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Abstract

XML has emerged as a standard for the exchange of structured data and documents. The database
community has proposed several languages for querying and transforming XML, including XML-QL
[DFF*99a], Quilt [CRF00] and XQL [Rob99]. However, these languages do not support ranked queries
based on textual similarity, in the spirit of traditional information retrieval. Several attempts to extend
these XML query languages to support keyword search have been made, but the resulting languages
cannot express information-retrieval-style queries such as “find books and CDs with similar titles”. In
some of these languages keywords are used merely as boolean filters without support for true ranked
retrieval; others permit similarity calculations only between a data value and a constant, and thus
cannot express the above query. WHIRL [Coh98, Coh00] avoids both problems, but assumes relational
data.

We propose ELIXIR, an expressive and efficient language for XML information retrieval that extends
XML-QL with a textual similarity operator. This operator can be used for similarity joins, so ELIXIR is
sufficiently expressive to handle the sample query above. ELIXIR thus qualifies as a general-purpose XML
information retrieval query language. Our central contribution is an efficient algorithm for answering
ELIXIR queries. The algorithm rewrites the original ELIXIR query into a series of XML-QL queries that
generate intermediate relational data, and uses WHIRL to efficiently evaluate the similarity operators
on this intermediate data, yielding an XML document with nodes ranked by similarity. Our experiments

demonstrate that our prototype scales well with the size of the query and the XML data.

1 Introduction

XML has emerged as an important standard for the interchange of structured documents and data. Two

distinct application communities have arisen (see [ABDOO] for a detailed discussion). On the one hand,



the database community treats XML as a convenient standard for data exchange. On the other hand,
the document management community sees XML, like SGML and HTML, as a language for annotating
documents containing natural text.

The World Wide Web Consortium® (W3C) has announced a draft standard XML query language, XQuery
[CFRT01], distilled from several contenders, including XML-QL [DFF*99a, DFF+99b], Quilt [CRF00], XQL
[Rob99], and Lorel [LPVV99]. These languages provide a declarative way to access and filter elements from
XML databases based on various predicates, and rewrite the original XML data into an arbitrary new
structure. These languages have been developed primarily by members of the database community. As such,
they generally support (the semistructured equivalent of) the full relational algebra, making them useful for
a wide variety of data interchange and transformation applications. There have been several commercial
implementations of these languages, including Software AG’s Tamino [Sof], Infonyte [Glo] and XYZFind
[XYZ].

However, these languages do not fully meet the needs of the document management and IR communities.
We focus on one specific deficit: the lack of support for ranking or weighting of query results based on
textual similarity or other relevance metrics. For example, consider the XML database containing book
and CD titles in Figure 1(a). A typical query, in the spirit of traditional IR, would be to find books or
CDs with titles similar to the phrase “Ukrainian cookery”. Figure 1(b) shows such a query Q4 in ELIXIR,
our extension to XML-QL that supports ranked retrieval based on textual similarity. The result of such
a query should be a sequence of the items ordered by similarity to the target phrase according to some
textual similarity metric, rather than (for example) an unordered subset of the items that contain both
terms. Furthermore, presumably the application that posed this query is interested only in the most-similar
titles. The ELIXIR query processor formalizes this notion by returning the best r answers, where r is an
evaluation-time parameter. In this example, if textual similarity is computed using a standard IR term
vector model, and if the query processor is asked for the best » = 2 answers, then the first and fourth items
in Figure 1(a) would be returned, in that order; see Figure 1(c).

A more complicated query would be to identify books and CDs with similar titles; see query @p in
Figure 1(d). Note that in this case “~” expresses a similarity join (it operates on two variables, rather than
a variable and a constant). The result of this query should not be merely books and CDs with identical
titles, with unequal pairs discarded. Rather, the result should be an ordered sequence of items, where earlier
items are more similar than later items. For example, Figure 1(e) shows the r = 2 best answers to this query.
The meaning of this XML output is that, across all book/CD pairs, “Traditional Ukrainian cookery” is
the book that is most similar to some CD, and “Being and nothingness” is the book that is second-most
similar to some CD. Note that, for the sake of simplicity, this query does not actually output the CDs to

which these books are similar (“Traditional Ukrainian folk music” and “Being there”, respectively).

Thttp://www.w3.org.



<items><book>Traditional Ukrainian cookery</>
<book>Being and nothingness</>
(a) <book>Shooting Elvis</>
<cd>Traditional Ukrainian folk music</>
<cd>Being there</>
<cd>Milk cow blues</></>

"db.xml"

[\

CONSTRUCT <item>$t</>
(b)  WHERE <items. (book|cd)>$t</> in "db.xml", Qa
$t ~ "Ukrainian cookery".

(©) <item>Traditional Ukrainian cookery</>
<item>Traditional Ukrainian folk music</>

CONSTRUCT <item>$b</>

(d) WHERE <items.book>$b</> in "db.xml", On
<items.cd>$c</> in "db.xml",
$p ~ $c.

(e) <item>Traditional Ukrainian cookery</>
<item>Being and nothingness</>

Figure 1: (a) An XML document describing five books and CDs; (b) an ELIXIR query @ 4 for finding items
similar to the phrase “Ukrainian cookery” (“~” is ELIXIR’s textual similarity operator); (c) the two best
answers to query @ 4; (d) an ELIXIR query @p for finding items with similar titles (note that, unlike @ 4,

@) B uses a similaity join); and (e) the two best answers to Q) 5.

Several attempts to extend XML query languages to support ranked XML IR have been made, but none
of these extensions can express queries such as ()p, and some cannot express (4. Some of these extended
languages (e.g. [FMKO0]) use keywords merely as boolean filters and thus do not support true ranked
retrieval. Other extensions permit similarity calculations only between a data value and a constant (e.g.
[TWO00, FGO0]). This restriction means that while such languages can express @) 4, they cannot express @ g,
since () p requires evaluating a similarity join between two data values. (We discuss related work at length
in Section 2.)

To fill this gap, we propose ELIXIR, an expressive and efficient language for XML information retrieval
that extends XML-QL with a textual similarity operator which can be used just like ordinary XML-QL
operators. In particular, both operands can be variables (see line 5 of query @p), and therefore ELIXIR
queries can express similarity joins, a capability missing from previous languages. ELIXIR is therefore
sufficiently expressive to qualify as a general purpose XML information retrieval language.

