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ABSTRACT 
We consider the problem of efficiently producing ranked results 
for keyword search queries over hyperlinked XML documents. 
Evaluating keyword search queries over hierarchical XML 
documents, as opposed to (conceptually) flat HTML documents, 
introduces many new challenges. First, XML keyword search 
queries do not always return entire documents, but can return 
deeply nested XML elements that contain the desired keywords. 
Second, the nested structure of XML implies that the notion of 
ranking is no longer at the granularity of a document, but at the 
granularity of an XML element. Finally, the notion of keyword 
proximity is more complex in the hierarchical XML data model. In 
this paper, we present the XRANK system that is designed to 
handle these novel features of XML keyword search. Our 
experimental results show that XRANK offers both space and 
performance benefits when compared with existing approaches. An 
interesting feature of XRANK is that it naturally generalizes a 
hyperlink based HTML search engine such as Google. XRANK 
can thus be used to query a mix of HTML and XML documents. 
1. INTRODUCTION 
Keyword search querying has emerged as one of the most effective 
paradigms for information discovery, especially over HTML 
documents in the World Wide Web. One of the key advantages of 
keyword search is simplicity – users do not have to learn a 
complex query language, and can issue queries without any prior 
knowledge about the structure of the underlying data. Since the 
keyword search query interface is very flexible, queries may not 
always be very focused and can return a potentially large number 
of query results, especially when issued over large document 
collections. Consequently, an important requirement for keyword 
search is to rank the query results so that the most relevant results 
appear first. 

Despite the success of HTML-based keyword search engines, 
certain limitations of the HTML data model make such systems 
ineffective in many domains. These limitations stem from the fact 
that HTML is a presentation language and hence cannot capture 
much semantics. The XML data model addresses this limitation by 
allowing for extensible element tags, which can be arbitrarily 
nested to capture additional semantics. As an illustration, consider 
the repository of conference and workshop proceedings shown in 
Figure 1. Each conference/workshop has the full-text of all its 
papers. In addition, information such as titles, references, sections 
and sub-sections are explicitly captured using nested, application-
specific XML tags, which is not possible using HTML. 

Given the nested, extensible element tags supported by XML, it is 
natural to exploit this information for querying. One approach is to 
use sophisticated query languages such as XQuery [34] to query 
XML documents. While this approach can be very effective in 

some cases, a downside is that users have to learn a complex query 
language and understand the schema of underlying XML. An 
alternative approach, and the one we consider in this paper, is to 
retain the simple keyword search query interface, but exploit 
XML’s tagged and nested structure during query processing. 

Keyword searching over XML introduces many new challenges. 
First, the result of the keyword search query is not always the 
entire document, but can be a deeply nested XML element. As an 
illustration, consider the keyword search query “XQL language” 
over the document shown in Figure 1. The keywords occur in a 
sub-section (line 15) and clearly, it will be good to return the XML 
element corresponding to the sub-section rather than returning the 
entire workshop proceedings (as would be done in a standard 
HTML search). In general, XML keyword search results can be 
arbitrarily nested elements, and returning the “deepest” node 
containing the keywords usually gives more context information 
(see also [16][29]). 

Second, XML and HTML keyword search queries differ in how 
query results are ranked. HTML search engines such as Google 
usually rank documents based (partly) on their hyperlinked 
structure [6][23]. Since XML keyword search queries can return 
nested elements, ranking has to be done at the granularity of XML 
elements, as opposed to entire XML documents. For example, 
different papers in the XML document in Figure 1 can have 
different rankings depending on the underlying hyperlinked 
structure. Computing rankings at the granularity of elements is 
complicated by the fact that the semantics of containment links 
(relating parent and child elements) is very different from that of 
hyperlinks (such as IDREFs and XLinks [34]). Consequently, 
techniques for computing rankings solely based on hyperlinks 
[6][23] are not directly applicable for nested XML elements. 

Finally, the notion of proximity among keywords is more complex 
for XML. In HTML, proximity among keywords translates directly 
to the distance between keywords in a document. However, for 
XML, the distance between keywords is just one measure of 
proximity; the other measure of proximity is the distance between 
keywords and the result XML element. As an illustration, consider 
the keyword search query “Soffer XQL”. Although the keywords 
“Soffer” (line 3) and “XQL” (line 6) do not occur very far apart, 
the XML element containing both the keywords (the <workshop> 
element) is not a direct parent (<subsection>) of either keyword, 
and is thus not very proximal to either keyword. Intuitively, for 
XML, we need to consider a two-dimensional proximity metric 
involving both the keyword distance (i.e., width in the XML tree) 
and ancestor distance (i.e., height in the XML tree). 

The above novel aspects of XML keyword search have interesting 
implications for the design of a search engine. In this paper, we 
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01. <workshop date=”28 July 2000”> 
02.     <title> XML and IR: A SIGIR 2000 Workshop </title> 
03.     <editors> David Carmel, Yoelle Maarek, Aya Soffer </editors> 
04.     <proceedings> 
05.        <paper id=”1”> 
06.            <title> XQL and Proximal Nodes </title> 
07.            <author> Ricardo Baeza-Yates </author> 
08.            <author> Gonzalo Navarro </author> 
09.            <body> 
10.                <section name=”Introduction”> 
11.                    Searching on structured text is more important … 
12.                </section> 
13.                <section name=”Implementing XQL Operations”> 
14.                     <subsection name=”Path Expressions”> 
15.                          At first sight, the XQL query language looks … 
16.                     </subsection> 
17.                     … 
18.                </section> 
19.                <cite ref=”2”>Querying XML in Xyleme</cite> 
20.                <cite xlink=”../paper/xmlql/”>A Query … </cite> 
21.           </body> 
22.         </paper> 
23.         <paper id=”2”> 
24.              <title> Querying XML in Xyleme </title> 
25.               … 
26.         </paper> 
27.     </proceedings> 
28. </workshop> 

describe the architecture, implementation and evaluation of the 
XRANK system built to address the above requirements for 
effective XML keyword search. Specifically, the contributions of 
the paper are: (a) the problem definition and system architecture 
for ranked keyword search over hierarchical and hyperlinked XML 
documents (Section 2), (b) an algorithm for computing the ranking 
of XML elements that takes into account both hyperlink and 
containment edges (Section 3), (c) new inverted list index 
structures and associated query processing algorithms for 
evaluating XML keyword search queries (Section 4), and (d) an 
experimental evaluation of XRANK and a comparison with 
alternative approaches (Section 5). 

One of our design goals was to naturally generalize a hyperlink 
based HTML search engine such as Google [6]. XRANK is thus 
designed such that when the number of levels in the XML 
hierarchy is two (i.e., a document containing keywords), our 
system behaves just like a HTML search engine. Thus, XRANK 
allows for a graceful transition from HTML documents to XML 
documents (such as in the World Wide Web and Corporate 
Intranets) because it can handle both classes of documents using 
the same framework. 

2. DATA MODEL & QUERY SEMANTICS 
In this section, we first briefly describe the XML data model and 
then define the semantics for ranked keyword search queries over 
hyperlinked XML documents. 

2.1 XML Data Model 
The eXtensible Markup Language (XML) is a hierarchical format 
for data representation and exchange. An XML document consists 
of nested XML elements starting with the root element. Each 

element can have attributes and values, in addition to nested sub-
elements. Figure 1 shows an example XML document representing 
the proceedings of a conference. The <workshop> element is the 
root element, and it has <title>, <editors> and <proceedings> sub-
elements nested under it. The <conference> element also has the 
date attribute whose value is “28 July 2000”. For ease of 
exposition, we treat attributes as though they are sub-elements. 

