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ABSTRACT
The emergence of the Web has increased interests in XML
data. XML query languages such as XQuery and XPath
use label paths to traverse the irregularly structured data.
Without a structural summary and efficient indexes, query
processing can be quite inefficient due to an exhaustive traver-
sal on XML data. To overcome the inefficiency, several path
indexes have been proposed in the research community. Tra-
ditional indexes generally record all label paths from the
root element in XML data. Such path indexes may result in
performance degradation due to large sizes and exhaustive
navigations for partial matching path queries start with the
self-or-descendent axis(“//”).

In this paper, we propose APEX, an adaptive path index
for XML data. APEX does not keep all paths starting from
the root and utilizes frequently used paths to improve the
query performance. APEX also has a nice property that it
can be updated incrementally according to the changes of
query workloads. Experimental results with synthetic and
real-life data sets clearly confirm that APEX improves query
processing cost typically 2 to 54 times better than the exist-
ing indexes, with the performance gap increasing with the
irregularity of XML data.

1. INTRODUCTION
The Extensible Markup Language (XML) is becoming the

dominant standard for exchanging data over the World Wide
Web. Due to its flexibility, XML is rapidly emerging as
the de facto standard for exchanging and querying docu-
ments on the Web required for the next generation Web
applications including electronic commerce and intelligent
Web searching. XML data is an instance of semistructured
data [1]. XML documents comprise hierarchically nested
collections of elements, where each element can be either
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atomic (i.e., raw character data) or composite (i.e., a se-
quence of nested subelements). Tags stored with elements
in an XML document describe the semantics of the data.
Thus, XML data, like semistructured data, is hierarchically
structured and self-describing.

Several XML query languages [2, 4, 6, 7, 10] have been also
proposed recently. XML Query languages such as XPath [7]
and XQuery [4] use path expressions to traverse irregularly
structured XML data. Thus, the navigation of irregularly
structured graph is one of essential components for process-
ing XML queries. Since the objects may be scattered at
different locations in the disk, processing XML queries may
result in significant performance degradation. Furthermore,
query processing with a label path for partial matching is
very inefficient due to the navigation of an entire XML data
graph. However, structural summaries or path indexes can
speed up query evaluation on XML data by restricting the
search to only relevant portions of the XML data. Thus,
the extraction of the structural summary and index struc-
tures for the semistructured data in order to improve the
performance of query processing have received a lot of at-
tention recently. Examples of such index structures include
DataGuides [13], T-indexes [18], the Index Fabric [8], and
extensions of inverted indexes [16, 22]. The details on these
index structures are described in Section 2.

DataGuides and 1-indexes are in the category of general-
ized path indexes that represent all paths starting from the
root in XML data. They are generally useful for process-
ing queries with path expressions starting from the root.
However, these indexes are very inefficient for processing
queries with partial matching due to the exhaustive navi-
gation of the indexes. Furthermore, these path indexes are
constructed with the use of data only. Therefore, they do
not take advantages of query workloads to process frequently
used path expressions effectively.

Our Contributions. In this paper, we propose APEX
which is an Adaptive Path indEx for XML data. APEX
does not keep all paths starting from the root and utilizes
frequently used paths to improve the query performance. In
contrast to the traditional indexes such as DataGuides, 1-
indexes and the Index Fabric, it is constructed by utilizing
the data mining algorithm to summarize paths that appear
frequently in the query workload. APEX also guarantees
to maintain all paths of length two so that any label path
query can be evaluated by joins of extents in APEX with-
out scanning original data. APEX has the following novel
combination of characteristics to improve the performance



of processing queries.

• Efficient Processing of Partial Matching Queries:
Since existing path indexes keep all label paths from
the root element, they are efficient to handle queries
with a simple path expression which is a sequence of la-
bels starting from the root of the XML data. However,
partial matching queries with the self-or-descendent
axis(“//”) should be rewritten to queries with sim-
ple path expressions. In contrast to traditional path
indexes, APEX is designed to support these path ex-
pressions efficiently.

• Workload-Aware Path Indexes: Traditional path
indexes for semistructured data are constructed with
the use of data only. Therefore, it is very difficult
to tune the indexes toward efficient processing of fre-
quently used queries. In APEX, frequently used path
expressions in query workloads are taken into account
using the sequential pattern mining technique [3, 12]
so that the cost of query processing can be improved
significantly.

• Incremental Update: When we decide to rebuild
APEX due to the change of query workloads, we do
not build APEX from the scratch. Instead, APEX is
incrementally updated in order to minimize the over-
head of construction.

We implemented our APEX and conducted an extensive
experimental study with both real-life and synthetic data
sets. Experimental results show that APEX improves query
processing cost typically 2 to 54 times better than the exist-
ing indexes, with the performance gap increasing with the
irregularity of XML data.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we present
the data model and basic notations for APEX. We present
an overview of APEX in Section 4 and describe the construc-
tion algorithms for APEX in Section 5. Section 6 contains
the results of our experiments, showing the effectiveness and
comparing the performance of APEX to traditional path in-
dexes. Finally, Section 7 summarizes our work.

2. RELATED WORK
Many database researchers developed various path indexes

to support label path expressions. Goldman and Widom [13]
provided a path index, called the strong DataGuide. The
strong DataGuide is restricted to a simple label path and
is not useful in complex path queries with several regu-
lar expressions [18]. The building algorithm of the strong
DataGuide emulates the conversion algorithm from the non-
deterministic finite automaton (NFA) to the deterministic
finite automaton (DFA) [14]. This conversion takes linear
time for tree structured data and exponential time in the
worst case for graph structured data. Furthermore, on very
irregularly strucutured data, the strong DataGuide may be
much larger than the original data.