Of course, the additional expressiveness permitted by ELIXIR’s similarity joins has important compu-
tational ramifications. The fundamental problem is that if one wants to compute a similarity join between
two variables, then it is infeasible to simply generate the full cross product of the bindings of the variables,

and then compute the similarity of every pair, as shown in Figure 2.
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Figure 2: A naive evaluation of a similarity join generates the full cross product of variable bindings.
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Figure 3: ELIXIR invokes WHIRL to avoid computing the full cross product of variable bindings when

evaluating similarity joins.

We have designed an efficient algorithm for answering ELIXIR queries that avoids unnecessarily comput-
ing such variable binding cross products; see Figure 3. Specifically, the ELIXIR query processing algorithm
invokes WHIRL [Coh98, Coh00] as a “subroutine”. As described in Section 2.2, WHIRL extends Datalog
(e.g. [UW9T]) with a textual similarity metric. Our query processor rewrites an ELIXIR query @ into a
series of XML-QL queries that generate intermediate relational data, and then invokes WHIRL to efficiently
evaluate @’s similarity predicates on this intermediate data. Finally, WHIRL’s relational output is translated
into the XML structure specified by @ using a final XML-QL query.

Note that the algorithm does not simply map the original XML data into relations (e.g. [DFS99, STH*99,
FTS00]) (which can be expensive in general) and the ELIXIR query into a WHIRL query. Rather, the
algorithm uses XML-QL to query the XML data in its native form as much as possible. The resulting
intermediate data is then efficiently and losslessly converted into relations for processing by WHIRL. Once
the similarity predicates have been evaluated, the resulting tuples are converted back into an arbitrary XML

format as specified by the original ELIXIR query.
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Figure 4: ELIXIR fills an open gap in the space of query languages that support ranked IR.

The additional expressiveness permitted by ELIXIR’s similarity joins is not merely of theoretical in-
terest. For example, data integration (e.g. [Wie92, KLDT98 LKMC98]) is an important application that
requires similarity joins. Data integration systems present a uniform view over data retrieved from multiple
heterogeneous sources. Many data integration applications manipulate “noisy” textual identifiers, such as
person or company names, book or movie titles, addresses, and so forth. Given the decentralized nature
of such applications, it is unlikely that data integration systems can assume shared domains, or accurate
normalization routines, for such identifiers. For example, one might want to compute a join on the “title”
attribute of two book databases. But do “Data structures and algorithms in Java” and “Data Structures
& Algorithms in Java” refer to the same book? Are “Michael T. Goodrich” and “Goodrich, M. (Johns
Hopkins University)” the same person? Cohen [Coh98, Coh00] describes several experiments demonstrating
that WHIRL’s textual similarity predicates can be highly effective at integrating heterogeneous textual data
sources, without relying either on common domains or hand-crafted normalization routines.

To summarize, our central contribution is a query language for ranked IR from XML data that is both:
e more expressive than current languages (arbitrary similarity joins are permitted), and

e efficient (our query processor does not compute unnecessary cross-products of the bindings of variables

involved in similarity predicates).

In the remainder of this paper, we describe related work (Section 2), define our ELIXIR language (Section
3), describe our algorithm for answering ELIXIR, queries (Section 4), describe an experimental evaluation of

our prototype (Section 5), and finally we discuss open issues and summarize our conclusions (Section 6).

2 Related work

As shown in Figure 4, ELIXIR fills an open gap in the space of expressive query languages for XML. In
this section, we discuss related work, in order to both situate ELIXIR relative to other research, and to
introduce two particular systems—XML-QL and WHIRL—on top of which our ELIXIR query processor is

implemented.



2.1 XML query languages

Several languages for querying and transforming XML data have been proposed, including Quilt [CRF00],
XQL [Rob99], XML-QL [DFF*T99a, DFFT99b] and XQuery [CFR'01], the W3C draft standard XML query
language. These languages allow a query to extract particular fragments from one or more XML sources,
discard fragments that fail to satisfy certain predicates, and rewrite the original data into any desired XML
format.

Our ELIXIR query language is based on the XML-QL query language. This decision was made largely
on pragmatic grounds, and we anticipate few theoretical difficulties in applying our ideas to other query
languages with similar expressiveness, including XQuery.

In this section we briefly describe XML-QL, focusing on the features that will be needed to understand
our ELIXIR query language and processor. This description is somewhat simplified and tailored to the needs
of this paper; see [DFF*99a, DFF*99b] for further examples and a formal characterization of the language.

An XML-QL query is an expression of the form

CONSTRUCT C'
WHERE W

The CONSTRUCT clause specifies the desired XML format of the output.? We might want to output a list
of book details, with years and authors encoded as attributes, and titles encoded as contents, of <book>
tags:

CONSTRUCT <book year=$y author=$a>$title</>
WHERE w

Tokens preceded by “$” are variables; the pattern above contains three variables: $y, $a and $title.
C = “<book year=$y author=$a>$title</>” is a template for converting bindings of these variables into
an XML fragment. The query processor generates one instantiation of C' for each set of variable bindings.

These variable bindings are generated by the WHERE clause W. W contains pattern statements of the
form “pattern in source”. “pattern” is a pattern indicating how to traverse an XML object. “source” is a
reference to an XML object (e.g., its URL). Variables in a pattern are bound according to all possible ways
to match the pattern against the XML data. For example, we might simply transform some existing data

into our desired format:

CONSTRUCT <book year=$y author=$a>$title</>

WHERE <books><item><year>$y</>
<author>$a</>
<title>$t</></></> in "bib.xml".

2Well-formed XML documents must contain a single root tag, and thus to be precise an XML-QL query is of the form

“<root>{CONSTRUCT C WHERE W }</>”. However, in this article we ignore such root tags for the sake of simplicity.



This query would transform the XML document

<books><item><year>1957</><author>Stechishin</>
<title>Traditional Ukrainian cookery</></></>
<item><year>1956</><author>Sartre</>
<title>Being and nothingness</></></></>

into

<book year=1957 author=Stechishin>Traditional Ukrainian cookery</>
<book year=1956 author=Sartre>Being and nothingness</>

In addition to pattern statements of the form “pattern in source”, the WHERE clause can also include
boolean operators. For example, the following XML-QL query retrieves books published after 1950:
CONSTRUCT <book year=$y author=$a>$title</>
WHERE <catalog><book><year>$y</>
<author>$a</>

<title>$t</></></> in "bib.xml",
$y > 1950.