In addition to the hierarchical element structure, XML also 
supports intra-document and inter-document references. Intra-
document references are represented using IDREFs [34]. An 
example of an IDREF is shown in Figure 1, line 19, where one of 
the papers in the proceedings references another paper in the same 
proceedings. Inter-document references are represented using 
XLink [34]. An example is shown in Figure 1, line 20, where a 
paper in the proceedings references another paper in a different 
conference. We refer to both IDREFs and XLinks as hyperlinks. 

Based on the above discussion, we can define a collection of 
hyperlinked XML documents to be a directed graph G = (V, CE, 
HE), where V is the set of vertices that consists of XML elements 
and values. CE is the set of containment edges relating vertices; 
specifically, the edge (u, v)∈ CE iff v is a value/nested sub-element 
of u. HE is the set of hyperlink edges relating vertices; and the 
edge (u, v) ∈ HE iff u contains a hyperlink reference to v. Vertex u 
is an ancestor of a vertex v if there is a sequence of containment 
edges that lead from u to v. The predicate contains(v, k) is true if 
the vertex v (directly or indirectly) contains the keyword k. 

2.2 Keyword Query Results 
We now define the results of keyword search queries over XML 
documents (we defer the notion of ranking the results until the next 
section). We support two different semantics for keyword search 
queries. Under conjunctive keyword query semantics, elements that 
contain all of the query keywords are returned. Under disjunctive 
keyword query semantics, elements that contain at least one of the 
query keywords are returned. In the interest of space, we focus on 
conjunctive keyword query semantics in this paper. 

Consider a keyword search query consisting of n keywords k1,…, 
kn. Let N = {1, …, n} and R0 ={v| v ∈ V ∧ ∀i∈N contains(v, ki) }. 
The query result is the union of the following two disjoint sets: 

1) { v | v ∈ R0 ∧ ∀c (v, c) ∈ CE � c ∉ R0 } 

2) { v | ∃c ((v, c) ∈ CE ∧ c ∈ R0) 
        ∧  ∃d,i ((v, d) ∈ CE ∧ d ∉ R0  ∧ i ∈ N ∧ contains(d, ki))} 

Intuitively, (1) is the set of nodes that contain all of the query 
keywords, such that none of its children (and hence, descendants) 
contain all of the query keywords. (1) ensures that only the most 
specific results are returned to the user. For example, in Figure 1, 
the query ‘XQL language’ will return the corresponding 
<subsection> (lines 14-16). However, the <section> and <body> 
ancestors will not be returned because they have a descendant 
(<subsection>) that contains all of the query keywords. 

The definition of (2) is subtler, and it ensures that every query 
keyword instance is represented in the query result. Intuitively, (2) 
is the set of nodes that have at least one child that contains all the 
query keywords, and at least one other child that contains some 
other instances of the query keywords. This condition is best 
explained with an example. Consider again the query ‘XQL 

Figure 1: An Example XML Document 



language’. If we just considered the set (1), the <paper> element 
(line 5) would not appear in the result because one of its 
descendants (<subsection>) appears in the result. However, the 
keyword ‘XQL’ appears in the <title> sub-element (line 6) of 
<paper>, and this keyword is not represented in any of the result 
elements in (1). Therefore, we include the <paper> element in the 
result set because it is the least ancestor of the keyword ‘XQL’ (in 
<title>) that also contains the other query keywords. 

Note that we only consider containment edges when defining the 
results of a keyword search query. This is similar to many HTML 
document keyword search paradigms, where only the documents 
that contain the desired keywords are returned. Hyperlinks are 
mainly used to compute the ranking of the query results. The only 
exception is anchor text, which we assume is contained in the 
element pointed to by the corresponding hyperlink edge; this is 
similar to the strategy used in Google [6]. 

While returning nested XML elements provides more context 
information, it also poses interesting user-interface challenges. As 
an illustration, consider the keyword search query ‘XML 
workshop’ issued over the document in Figure 1. A result for this 
query is the <title> element. However, the title element may be too 
specific for the user because it does not present any information 
about whether it is a title of a book, journal or workshop. One 
solution is to allow the user to navigate up to the ancestors of the 
query result to get more context information when desired. 
Another solution, originally proposed in the context of keyword 
searching graph databases [4][13], is to predefine a set of “answer 
nodes” AN. As an example of the latter approach, a domain expert 
can determine that only <workshop>, <section>, and <subsection> 
elements are in AN, and consequently, only these elements can be 
the result of a keyword search query. An interesting application of 
pre-defining a set of answer nodes is to query a mix of XML and 
HTML documents. All the HTML tags (that are used for 
presentation purposes) are excluded from the AN set, and hence, 
the result set contains only entire HTML documents. 

XRANK supports both user navigation for context information and 
the ability to pre-define answer nodes. Note that pre-defining 
answer nodes for XML documents may require knowledge of the 
domain and underlying XML schema. If such knowledge is not 
available, all XML elements can be treated as potential answer 
nodes. For the rest of this paper, we assume that every element is 
an answer node. 

2.3 Ranking Keyword Query Results 
We now turn to the issue of ranking the results of keyword search 
queries over XML documents. We first described some desired 
properties of the ranking function before defining it more formally. 

2.3.1 Ranking Function: Desired Properties 
We believe that a ranking function for keyword search queries over 
a large collection of hyperlinked XML documents should have the 
following properties: 

1) Result specificity: The ranking function should rank more 
specific results higher than less specific results. For example, in 
Figure 1, a <subsection> result (which means that all query 
keywords are in the same subsection) should be ranked higher than 
a <section> result (which means that the query keywords occur in 
different subsections). This is one dimension of result proximity. 

2) Keyword proximity: The ranking function should take the 
proximity of the query keywords into account. This is the other 
dimension of result proximity. Note that a result can have high 
keyword proximity and low specificity, and vice-versa. 

3) Hyperlink Awareness: The ranking function should use the 
hyperlinked structure of XML documents. For example, in Figure 
1, widely referenced papers should be ranked higher. 

While traditional information retrieval systems [28] and HTML 
search engines [6] take 2 and 3 into account, 1 is specific to XML 
keyword search. Some recent work on searching graph databases 
[4][13] considers a variant of 1 and some part of 3, but does not 
consider 2. Our goal in this section is to formalize the notion of 
ranking for XML elements by taking all of the above factors into 
account. Further, we would like the generalization to also work for 
HTML documents (where 1 is not of concern). 

2.3.2 Ranking Function: Definition 
We now define the ranking function for keyword search queries 
over XML documents. For the purposes of this section, we will 
just assume that ElemRank(v) is the objective importance of an 
XML element v computed using the underlying hyperlinked 
structure. Conceptually, ElemRank is similar to Google’s 
PageRank [6], except that ElemRank is defined at the granularity 
of an element and takes the nested structure of XML into account. 
More details on ElemRank are presented in Section 3. 

Consider a keyword search query Q = (k1, k2, …, kn) and the 
corresponding result set R. Now consider a result element v1 ∈ R. 
We first define the ranking of v1 with respect to one query keyword 
ki, r(v1, ki), before defining the overall rank, rank(v1, Q). 