Milo and Suciu [18] provided another index family (1/2/T-
index). Their approach is based on the backward simulation
and the backward bisimulation which are originated from
the graph verification area. The 1-Index coincides with the
strong DataGuide on tree structured data. The 1-Index can

be considered as a non-deterministic version of the strong
DataGuide.

In object-oriented databases, access support relations [15]
are used to support frequently used reference chains between
two object instances. Therefore, it materializes access paths
of arbitrary lengths and thus it can be used for indexing
XML documents. Note that access support relations and
the T-index support only predefined subsets of paths.

Cooper et al. [8] presented the Index Fabric which is con-
ceptually similar to the strong DataGuide in that it keeps
all label paths starting from the root element. The Index
Fabric encodes each label path to each XML element with a
data value as a string and inserts the encoded label path and
data value into an efficient index for strings such as the Pa-
tricia trie. The index block and XML data are both stored
in relational database systems. The evaluation of queries en-
codes the desired path traversal as a search key string and
performs a lookup. The Index Fabric loses the parent-child
relationships among elements since it does not keep the in-
formation of XML elements which do not have data values.
Thus, the Index Fabric is not efficient for processing partial
matching queries.

Many queries on XML data has the partial matching path
expression because users of XML data may not be concerned
with the structure of data and intentionally make the partial
matching path expression to get intended results. Since the
strong DataGuide, the 1-Index, and the Index Fabric record
only paths starting from the root in the data graph, the
query processor rewrites partial matching path queries into
the queries with simple path expressions by the exhaustive
navigation of index structures [11, 17]. This results in per-
formance degradation. In contrast, APEX is constructed
from label paths which are frequently used in the query
workload. Thus, APEX is very effective for queries with
partial matching expressions.

3. PRELIMINARY
In this section, we describe our representation of XML

data and define some basic notations to explain our proposed
index.

As shown in Figure 1, we represent the structure of XML
data as the labeled directed graph which is similar to the
OEM model [21]. Particularly, two particular attributes, ID
and IDREF, allow us to represent the structure of XML data
as a graph.

Definition 1. The structure of XML data is represented
by the directed labeled edge graph GXML. GXML = (V, E,
root, A), V = Vc ∪ Va where Vc is the universe of non-leaf
nodes and Va is the universe of leaf nodes, E ⊆ Vc ×A× V
where A is the universe of labels, root ∈ V is the root of
GXML. Each node in GXML has a unique node identifier
(nid).

Since XML elements are ordered and the results of XML
queries must be in document order, each node keeps the
document-order information. And nodes returned by the
index are sorted using this information as a post-processing
step. As shown in Figure 1, the reference relationship (i.e.,
ID-IDREF) is represented as a edge from a node for an
IDREF typed attribute to a node for an element which has
the corresponding ID typed attribute. In addition, the la-
bel of the edge from an element to IDREF typed child node



<MovieDB>
<actor id = “a1”>

<name> actor1 </name></actor>
<actor id = “a2” ,movie = “m1”>

<name> actor2 </name></actor>
<director id = “d1”>

<name> director1</name>
<movie id = “m1” director = “d1”> 

<title> movie2 </title></movie></director>
<director id = “d2”>

<name> director2</name></director>
<movie id = “m2” actor = “a1” , director = “d2”>

<title> movie1</title></movie>
</MovieDB>

(a) XML data
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(b) Representation of XML data structure

Figure 1: A sample XML data

starts with ’@’ and the edge for the reference relationship
has the normal tag, which is the tag for the target node, as
it label.

Definition 2. A label path of a node o in GXML, is a se-
quence of one or more dot-separated labels l1.l2 . . . ln, such
that we can traverse a path of n edges (e1 . . . en) from o,
where the edge ei has the label li.

In Figure 1, movie.title and name are both valid label
paths of node 7. In XML data, queries are based on label
paths such as //movie/title.

Definition 3. A data path of a node o in GXML is a dot-
separated alternating sequence of labels and nids of the form
l1.o1.l2.o2 . . . ln.on, such that we can traverse from o a path
of n edges (e1 . . . en) through n nodes (x1 . . . xn), where the
edge ei has the label li and the node xi has the nid oi.

In Figure 1, movie.8.title.10 and name.11 are data paths
of node 7.

Definition 4. A data path d is an instance of a label path
l if the sequence labels made from d by eliminating nids is
equal to l.

Again in Figure 1, movie.8.title.10 is an instance of movie.title
and name.11 is an instance of name.

Definition 5. A label path A = a1.a2 . . . an is contained in
another label path B = b1.b2 . . . bm if we have a1 = bi, a2 =
bi+1, . . . , an = bi+n−1 where 1 ≤ i and i+n−1 ≤ m. When
A is contained in B, we also call that B contains A or A is
a subpath of B. Furthermore, when A is a subpath of B and
m = i + n− 1, we call that A is a suffix of B.

For example, the label path movie is a subpath of movie.title.
And, the label path title is a suffix of movie.title.

4. OVERVIEW OF APEX
In this section, we propose an example and the formal

definition of APEX.
An example of APEX for Figure 1 is shown in Figure 2

when the required paths = A ∪ {director.movie, @movie.movie,
actor.name} (see Definition 6). It is not necessary to know
how to construct APEX at this point. The purpose of this
example is to help understanding the definitions in this sec-
tion.

