and adds the potential result (5.0.3.0) to the output heap. The
algorithm then pushes 6.0.3.8.3 onto the stack and proceeds as
before.

4.2.3 DIL: Correctness and Space/Time Complexity
It can be proved that the algorithm in Figure 5 correctly computes
the top-m results as per the definition of query results and ranking
described in Section 2.2. The actual proof is omitted in the interest
of space. The space and time complexity of the algorithm are as
follows. Let the query keywords be k1, …, kn, and let the
corresponding number of entries in the inverted lists be L1, …, Ln.

Figure 5: DIL Query Processing Algorithm

Figure 6: States of Dewey Stack

Further, let c be the maximum number of components in a Dewey
ID (equivalently, c is the maximum XML document depth).

The time complexity of the algorithm is O(c * (L1 + … + Ln)),
because each query keyword inverted list is scanned exactly once,
and the cost of processing each inverted list entry using the Dewey
stack is at most O(c). The space complexity of the algorithm is O(c
+ m), where c is for the Dewey stack and m is for the output heap.

4.3 Ranked Dewey Inverted List (RDIL)
Although DIL evaluates queries in a single pass over the query
inverted lists, it suffers from a potential disadvantage. If inverted
lists are long (due to common keywords or large document
collections), even the cost of a single scan of the inverted lists can
be expensive, especially if users want only the top few results. One
solution is to order the inverted lists by the ElemRank instead of by
the Dewey ID. In this way, higher ranked results are likely to
appear first in the inverted lists, and query processing can usually
be terminated without scanning all of the inverted lists. As a
simple example, if a query contains just one keyword, only the first
m inverted list entries have to be scanned to find the top m results.

Processing queries with multiple keywords is more challenging
because one query keyword may occur in an element with a high
ElemRank (which will appear at the beginning of its inverted list),
while another keyword may appear in an element with low
ElemRank (which will appear at the end of its inverted list). Many
algorithms have been proposed for merging such ranked lists
efficiently, but most of them (e.g., [3][9][27]) only work for
disjunctive keyword queries. Recently, the Threshold Algorithm
[14] has been proposed that works for conjunctive queries too.
However, these approaches do not address the requirements of
XML keyword search, including determining the most specific
results, and handling non-monotone ranking functions. (Note that
the ranking function in Section 2.3.2.2 is non-monotone with
respect to ElemRank because we take result specificity and
keyword proximity into account). We now describe RDIL that
addresses the above issues.

4.3.1 RDIL: Data Structure
RDIL is similar to DIL, except that the inverted lists are ordered by
ElemRank instead of Dewey ID. In addition, each inverted list has
a B+-tree index on the Dewey ID field (the role of the B+-tree will
be discussed shortly). Figure 7 illustrates the RDIL data structure.
Although the figure shows a separate B+-tree for each inverted list,
in reality this is too expensive in terms of space. This is because
many inverted lists are very short, and wasting one whole disk
page for indexing a short inverted list (of say, 200 elements) will
blow up space requirements. Thus, in our implementation, we store
multiple B+-trees (over short inverted lists) on the same disk page.

4.3.2 RDIL: Query Processing
The RDIL query processing algorithm is shown in Figure 8. The
algorithm reads an entry from the query keyword inverted lists in a
round-robin fashion (lines 8-10). Consider an entry retrieved from
the inverted list of keyword ki. The entry contains the Dewey ID d
of a top-ranked element that contains at least one query keyword,
which is ki. However, to determine a query result, we need to
determine the longest prefix of d that also contains the other query
keywords. How can we determine such a prefix of d efficiently?

We now show how B+-trees can be used to determine the longest
common prefix of d efficiently during query processing. Consider
a query keyword kj (<> ki). To find the longest common prefix of d
that also contains the keyword kj, we just need to find the smallest
Dewey ID, d2, in the kj inverted list that is larger than d. (Note that
this operation can be easily supported in B+-trees because it is
logically equivalent to starting a range scan at d, and reading the
first entry in the range.) Either d2 or its immediate predecessor in
the B+-tree, d3, shares the longest common prefix with d.