2.3.2.1 Ranking with respect to one keyword 
By the definition of R, we know that contains(v1, ki) is true for 
every ki, Hence, there is a sequence of containment edges of the 
form (v1, v2), (v2, v3), …, (vn-1, vn) such that vn directly contains ki. 
We define: 

1
1 )(),(r −×= n

ni decayvElemRankkv  

Intuitively, the rank of v1 with respect to a keyword ki is 
ElemRank(vn), where vn directly contains ki, scaled appropriately to 
account for the specificity of the result. When the result element v1 
directly contains the keyword (i.e., v1 = vn), the rank is just the 
ElemRank of the result element. When the result element indirectly 
contains the keyword (i.e., v1  ≠vn), the rank is scaled down by a 
factor decay for each level. decay is a parameter that can be set to a 
value in the range 0 to 1. 

The astute reader may have noticed that r(v1, ki) does not depend 
on the ElemRank of the result node v1, except when v1 = vn. We 
chose to have r(v1, ki) depend on the ElemRank of vn rather than 
the ElemRank of v1 for the following two reasons. First, by scaling 
down the same quantity - ElemRank(vn) - we  ensure that less 
specific results indeed get lower ranks. Second, as we shall see in 
Section 3, the ElemRank(vn) is in fact related to ElemRank(v1) due 
to certain properties of containment edges. 

In the above formula, we have implicitly assumed that the query 
keyword ki occurs only once in the result element. In case there are 
multiple (say, m) occurrences of ki, we first compute the rank for 



each occurrence using the above formula. Let the computed ranks 
be r1, r2, …, rm. The combined rank is: 

)r ..., ,r ,f(r)k,(vr̂ m21i1 =  

Here f is some aggregation function. In most of our experiments, f 
= max, but other choices (such as f = sum) are also supported. 

2.3.2.2 Overall Ranking 
The overall ranking of a result element v1 for query Q = (k1, k2, …, 
kn) is computed as follows. 

),...,,,(),(ˆ),( 211
1

11 n
ni

i kkkvpkvrQvR ×
�
�

�

�

�
�

�

�
= �

≤≤

 

The overall ranking is the sum of the ranks with respect to each 
query keyword, multiplied by a measure of keyword proximity 
p(v1, k1, k2, …, kn). We currently set the keyword proximity to be 
inversely proportional to the minimum window size that contains 
all the query keywords in v1 (the maximum value of keyword 
proximity is 1 and minimum value is 0.2). Clearly, other 
combination functions to produce the overall rank are also 
possible. XRANK is general enough to handle any combination 
function so long as the first factor in the above formula is 
monotone with respect to individual keyword ranks (the reason for 
the monotone restriction will be clarified in Section 4.3). In some 
cases, users may also wish to assign different weights to different 
keywords, in which case the individual keyword ranks are 
weighted accordingly. 

2.4 XRANK System Architecture 
The components of the XRANK system are shown in Figure 2. 
The ElemRank Computation module computes the ElemRanks of 
XML elements. The ElemRanks are then combined with ancestor 
information to generate an index structure called HDIL (Hybrid 
Dewey Inverted List). The Query Evaluator module evaluates 
queries using HDIL, and returns ranked results. In subsequent 
sections, we describe these components in more detail. 

3. COMPUTING ElemRanks 
We now consider the problem of computing ElemRanks for XML 
elements. As mentioned earlier, ElemRank is a measure of the 
objective importance of an XML element, amd is computed based 
on the hyperlinked structure of XML documents. ElemRank is 
similar to Google’s PageRank, but is computed at the granularity 
of an element and takes the nested structure of XML into account. 
Note that we need to compute ranks at the granularity of elements 
because different elements in the same XML document can have 
very different ranks. For example, in Figure 1, the importance of 
different <paper> elements can vary widely. 

We now develop our ElemRank algorithm as a series of 
refinements to the PageRank algorithm [6] (these also work for 
query-dependent algorithms like HITS [23]). The refinements 
retain the original ranking semantics for HTML documents, and 
also help identify the main differences between computing ranks 
for HTML and XML documents. We also evaluate the 
computational cost of our algorithm on real and synthetic datasets. 

3.1 Algorithm for Computing ElemRank 
The algorithm for computing PageRanks [9] of HTML documents 
works by repeated applications of the following formula (Nd is the 

total number of documents, and Nh(v) is the number of out-going 
hyperlinks from document v): 
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As shown, the PageRank of a document v, p(v), is the sum of two 
probabilities. The first is the probability (1-d)/Nd of visiting v at 
random (d is a parameter of the algorithm, usually set to 0.85). The 
second is the probability of visiting v by navigating through other 
documents. In the second case, the probability is calculated as the 
sum of the normalized PageRanks of all documents that point to v, 
multiplied by d, the probability of navigation [6]. 

Let us now try to directly adapt this formula for use with XML 
documents by mapping each element to a document, and by 
mapping all edges (IDREF, XLink and containment edges) to 
hyperlink edges. One of the main problems with this adaptation is 
that hyperlinks are treated as directed edges, and the PageRank 
propagates along only one direction1 [6]. This unidirectional 
PageRank propagation for HTML documents corresponds to the 
intuition that if an important page p1 points to a page p2, then p2 
is likely to be important. However, if p1 points to an important 
page p3, that does not tell us anything about the importance of p1 
(consider relatively obscure HTML pages that point to Yahoo). 

In the case of containment edges, however, there is a tighter 
coupling between the elements. As an illustration, consider the 
XML document in Figure 1. If a paper element has a high 
ElemRank, then it is natural that the sections of the paper also have 
high ElemRanks; this corresponds to forward ElemRank 
propagation along containment edges. In addition, if a workshop 
contains many papers that have high ElemRanks, then the 
workshop should also have a high ElemRank; this corresponds to 
reverse ElemRank propagation. More generally, containment 
implies a tighter relationship (the corresponding elements are 
present in the same document) than hyperlinks, and hence argues 
for a bi-directional transfer of ElemRanks. 

A simple solution is to add reverse containment edges, as shown 
below. e(v) is used to denote the ElemRank of an element v. 
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1 This is typical of most algorithms for hyperlinked HTML 

documents. For example, the HITS algorithm [23] propagates all 
authority values along the same direction (only a different 
measure, hub values, is propagated along the reverse direction). 

Figure 2: XRANK Architecture 
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Ne is the total number of XML elements, Nc(u) is the number of 
children contained by u, and E = HE ∪ CE ∪ CE-1, where CE-1 is 
the set of reverse containment edges. 

While the above formula supports bi-directional transfer of 
ElemRanks along containment edges, it still has a shortcoming - it 
does not distinguish between containment and hyperlink edges 
when computing ElemRanks. As an illustration, consider a paper 
that has few sections and many references. As per the above 
formula, the ElemRank of the paper are uniformly distributed 
among all the sections and references. Thus, the larger the number 
of references in a paper, the less important each section of the 
paper is likely to be, which is not very intuitive. In general, the 
problem is hyper-links and containment edges are treated similarly, 
even though these two factors are usually independent. This argues 
for discrimination between containment and hyperlink edges 
when computing ElemRanks, as shown below. 
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d1 and d2 are the probabilities of navigating through hyperlinks and 
containment links, respectively. 

The above formula still has a problem – it weights forward and 
reverse containment relationships similarly. To see why this is a 
problem, consider again the example in Figure 1. If a paper has 
many sections, then we would like the ElemRank of each section to 
be a fraction of the ElemRank of the whole paper. More generally, 
ElemRanks of sub-elements should be inversely proportional to the 
number of sibling sub-elements, as captured in the above formula. 
However, the ElemRank of a parent element should be directly 
proportional to the aggregate of the ElemRanks of its sub-elements. 
For instance, a workshop that contains many important papers 
should have a higher ElemRank than a workshop that contains only 
one important paper. This semantics of aggregate ElemRanks for 
reverse containment relationships is not captured above. 