XML-QL supports a variety of typical operators, such as “>” “<”, and so forth.

((=77 [13 | =77
To simplify pattern statements, XML-QL permits reqular path expressions. For example, a pattern such
as “<catalog.book.year>$y</>” traverses several tags at once, and “<catalog. (book|cd) .year>$y</>"
illustrates a disjunctive pattern.
Finally, XML-QL queries can be nested, with an entire XML-QL query embedded inside the CONSTRUCT C'

clause. In this paper, we ignore nested queries: our ELIXIR query language is an extension to the non-nested

subset of XML-QL.

2.2 WHIRL

While our ELIXIR language borrows heavily from XML-QL in terms of XML data querying and transfor-
mation, the language is also closely related to the WHIRL relational database system. The essential aspect
of WHIRL is that it efficiently supports ranked IR based on textual similarity. As with our discussion of
XML-QL, this description of WHIRL is highly simplified; see [Coh98, Coh00] for details.

[13

WHIRL extends Datalog (e.g. [UW97]), with a primitive textual similarity operator “~”. Datalog is a
Prolog-like database query language. A Datalog query is a Horn clause, where the head of the clause defines
an “output” relation that stores variable bindings that constitute the answer to the query, and the body of
the clause is a conjunction of relational predicates. For example, if we have a book relation with year, author
and title columns, then we could use the Datalog query below to retrieve books published after 1950:

output ($y,$a,$t) :- book($y,$a,$t), $y>1950.

To illustrate WHIRL’s ranked retrieval capabilities, the following WHIRL query yields similar results to



the previous query, but with the tuples ordered by textual similarity of the title to the phrase “traditional
Ukrainian”:
output ($y,$a,$t) :- book($y,$a,$t), $y>1950, $t ~ "traditional Ukrainian'.

Crucially, WHIRL allows for similarity joins, in which the “~” operator is applied to two variables, rather
than a variable and a constant alone. For example, the following WHIRL query finds books whose titles
happen to be similar to their authors:

output ($y,$a,$t) :- book($y,$a,$t), $t~$a.
Of course, WHIRL handles only relational data. Our ELIXIR query processing algorithm in effect extends
WHIRL so that it can handle arbitrary XML data.

WHIRL’s definition of similarity is based on standard statistical IR term vector techniques (e.g. [Sal89]).
In this approach, we model textual documents as points in a high-dimensional space. Let V' be the vocabulary,
the set of distinct terms across the documents whose similarities are being computed. Each dimension of this
space corresponds to a term ¢ € V. A document d is represented as a point d € R!V!. The value of document
d in dimension ¢ (written d;) corresponds to the “strength” or “weight” with which term ¢ is associated
with document d. For example, if d does not contain ¢ then presumably d; = 0, while if d contains many
occurrences of ¢ then d; will be relatively large.

Specifically, WHIRL uses the standard IR term-frequency inverse-document-frequency (TF-IDF) scheme
for weighting terms. In this approach, d; = —log(TF(d,t) 4+ 1) - log DF(¢), where “term frequency” TF(d, t)
is the number of times term ¢ occurs in document d, and “document frequency” DF(¢) is fraction of the
documents that contain term ¢. Given two documents d and d’, the similarity between d and d' is defined

as follows:
di - d}

() = > (]

teVv

(1)

If the document vectors are unit-normalized, similarity values are between 0 and 1, with 0 indicating that
the documents share no terms, and 1 indicating that the documents are identical.

With these preliminaries in place, we now briefly describe the semantics of a WHIRL query ). Let Q'
be defined to be @ with all similarity predicates deleted, and let R be the output relation of @ and Q'. Now
consider ()’s similarity predicates. Each such predicate is of the form “wvariable ~ wvariable” or “variable
~ constant”. Every tuple in R generates bindings for each similarity predicate s;. The score of a tuple
from R is defined to be the product of the similarities of the variable bindings in each similarity predicate.
The motivation of this definition is that similarity scores are taken to be independent probabilities, so that
the probability of their conjunction is the product of their probabilities. The complete answer to () is the
relation R with the tuples ordered according to their score. WHIRL does not generate complete answers,
but rather r-answers: for any integer r the r-answer to @ is the first r answers in @)’s complete answer.

The WHIRL query processor efficiently generates r-answers. To do so, it takes advantage of certain



properties of the definition of similarity in Equation 1. The basic idea is that, if one wants to find the r
documents most similar to some document d, then one need not consider all documents, but only those
that share the most terms with d. Furthermore, the most similar documents will likely share terms ¢ with
high weight d;. For example, to find the documents most similar to the phrase “tall octogenarian”, it makes
sense to process first the few documents containing the rare (and therefore high-weight) term “octogenarian”
rather than the many documents containing the common term “tall”. The details of the WHIRL algorithm

are beyond the scope of this paper; see [Coh98, Coh00] for details.

2.3 Keyword search in XML query languages

There have been several recent attempts to extend various XML query languages with support for keyword
search. This work falls into two main categories: techniques for using keywords as boolean filters (rather
than for genuine ranked retrieval), and techniques that support relevance ranking but not similarity joins
(i.e. the similarity operator operates only on a variable and a constant, not two variables).

Florescu et al [FMKO00] extend XML-QL to support keyword filtering. Their extension adds a contains
operator to XML-QL that supports keyword search. For example, the predicate contains($t, "Ukrainian")
discards bindings for $t that do not contain this term, in exactly the same way that the predicate $y>1990
discards bindings for $y that do not satisfy the given constraint. Since bindings for $t are discarded, not or-
dered, by contains, this extension to XML-QL does not support true relevance ranking/weighting of query
results. Other systems that are related to ELIXIR in the same way include Macherius et al’s extension to
XQL [MHF99], and Naughton et al’s XML search engine [NDMOO].

While these systems do not rank their results, several research groups have extended other XML query
languages to support true ranked retrieval. Like ELIXIR, these languages augment some existing XML query
language with a similarity operator. However, these languages appear to be less expressive than ELIXIR:
their similarity operators must be applied to a variable and a constant, but not two variables, and thus
these languages do not appear to support similarity joins. XXL [TWO00] extend an SQL-like language with
a textual similarity operator. However, none of the examples in [TWO00] suggest how to express similarity
joins in XXL and there is no discussion of how similarity joins would be processed efficiently if allowed. We
conclude that XXL’s similarity operator requires that one argument must be a constant.