As an illustration, consider the keyword search query ‘XQL
Ricardo’, and consider a top-ranked Dewey ID, 9.0.4.2.0, that
contains the keyword ‘XQL’. Now, assume that the leaf nodes of
the B+-tree for the ‘Ricardo’ inverted list have the Dewey IDs “…,
8.2.1.4.2, 9.0.4.1.2, 9.0.5.6, 10.8.3, …” (note that since the B+-tree
is built on the Dewey IDs, the leaf nodes of the B+-tree are ordered
by the Dewey ID even though the inverted list is ordered by
ElemRank). To determine the longest common prefix of 9.0.4.2.0
that also contains the keyword ‘XQL’, we first determine the
smallest Dewey ID in the B+-tree that is larger than 9.0.4.2.0,
which in our example is 9.0.5.6. Then either 9.0.5.6 or its
predecessor in the B+-tree, 9.0.4.1.2, shares the longest common
prefix with 9.0.4.2.0. In our example, this longest common prefix
of 9.0.4.2.0 that also contains ‘Ricardo’ is 9.0.4.

The RDIL algorithm thus determines the longest common prefix of
a Dewey ID that contains all the query keywords by repeatedly
probing the B+-tree for each query keyword (lines 11-15). Once
the longest common prefix is determined, ranks and posLists are
obtained using regular B+-tree lookups, and the overall rank is
computed. The query result is then added to the output heap (lines
17-25). Note that the overall rank of the longest common prefix
can be much less than the rank of an entry in the inverted list. This
is because ranks decay when the results become less specific, i.e.,
when the longest common prefix is short (see Section 2.3.2.1).

Given that longest common prefix IDs can potentially have low
overall ranks, how can we determine when we have the top m
results so that we can stop scanning the inverted lists? In order to
derive a stopping condition that still guarantees to output the top-
m results, we build upon the provably optimal Threshold
Algorithm (TA) [14]. TA computes a threshold at every point
during the scan of the inverted lists. If there are at least m elements
in the output heap that have an overall rank greater than the current
threshold, the algorithm can stop scanning the lists. In our context,
this threshold is the sum of the ElemRanks of the last processed
element in each query keyword inverted list (lines 26-28).

It is important to note that while TA assumes a monotonic function
for computing the overall rank from the individual keyword ranks,
our overall rank computation is non-monotone because we take
result specificity and keyword proximity into account (see Section
2.3.2). However, since the maximum values of decay and keyword
proximity can be at most 1, we just use this maximum value when

Figure 7: Ranked Dewey Inverted List

XQL

…(other keywords)

Inverted List …

Sorted by ElemRank

B+-tree
On Dewey Id

XQL

…(other keywords)

Full Inverted List …

Sorted by Dewey id

B+-tree
On Dewey Id

Short List

Sorted by ElemRank

01. procedure EvaluateQuery (k1, …, kn, m) returns idList
02. // k1 … kn are the query keywords, and m is the desired number of query results
03. // invertedList[i] corresponds to the inverted list for keyword ki
04. // btree[i] corresponds to the B+-tree over the inverted list for keyword ki

05. resultHeap = empty; // Initialize the result heap to any size greater than m
06. done = false;
07. while (!done and eof has not been reached on all inverted lists) {
08. // choose the next keyword inverted list to read from in a round-robin fashion
09. ilIndex = inverted list chosen in round-robin fashion (1 <= ilIndex <= n)
10. currEntry = invertedList[ilIndex].nextEntry;

11. // Find the longest common prefix that contains all query keywords
12. lcp = currEntry.deweyID;
13. for (all j such that 1 <= j < n) {
14. probeIndex = (currIndex + j)%n;
15. lcp = btree[probeIndex].getLongestCommonPrefix(lcp);
16. }

17. // If the longest common prefix is not already present in the result heap,
18. // compute its rank and add to result heap
19. if (!resultHeap.contains(lcp)) {
20. for (all j such that 1 <= j <= n) {
21. Get the rank and posList of lcp for keyword kj using btree[j]
22. }
23. compute overall rank using formula in Section 2.3.2.2;
24. add (lcp, overall rank) to resultHeap;
25. }

26. // Compute current threshold and check whether the algorithm can terminate
27. threshold = �1<= ji<= n (invertedList[i].currEntry.ElemRank);
28. if (threshold < rank of top m elements in result heap) done = true;
29. }
30. return the top m elements from the resultHeap;

computing the threshold. Since we only overestimate the threshold,
the top m results are still guaranteed to be optimal.