As shown in Figure 2, APEX consists of two structures
: a graph structure (GAPEX) and a hash tree (HAPEX).
GAPEX represents the structural summary of XML data. It
is useful for query pruning and rewriting. HAPEX represents
incoming label paths to nodes of GAPEX . HAPEX consists
of nodes, called the hnode and each hnode contains a hash
table. In an hnode, each entry of the hash table points to
another hnode or a node of GAPEX but not both. That
is, each node of GAPEX maps to an entry of an hnode of
HAPEX . HAPEX is a useful structure to find a node of
GAPEX for given label path. Furthermore, HAPEX is useful
at the incremental update phase (see details in Section 5.2).
Also, each node of GAPEX corresponds to an extent. The
extent is similar to the materialized view in the sense that
it keeps the set of edges whose ending nodes are the result
of a label path expression of the query.

The strong DataGuide and the 1-Index of Figure 1 are
shown in Figure 3. Note that, the strong DataGuide is larger
than the original data and the 1-Index is equal to the struc-
ture graph of XML data. The following XPath query q1 is
an example query that retrieves all actors’ names.

q1: //actor/name

To compute q1 on the strong DataGuide in Figure 3(a),
the edge lookup occurs 14 times on the index structure to
prune and rewrite q1 at compile-time [17]. The query pro-
cessor obtains the extent for MovieDB.actor.name. The be-
havior of query processor on the 1-Index is similar to that
of the strong DataGuide.

However, APEX in Figure 2 is very efficient to compute
q1 since the query processor just looks up the hash tree with
actor.name in the reverse order. That is, the hash tree of
APEX enables efficient finding of the nodes of GAPEX for
partial matching path queries.

Since making an effective index structure for all the queries
is very hard, APEX changes its structure according to the
frequently used paths. To extract frequently used paths,
we assume that a database system keeps the set (= work-
load) of queries (=label paths). Furthermore, we adopt the
support concept of the sequential pattern mining to identify
frequently used paths [3, 12].
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Figure 3: Path indexes for the sample XML data

Let the support of a label path p = li . . . lj , denoted by
sup(p), be the ratio of the number of queries having p as
a subpath to the total number queries. Also, let minSup

denote the user-specified minimum support.

Definition 6. A label path p = li . . . lj in GXML is a fre-
quently used path if sup(p) ≥ minSup. Let p be a required
path if it is either a frequently used path or the length of p
is one.

Definition 7. For a label path p of the form li.li+1 . . . lj in
GXML, a edge set, T (p), is { < oj−1, oj > | li.oi . . . lj−1.oj−1.
lj .oj is a data path in GXML }. That is, a edge set T (p) is a
set of pairs of nids for the incoming edges to the last nodes
that are reachable by traversing a given label path p.

For example, the edge set T (title) in Figure 1 is {<8,10>,
<14,17>}. Label paths from root to 10 and 17 are MovieDB
.movie.title, MovieDB.director.movie.title, MovieDB.actor.
@movie.movie.title, MovieDB.director.movie.@director.director.
movie.title, . . . . And, the common suffix of these label
paths is “title”.

Definition 8. Given a required path set R, a label path
p ∈ R is a maximal suffix in R if there is no path q ∈ R of
which p is a suffix except p.

For example, in Figure 2, we assume that the required
paths = A ∪ {director.movie, @movie.movie, actor.name}.
In this case, actor.name is a maximal suffix in the required
paths since a required path whose suffix is actor.name does
not exist except actor.name.

Definition 9. Let QXML be a set of label paths of the root
node in GXML. For each label path p in the required path
set R, let QG(p) = { l | l ∈ QXML s.t. p is a suffix of
l}, let QA(p) = { l | l ∈ QXML s.t. every path q ( 6=
p ) ∈ R having p as a suffix is a suffix of l }, and let
Q(p) = QG(p)−QA(p). Finally, a target edge set, T R(p) =
∪r∈Q(p)T (r).

Consider a subset of required paths Q = { q | q = li . . .
lj whose common suffix is p = lk . . . lj}. That is, p is not



a maximal suffix in the required paths. Since T (q) ⊆ T (p),
making each edge set T (q) and T (p) increases the storage
overhead. Thus, we make T R(p) instead of T (p). Note that,
if p is a maximal suffix in the required paths, T (p) = T R(p)
since QA(p) = {}. If p is not a maximal suffix in the required
paths, T R(p) is pointed to by a remainder entry of HAPEX .

Again in Figure 2, we assume that name and actor.name
are required paths. Thus, as shown in Figure 1, T (actor.name)
= {<2,3>, <4,5>}, and T (name) = {<2,3>, <4,5>, <7,11>,
<12,13>}. In this case, T R(actor.name) = T (actor.name)
since QA(actor.name) = {}.

However, T (name) 6= T R(name). By definition 9, QG(name)
= {MovieDB.director.name, MovieDB.actor.name, MovieDB.
movie.@actor.actor.name, . . . }, and QA(name) = {MovieDB.
actor.name, MovieDB. movie.@actor.actor.name } since ac-
tor.name is a required path and has name as a suffix. Then
Q(name) = {MovieDB.director.name, MovieDB.director.movie.
@director.director.name, . . . }. Thus, T R(name) = {<7,11>,
<12,13>}.

Now, we will define APEX.

Definition 10. Given a GXML and a required path set R,
APEX can be defined as follows. We introduce the root
node of GAPEX , xroot in APEX which corresponds to the
root node of GXML. By considering every required path p ∈
R, we introduce a node of GAPEX , with an incoming label
path p, that keeps T R(p) as an extent only if T R(p) is not
empty. For each edge v.l.v′ in GXML, there is an edge x.l.x′

in APEX where the target edge set of x′ contains < v, v′ >
and the target edge set of x contains < u, v > where u is a
parent node of v.