We now present our final formula that addresses the above issues. 
d1, d2, and d3 are the probabilities of navigating through 
hyperlinks, forward containment edges, and reverse containment 
edges, respectively. Nde(v) is the number of elements in the XML 
documents containing the element v. 
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Note that we have also scaled down the first term (the probability 
of randomly visiting an element) by the number of elements in the 
document. This scaling ensures that ElemRank propagation along 
reverse containment edges is not biased towards large documents. 

While we have motivated ElemRank using the example in Figure 
1, it also has a more general interpretation in the context of random 
walks over XML graphs (this is a generalization of the random 
walk interpretation in [6]). Consider a random surfer over a 
hyperlinked XML graph. At each instant, the surfer visits an 
element e, and performs one of the following actions: (1) with 
probability 1-d1-d2-d3, he jumps to a random document, and then 
to a random element within the document, (2) with probability d1, 
he follows a hyper-link from e, (3) with probability d2, he follows a 
containment edge to one of e’s children, and (4) with probability 
d3, he goes to e’s parent element. Given this model, e(v) is exactly 
the probability of finding the random surfer in element v. 

In most XML/HTML document collections, certain elements may 
not have hyperlinks, others may not have child elements, and some 
others (the document roots) may not have parent elements. In such 
cases, the probability of navigation (d1+d2+d3) is proportionally 
split among the available alternatives. The proof of convergence 
for the ElemRank computation is similar to that described in [23], 
and is omitted in the interest of space. 

3.2 Experimental Results 
We ran the ElemRank computation algorithm on both real (DBLP) 
and synthetic (XMark [30]) datasets. The experiments were run 
using a 1.7GHz Pentium processor with 1GB of main memory and 
30GB of disk space. We set the parameters d1 = 0.35, d2 = 0.25, d3 
= 0.25, and set the convergence threshold to 0.00005. The 
computation for the entire (124MB) DBLP dataset and 113MB 
XMark dataset converged within 10 and 5 minutes, respectively. 
This suggests that computing ElemRanks at the granularity of 
elements (as opposed to the granularity of a document) is feasible 
for reasonably large XML document collections. We have not tried 
to compute ElemRanks for document collections of the scale of the 
World Wide Web, mainly because the WWW does not contain 
such large XML collections (yet). However, we believe that the 
proposed algorithm will be applicable for large-scale XML 
repositories because the ElemRank computation is done offline, 
and does not affect keyword query evaluation time (see Figure 2). 

In Section 5, we will present anecdotal evidence that ElemRanks 
computed using the above parameter settings, used with keyword 
proximity information, produces intuitive overall rankings. We 
have also varied the values of d1, d2, and d3, and found that while it 
changes the relative weighting of hyperlinks and containment 
edges, it does not have a significant effect on algorithm 
convergence time. 

4. EFFICIENTLY EVALUATING XML 
KEYWORD SEARCH QUERIES 
We now turn to the main focus of this paper, which is efficiently 
producing ranked results for XML keyword search queries. This 
section is more general in scope than the previous section in that it 
does not depend on a particular method for computing XML 
element ranks. Although we shall use ElemRank to illustrate our 
techniques, they are applicable to other ways of ranking XML 
elements, such as those using text tf-idf measures [28][32]. We 
first present a naïve approach as a motivation for our techniques. 

4.1 Naïve Approach 
One main difference between XML and HTML keyword search is 
the granularity of the query results – XML keyword search returns 
elements while HTML keyword search returns entire documents. 
Thus, one way to do XML keyword search is to treat each element 
as a document, and use regular document-oriented keyword search 
methods. This approach, however, has the following problems. 

1) Space overhead. Inverted list indices [28] are typically used to 
speed up the evaluation of keyword search queries. An inverted list 
contains for each keyword, the list of documents that contain the 
keyword. A naïve adaptation of inverted lists for XML elements 
would contain for each keyword, the list of elements that contain 
the keyword. This would result in a large space overhead because 
each inverted list would not only contain the XML element that 



directly contains the keyword, but would also redundantly contain 
all of its ancestors (because they too contain the keyword). 

2) Spurious query results. The naïve approach ignores ancestor-
descendant relationships and treats all elements as though they are 
independent documents. Thus, if a sub-element appears in the 
query result, all of its ancestors will also appear in the query result 
(because if a sub-element contains the query keywords, all of its 
ancestors will also contain the query keywords). This will generate 
spurious query results, and will not correspond to our desired 
semantics for XML keyword search (see Section 2.2). 

3) Inaccurate ranking of results. Existing approaches do not take 
result specificity into account when ranking results (Section 2.3.1). 

We now present data structures and query-processing techniques 
that address the above limitations of the naïve approach. 

4.2 Dewey Inverted List (DIL) 
One of the drawbacks of the naïve approach is that it decouples the 
representation of ancestors and descendants. Consequently, it 
suffers from increased space overhead (because ancestor 
information is replicated) and spurious query results (because 
every ancestor of a query result is also returned). We now describe 
the Dewey encoding of element IDs, which jointly captures 
ancestor and descendant information. 

Consider the tree representation of an XML document, where each 
element is assigned a number that represents its relative position 
among its siblings. The path vector of the numbers from the root to 
an element uniquely identifies the element, and can be used as the 
element ID. Figure 3 shows how Dewey elements IDs are 
generated for the XML document in Figure 1. An interesting 
feature of Dewey IDs is that the ID of an ancestor is a prefix of the 
ID of a descendant. Consequently, ancestor-descendant 
relationships are implicitly captured in the Dewey ID. 

The idea of Dewey IDs is not new, and it has been used in the 
context of general knowledge classification, tree addressing [20], 
querying LDAP hierarchies [22] and ordered XML data [31]. Our 
focus, however, is to use Dewey IDs to support XML keyword 
search. As we shall see shortly, this new problem setting requires 
the development of novel algorithms. 

4.2.1 DIL: Data Structure 
Figure 4 shows the Dewey Inverted List (DIL) for the XML tree in 
Figure 3. The inverted list for a keyword k contains the Dewey IDs 

of all the XML elements that directly contain the keyword k. To 
handle multiple documents, the first component of each Dewey ID 
is the document ID. Associated with each Dewey ID entry in DIL 
is the ElemRank of the corresponding XML element, and the list of 
positions where the keyword k appears in that element (posList). 
The entries are sorted by the Dewey IDs. Since DIL only stores the 
IDs of elements that directly contain the keyword, its size is likely 
to be much smaller than the size of the naïve inverted list. 

The observant reader might have noticed that even though DIL has 
a smaller number of entries, the size of each Dewey ID is larger. 
Fortunately, it turns out that the space overhead of Dewey IDs is 
more than offset by the space savings obtained by storing a smaller 
number of entries (we will present experimental results to validate 
this claim in Section 5). The relatively modest space overhead of 
Dewey IDs is attributable to the fact that each component of the 
Dewey ID is the relative position of an element with respect to its 
siblings. Consequently, a small number of bits are usually 
sufficient to encode each component of a Dewey id. 

4.2.2 DIL: Query Processing 
While DIL reduces space, it introduces new challenges for query 
processing. First, unlike traditional inverted list processing, one 
cannot simply do an equality merge-join of the query keyword 
inverted lists because the result IDs have to be inferred from the 
IDs of descendants. Second, spurious results must be suppressed. 
We now describe an algorithm that addresses these issues, and 
works in a single pass over the query keyword inverted lists. 