4.3.3 RDIL: Correctness and Space/Time Complexity
It can be proved that the algorithm in Figure 8 correctly computes
the top m ranked query results as per the definitions in Section 2.2.
The proof is an extension of the proof of optimality of the
Threshold Algorithm [14], and is omitted due to space constraints.
Using the notion as in Section 4.2.3 the time complexity of the
algorithm is O(c * n * log1<=i<=n(max(Li)) * (L1 + … + Ln)),
because in the worst case, each inverted list will have to be
scanned completely (L1 + … + Ln), requiring n B+-tree probes for
each entry (n * log1<=i<=n(max(Li))) that has Dewey ID of length c.
Note that this is the worst case complexity, and RDIL can
terminate much earlier. The space complexity of the algorithm is
O(c + m), which is the same as DIL.

4.4 Hybrid Dewey Inverted List (HDIL)
Even though RDIL is likely to perform well in many cases, there
are certain cases where it is likely to perform much worse than
DIL. For example, consider a query where the keywords are not
very correlated, i.e., the individual query keywords occur relatively
frequently in the document collection but rarely occur together in
the same document. Since the number of results is small, RDIL has
to scan most (or all) of the inverted lists to produce the output,
incurring the cost of random index lookups along the way. In

contrast, DIL sequentially scans the inverted
lists, and is likely to be faster. In general, the
overhead of performing random index lookups
in RDIL can sometimes outweigh the benefit
of processing the inverted lists in rank order.

The above discussion presents a dilemma –
both DIL and RDIL are likely to significantly
outperform each other, but they require the
inverted lists to be sorted in different orders.
Can we combine the benefits of DIL and RDIL
without replicating the entire inverted list
index? We now present a hybrid technique that
combines the benefits of DIL and RDIL with
only a modest increase in space.

4.4.1 HDIL: Data Structure
The key idea behind HDIL is as follows. RDIL
is likely to outperform DIL only if it scans a
small fraction of the full inverted list;
consequently, we can store the full inverted list
sorted by Dewey id (for DIL), and store only a

small fraction of the inverted list sorted by rank (for RDIL). Figure
9 illustrates this structure.

4.4.2 HDIL: Query Processing
Ideally, given a keyword query k1, …, kn, it will be good to make
an a priori decision as to whether RDIL is likely to outperform
DIL or vice-versa, and choose the faster alternative. However, as
mentioned above, the performance of RDIL strongly depends on
the keyword correlation, and such information is difficult to obtain
a priori. Note that it is impractical to pre-compute correlations of
all keyword combinations because there are too many such
combinations. Since most keyword search queries are ad-hoc, pre-
computing correlations for a fixed set of keyword combination will
not work well either.

To address this problem, we consider an adaptive strategy. We first
start evaluating the query using RDIL, and periodically monitor its
performance to calculate (a) the time spent so far – t, and (b) the
number of results above the threshold so far – r. Based on this, we
estimate the remaining time for RDIL as (m-r)*t/r, where m is the
desired number of query results. If this estimated time is more than
the expected time for DIL, we switch to DIL. Note that the
expected time for DIL is relatively easy to compute a priori for a
given machine configuration because it mainly depends on the size
of the query keyword inverted lists (since DIL scans inverted lists
fully in all cases).

Figure 8: RDIL Query Processing Algorithm

Figure 9: Hybrid Dewey Inverted List

Note how the HDIL dynamically adapts to correlations. If there are
very few results above the threshold (corresponding to low
keyword correlation), it switches to DIL; else it sticks with RDIL.

4.4.3 HDIL: Space/Time Complexity
Besides the small overhead of monitoring performance of RDIL,
the space/time complexity of HDIL is the same as DIL and RDIL.