XIRQL [FGOO0] extends XQL with a similarity operator, but again the use of this operator appears to
be restricted to a variable and a constant. Finally, Hayashi et al define a novel XML query language with
support for ranked retrieval [HJGOO], but their similarity operator appears to be restricted in the same
way. On the other hand, XIRQL and Hayashi et al’s languages are more expressive than ELIXIR in the
following limited sense. In these two languages, one can attach numeric weights to the query terms. Thus

one might query for books that are similar to “Ukrainian cookery”, but with the additional constraint that
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documents that contain “Ukrainian” but not “cookery” should (to some specified degree) be ranked higher
than documents that contain “cookery” but not “Ukrainian”. While neither ELIXIR nor WHIRL currently
support such keyword weighting, this is an implementation issue only and would present no theoretical

difficulties.

2.4 Flattening XML to relations

There has been significant work on techniques for automatically mapping XML data and queries to a rela-
tional model (e.g., [DFS99, STH*99, FTS00]). In the case that the XML data happens to have a tabular
structure, such a mapping can be performed quickly and accurately. However, in general there may be
no simple mapping to a relational model. In complex XML structures, the mapped data may contain (for
example) many null values, duplicated data items, or “overflow” relations for handling rare XML structures.
Furthermore, there may be many possible such mappings, and so an automatic approach to mapping XML
to relations (e.g. [DFS99]) must search for a mapping that appropriately trades off complexity for accuracy,
but such an optimization process scales poorly with the size and complexity of the original XML data.

We stress that the ELIXIR query processor does not simply map the original XML data and query into
a relational model. This is the approach taken by XXL [TWO00]. As described in Section 3, when processing
an ELIXIR query, the XML data itself is never mapped into relations. Rather, tuples of bindings for the
query variables are passed to and from WHIRL.

2.5 Alternative text similarity metrics

WHIRL, and therefore ELIXIR, adopts a standard, but very simple, similarity metric based on term overlap.
Essentially, similarity grows in proportion to the number of terms shared by two documents. Of course,
there are many situations where a variety of real-world knowledge is essential for determining similarity.
Furthermore, similarity is a relative concept. In some cases it might be appropriate to treat “Microsoft
Research” and “Microsoft Corporation” as the same entity, but for other applications this could be incorrect.

There has been research on more sophisticated similarity metrics, within both the IR and database
communities, including substantial work on using lexical resources such as thesauri and conceptual hierarchies
to improve retrieval (see [BYRN99] for an overview). Database researchers have investigated a variety of
techniques for automatically normalizing and reconciling heterogeneous textual identifiers (e.g., [ME9G,
HS95]).

Ideally, all of these techniques could complement ELIXIR’s simple term-based notion of similarity. How-
ever, it remains an open question whether WHIRL, whose efficiency derives from exploiting certain properties

of the term-based metric, could be extended to handle these more complicated similarity metrics.
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2.6 Structured text databases

One central role for XML is encoding structured documents, and thus ELIXIR is related to research on
databases for collections of structured text. Any IR process for structured text must take into account the
inherent structure of the documents, in both representing and retrieving the structured documents. In this
section, we briefly discuss the structured documents database work that is most relevant to ELIXIR.

The Proximal Nodes model [NBY97] permits any operations in which the fact that a node belongs to
the final result can be determined by the identity and position of the node itself and of those nodes in
the operands that are “proximal” to it. This query mechanism could be added to ELIXIR. However, the
Proximal Nodes model does not support relevance ranking of query results. Another use of proximity of
objects within a structured document is [GS98]. Any objects that are relevant to a user’s information need
are first scored and ranked before they are presented to the user. This approach differs from that of [NBY97]
in that proximity metrics are applied to nodes in more that one document object.

Finally, [Lal97, Lal99] describe a model in which a generalized belief function based on the Dempster-
Shafer theory of evidence is used to determine the relevance of a document component, as opposed to WHIRL
and ELIXIR’s “hardwired” use of the standard TF-IDF metric. Like ELIXIR, this approach produces ranked
query results, but there is no discussion of how such answers can be efficiently generated for an arbitrary

belief function.

3 The ELIXIR language

[13

ELIXIR augments XML-QL with a primitive textual similarity operator, written “~”. This operator can be
used just like the ordinary XML-QL operators such as “<”, “=", and so forth. (Recall that, as discussed
above, we ignore nested XML-QL queries.)

The semantics of ELIXIR combines aspects of the semantics of XML-QL and of WHIRL. Let @ be an
ELIXIR query of the form CONSTRUCT C WHERE W . Since ELIXIR extends the non-nested subset of XML-QL,
W consists only of pattern statements of the form “pattern in source” and predicates of the form “wvariable
operator variable” or “variable operator constant”, where each “operator” is either an ordinary XML-QL

operator (“<”, “=" etc.) or ELIXIR’s “~” operator. Let W' be W with all similarity predicates removed,
so that S =W \ W' is the set of similarity predicates in W. For query @4 in Figure 1(b), we have

W = <items.*>$t</> in "db.xml", $t ~ "traditional Ukrainian",
W' = <items.*>$t</> in "db.xml",
S = $t ~ "traditional Ukrainian",

12



while for @5 in Figure 1(d) we have

W = <items.book>$b</> in "db.xml", <items.cd>$c</> in "db.xml", $b ~ $c,
W' = <items.book>$b</> in "db.xml", <items.cd>$c</> in "db.xml",
S = $b ~ $c.
Suppose W contains M variables, $x1, ..., $xas. Note that W' must also contain M variables, since (like or-

dinary XML-QL operators) ELIXIR’s “~” cannot introduce new variables. Following [DFFT99a, DFF+99b],
we observe that evaluating W' results in a relation R($x1,...,$xp), with one column for each variable

$x; €W, and one tuple for each set of variables that satisfy W'. For query @ p in Figure 1(d), we have

)

raditiona rainian cookery, Traditiona rainian folk music),
Traditi 1 Ukraini k Traditi 1 Ukraini folk i
(Traditional Ukrainian cookery, Being there),
(Traditional Ukrainian cookery, Milk cow blues),

(Being and nothingness, Traditional Ukrainian folk music),
R($b,$c) = (Being and nothingness, Being there), > (2)
(Being and nothingness, Milk cow blues),

ootin vis, Traditiona rainian folk music),
Sh ing Elvi Traditi 1 Ukraini folk i

(Shooting Elvis, Being there),

(Shooting Elvis, Milk cow blues) )

(Note that this complete cross-product serves only to define ELIXIR’s semantics. The ELIXIR query pro-
cessing algorithm does not generate such full cross-products.)