The key idea is to merge the query keyword inverted lists, and 
simultaneously compute the longest common prefix of the Dewey 
IDs in the different lists. Since each prefix of a Dewey ID is the ID 
of an ancestor, computing the longest common prefix will 
automatically compute the ID of the deepest ancestor that contains 
the query keywords (this corresponds to computing sets (1) and (2) 
in Section 2.2). Since the inverted lists are sorted on the Dewey 
ID, all the common ancestors are clustered together, and this 
computation can be done in a single pass over the inverted lists. 

The pseudo-code for the query processing algorithm is shown in 
Figure 5. The inputs to the algorithm are n query keywords (k1, …, 
kn), and the desired number of top-ranked query results (m). The 
algorithm works for n > 1, and the case where n = 1 is handled as a 
(simple) special case. The algorithm maintains two data structures, 
the result heap and the Dewey stack. The result heap keeps track of 
the top m results seen so far. The Dewey stack stores the ID, rank 
and position list of the current Dewey ID, and also keeps track of 
the longest common prefixes computed during the merge of the 
inverted lists. 

Figure 3: Dewey IDs 
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01. procedure EvaluateQuery (k1, k2, …, kn, m) returns idList 
02.    // k1 … kn are the query keywords,  m is the desired number of query results 
03.    // invertedList[i] is the inverted list for keyword ki 
 
04.    resultHeap = empty;   // Intialize the result heap of size m 
05.    deweyStack = empty;  // Initialize the Dewey stack 
 
06.    while (eof has not been reached on all inverted lists) { 
 
07.         // Read the next entry from the inverted list having the smallest DeweyID 
08.         find ilIndex such that the next entry of invertedList[ilIndex] is the smallest DeweyID 
09.         currentEntry = invertedList[ilIndex].nextEntry; 
 
10.         // Find the longest common prefix between deweyStack and currentEntry.deweyId 
11.         find largest lcp such that deweyStack[i] = currentEntry.deweyId[i], 1 <= i <= lcp 
 
12.         // Pop non-matching entries in the Dewey stack; add to result heap if appropriate 
13.         while (deweyStack.size > lcp) { 
14.              stackEntry = deweyStack.pop(); 
15.             if (stackEntry.potentialResult and stackEntry.posList non-empty for all keywords) 
{ 
16.                   compute overall rank using formula in Section 2.3.2.2 
17.                   if overall rank is among top m seen so far, add deweyStack ID to resultHeap 
18.               } 
19.          } 
 
20.         // Update the rank and position lists of the longest common prefix entries 
21.         for (all i such that 1 <= i <= lcp) { 
22.              deweyStack[i].rank[ilIndex] = rank computed using formula in Section 2.3.2.1 
23.              deweyStack[i].posList[ilIndex] += currentEntry.posList; 
24.         } 
 
25.         // Add non-matching components of currentEntry.deweyId to deweyStack 
26.         for (all i such that mcp < i <= currDeweyIdLen) { 
27.              stackEntry.rank[ilIndex] = rank computed using formula in Section 2.3.2.1; 
28.              stackEntry.posList[ilIndex] = currentEntry.posList; 
29.              deweyStack.push(deweyStackEntry); 
30.         } 
 
31.         // Set the longest common prefix entry to be a potential result 
32.         deweyStack[lcp].potentialResult = true; 
33.    } // End of looping over all inverted lists 
 
34.    pop entries of deweyStack and add to result heap if appropriate (similar to lines 13-19) 
35.    return ids in resultHeap; 

The algorithm works by merging the inverted lists by the Dewey 
ID (lines 6-9), and computing the longest common prefix of the 
current entry and the previous entry stored in the Dewey stack 
(lines 10-11). It then pops all the Dewey stack components that are 
not part in the common prefix (lines 12-19), and if any of the 
popped components are potential query results, they are added to 
the result heap (lines 15-18). The current entry is then pushed onto 
the Dewey stack and the ranks and posLists are updated 
accordingly (lines 20-30). The longest common prefix is set to be a 
potential result (lines 31-32). The longest common prefix will be 
added to the output heap in a later loop when it is popped from the 
Dewey stack (lines 15-18). 

We now walk through the algorithm 
using an example. Consider the DIL 
shown in Figure 4, and consider the 
keyword search query ‘XQL Ricardo’. 
The algorithm first reads the entry with 
the smallest Dewey ID - 5.0.3.0.0. Since 
the Dewey stack is initially empty, the 
longest common prefix is empty, and the 
Dewey ID components are simply 
pushed onto the stack, with the 
appropriate rank and posList fields (lines 
25-32). The state of the stack is shown 
in Figure 6(a). Note that the ranks of the 
ancestors (prefixes) have been scaled 
down as per the ranking function 
(Section 2.3.2.1). 

The algorithm then reads the next 
smallest entry, which is Dewey ID 
5.0.3.0.1 in the ‘Ricardo’ inverted list. 
The longest common prefix (5.0.3.0) of 
the current entry and the Dewey stack is 
determined (lines 10-11), and non-
matching entries are popped from the 
stack (12-19). The ranks and position 
lists of the longest common prefix 
components are updated (lines 20-24), 
and the longest common prefix is also 
marked as a potential result (line 31-32). 
The current state of the Dewey stack is 
shown in Figure 6(b). Note that 
ancestors of the longest common prefix 
are not marked as potential results, 

thereby eliminating spurious results. 

The algorithm then reads the next 
smallest Dewey ID (6.0.3.8.3). Since the longest common prefix 
with the Dewey stack is empty, it pops the contents of the stack 
and adds the potential result (5.0.3.0) to the output heap. The 
algorithm then pushes 6.0.3.8.3 onto the stack and proceeds as 
before. 

4.2.3 DIL: Correctness and Space/Time Complexity 
It can be proved that the algorithm in Figure 5 correctly computes 
the top-m results as per the definition of query results and ranking 
described in Section 2.2. The actual proof is omitted in the interest 
of space. The space and time complexity of the algorithm are as 
follows. Let the query keywords be k1, …, kn, and let the 
corresponding number of entries in the inverted lists be L1, …, Ln. 

Figure 5: DIL Query Processing Algorithm 

Figure 6: States of Dewey Stack 



Further, let c be the maximum number of components in a Dewey 
ID (equivalently, c is the maximum XML document depth). 

The time complexity of the algorithm is O(c * (L1 + … + Ln)), 
because each query keyword inverted list is scanned exactly once, 
and the cost of processing each inverted list entry using the Dewey 
stack is at most O(c). The space complexity of the algorithm is O(c 
+ m), where c is for the Dewey stack and m is for the output heap. 

4.3 Ranked Dewey Inverted List (RDIL) 
Although DIL evaluates queries in a single pass over the query 
inverted lists, it suffers from a potential disadvantage. If inverted 
lists are long (due to common keywords or large document 
collections), even the cost of a single scan of the inverted lists can 
be expensive, especially if users want only the top few results. One 
solution is to order the inverted lists by the ElemRank instead of by 
the Dewey ID. In this way, higher ranked results are likely to 
appear first in the inverted lists, and query processing can usually 
be terminated without scanning all of the inverted lists. As a 
simple example, if a query contains just one keyword, only the first 
m inverted list entries have to be scanned to find the top m results. 

Processing queries with multiple keywords is more challenging 
because one query keyword may occur in an element with a high 
ElemRank (which will appear at the beginning of its inverted list), 
while another keyword may appear in an element with low 
ElemRank (which will appear at the end of its inverted list). Many 
algorithms have been proposed for merging such ranked lists 
efficiently, but most of them (e.g., [3][9][27]) only work for 
disjunctive keyword queries. Recently, the Threshold Algorithm 
[14] has been proposed that works for conjunctive queries too. 
However, these approaches do not address the requirements of 
XML keyword search, including determining the most specific 
results, and handling non-monotone ranking functions. (Note that 
the ranking function in Section 2.3.2.2 is non-monotone with 
respect to ElemRank because we take result specificity and 
keyword proximity into account). We now describe RDIL that 
addresses the above issues. 