4.5 Updating the Inverted Lists
Thus far, we have focused on querying the inverted list structures.
We now briefly address the issue of updates. Document-granularity
updates (i.e., adding or deleting documents) can be handled exactly
like in traditional inverted lists [7][33]. The same techniques can
be used because DIL, RDIL, and HDIL do not replicate ancestor
information, and because the first component of the Dewey IDs
contains the document ID (which can be used for deletion).

Handling the insertions of individual XML elements is more
challenging because the Dewey IDs of the siblings and
descendants of the inserted element may need to be updated (recall
that Dewey IDs contain the relative position among siblings).
Tatarinov et al. discuss efficient ways to update Dewey IDs under
element insertions, including sparse Dewey numbering techniques.
Deleting elements, however, does not require special processing.

We currently support document-granularity updates. We plan to
support element-granularity updates of Dewey IDs by adapting the
techniques proposed by Tatarinov et al. [31].

5. EXPERIMENTAL EVALUATION
We now experimentally evaluate the techniques presented in this
paper. First, we present some anecdotal evidence that our ranking
function returns intuitive results. Second, we investigate the space
savings due to the Dewey encoding of element ids. Finally, we
evaluate the performance of our index structures and algorithms.

5.1 Experimental Setup
We used both the DBLP and XMark data sets for our experiments.
The size of the entire DBLP data set was about 143MB. We also
generated a 100MB XMark data set, which corresponds to a scale
factor of 1.0. We chose to experiment with the DBLP and XMark
data sets for the following reasons. First, DBLP data is relatively
shallow with a depth of about 4, while XMark data is relatively
deep with a depth of 10. Second, DBLP data has many inter-
document references (in the form of bibliographic citations), while
XMark has many intra-document references (in fact, the entire
XMark data set is a single XML document). Finally, DBLP and
XMark represent real and synthetic data sets, respectively.

We implemented the ElemRank computation, and DIL, RDIL and
HDIL. The inverted lists were implemented in the file system, and
we built our own disk-resident B+-tree over the inverted lists for
RDIL and HDIL. We initially implemented our system using a
relational database, but then chose to re-implement our own
inverted list and index structures for many reasons. First, the API
presented by commercial B+-tree indices was not general enough
to determine deepest common ancestors. Second, we found that we
could not perform important space optimizations (see Section
4.3.1) on relational B+-trees. Finally, the performance using a
commercial relational database system was about 5 times slower
than our current implementation.

As a baseline for comparison, we also implemented two versions
of the naïve approach (Section 4.1), one where the inverted list
was ordered by the ID (Naïve-ID), and another where it was
ordered by rank (Naïve-Rank). Naïve-ID does a simple equality
merge of the inverted lists during keyword evaluation. Naïve-Rank
has a hash index built on the ID field for random equality lookups,
and uses the Threshold Algorithm as a stopping condition (similar
to RDIL). Note that Naïve-Rank does not need to determine
longest common prefixes using B+-trees (because all ancestor IDs
are explicitly stored), but only needs to determine if the same ID
occurs in multiple lists. Thus, a hash-index is sufficient.

We used C++ for our implementation, and used a 1.7GHz Pentium
IV processor with 1GB of main memory and 30GB of disk space.
Most results shown were obtained using a cold operating system
cache to simulate a non memory-resident data set. We also present
some warm cache results for comparison.

5.2 Quality of Ranking Function
While a user study is beyond the scope of this paper, we present
some anecdotal evidence that our keyword query semantics and
ranking functions produce intuitive results. When we issued the
keyword search query ‘gray’, we got both <author> elements in
highly referenced papers and books written by Jim Gray, and the
<title> elements of the important papers on Gray codes. This
illustrates how ElemRank propagates rankings from highly
referenced papers down to their sub-elements. When we issued the
query ‘author gray’, the ranks of <title>s of Gray codes dropped
due to our two-dimensional keyword proximity metric.

The keyword queries that we ran on the deeply nested XMark
benchmark illustrated the benefit of returning the most specific
results. For example, the keyword query ‘stained mirror’ returned
an item whose name was ‘stained’ and whose description had the
keyword ‘mirror’; this item was referenced by many auctions in the
XMark database, and hence had a relatively high rank.