The similarity predicates in S are either one-variable predicates of the form “variable ~ constant” or
similarity join predicates of the form “variable ~ variable” . Let S; = {...,$x;~¢,...} be the set of one-
variable similarity predicates and Let Sy = {...,$x;~$x;,...} be the set of similarity join predicates. Note
that S = S; U Sy and S; NSy = 0. For query @4 in Figure 1(b), S; = {$t ~ "traditional Ukrainian"}
and Sy = (), while for @p in Figure 1(d), S; =0 and S> = {$b ~ $c}.

The score of a similarity predicate when applied to a given pair of values was defined in Equation 1. The
score of a tuple t; = {(ml,UD , <x2,vé> ey (xM,Uf\J>} € Rfor each 1 < i < |R), is defined to be the product
of the scores of all the similarity predicates, with the variables bound as specified in t;. More precisely, for
tuple t; = {{@1,vl), (z2,08),...,(xa,vi)} € R we define:

score(t;) = H sim(vj-, ) X H sim(v;-, vl). (3)
$x;~ceSL $x;~$xp €S2

The motivation of this definition is that, like WHIRL, we treat similarity scores as if they were prob-

abilities, and treat a query’s similarity predicates as independent events, so that the probability of their

13



conjunction is the product of their probabilities.

Note that if an ELIXIR query does not contain any similarity predicates (S = S; = So = 0)), then the
query is an ordinary XML-QL query and score(t;) = 1 for every t; € R.

We are now in a position to define the answer to an ELIXIR query. Following [DFF*99a, DFF*99b],
we observe that the CONSTRUCT C' clause generates one XML fragment for each tuple in R. The complete
answer to an ELIXIR query is defined to be the sequence of |R| such XML fragments, ordered by the
score of the tuple ¢; € R that generated the fragment. The ELIXIR query processor does not compute the
complete answers, but instead computes r-answers. The r-answer of an ELIXIR query Q is defined to be
the r highest-scoring XML fragments of @)’s complete answer. The motivation for this specification is that
presumably an application is interested only in the highest-scoring answers, whereas all answers may be

significant in traditional non-ranked query processing.

4 Efficiently answering ELIXIR queries

The ELIXIR query processing algorithm efficiently computes an r-answer to an ELIXIR query. Let ()1 be
an ELIXIR query. We seek the best r XML objects that are generated by @, where the score of an XML

object is defined by Equation 3. The algorithm proceeds in three stages:

e First, the algorithm generates and evaluates a set { QL } of XML-QL queries. The WHERE
clauses of these queries consist of one or more pattern or ordinary predicate statements copied directly
from @Q;. The CONSTRUCT clause of each Q¥ query builds (XML corresponding to) a relation, where
each tuple encodes a set of bindings for all variables in Q%’s WHERE clause. To avoid generating the full
cross-product of data values compared with similarity predicates, the algorithm partitions (1’s pattern
statements such that two such statements are placed in distinct Q% queries if they contain variables

that are compared with a similarity predicate.

e Second, the algorithm generates and evaluates a WHIRL query @3 to process the similarity predicates.
Q3 takes as input the relations built by the Q) queries, and generates an ordered table of the r

highest-scoring sets of variable bindings.

e Finally, the algorithm generates and evaluates one more XML-QL query Q4. This query rewrites all

tuples generated by @3 into the XML form specified by query @)1’s CONSTRUCT clause.

Figure 5 specifies the ELIXIR query processing algorithm in detail. We explain the algorithm by illus-
trating its operation on two example queries. Consider query @) g in Figure 1(d). The algorithm first parses

@ p as follows:
CONSTRUCT clause C = <item>$b</item>
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procedure ANSWER(ELIXIR query )1, integer r)

e Parse (01 to extract its root tag R, CONSTRUCT clause C, similarity predicates S, ordinary

predicates O, and pattern statements P.
e Ky, ..., Ky, D < PARTITION(P, O, S).

e Foreach 1 <i<N:

— Generate XML-QL query Q% =
<q2i>{CONSTRUCT <tuple><x|>$x|</>...<x/, >$x} </></> WHERE K;}</>
where K; contains T; variables $x§, ceey $xiTi. Invoke the XML-QL query processor on

Q%, and temporarily store the resulting tabular XML document as a relation q2i.

e Generate WHIRL query Q3 =
q3($x1,...,$x7) - q21($xi,... ,$x%~1) s oo Q2N (82N, ,$X¥N) , S, D.
where $x;, ..., $xp are the variables in C', and $x’i, RN $xiTi are the variables in K;. Invoke
the WHIRL query processor on Q3 with the parameter r, and temporarily store the resulting

relation g3 as a tabular XML document "q3.xml1".

e Generate XML-QL query Q4 =
<R>{CONSTRUCT C' WHERE <q3.tuple><x;>$x1</>...<xp>$x7</></> in
"g3.xml". }</>
where $x;1, ..., $xp are the variables in C. Invoke the XML-QL query processor on @4 to

generate the final r-answer to Q.
procedure PARTITION (pattern statements P, ordinary predicates O, similarity predicates S)

e Construct a graph from P, O and S, with nodes P U O U S, with an edge between o € O and
p € P (written o <> p) iff 0 and p share a variable, and with an edge between p € P and s € S

iff p and s share a variable.

e Partition the nodes P U O as follows. First, p € P and p’ € P are in the same subset iff there
isno s € S such that p <+ s or p’ <+ s. Second, p € P and o € O are in the same subset iff
0 < p, and there is no s € S and p' € P # p such that p <+ s and 0 <> p’ <> s. Some of the
resulting subsets will contain nodes from P; call these subsets Ki, ..., Ky. Other subsets
will consist only of nodes from Oj; let D be the union of all such subsets. (Note that there
may be multiple partitions consistent with these rules, in which case PARTITION returns one

arbitrarily.)

Figure 5: The ELIXIR query processing algorithm.
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similarity predicates S = {$b ~ $c}
ordinary predicates O = ()

patterns P = {<items.book>$b</> in "db.xml", <items.cd>$c</> in "db.xml"}
Next, the algorithm invokes the PARTITION subroutine to separate the pattern statements of ()1’s WHERE

clause so as to avoid computing unnecessary cross-products of the variables involved in similarity predicates.