4.3.1 RDIL: Data Structure 
RDIL is similar to DIL, except that the inverted lists are ordered by 
ElemRank instead of Dewey ID. In addition, each inverted list has 
a B+-tree index on the Dewey ID field (the role of the B+-tree will 
be discussed shortly). Figure 7 illustrates the RDIL data structure. 
Although the figure shows a separate B+-tree for each inverted list, 
in reality this is too expensive in terms of space. This is because 
many inverted lists are very short, and wasting one whole disk 
page for indexing a short inverted list (of say, 200 elements) will 
blow up space requirements. Thus, in our implementation, we store 
multiple B+-trees (over short inverted lists) on the same disk page. 

4.3.2 RDIL: Query Processing 
The RDIL query processing algorithm is shown in Figure 8. The 
algorithm reads an entry from the query keyword inverted lists in a 
round-robin fashion (lines 8-10). Consider an entry retrieved from 
the inverted list of keyword ki. The entry contains the Dewey ID d 
of a top-ranked element that contains at least one query keyword, 
which is ki. However, to determine a query result, we need to 
determine the longest prefix of d that also contains the other query 
keywords. How can we determine such a prefix of d efficiently? 

We now show how B+-trees can be used to determine the longest 
common prefix of d efficiently during query processing. Consider 
a query keyword kj (<> ki). To find the longest common prefix of d 
that also contains the keyword kj, we just need to find the smallest 
Dewey ID, d2, in the kj inverted list that is larger than d. (Note that 
this operation can be easily supported in B+-trees because it is 
logically equivalent to starting a range scan at d, and reading the 
first entry in the range.) Either d2 or its immediate predecessor in 
the B+-tree, d3, shares the longest common prefix with d. 

As an illustration, consider the keyword search query ‘XQL 
Ricardo’, and consider a top-ranked Dewey ID, 9.0.4.2.0, that 
contains the keyword ‘XQL’. Now, assume that the leaf nodes of 
the B+-tree for the ‘Ricardo’ inverted list have the Dewey IDs “…, 
8.2.1.4.2, 9.0.4.1.2, 9.0.5.6, 10.8.3, …” (note that since the B+-tree 
is built on the Dewey IDs, the leaf nodes of the B+-tree are ordered 
by the Dewey ID even though the inverted list is ordered by 
ElemRank). To determine the longest common prefix of 9.0.4.2.0 
that also contains the keyword ‘XQL’, we first determine the 
smallest Dewey ID in the B+-tree that is larger than 9.0.4.2.0, 
which in our example is 9.0.5.6. Then either 9.0.5.6 or its 
predecessor in the B+-tree, 9.0.4.1.2, shares the longest common 
prefix with 9.0.4.2.0. In our example, this longest common prefix 
of 9.0.4.2.0 that also contains ‘Ricardo’ is 9.0.4. 

The RDIL algorithm thus determines the longest common prefix of 
a Dewey ID that contains all the query keywords by repeatedly 
probing the B+-tree for each query keyword (lines 11-15). Once 
the longest common prefix is determined, ranks and posLists are 
obtained using regular B+-tree lookups, and the overall rank is 
computed. The query result is then added to the output heap (lines 
17-25). Note that the overall rank of the longest common prefix 
can be much less than the rank of an entry in the inverted list. This 
is because ranks decay when the results become less specific, i.e., 
when the longest common prefix is short (see Section 2.3.2.1). 

Given that longest common prefix IDs can potentially have low 
overall ranks, how can we determine when we have the top m 
results so that we can stop scanning the inverted lists? In order to 
derive a stopping condition that still guarantees to output the top-
m results, we build upon the provably optimal Threshold 
Algorithm (TA) [14]. TA computes a threshold at every point 
during the scan of the inverted lists. If there are at least m elements 
in the output heap that have an overall rank greater than the current 
threshold, the algorithm can stop scanning the lists. In our context, 
this threshold is the sum of the ElemRanks of the last processed 
element in each query keyword inverted list (lines 26-28). 

It is important to note that while TA assumes a monotonic function 
for computing the overall rank from the individual keyword ranks, 
our overall rank computation is non-monotone because we take 
result specificity and keyword proximity into account (see Section 
2.3.2). However, since the maximum values of decay and keyword 
proximity can be at most 1, we just use this maximum value when 
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01. procedure EvaluateQuery (k1, …, kn, m) returns idList 
02.    // k1 … kn are the query keywords, and m is the desired number of query results 
03.    // invertedList[i] corresponds to the inverted list for keyword ki 
04.    // btree[i] corresponds to the B+-tree over the inverted list for keyword ki 
 
05.    resultHeap = empty; // Initialize the result heap to any size greater than m 
06.    done = false; 
07.    while (!done and eof has not been reached on all inverted lists) { 
08.          // choose the next keyword inverted list to read from in a round-robin fashion 
09.          ilIndex = inverted list chosen in round-robin fashion (1 <= ilIndex <= n) 
10.          currEntry = invertedList[ilIndex].nextEntry; 
 
11.          // Find the longest common prefix that contains all query keywords 
12.          lcp = currEntry.deweyID; 
13.          for (all j such that 1 <= j < n) { 
14.              probeIndex = (currIndex + j)%n; 
15.              lcp = btree[probeIndex].getLongestCommonPrefix(lcp); 
16.          } 
 
17.          // If the longest common prefix is not already present in the result heap, 
18.          // compute its rank and add to result heap 
19.          if (!resultHeap.contains(lcp)) { 
20.               for (all j such that 1 <= j <= n) { 
21.                     Get the rank and posList of lcp for keyword kj using btree[j] 
22.              } 
23.               compute overall rank using formula in Section 2.3.2.2; 
24.               add (lcp, overall rank) to resultHeap; 
25.          } 
 
26.          // Compute current threshold and check whether the algorithm can terminate 
27.          threshold = �1<= ji<= n (invertedList[i].currEntry.ElemRank); 
28.          if (threshold < rank of top m elements in result heap) done = true;          
29.    } 
30.    return the top m elements from the resultHeap; 

computing the threshold. Since we only overestimate the threshold, 
the top m results are still guaranteed to be optimal. 

4.3.3 RDIL: Correctness and Space/Time Complexity 
It can be proved that the algorithm in Figure 8 correctly computes 
the top m ranked query results as per the definitions in Section 2.2. 
The proof is an extension of the proof of optimality of the 
Threshold Algorithm [14], and is omitted due to space constraints. 
Using the notion as in Section 4.2.3 the time complexity of the 
algorithm is O(c * n * log1<=i<=n(max(Li)) * (L1 + … + Ln)), 
because in the worst case, each inverted list will have to be 
scanned completely (L1 + … + Ln), requiring n B+-tree probes for 
each entry (n * log1<=i<=n(max(Li))) that has Dewey ID of length c. 
Note that this is the worst case complexity, and RDIL can 
terminate much earlier. The space complexity of the algorithm is 
O(c + m), which is the same as DIL. 