5.3 Space Requirements
Figure 10 gives the space requirements for the various approaches.
As shown, the naïve approaches incur a significant space overhead
for both DBLP and XMark. This is because the naïve approaches
replicate ancestor IDs in inverted lists. This overhead increases
with XML document depth, which explains the increased overhead
for XMark. In contrast, DIL requires much less space because it
only stores the IDs of leaf elements. The size of RDIL is the same
as that of DIL. However, RDIL has the extra cost of storing B+-
trees. Interestingly, the space overhead of B+-trees for HDIL is far
less than that for RDIL; this is because the full inverted list in
.HDIL is sorted by Dewey ID (see Figure 9). Hence, the inverted
list can be reused as the leaf level of the B+-tree.

 DBLP XMARK
 Inv. List Index Inv. List Index
Naïve-ID 326MB N/A 898MB N/A
Naïve-Rank 326MB 317MB 898MB 527MB
DIL 141MB N/A 354MB N/A
RDIL 141MB 150MB 354MB 320MB
HDIL 155MB 45MB 380MB 52MB

Figure 10: Space Requirements for the Different Approaches

5.4 Query Performance
We now evaluate the performance of the different approaches.
There are four main factors that affect the performance of keyword
search queries: (1) the number of query keywords; (2) the
correlation between the keywords; (3) the desired number of query
results; (4) the selectivity of the keywords. We experimented with
all four parameters using both randomly generated keywords and
hand-selected keywords. We found that the selectivity of the
keywords is not as interesting because (a) highly selective
keywords do not model large document collections, and (b) all the
approaches perform about the same if the size of the inverted lists
is small. We thus only consider unselective keywords here. The
default value for number of query results is 10. We only report the
results for the DBLP data set; the results for XMark are similar.

Figure 11 shows the performance of the different approaches when
there is a high correlation between the keywords. RDIL performs
well because the index probes to find common ancestors are
successful. DIL, on the other hand, has to scan the entire inverted
list, and hence performs relatively poorly. Note how the
performance of HDIL tracks that of RDIL by estimating a low
completion time for RDIL. It is also interesting to note that the
performance of Naïve-ID is worse than that of DIL, and the
performance of Naïve-Rank is (much) worse than that of RDIL.
This is because of the extra overhead of scanning ancestor entries
in the Naïve approaches. Naïve-Rank is particular bad because it
also incurs the cost of random index lookups for the ancestor
entries. Thus DIL, RDIL and HDIL not only save space, but also
provide associated performance gains. In subsequent graphs, we do
not show the performance of Naïve-ID and Naïve-Rank.

Figure 12 shows the performance of the different approaches when
there is a low correlation between the keywords. Here, RDIL
performs relatively badly for more than one query keyword
because there are many unsuccessful random B+-tree lookups. In
contrast, DIL sequentially scan the inverted lists and performs
better. HDIL tracks the performance of DIL, but with a slight
overhead because it starts of as RDIL, and then switches to DIL.
Figure 13 shows the results for the same query on a warm cache.
The results are broadly similar to the cold cache version, but are 2-
3 times faster. Note also that HDIL occasionally has a running time
that is slightly greater than both DIL and RDIL (for number of
keywords = 2). This is because the performance of DIL and RDIL
are crossing over at this point, and HDIL makes a slightly
inaccurate estimation and switches to DIL instead of sticking to

RDIL. We are investigating more accurate estimation techniques
that will improve the prediction capabilities of HDIL in such cases.

We also varied the number of query results (not shown), and found
that the performance of DIL remains about the same because it
always scans the entire inverted lists. The performance of RDIL,
however, decreases with an increasing query result size because
RDIL has to scan more of the inverted lists.

6. RELATED WORK
There has been recent work on integrating keyword search with
structured XML querying [2][5][8][15]. Schmidt et al. [29]
introduce the “meet” operator for XML, which is similar to
returning the most specific result. They also present efficient
algorithms for computing “meet” using relational-style joins and
indices. Christophides et al. [11], Dao et al. [12] and Lee et al.
[25] present systems for querying structured documents. However,
the above systems do not consider ranking, two-dimensional
keyword proximity, rank-based query processing
algorithms/inverted lists, or integration with hyperlinked HTML
keyword search, all of which are central to XRANK.