PARTITION builds the graph shown in Figure 6(a), and then partitions P U O as:

K; = {<items.book>$b</> in "db.xml"}
K, = {<items.cd>$c</> in "db.xml"}
D =10

Intuitively, each K; represents operations that can be efficiently processed together, in the sense that
doing so does not generate unnecessary variable binding cross-products. In this example, the entire query
can be decomposed in this fashion, but in general there might be ordinary predicates that operate on the
same pairs of variables as the similarity predicates, so for the sake of efficiency these ordinary predicates
must be deferred until after the similarity predicates have been processed. The D subset contains precisely
the ordinary predicates that must be deferred in this manner.

As shown in Figure 7, the algorithm then generates two XML-QL Q% queries, one for each K;. Q3
retrieves books from the XML database, and Q3 retrieves CDs. The algorithm then generates the WHIRL
query @3, which applies @ g’s similarity predicate. (Note that in Figure 7 we finesse the distinction between
WHIRL’s relational input and output, and a straightforward XML encoding of these tables.) WHIRL then
generates the best r answers to this query. At this point, the correct data has been identified, but it is
stored in a relation rather than in the XML structure specified by @ g. The algorithm transforms this data
by copying the original CONSTRUCT clause in @5 to a final XML-QL query @4, which transforms WHIRL’s
output into the desired structure.

To understand why it is important to partition P U O, consider the alternative of creating one Q2 query

instead of Q% and Q3:

CONSTRUCT <tuple><b>$b</><c>$c</></>
alternative (J2: WHERE <items.book>$b</> in "db.xml",
<items.cd>$c</> in "db.xml"

alternative Q3: q3($b, $c) :- q2($b, $c), $b ~ $c.
This alternative approach does not scale well, because the output of )5 is the full cross-product of bindings
for $b and $c shown in Equation 2.
This first example query is relatively simple, because it contains just a single similarity predicate and no
ordinary predicates. We complete the presentation of the ELIXIR query processing algorithm by describing

how it would answer the following more complicated query:
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‘<i t ens. book>$b</ >

in "db.xm"
<items.cd>$c</ >
in "db.xm"
€Y
' $yb >= 1990 | <i tems. book year=$yb>$b</ >
! : in "db.xm" e
i Z } $b ~ $c
i b >= c+5
Sl Sy i <itens.cd year=$yc>$c</> |/ T
in "db.xm"
$b !'= $c ;
$yv < $yc /r' tens. VE geQd%§QL1:§yv>$v</ >%;'\$v ~ commi t ment s/
(b)

Key: ordinary operators'E [pattern statements] §'si milarity operators;f

Figure 6: Graphs generated by the PARTITION subroutine for two example queries.
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original ELIXIR query Q;

<resul ts> {
CONSTRUCT <i t enp$bh</ >

WHERE <itenms. book>$b</> in "db.xm",
<i tems.cd>$c</> in "db.xnl",

"db. xm "

<i t ens><book>Tr adi ti onal Ukrai ni an cookery</>
<book>Bei ng and not hi ngness</>
<book>Shoot i ng El vi s</>
<cd>Ukr ai nian fol k nmusic</>

$h ~ $c <cd>Bei ng there</>
} o</> <cd>M | k cow bl ues</></>
S
XML-QL query Q,t 7 A XML-QL query Q,?
<q21> { <q22> {

CONSTRUCT <t upl e><b>$b</ ></ >
WHERE <itens. book>$b</> in "db. xm"
} <>

CONSTRUCT <t upl e><c>$c</ ></ >
VWHERE <jitens.cd>$c</> in "db.xm"
} o</>

<g21><t upl e><b>Tradi ti onal
: <t upl e><b>Bei ng and not hi ngness</ ></ >
: <t upl e><b>Shooting El vi s</ ></></>

Ukr ai ni an cookery</></>

' <g22><t upl e><c>Ukr ai ni an fol k nusi c</></>

<tupl e><c>M | k cow bl ues</></></>

| | <t upl e><c>Bei ng t her e</ ></ > |

"« WHIRL query Q,
{[a3($b) :- q21($b), g22(%c), Sb ~ $c. |

: <g3><t upl e><b>Tradi ti onal Ukrai ni an cookery</></>
<t upl e><b>Bei ng and not hi ngness</ ></ ></>

XML-QL query Q,

<resul t s>

CONSTRUCT <i t em>$b</ >

WHERE <q3. tupl e><b>$b</></> in "q3. xni "
} </ >

Key
----» data flo .
—> Fnterme\a{ate queries

) A

.

final XML output p<r esul ts><itenpdTradi ti onal Ukraini an cookery</>

<i tenmpBei ng and not hi ngness</ ></>

Figure 7: The ELIXIR query processor efficiently generates an r-answer to a query Q1 by rewriting (1
into one or more XML-QL Q% queries, a WHIRL query @3, and a final XML-QL query Q4. Colored text

indicates which parts of ()1 are used to generate the intermediate queries.

CONSTRUCT <stuff
WHERE

book=$b cd=$c video=$v>

.book year=$yb>$b</> in "db.xml",
.cd year=$yc>$c</> in "db.xml",
<items.video year=$yv>$v</> in "db.xml",
$yb > $yc+5,

$yb > 1990,

$b = $c,

$yv < $yc,

$b ~ $c,

$V ~ "dog".

<items
<items

(This query is not intended to be sensible or useful, but merely to illustrate our query processing algorithm.)

Our query processor would first parse this query as follows:

CONSTRUCT clause C

similarity predicates S

<stuff book=$b cd=$c video=$v>

{$b ~ $C, $v ~ ”dog"}a
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ordinary predicates O = {$yb>$yc+5, $yb>1990, $b!=$c, $yv<$yc},

<items.book year=$yb>$b</> in "db.xml",
patterns P = <items.cd year=$yc>$c</> in "db.xml",

<items.video year=$yv>$v</> in "db.xml"

The PARTITION subroutine would construct the graph shown in Figure 6(b), and then return the following

partition:

= {<items.book year=$yb>$b</> in "db.xml", $yb>1990}
= {<items.cd year=$yc>$c</> in "db.xml"}
= {<items.video year=$yv>$v</> in "db.xml"}

= {$yb>$yc+5, $b!=$c, $yv<$yc}

This partition of PUO into D, K, K> and K3 expresses the fact that each type of item should be retrieved

separately: many of the items will be discarded when WHIRL computes an r-answer to (03 below, and thus

there is no point in computing a cross-product of the variable bindings only to have many of these bindings

discarded by WHIRL. For the same reason, the deferred ordinary predicates D—those predicates whose

variables span K; subsets —should be processed not in any Q% query (which would generate unnecessary

variable binding cross-products) but only in the WHIRL query Q3.