The following theorem proves that APEX is sufficient for
the path index. By the definition of the simulation [5], if
there is a simulation from GXML to GAPEX , all the label
paths on GXML exist on GAPEX . Thus, all queries based
on label paths can be evaluated on APEX.

Theorem 1. There is a simulation from GXML to GAPEX .

Proof. Given GAPEX = (Vx, Ex, xroot, A) and GXML =
(V, E, r, A), there is a simulation from r to xroot. Suppose,
there is a simulation from v ∈ V to x ∈ Vx, a full label path
q to v is l1 . . . lm, and ∃ v.lm+1.v

′ ∈ E. By Definition 10,
there is a node x’ for T(p’ = li . . . lm+1 where 1 ≤ i ≤ m)
whose incoming path is p’, and ∃ x.lm+1.x

′ ∈ Ex. Therefore,
there is a simulation from GXML to GAPEX .

Furthermore, GAPEX satisfies the following theorem.

Theorem 2. All the label paths whose lengths are 2 on
GAPEX are on GXML.

Proof. Recall that APEX groups the edges with respect
to the incoming label paths. By Definition 10, ∀ edge x.lj .x

′

∈ Ex, ∃ v.lj .v
′ ∈ E. By Definition 6, an incoming label path

of x is a label of incoming edge of x. Therefore, by letting
the label of incoming edge of u be li, the label path li.lj
exists on GXML.

APEX is a general path index since APEX minimally
keeps all the label paths whose length is 2 and maximally
keeps all the label paths on GXML corresponding to the
frequently used paths. Thus, any label path query can be
evaluated by look-up of HAPEX and/or joins of extents.

5. CONSTRUCTION AND MANAGEMENT
OF APEX

The architecture of the APEX management tool is illus-
trated in Figure 4. As shown in the figure, the system con-
sists of three main components: the initialization module,
the frequently used path extraction module and the update
module.

FrequentlyUsed Path Extraction Moduleworkload

Update Module

APEX

Initialization Module

APEX0

Figure 4: Architecture of APEX Management tool

The initialization module is invoked without query work-
loads only when APEX is built first. This module generates
APEX0 that is the simplest form of APEX and is used as
a seed to build a more sophisticated APEX. As the query
workload is collected with the use of the current APEX,
the frequently used paths are computed and used to update
the current APEX dynamically into a more detailed version
of APEX. The last two steps are repeated whenever query
workloads changes.

5.1 APEX0: Initial Index Structure
APEX0 is the initial structure to build APEX. This step

is executed only once at the beginning. Since there is no
workload at the beginning, the required path set has paths
of size one that is equivalent to the set of all labels in the
XML data.
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Figure 5: An example of APEX0

An example of the APEX0 for the XML data in Figure 1
is presented in Figure 5. The structure of APEX0 is sim-
ilar to the 1-Representative Object (1-RO) proposed as a
structural summary in [19]. As 1-RO contains all paths of
size two in the XML data, APEX0 includes every required
path of size two. However, in APEX, we have not only the



structural summary in GAPEX but also the extents in the
nodes of GAPEX .

The algorithm of building APEX0 is shown in Figure 6.
Each node in APEX0 represents a set of edges that have the
same incoming label. Basically, we traverse every node in
XML data (GXML) in the depth first fashion. We first visit
the root node of XML data (GXML) and generate the root
node for GAPEX first. We add an edge <NULL,root > to
the extent of the root node in GAPEX . Since each node in
GAPEX represents a unique label and there is no incoming
label for the root node of APEX, we represent the root node
with a special incoming label ’xroot’ for convenience. We
then call the function exploreAPEX0 with the root node
in GAPEX and the extent of the root node in GAPEX .

Procedure buildAPEX0(root)
begin
1. xnode := hash(‘xroot’)
2. xnode.extent := {< NULL, root >}
3. exploreAPEX0(xnode, xnode.extent)
end

Procedure exploreAPEX0(x, ∆ESet)
begin
1. ESet := ∅
2. for each < u, v >∈ ∆ESet do
3. ESet := ESet ∪ {o | o is an outgoing edge from v}
4. for each unique label l in ESet do {
5. y := hash(l)
6. if (y = NULL) {
7. y := newXNode()
8. insert y into hash table
9. }
10. make edge(x, y, l)
11. ∆newESet := a set of edges having l in ESet - y.extent
12. y.extent := y.extent ∪ ∆newESet
13. exploreAPEX0(y, ∆newESet)
14. }
end

Figure 6: An algorithm to build APEX0

In each invocation of exploreAPEX0, we have two input
arguments: the newly visited node x in GAPEX and new
edges just added to the extent of x in the previous step. We
traverse all outgoing edges from the end point of the edges
in ∆ESet and group them by labels. Then we process edges
in each group having the same label l one by one. Let us
assume that the node representing the label l in GAPEX is
y.

Intuitively, we need to put the edges having the label l to
the extent of y and connect x and y in GAPEX . Then, we
call exploreAPEX0 recursively with y and the newly added
edges to the extent of y. We give only newly added edges at
this step as ∆ESet for recursive invocation of exploreAPEX0
since the outgoing edges from the edges included previously
to the extent have been all traversed already.

When we consider the edges for each partition with a dis-
tinct label, we have to check whether the node y exists al-
ready. To find this, we can maintain a hash table and use
it. In case, the node y for the label l does not exist, we
generate a new node and put it to GAPEX . We also make
sure that the new node can be located quickly by inserting
the node into HAPEX . The hash at Line (5) in Figure 6
is the hash function which returns a node for a given label.
The procedure make edge makes an edge from x to y with

label l. For preventing the infinite traversal of cyclic data,
we do not consider the edges which are already in the extent
of the node y.