The following systems support ranked XML keyword search.
XIRQL [16] is an extension of XQL for information retrieval.
Myaeng et al. [26] use term-occurrences to compute the ranked
results over SGML documents. XXL [32] uses term occurrences
and ontological similarity for ranking. Luk et al. [25] survey
commercial XML search engines. We are not aware of any system
that uses hyperlink structure, a two-dimensional proximity metric,

Figure 11: High Keyword Correlation (Cold Cache) Figure 12: Low Keyword Correlation (Cold Cache)

Figure 13: Low Keyword Correlation (Warm Cache)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5
Number of Keywords

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

DIL RDIL Hybrid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Number of Keywords

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) DIL RDIL Hybrid

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 2 3 4 5Number of Keywords

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)
DIL RDIL Hybrid
Naïve ID Naïve Rank

specialized ranked inverted indices and query processing
techniques for efficient XML and HTML keyword search.

DBXplorer [1] and DISCOVER [19] support keyword search over
relational databases, but do not support information retrieval style
ranking. Further, they are not directly applicable for XML and
HTML documents, which cannot always be mapped to a rigid
relational schema. BANKS [4], DataSpot [13] and Lore [17]
support keyword search over graph-structured data. Some of these
systems use hyperlinked structure (BANKS), and simple proximity
(BANKS, Lore) for ranking. However, these systems do not
generalize HTML search engines, and do not exploit the two-
dimensional proximity inherent in XML. Further, DataSpot [13]
does not present any query evaluation algorithms, and Lore [17]
can only support keyword searches where the result type is known.
BANKS requires that all the data edges fit in memory, which is not
feasible for large data sets. Chakrabarti et al. [10] use nested
HTML tag and hyperlink information to compute ranks at the
granularity of a document. In contrast, XRANK computes
rankings at the granularity of an element because XML keyword
search queries return elements. Also, XRANK considers element-
to-element links in addition to document-to-document links.

Algorithms for computing the deepest common ancestor of two
nodes in a tree are well known [18], but these do not consider
ranking, and are not directly applicable for lists of nodes (a naïve
adaptation would require a Cartesian product of the inverted lists).
Jacobson et al. [21] and Jagadish et al. [22] use Dewey IDs for
hierarchical contexts and network directories, respectively. The
authors also present table-driven and stack-based algorithms for
checking ancestor-descendant relationships. The algorithm in
Section 4.3.2 bears some similarity to these algorithms, but differs
in the following ways. First, we integrate ranking during query
processing. Second, we determine deepest common ancestors,
which is more general than ancestor-descendant relationships.
Third, we handle multi-way merges, corresponding to multiple
keywords. Finally, we handle specifics of XML keyword search,
such as removing spurious results and inferring position lists.

7. CONCLUSION AND FUTURE WORK
We have presented the design, implementation and evaluation of
the XRANK system for ranked keyword search over XML
documents. To the best of our knowledge, XRANK is the first
system that takes into account (a) the hierarchical and hyperlinked
structure of XML documents, and (b) a two-dimensional notion of
keyword proximity, when computing the ranking for XML
keyword search queries. Our experimental evaluation also shows
that our specialized index structures and query evaluation
techniques provide significant space savings and performance
gains. XRANK is designed to naturally generalize a HTML search
engine such as Google; consequently, XRANK can query over a
mix of HTML and XML documents.

There are several avenues for future work. For instance, we have
currently taken a document-centric view, where we assume that
query results are strictly hierarchical. However, for structured (or
semi-structured) data, the XML documents may be normalized, in
which case the result may be a graph. Other open problems include
extensions to other ranking functions (e.g., tf-idf [28]), incremental
index maintenance, and integration with structured queries.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, “DBXplorer: A System

for Keyword-Based Search over Relational Databases”,
ICDE Conf., 2002.

[2] V. Aguilera, S. Cluet, F. Wattez, “Xyleme Query
Architecture”, WWW Conf., 2001.

[3] V. Anc, O. de Kretser, A. Moffat, “Vector-Space Ranking
with Effective Early Termination”, SIGIR Conf., 2001.

[4] G. Bhalotia, et al., “Keyword Searching and Browsing in
Databases using BANKS”, ICDE Conf., 2002.