Finally, the algorithm generates the following five intermediate queries:

(OF

Q4

CONSTRUCT <tuple><b>$b</><yb>$yb</></>
WHERE <items.book year=$yb>$y</> in "db.xml",
$yb > 1990.

CONSTRUCT <tuple><c>$c</><yc>$yc</><v>$v</><yv>Pyv</></>
WHERE <items.cd year=$yc>$c</> in "db.xml".

CONSTRUCT <tuple><v>$v</><yv>$yv</></>
WHERE <items.video year=$yv>$v</> in "db.xml".

q3($b, $yb, $c, $yc, $v, $yv) :-

q21($b, $yb), q22($c, $yc), q23(3v, $yv),

$b ~ $c, $v ~ "dog", $yv < $yc, $yb > $yc+5, $b != $c.
CONSTRUCT <stuff book=$b cd=$c video=$v/>

WHERE <q3.tuple><b>$b</><yb>$yb</><c>$c</><yc>$yc</>
<v>$v</><yv>$yv</></> in "q3.xml".

Note that our algorithm rewrites an ELIXIR query as a three-stage pipeline, with PARTITION assigning

various parts of the query to each stage according to a fixed policy. However, as discussed in Section 6, this

particular policy may not always be optimal with respect to standard metrics such as the size of intermediate

data. In future work we will explore optimal query rewriting techniques.
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To summarize, our query processing algorithm rewrites the original ELIXIR query @, into a series, Q3,

.., QY of XML-QL queries that retrieve the XML data needed for later similarity-based ranking. Q1’s
ordinary predicates are evaluated in a Q% query if doing so would not require unnecessarily computing a
cross-product of variable bindings. Once the required data is retrieved and filtered as much as possible,
the WHIRL query Q3 generates the data needed to create an r-answer to ;. Finally, an XML-QL query
Q4 transforms @3’s output into the XML structure specified by query @);. We note that a straightforward
implementation of PARTITION runs in time O(|S|-|O| - |P])), and thus ELIXIR’s expressiveness adds a

negligible overhead to the underlying XML-QL and WHIRL query processors.

5 Experiments

Our ELIXIR query processing algorithm has been implemented in Java. In this section we report detailed
empirical results for thirteen queries against five XML databases; see Figure 8. We used version 0.9 of the
XML-QL query processor from AT&T Research and the University of Pennsylvania®, and version 1.6 of the
WHIRL query processor from AT&T Research?. The experiments were carried out on a 500MHz Pentium
IIT processor with 256MB of RAM running Red Hat Linux 6.2 and Sun’s Java 2 SDK version 1.3.

We used five XML databases widely discussed in the XML research community: the SIGMOD Record
table of contents®, the New Testament®, and Shakespeare’s” Macbeth, Julius Caesar, and Romeo and Juliet.
To give an indication of their size and complexity, Figure 8 lists, for each database, the size in bytes and
number of tags.

The queries in Figure 8 are ordered by the total CPU time required for processing. The first nine columns
describe the query itself. As an indication of the query’s complexity, we report the number of similarity joins,
simple (i.e. non-join) similarity predicates, and pattern statements in each query. The “y/” marks in columns
4-8 indicate which queries use which databases. The ninth column indicates the sum of the sizes of the input
databases for each query.

The final five columns indicate the performance of the query processing algorithm. Column ten indicates
the size of the intermediate data passed from the XML-QL Q% queries to the WHIRL Q3 query. Column
eleven gives the size of the final output generated by Q4. Note that the size of (?3’s output is approximately
the same as that final output from 4, so we do not report these values. Note also that the size of the
final output is largely determined by r, the number of answers requested; in all cases we use r = 20. The

final three columns list the CPU time required to answer each query: column twelve is the total CPU time

3http://www.research.att.com/sw/tools/xmlql
4http://whirl.research.att.com
Shttp://www.acm.org/sigmod/record /xml/index.html
6http://metalab.unc.edu/bosak/xml/eg/rel200.zip
“http://metalab.unc.edu/bosak/xml/eg/shak200.zip
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Figure 8: Performance of thirteen ELIXIR queries over five XML databases.

consumed by the Q% queries; column thirteen is the CPU time consumed by @y, and the last column gives
the total CPU time for the entire ELIXIR query. Note that the total CPU time reported includes the time
to rewrite the ELIXIR query into the Q%, Q3 and @4, as well as the time to execute @4, but these times are
negligible compared to the total and thus we do not report these values explicitly.

As an example of the queries used in our experiments, query 11 requests recent SIGMOD Record papers

titles, New Testament verses, and lines from Macbeth that are all similar:
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CONSTRUCT <similar><title>$t</><verse>$v</><1line>$1</></>
WHERE <SigmodRecord. issue>
<volume>$vol</>
<articles.article.title>$t</>
</> in "SIGMODRecord.xml",
<tsts.bookcoll.book.chapter.v>$v</> in "NewTest.xml",
<PLAY.ACT.SCENE.SPEEC.LINE.PCDATA>$1</> in "Macbeth.xml",
$vol > 24, $t ~ $v, $t ~ $1.

Answers discovered by ELIXIR include:

<similar>
<title>Opportunities in Information Management and Assurance.</>
<verse>And from that time he sought opportunity to betray him.</>
<line>But yet I’11 make assurance double sure,</></>

<similar>
<title>Size Separation Spatial Join.</>
<verse>But he that is joined unto the Lord is one spirit.</>
<line>To Ireland, I; our separated fortune</></>

<similar>
<title>Where Will Object Technology Drive Data Administration?</>
<verse>And there are differences of administrations, but the same Lord.</>
<line>Where?</></>

It is difficult to draw clear trends from the data in Figure 8, because query processing time depends, in
complex ways, on the details of each query and its input data. Note that the XML-QL Q% queries usually
dominates the total time to answer the query. This reflects the fact that the underlying process of parsing
and traversing the input XML data is expensive, even without any similarity predicates. In an attempt to
see how well our ELIXIR query processing algorithm scales, we now report the results for several families of
queries that result from varying one or more query parameters.