4.4 Hybrid Dewey Inverted List (HDIL) 
Even though RDIL is likely to perform well in many cases, there 
are certain cases where it is likely to perform much worse than 
DIL. For example, consider a query where the keywords are not 
very correlated, i.e., the individual query keywords occur relatively 
frequently in the document collection but rarely occur together in 
the same document. Since the number of results is small, RDIL has 
to scan most (or all) of the inverted lists to produce the output, 
incurring the cost of random index lookups along the way. In 

contrast, DIL sequentially scans the inverted 
lists, and is likely to be faster. In general, the 
overhead of performing random index lookups 
in RDIL can sometimes outweigh the benefit 
of processing the inverted lists in rank order. 

The above discussion presents a dilemma – 
both DIL and RDIL are likely to significantly 
outperform each other, but they require the 
inverted lists to be sorted in different orders. 
Can we combine the benefits of DIL and RDIL 
without replicating the entire inverted list 
index? We now present a hybrid technique that 
combines the benefits of DIL and RDIL with 
only a modest increase in space. 

4.4.1 HDIL: Data Structure 
The key idea behind HDIL is as follows. RDIL 
is likely to outperform DIL only if it scans a 
small fraction of the full inverted list; 
consequently, we can store the full inverted list 
sorted by Dewey id (for DIL), and store only a 

small fraction of the inverted list sorted by rank (for RDIL). Figure 
9 illustrates this structure. 

4.4.2 HDIL: Query Processing 
Ideally, given a keyword query k1, …, kn, it will be good to make 
an a priori decision as to whether RDIL is likely to outperform 
DIL or vice-versa, and choose the faster alternative. However, as 
mentioned above, the performance of RDIL strongly depends on 
the keyword correlation, and such information is difficult to obtain 
a priori. Note that it is impractical to pre-compute correlations of 
all keyword combinations because there are too many such 
combinations. Since most keyword search queries are ad-hoc, pre-
computing correlations for a fixed set of keyword combination will 
not work well either. 

To address this problem, we consider an adaptive strategy. We first 
start evaluating the query using RDIL, and periodically monitor its 
performance to calculate (a) the time spent so far – t, and (b) the 
number of results above the threshold so far – r. Based on this, we 
estimate the remaining time for RDIL as (m-r)*t/r, where m is the 
desired number of query results. If this estimated time is more than 
the expected time for DIL, we switch to DIL. Note that the 
expected time for DIL is relatively easy to compute a priori for a 
given machine configuration because it mainly depends on the size 
of the query keyword inverted lists (since DIL scans inverted lists 
fully in all cases). 

Figure 8: RDIL Query Processing Algorithm 

Figure 9: Hybrid Dewey Inverted List 



Note how the HDIL dynamically adapts to correlations. If there are 
very few results above the threshold (corresponding to low 
keyword correlation), it switches to DIL; else it sticks with RDIL. 

4.4.3 HDIL: Space/Time Complexity 
Besides the small overhead of monitoring performance of RDIL, 
the space/time complexity of HDIL is the same as DIL and RDIL. 

4.5 Updating the Inverted Lists 
Thus far, we have focused on querying the inverted list structures. 
We now briefly address the issue of updates. Document-granularity 
updates (i.e., adding or deleting documents) can be handled exactly 
like in traditional inverted lists [7][33]. The same techniques can 
be used because DIL, RDIL, and HDIL do not replicate ancestor 
information, and because the first component of the Dewey IDs 
contains the document ID (which can be used for deletion).  

Handling the insertions of individual XML elements is more 
challenging because the Dewey IDs of the siblings and 
descendants of the inserted element may need to be updated (recall 
that Dewey IDs contain the relative position among siblings). 
Tatarinov et al. discuss efficient ways to update Dewey IDs under 
element insertions, including sparse Dewey numbering techniques. 
Deleting elements, however, does not require special processing. 

We currently support document-granularity updates. We plan to 
support element-granularity updates of Dewey IDs by adapting the 
techniques proposed by Tatarinov et al. [31]. 

5. EXPERIMENTAL EVALUATION 
We now experimentally evaluate the techniques presented in this 
paper. First, we present some anecdotal evidence that our ranking 
function returns intuitive results. Second, we investigate the space 
savings due to the Dewey encoding of element ids. Finally, we 
evaluate the performance of our index structures and algorithms. 

5.1 Experimental Setup 
We used both the DBLP and XMark data sets for our experiments. 
The size of the entire DBLP data set was about 143MB. We also 
generated a 100MB XMark data set, which corresponds to a scale 
factor of 1.0. We chose to experiment with the DBLP and XMark 
data sets for the following reasons. First, DBLP data is relatively 
shallow with a depth of about 4, while XMark data is relatively 
deep with a depth of 10. Second, DBLP data has many inter-
document references (in the form of bibliographic citations), while 
XMark has many intra-document references (in fact, the entire 
XMark data set is a single XML document). Finally, DBLP and 
XMark represent real and synthetic data sets, respectively. 

We implemented the ElemRank computation, and DIL, RDIL and 
HDIL. The inverted lists were implemented in the file system, and 
we built our own disk-resident B+-tree over the inverted lists for 
RDIL and HDIL. We initially implemented our system using a 
relational database, but then chose to re-implement our own 
inverted list and index structures for many reasons. First, the API 
presented by commercial B+-tree indices was not general enough 
to determine deepest common ancestors. Second, we found that we 
could not perform important space optimizations (see Section 
4.3.1) on relational B+-trees. Finally, the performance using a 
commercial relational database system was about 5 times slower 
than our current implementation. 

As a baseline for comparison, we also implemented two versions 
of the naïve approach (Section 4.1), one where the inverted list 
was ordered by the ID (Naïve-ID), and another where it was 
ordered by rank (Naïve-Rank). Naïve-ID does a simple equality 
merge of the inverted lists during keyword evaluation. Naïve-Rank 
has a hash index built on the ID field for random equality lookups, 
and uses the Threshold Algorithm as a stopping condition (similar 
to RDIL). Note that Naïve-Rank does not need to determine 
longest common prefixes using B+-trees (because all ancestor IDs 
are explicitly stored), but only needs to determine if the same ID 
occurs in multiple lists. Thus, a hash-index is sufficient. 

We used C++ for our implementation, and used a 1.7GHz Pentium 
IV processor with 1GB of main memory and 30GB of disk space. 
Most results shown were obtained using a cold operating system 
cache to simulate a non memory-resident data set. We also present 
some warm cache results for comparison. 

5.2 Quality of Ranking Function 
While a user study is beyond the scope of this paper, we present 
some anecdotal evidence that our keyword query semantics and 
ranking functions produce intuitive results. When we issued the 
keyword search query ‘gray’, we got both <author> elements in 
highly referenced papers and books written by Jim Gray, and the 
<title> elements of the important papers on Gray codes. This 
illustrates how ElemRank propagates rankings from highly 
referenced papers down to their sub-elements. When we issued the 
query ‘author gray’, the ranks of <title>s of Gray codes dropped 
due to our two-dimensional keyword proximity metric. 

The keyword queries that we ran on the deeply nested XMark 
benchmark illustrated the benefit of returning the most specific 
results. For example, the keyword query ‘stained mirror’ returned 
an item whose name was ‘stained’ and whose description had the 
keyword ‘mirror’; this item was referenced by many auctions in the 
XMark database, and hence had a relatively high rank. 

5.3 Space Requirements 
Figure 10 gives the space requirements for the various approaches. 
As shown, the naïve approaches incur a significant space overhead 
for both DBLP and XMark. This is because the naïve approaches 
replicate ancestor IDs in inverted lists. This overhead increases 
with XML document depth, which explains the increased overhead 
for XMark. In contrast, DIL requires much less space because it 
only stores the IDs of leaf elements. The size of RDIL is the same 
as that of DIL. However, RDIL has the extra cost of storing B+-
trees. Interestingly, the space overhead of B+-trees for HDIL is far 
less than that for RDIL; this is because the full inverted list in 
.HDIL is sorted by Dewey ID (see Figure 9). Hence, the inverted 
list can be reused as the leaf level of the B+-tree. 