5.2 Frequently Used Path Extraction
Any sequential pattern mining algorithms such as the one

in [3, 12] may be used to extract frequently used paths
from the path expressions appearing in the query work-
load. While we need to use the traditional algorithms with
the anti-monotonicity property [20] for pruning, we have to
modify them.

Consider a mail order company. Assume that many cus-
tomers buy A first, then B and finally C. In the traditional
sequential pattern problem, when a sequence of (A, B, C)
is frequent, all subsequences of size 2 (i.e.,(A, B), (A, C)
(B, C)) including (A, C) are frequent. However, for the
problem of finding frequently used path expressions, it is
not valid any more. In other words, even though the path
expression of A.B.C is frequently used, the path expression
of A.C may not be frequent. Therefore, in case that we
want to use traditional data mining algorithms which use
the anti-monotonicity pruning technique, we need a minor
modification to handle the subtle difference.

Actually, we also found that the size of the query work-
load is not so large as that of data for sequential pattern
mining applications. Thus, we used a naive algorithm in
our implementation that simply counts all sequential subse-
quences that appear in the query workload by one scan.
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Figure 7: The behavior of frequently used path ex-
traction



The basic behavior of the frequently used path extraction
module is described in Figure 7. Suppose that the required
path set was {A, B, C, D, B.D}. Then, the current state
of HAPEX is represented as Figure 7-(a). A label path B.D
is represented as an entry in the subnode of D entry in the
root node(HashHead) of HAPEX .

Each entry of hash table in a node of HAPEX consists
of five fields: label, count, new, xnode, and next. The label
field keeps the key value for the entry. The count field keeps
the frequency of label path which is represented by the en-
try. The new field is used to check a newly create entry in a
node of HAPEX . The xnode field points to a node in GAPEX

whose incoming label path is represented by the entry. Fi-
nally, The next field points another node in HAPEX . For
simplicity, we omit new fields in Figure 7.

Let the workload Qworkload become {A.D, C, A.D}. We
first count the frequency of each label path which appeared
in Qworkload and store the counts in HAPEX . When we
count, we do not use the remainder entry for counting. Fig-
ure 7-(b) shows the status of HAPEX after the frequency
count.

Finally, we prune out the label paths whose frequency is
less than minSup. The status of HAPEX after pruning is
illustrated in Figure 7-(c). Assume that minSup is 0.6, the
label path whose frequency is less than 2 is removed. Thus,
a label path B.D is pruned. However, label paths B and
C still remain since a label path of size 1 is always in the
required path set. Also, in the pruning step, the xnode fields,
which are not valid any more by the change of frequently
used paths, are set to NULL. The content for T R(D) in
Figure 7-(a) representing remainder.D in HAPEX is the set
of edges whose end nodes are reachable by traversing a label
path D but not B.D. However, the content for T R(D) in
Figure 7-(c) should be changed to the set of edges whose
end nodes are reachable by traversing a label path D but
not A.D. Thus, we set this remainder entry to NULL to
update it later.

The algorithm of frequently used path extraction is pre-
sented in Figure 8. To extract frequently used paths in the
given workload (Qworkload), the algorithm first sets count
fields to 0 and new fields to FALSE of all entries in HAPEX .

The algorithm consists of two parts; the first part counts
frequencies and the second part is the pruning phase. HAPEX

is used to keep the change of the workload. The algo-
rithm invokes the procedure frequencyCount to count the
frequency of each label path and it’s subpaths in Qworkload.
In this procedure, the new field of a newly created entry in
a node in HAPEX sets to TRUE to identify a newly created
entry in a node in HAPEX during pruning phase.

The function pruningHAPEX removes the hash entry whose
frequency is less than the given threshold minSup(Line (4)-
(5)). Even though the frequency of an entry in the root
node (HashHead) of HAPEX is less than minSup, it should
not be removed since a label path of size 1 should be always
in the required path set by Definition 6. If the frequency
of an entry of the node in HAPEX is less than minSup and
the entry is not in the root node, the entry is removed from
the hash node by the function hnode.delete (Line (6)-(7)). If
all entries in a node of HAPEX except remainder entry are
removed by the function hnode.delete, hnode.delete returns
TRUE. And then we remove this node of HAPEX (Line (10)-
(11)).

Finally, it sets the xnode field to NULL because it points

Procedure frequentlyUsedPathExtraction()
begin
1. reset all count fields to 0 and new fields to FALSE
2. frequencyCount()
3. pruningHAPEX(HashHead)
end

Function pruningHAPEX(hnode)
begin
1. is empty := FALSE
2. if hnode = NULL return is empty
3. for each entry t ∈ hnode do
4. if (t.count < minsup) {
5. t.next := NULL
6. if (t 6∈ HashHead) {
7. is empty := hnode.delete(t)
8. }
9. } else {
10. if (pruningHAPEX(t.next) = TRUE)
11. t.next := NULL
12. if (t.next 6= NULL) and (t.xnode 6= NULL)
13. t.xnode := NULL
14. if (t.new = true) and (hnode.remainder.xnode 6= NULL)
15. hnode.remainder = NULL
16. }
17. }
18. return is empty
end

Figure 8: Frequently Used Path Extraction Algo-
rithm

to the wrong node in GAPEX . As mentioned early, contents
of some nodes of GAPEX may be affected by the change
of frequently used paths. There are two cases. A label
path q was maximal suffix previously but it is not anymore.
This is captured by that an entry has not NULL value in
both xnode and next fields (Line (12)-(13)). In this case, the
algorithm sets the xnode field to NULL to update the xnode
field appropriately later. The second case is when a new
frequently used path influences the contents of the node of
GAPEX for the remainder entry in the same node of HAPEX

since the contents of remainder is affected by the change of
frequently used path. This is represented by the following :
a new entry appears in the node of HAPEX , and remainder
entry in this node points to a node in GAPEX using the
xnode field (Line (14)-(15)). In this case, the algorithm sets
the content of the xnode field in remainder entry to NULL
to update it later.