Our first experiment investigated how ELIXIR scales with the size of the intermediate data generated by
the Q% queries. To vary the size of the intermediate data, we modified query 6 from Figure 8:

CONSTRUCT <similar.title>$ti1</>
WHERE <SigmodRecord.issue>
<volume>$vi</>
<articles.article.title>$t1</>
</> in "SIGMODRecord.xml",
<SigmodRecord.issue>
<volume>$v2</>
<articles.article.title>$t2</>

</> in "SIGMODRecord.xml",
$vi > 24, $v2 > 24, $t1 ~ $t2.

By varying the volume threshold (24 in this query) we can vary the amount of intermediate data passed
from the XML-QL Q% queries to the WHIRL query Q3. As shown in Figure 9, the total time to process

these queries increases linearly with the size of the intermediate data.
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Figure 9: Total ELIXIR query processing time increases with the size of the intermediate data.

Our second experiment investigated how the number of answers, r, affects the performance of our ELIXIR
query processor. Figure 10 shows the results of systematically varying r from 1 to 50, for queries 10 and 11
from Figure 8. These data demonstrate that, for these queries, there is a marginal increase in total query
processing time as r increases.

A third experiment measured the effect of the numbers of similarity join predicates on the total ELIXIR
query processing time. We used four ELIXIR, queries, containing from one to four similarity join predicates.

The most complicated query was query 13 from Figure 8:
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Figure 11: Total ELIXIR query processing time increases linearly with the number similarity joins predicates.

CONSTRUCT <similar><title>$t</><verse>$v</><macb>$m</><jc>$j</><rj>$r</></>
WHERE <SigmodRecord.issue.articles.article.title>$t</>
in "SIGMODRecord.xml",
<tstmt.bookcoll.book.chapter.v>$v</>
in "NewTest.xml",
<PLAY.ACT.SCENE.SPEECH.LINE.PCDATA>$m</>
in "Macbeth.xml",
<PLAY.ACT.SCENE.SPEECH.LINE.PCDATA>$j</>
in "J_Caesar.xml",
<PLAY.ACT.SCENE.SPEECH.LINE.PCDATA>$r</>
in "Romeo_and_Juliet.xml",

$t ~ $v, $m ~ $j, $j ~ $r, $t ~ $m.
The other queries were formed by removing one similarity join at a time from this query. Figure 11 shows
that total ELIXIR, query processing time increases linearly with the number of similarity join predicates in

these queries.
To summarize, we have reported detailed performance results for a set of ELIXIR queries, and we have
systematically varied aspects of these queries in order to measure how well the algorithm scales. While we

have not yet conducted thorough experiments on a real-world distribution of queries, we conclude that the
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ELIXIR query processing algorithm scales reasonably well with a query’s size and complexity.

6 Discussion

Summary. We have described ELIXIR, an expressive and efficient language for XML IR. Inspired by the
WHIRL system, ELIXIR extends the existing XML query language XML-QL with a primitive similarity

“

operator “~” that orders the output according to textual similarity. Unlike previous efforts to integrate

keyword search into XML, ELIXIR both supports genuine ranked retrieval (the output is ordered according

)

to the similarity constraints stated in the query), and permits similarity joins (“~” can be applied to
two variables, rather than just a variable and a constant). ELIXIR is thus sufficiently expressive to be a
candidate for a general purpose XML IR query language. In this paper we have focused on XML data
retrieval, integration and transformation applications that involve text fragments that have not been or
cannot, be normalized.

As our experiments demonstrate, our ELIXIR query processing algorithm efficiently computes the best r
answers to a query. To do so, the algorithm rewrites the original ELIXIR query into a series of intermediate
XML-QL and WHIRL queries, and then executes them in sequence to generate an XML object that answers
the original ELIXIR query. Unlike systems that automatically map XML data to a relational model, ELIXIR
does not map the XML data per se, but only tuples of variable bindings. WHIRL then efficiently orders

these tuples of bindings according to the similarity predicates in the original ELIXIR query.

Future work We are currently exploring several open issues regarding ELIXIR and ranked XML query
languages.

Our implementation of ELIXIR extends the non-nested subset of XML-QL. We are currently extending
the implementation to handle nested queries. We envision a straightforward extension of our approach, with
nested queries simply invoking the ELIXIR query processor recursively.

Our implementation of ELIXIR was rather straightforward, since XML-QL is a relatively simple lan-
guage. We therefore are exploring the problems that will be encountered when we apply our ideas to more
complicated languages such as Quilt [CRF00] or XQuery [CFR01], the W3C draft standard XML query
language. Our intuition is that the rewriting process will be somewhat more complicated, but we think that
the fundamental ideas underlying our approach will remain relevant.

We have not yet explored optimization issues. The ELIXIR query processor follows a strict three-stage
approach to rewriting the original query, but this may be sub-optimal in some cases. For example, consider

a query that searches for books about Elvis that are similar to newer CDs:
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CONSTRUCT <book>$b</>

WHERE <items.book year=$yb>$b</> in "db.xml",
<items.cd year=$yc>$c</> in "db.xml",
$b ~ $c, $b ~ "elvis", $yb > $yc.

Should $yb > $yc be evaluated “early” (in one of the Q% queries) or “late” (in query Q3)? Our PARTITION
algorithm greedily defers such predicates until ()3, to avoid generating the full cross-product of book/CD
pairs. Suppose there are N books and M CDs in the database, and n < N books are published after some
CD, and m < M CDs are published before some book. Our current policy is optimal only if N + M < nm.
Note also that the current approach assigns both similarity predicates to a single WHIRL query J5. However,
if there are very few books about Elvis, then a better rewriting would be to generate one WHIRL query to
find such books, and then compare them to the CDs with a second WHIRL query. As shown in Figure 12,
we are exploring techniques for automatically searching the space of query rewritings in order to find one
that is optimal with respect to standard metrics such as intermediate data sizes.

Finally, we are interested in using ELIXIR to support a richer variety of information access tasks beyond
simple retrieval. For example, the IR community has explored techniques such as query reformulation and
relevance feedback to help users generate effective queries, and clustering techniques to help users visualize
large information spaces. It would be interesting to see whether ELIXIR could be used to extend such ideas

from sets of flat documents to structured XML text databases.
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