 DBLP XMARK 
 Inv. List Index Inv. List Index 
Naïve-ID 326MB N/A 898MB N/A 
Naïve-Rank 326MB 317MB 898MB 527MB 
DIL 141MB N/A 354MB N/A 
RDIL 141MB 150MB 354MB 320MB 
HDIL 155MB 45MB 380MB 52MB 

Figure 10: Space Requirements for the Different Approaches 



5.4 Query Performance 
We now evaluate the performance of the different approaches. 
There are four main factors that affect the performance of keyword 
search queries: (1) the number of query keywords; (2) the 
correlation between the keywords; (3) the desired number of query 
results; (4) the selectivity of the keywords. We experimented with 
all four parameters using both randomly generated keywords and 
hand-selected keywords. We found that the selectivity of the 
keywords is not as interesting because (a) highly selective 
keywords do not model large document collections, and (b) all the 
approaches perform about the same if the size of the inverted lists 
is small. We thus only consider unselective keywords here. The 
default value for number of query results is 10. We only report the 
results for the DBLP data set; the results for XMark are similar. 

Figure 11 shows the performance of the different approaches when 
there is a high correlation between the keywords. RDIL performs 
well because the index probes to find common ancestors are 
successful. DIL, on the other hand, has to scan the entire inverted 
list, and hence performs relatively poorly. Note how the 
performance of HDIL tracks that of RDIL by estimating a low 
completion time for RDIL. It is also interesting to note that the 
performance of Naïve-ID is worse than that of DIL, and the 
performance of Naïve-Rank is (much) worse than that of RDIL. 
This is because of the extra overhead of scanning ancestor entries 
in the Naïve approaches. Naïve-Rank is particular bad because it 
also incurs the cost of random index lookups for the ancestor 
entries. Thus DIL, RDIL and HDIL not only save space, but also 
provide associated performance gains. In subsequent graphs, we do 
not show the performance of Naïve-ID and Naïve-Rank. 

Figure 12 shows the performance of the different approaches when 
there is a low correlation between the keywords. Here, RDIL 
performs relatively badly for more than one query keyword 
because there are many unsuccessful random B+-tree lookups. In 
contrast, DIL sequentially scan the inverted lists and performs 
better. HDIL tracks the performance of DIL, but with a slight 
overhead because it starts of as RDIL, and then switches to DIL. 
Figure 13 shows the results for the same query on a warm cache. 
The results are broadly similar to the cold cache version, but are 2-
3 times faster. Note also that HDIL occasionally has a running time 
that is slightly greater than both DIL and RDIL (for number of 
keywords = 2). This is because the performance of DIL and RDIL 
are crossing over at this point, and HDIL makes a slightly 
inaccurate estimation and switches to DIL instead of sticking to 

RDIL. We are investigating more accurate estimation techniques 
that will improve the prediction capabilities of HDIL in such cases. 

We also varied the number of query results (not shown), and found 
that the performance of DIL remains about the same because it 
always scans the entire inverted lists. The performance of RDIL, 
however, decreases with an increasing query result size because 
RDIL has to scan more of the inverted lists. 

6. RELATED WORK 
There has been recent work on integrating keyword search with 
structured XML querying [2][5][8][15]. Schmidt et al. [29] 
introduce the “meet” operator for XML, which is similar to 
returning the most specific result. They also present efficient 
algorithms for computing “meet” using relational-style joins and 
indices. Christophides et al. [11], Dao et al. [12] and Lee et al. 
[25] present systems for querying structured documents. However, 
the above systems do not consider ranking, two-dimensional 
keyword proximity, rank-based query processing 
algorithms/inverted lists, or integration with hyperlinked HTML 
keyword search, all of which are central to XRANK. 

The following systems support ranked XML keyword search. 
XIRQL [16] is an extension of XQL for information retrieval. 
Myaeng et al. [26] use term-occurrences to compute the ranked 
results over SGML documents. XXL [32] uses term occurrences 
and ontological similarity for ranking. Luk et al. [25] survey 
commercial XML search engines. We are not aware of any system 
that uses hyperlink structure, a two-dimensional proximity metric, 

Figure 11: High Keyword Correlation (Cold Cache) Figure 12: Low Keyword Correlation (Cold Cache) 

Figure 13: Low Keyword Correlation (Warm Cache) 
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specialized ranked inverted indices and query processing 
techniques for efficient XML and HTML keyword search. 

DBXplorer [1] and DISCOVER [19] support keyword search over 
relational databases, but do not support information retrieval style 
ranking. Further, they are not directly applicable for XML and 
HTML documents, which cannot always be mapped to a rigid 
relational schema. BANKS [4], DataSpot [13] and Lore [17] 
support keyword search over graph-structured data. Some of these 
systems use hyperlinked structure (BANKS), and simple proximity 
(BANKS, Lore) for ranking. However, these systems do not 
generalize HTML search engines, and do not exploit the two-
dimensional proximity inherent in XML. Further, DataSpot [13] 
does not present any query evaluation algorithms, and Lore [17] 
can only support keyword searches where the result type is known. 
BANKS requires that all the data edges fit in memory, which is not 
feasible for large data sets. Chakrabarti et al. [10] use nested 
HTML tag and hyperlink information to compute ranks at the 
granularity of a document. In contrast, XRANK computes 
rankings at the granularity of an element because XML keyword 
search queries return elements. Also, XRANK considers element-
to-element links in addition to document-to-document links. 

Algorithms for computing the deepest common ancestor of two 
nodes in a tree are well known [18], but these do not consider 
ranking, and are not directly applicable for lists of nodes (a naïve 
adaptation would require a Cartesian product of the inverted lists). 
Jacobson et al. [21] and Jagadish et al. [22] use Dewey IDs for 
hierarchical contexts and network directories, respectively. The 
authors also present table-driven and stack-based algorithms for 
checking ancestor-descendant relationships. The algorithm in 
Section 4.3.2 bears some similarity to these algorithms, but differs 
in the following ways. First, we integrate ranking during query 
processing. Second, we determine deepest common ancestors, 
which is more general than ancestor-descendant relationships. 
Third, we handle multi-way merges, corresponding to multiple 
keywords. Finally, we handle specifics of XML keyword search, 
such as removing spurious results and inferring position lists. 

7. CONCLUSION AND FUTURE WORK 
We have presented the design, implementation and evaluation of 
the XRANK system for ranked keyword search over XML 
documents. To the best of our knowledge, XRANK is the first 
system that takes into account (a) the hierarchical and hyperlinked 
structure of XML documents, and (b) a two-dimensional notion of 
keyword proximity, when computing the ranking for XML 
keyword search queries. Our experimental evaluation also shows 
that our specialized index structures and query evaluation 
techniques provide significant space savings and performance 
gains. XRANK is designed to naturally generalize a HTML search 
engine such as Google; consequently, XRANK can query over a 
mix of HTML and XML documents. 

There are several avenues for future work. For instance, we have 
currently taken a document-centric view, where we assume that 
query results are strictly hierarchical. However, for structured (or 
semi-structured) data, the XML documents may be normalized, in 
which case the result may be a graph. Other open problems include 
extensions to other ranking functions (e.g., tf-idf [28]), incremental 
index maintenance, and integration with structured queries. 
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