5.3 The Update with Frequently Used Paths
After the entries in HAPEX was updated with frequently

used paths computed from the changes of the query work-
load, we have to update the graph GAPEX and xnode fields
of entries in the nodes of HAPEX that locates the corre-
sponding node in GAPEX .

Each entry in a node of HAPEX may have a pointer to an
another node of HAPEX in the next field or a pointer to the
node of GAPEX in the xnode field, but the entry may not
have non-NULL value for both next and xnode fields. If the
entry of a node n in HAPEX has a pointer to another node
m of HAPEX , there exists a longer frequently used path
represented in m whose suffix is represented by the entry in
the node n of HAPEX . For example, consider the example
of APEX in Figure 11-(b). The next field of the entry for
the label D in HAPEX points to a node that has two entries;



Procedure updateAPEX(xnode, ∆ESet, path)
begin
1. if (xnode.visited = TRUE) and (∆ESet = ∅), return
2. xnode.visited := TRUE
3. EdgeSet := ∅
4. if ∆ESet = ∅ {
5. for each e that is an outgoing edge of xnode do {
6. newpath := concatenate(path, e.label)
7. xchild := hash(newpath)
8. if (xchild = NULL) xchild := newXNode()
9. if (xchild != e.end) {
10. if (EdgeSet = ∅) {
11. for each < u, v > ∈ xnode.extent do
12. EdgeSet := EdgeSet ∪ {o | o is an outgoing edge from v}
13. }
14. subEdgeSet := a set of edges with the label e.label in EdgeSet
15. ∆EdgeSet := subEdgeset - xchild.extent
16. xchild.extent := xchild.extent ∪ ∆EdgeSet
17. make edge(xnode, xchild, e.label);
18. hash.append(newpath, xchild);
19. }
20. else ∆EdgeSet := ∅
21. updateAPEX(xchild, ∆EdgeSet, newpath);
22. }
23. } else {
24. for each < u, v > ∈ ∆ESet do
25. EdgeSet := EdgeSet ∪ {o | o is an outgoing edge from v}
26. for each unique label l in EdgeSet do {
27. newpath := concatenate(path, e.label)
28. xchild := hash(newpath)
29. if (xchild = NULL) xchild := newXNode()
30. subEdgeSet := set of edges labeled l in EdgeSet
31. ∆EdgeSet := subEdgeset - xchild.extent
32. xchild.extent := xchild.extent ∪ ∆EdgeSet
33. make edge(xnode, xchild, l)
34. hash.append(newpath, xchild)
35. updateAPEX(xchild, ∆EdgeSet, newpath);
36. }
37. }
end

Figure 9: An algorithm to update APEX

one is for the path A.D and the other one is for the rest of
paths ending with D except A.D. Recall that the paths are
represented in HAPEX in reverse order. If the xnode field
in the entry of a node n in HAPEX points to a node g in
GAPEX , the extent of g has edges with incoming label path
represented by the entry in n.

The basic idea of update is to traverse the nodes in GAPEX

and update not only the structure of GAPEX with frequently
used paths but also the xnode field of entries in HAPEX .
While visiting a node in GAPEX , we look for the entry of
the maximum suffix path in HAPEX from the root to the
currently visiting node in GAPEX . Note that an entry for
the maximum suffix path always exists in HAPEX since the
last label of the path to look for in HAPEX always exists by
the definition of the required path (See Definition 6).

�
ESet, path1

x

…
l1 l2

ln

y

Figure 10: Visiting a node by updateAPEX

Now, we present the updateAPEX in Figure 9 that does
the modification of APEX with frequently used paths stored
in HAPEX . Before calling the updateAPEX, we first ini-
tializes visited flags of all nodes in GAPEX to FALSE. The
updateAPEX is executed with the root node in GAPEX by
calling updateAPEX(xroot, ∅, NULL) where xroot is the
root node of GAPEX .

Suppose that we visit a node x in GAPEX with a label
path path1 and a edge set ∆ESet as illustrated in Figure
10. ∆ESet is a newly added edges to the extent of x just
before visiting the current node. If x was previously visited
and ∆ESet is empty, then we do nothing since all edges and
their subgraphs of x were traversed before (Line (1)). If x
is newly visited and ∆ESet is empty, we should traverse all
outgoing edges of x in Gxml to verify the all subnodes of x
according to HAPEX . For each ending vertex (i.e. e.end) in
the outgoing edges of the visiting node in GAPEX , we get
the pointer xchild that represent a node in GAPEX with the
maximum suffix stored in HAPEX of the label path to the
visiting node from the root by calling hash function (Line
(6)-(7)). If the value of xchild is NULL, it means that the
valid node in GAPEX does not exist. Thus, we allocate a
new node of GAPEX and set to xchild (Line (8)). If xchild
is not NULL, the entry in HAPEX points to node in GAPEX
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Figure 11: An example for updateAPEX

for a given label path. Thus, we insert the edge set to the
extent of xchild.