[5] K. Bohm, et al., “Structured Document Storage and
Refined Declarative and Navigational Access Mechanisms
in HyperStorM”, VLDB Journal 6(4), 1997.

[6] S. Brin, L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine”, WWW Conf., 1998.

[7] E. Brown, J. Callan, B. Croft, “Fast Incremental Indexing
for Full-Text Information Retrieval”, VLDB Conf., 1994.

[8] L. J. Brown, et al., “A Structured Text ADT for Object-
Relational Databases”, Theory and Practice of Object-
Systems 4(4), 1998.

[9] C. Buckley, A. F. Lewit, “Optimization of Inverted Vector
Searches”, SIGIR Conference, 1985.

[10] S. Chakrabarti, M. Joshi, V. Tawde, “Enhanced Topic
Distillation Using Text, Markup, Tags and Hyperlinks”,
SIGIR Conf., 2001.

[11] V. Christophides, et al., “From Structured Documents to
Novel Query Facilities”, SIGMOD Conf., 1994.

[12] T. Dao, R. Sacks-Davis, J. Thom, “An Indexing Scheme for
Structured Documents and their Implementation”, Conf.
On Database Systems for Advanced Applications, 1997.

[13] S. Dar, et al., “DTL’s DataSpot: Database Exploration
Using Plain Language”, VLDB Conf., 1998.

[14] R. Fagin, A. Notem, M. Naor, “Optimal Aggregation
Algorithms for Middleware”, PODS Conference, 2001.

[15] D. Florescu, D. Kossmann, I. Manolescu, “Integrating
Keyword Search into XML Query Processing”, WWW
Conf., 2000.

[16] N. Fuhr, K. Grobjohann, “XIRQL: A Language for Inform-
ation Retrieval in XML Documents”, SIGIR Conf., 2001.

[17] R. Goldman, et al., “Proximity Search in Databases”,
VLDB Conf., 1998.

[18] D. Harel, H. E. Tarjan, “Fast Algorithms for finding nearest
common ancestors”, SIAM J. of Computing, vol. 13, 1984.

[19] V. Hristidis, Y. Papakonstantinou, “DISCOVER: Keyword
Search in Relational Databases”, VLDB Conf., 2002.

[20] HyTime, http://www.hytime.org.
[21] G. Jacobson, et al., “Focusing Search in Hierarchical

Structures with Directory Sets”, CIKM Conf., 1998.
[22] H. V. Jagadish, et al., “Querying Network Directories”,

SIGMOD Conference, 1999.
[23] J. Kleinberg, “Authoritative Sources in a Hyperlinked

Environment”, JACM 46(5), 1999.
[24] Y. Lee, et al., “Index Structures for Structured

Documents”, Digital Libraries Conf., 1996.
[25] R. Luk, et al., “A Survey of Search Engines for XML

Documents”, SIGIR Workshop on XML and IR, 2000.
[26] S. Myaeng, et al., “A Flexible Model for Retrieval of

SGML Documents”, SIGIR Conf., 1998.
[27] M. Persin, “Document Filtering for Fast Ranking”, SIGIR

Conference, 1994.

[28] G. Salton, “Automatic Text Processing: The
Transformation, Analysis and Retrieval of Information by
Computer”, Addison Wesley, 1989.

[29] A. Schmidt, M. Kersten, M. Windhouwer, “Querying XML
Documents Made Easy: Nearest Concept Queries”, ICDE
Conf., 2001.

[30] A. Schmidt, et al., “The XML Benchmark Project”, Tech.
Report INS-R0103, CWI, The Netherlands, 2001.

[31] I. Tatarinov, et al., “Storing and Querying Ordered XML
Using a Relational Database”, SIGMOD Conf., 2002.

[32] A. Theobald, G. Weikum, “The Index-Based XXL Search
Engine for Querying XML Data with Relevance
Rankings”, EDBT Conf., 2002.

[33] A. Tomasic, H. Garcia-Molina, J. Schoens, “Incremental
Updates of Inverted Lists for Text Document Retrieval”,
SIGMOD Conf., 1994.

[34] World Wide Web Consortium, http://www.w3.org.