If xchild and e.end are different, we compute edge set
which should be added to xchild (Line (10)-(14)). We insert
the newly added edges in the extent of xchild to ∆EdgeSet
and update the extent of xchild (Line (15)-(16)). We next
make edge by invoking make edge from this xnode to xchild
with label e.label, if the edge does not exist, and set xchild
to HAPEX with the given label path by calling make edge
(Line (17)-(18)). If xnode has an outgoing edge to a node
in GAPEX which is different from xchild with label e.label,
make edge removes this edge. If xchild and e.end are equal,
there is no change of the extent of the node xchild (Line
(20)). Thus, ∆ESet is set to empty set. Now, we call up-
dateAPEX recursively for the child node xchild.

Whether a xnode is previously visited or not, if there is a
change of the extent of it, we should update the subgraph
rooted at xnode (Line (23)-(37)). In this case, we obtains
outgoing edges from the end point of edges in ∆ESet (Line
(24)-(25)). In order to update the subgraph rooted at xnode,
we partition the edges based on the labels of edges in ∆ESet
and update HAPEX and GAPEX similarly as we processed
for the case when ∆ESet was empty set. (Line (26)-(36)).

Let us consider the HAPEX , GAPEX and GXML in Fig-
ure 11-(a) and Figure 11-(b). Assume that we invoke up-

dateAPEX (xroot, ∅, NULL). Since the ∆ESet is empty,
the code in Line (4)-(23) in Figure 9 will be executed. Since
there is only one outgoing edge with the label A and the end-
ing node &1, we check the entry with HAPEX for the path of
A. The xnode field of the entry returned by hash points the
node &1. Thus, we do nothing and call updateAPEX(&1, ∅,
A) recursively. This recursive call visits the node &1 with
label path A. We have three outgoing edges from the node
&1. Suppose we consider the node &2 first in the for-loop
in line (5). We check the entry in HAPEX with the path of
A.B and find that the entry points to the node &2. Thus,
we do nothing again and invoke updateAPEX(&2, ∅, A.B)
recursively. Inside of this call, we checks outgoing edges of
&2. As illustrated in Figure 11-(b), the end node of an out-
going edge of &2 with label D is &4. However, for the input
of A.B.D, hash returns NULL that is the xnode field of the
entry for remainder.D, which should point to the node in
GAPEX representing all label paths ending with D except
A.D. Thus, we make a new node &6 for remainder.D, com-
pute extent of &6 and change an outgoing edge of &2 with
label D to point out &6. Since there is no outgoing edge, we
return back to &1 from recursive call. We next consider the
outgoing edge with end node of &5 with label A.D from &1.
The HAPEX and GAPEX including the extents after travers-
ing every node in GAPEX with updateAPEX are illustrated



in Figure 11-(d).

6. EXPERIMENT RESULTS
We empirically compared the performance of our APEX

with the strong DataGuide on real-life and synthetic data
sets. In our experiments, we found that APEX shows sig-
nificantly better performance. In addition, in a number of
cases, it is more than an order of magnitude faster than
the strong DataGuide. The experiments were performed on
Pentium III-866MHz platform with MS-Windows 2000 and
512 MBytes of main memory. The XML4J parser1 and the
XML Generator 2 from IBM was used to parse and to gener-
ate XML data. We implemented both the strong DataGuide
and APEX in the Java programming language. The data
sets were stored on a local disk. We begin by describing the
XML data sets and query workloads used in the experiment.

Data Sets. The Play is the subset of XML data from
the collection of the plays of Shakespeare [9]. Because the
Play does not have ID and IDREF typed attributes, it is a
tree structured XML data. The FlixML and the GedML are
the synthetic data sets from real-life DTDs using the XML
Generator from IBM. The Flix Markup Language (FlixML)
is a markup language for categorizing B-movie reviews for
the XML-based B-movie guides 3. The GedML is a markup
language for the genealogical XML data [9]. These two syn-
thetic data sets are graph structured. The Play data shows
a minor irregularity in the structure. The FlixML data has a
moderate irregularity and and the GedML data’s structure
is highly irregular. The other characteristics of the three
data sets used in the experiment are summarized in Table
6. The two numbers in the last column of the table repre-
sent the number of distinct labels and IDREF typed labels
(inside of parentheses), respectively.

Data Set nodes edges lables
Play 48818 48817 21(0)

FlixML 41691 41723 64(3)
GedML 30875 36228 77(14)

Table 1: XML Data Set

Query Workload. To estimate the efficiency of APEX
for the query processing, we generated 5000 XML queries
randomly. A simple path expression is a sequence of labels
starting from the root of the XML data. It is possible that
there exists a dereference operator (=>) with an attribute in
the simple path expression due to the IDREF type attribute
in XML data. In order to generate XML queries, we stored
all possible simple path expressions in XML data. To gener-
ate a query, we randomly selected a simple path expression,
selected a subsequence of the simple expression randomly,
and then put the self-or-descendent axis in front of the sub-
sequence. We repeated this process until 5000 queries are
generated. We also made sure that the results of the queries
are not empty. The queries generated can be think of as
XQuery queries [4] having formats of either //l1/l2/ . . . /lm
or //l1/ . . . /li => li+1/ . . . /lm where li is a tag or an at-
tribute (with the prefix of ’@’). We randomly selected 20%

1available at http://www.alpahworks.ibm/tech/xml4j.
2available at http://www.alpahworks.ibm/tech/xmlgenerator.
3available on http://www.xml.com

of the 5000 queries as the query workload. We found that
the percentage of simple path expressions in the query work-
load generated by the above methods was about 25%. We
will represent the type of these queries as QTY PE1.

To evaluate more complicated partial matching queries,
we also generated 500 XML queries having formats of //li//lj
on each data set. To make this kind query, we randomly se-
lected a simple path expression and choose two distinct label
from the simple path. We will represent the type of these
queries as QTY PE2.

6.1 Performance Result
In order to get the feeling about the structures gener-

ated by the strong DataGuide and APEX, we presented the
statistics regarding indexes in Table 2. For APEX, we varied
the minSup between 0.002 and 0.05. Typically, the strong
DataGuide produces more complex structures than APEX
variants. It is not surprising since the strong DataGuide
keeps all the possible paths from the root of XML data.
Particularly, the size of the strong DataGuide for the highly
irregularly structured data (GedML) becomes very large.

As expected from the definition of APEX0, it has the most
compact structure and size. When we increase the value of
minSup, the number of frequently used paths decreases. In
the query workload we generated, when the value of minSup
is at least 0.05, the length of every required path become
almost one. Thus, the structure of APEX becomes very
close to the APEX0.

Play FlixML GedML 
minSup 

Nodes Edges Nodes Edges Nodes Edges 

SDG 43 42 139 138 13392 16105 

APEX0 22 36 65 117 78 221 

0.002 43 42 137 138 1500 6193 

0.005 43 42 119 137 652 3007 

0.01 43 42 84 132 363 1648 

0.03 25 42 67 131 182 793 

0.05 23 38 66 121 118 468 

Table 2: Statistics of Index Structures.

We also plotted the total query processing cost for 5000
queries with QTY PE1 for the three data sets using the
strong DataGuide and APEX as minSup varied from 0.002
to 0.05 in Figure 12. We also showed the cost for APEX0

because it represents the upper bound of the cost as we in-
crease minSup. Note that the required path set becomes a
set of paths with the length of one when we increase the
minSup to high values. Obviously, the query processing cost
using APEX0 should be most slow among APEX variants
since we need to perform joins of extents for the path expres-
sion of the queries with the size of at least two. Therefore,
the query processing pays severe performance penalty and
it was illustrated by the graphs for all experimental results.

Note that the query processing of the strong DataGuide is
more inefficient than APEX0 for moderate or high irregular
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Figure 12: Execution times

structure (FlixML and GedML). The query processing time
of APEX0 for the GedML is about 1500 seconds and that
of the strong DataGuide is about 27000 seconds. The
inefficiency of strong DataGuides comes from the fact that
its size generated for the XML documents with a complex
structure becomes very large. As the Table 2 illustrates,
the number of nodes and the number of edges in the strong
DataGuide generated for the GedML data are 13392 and
16105 respectively, while they are 78 and 221 in APEX0

produced. Furthermore, to compute a partial matching path
query, the query processor should traverse a lot of nodes in
the strong DataGuide. While, in APEX, the some queries
such as the queries whose length are one can be directly
obtained by look-up of HAPEX . This result confirms that
the strong DataGuide is generally inefficient for complex
XML data.

The performance of APEX depends on the value of minSup.

As minSup decreases, the number of frequently used paths
increases and more entries is stored in the HAPEX . Thus,
more queries can be directly obtained by look-up of HAPEX .

Even though the sizes of the graph structures of the strong
DataGuide and APEX are similar for the data sets with
moderate or less irregular structure (Play data and FlixML
data) given the minSup of 0.002 and 0.005 as shown in Table
2, the query processing cost of APEX is cheaper than that
of the strong DataGuide. This is because query results can
be directly obtained by the lookup of the hash tree, HAPEX ,
of APEX without traversing the graph structure, GAPEX .
APEX is significantly better for the highly irregularly struc-
tured XML data (GedML) than strong DataGuide. From
the result, we can conclude that APEX shows much better
performance as the structure of the XML data gets more
complex. As we also explained previously, as the value of
minSup increases, the number of frequently used paths de-
creases and it results in APEX that is very close to APEX0.
Thus, the query processing cost suffers.

To evaluate QTY PE2 queries, the query pruning and
rewriting technique [11] is applied. To perform query prun-
ing and rewriting, the query processor with strong DataGuide
generally traverse the whole index structure several times.
However, the query processor with APEX traverses the par-
tial index structure of GAPEX with the label li. This results
that the query pruning and rewriting overhead with APEX
is less than that of the strong DataGuide. Even though
there is query processing overhead to obtain the query re-
sult, APEX shows the best performance over the various
data sets. Due to the space limitation, we omit the graph
of query performance for QTY PE2.

The effectiveness of APEX is determined by minSup. In
our experiment, APEX was efficient with the value of minSup
ranging between 0.002 and 0.01. When minSup is 0.005,
APEX shows the best performance with the query workload
we generated over the various XML data.

7. CONCLUSION
In this paper, we propose APEX which is an Adaptive

Path indEx for XML data. APEX does not keep all paths
starting from the root and utilizes frequently used paths to
improve the query performance. In contrast to the tradi-
tional indexes such as DataGuides, 1-indexes and the Index
Fabric, it is constructed by utilizing the data mining al-
gorithm to summarize paths that appear frequently in the
query workload. APEX can be incrementally updated in or-
der to minimize the overhead of construction whenever the
query workload changes. APEX also guarantees all paths of
length two so that any label path expression can be evalu-
ated by joins of extents in APEX without scanning original
data.

To support efficient query processing, APEX consists of
two structures: the graph structure GAPEX and the hash
tree HAPEX . GAPEX represents the structural summary
of XML data with extents. HAPEX keeps the information
for frequently used paths and their corresponding nodes in
GAPEX . Given a query, we use HAPEX to locate the nodes
of GAPEX that have extents required to evaluate the query.

We implemented our APEX and conducted an extensive
experimental study with both real-life and synthetic data
sets. Experimental results show that APEX improves query
processing cost typically 2 to 54 times better than the tra-
ditional indexes, with the performance gap increasing with



the irregularity of XML data.
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