Approximate XML Joins

Sudipto Guha-
University of Pennsylvania
sudi pto@i s. upenn. edu

Divesh Srivastava
AT&T Labs—Research

di vesh@esearch. att.com

ABSTRACT

XML iswidely recognized as the data interchange standard for to-
morrow, because of its ahility to represent datafrom awide variety
of sources. Hence, XML is likely to be the format through which
data from multiple sourcesis integrated.

In this paper we study the problem of integrating XML data
sources through correlations realized as join operations. A chal-
lenging aspect of this operation is the XML document structure.
Two documents might convey approximately or exactly the same
information but may be quite different in structure. Consequently
approximate match in structure, in addition to, content has to be
folded in the join operation. We quantify approximate match in
structure and content using well defined notions of distance. For
structure, we propose computationally inexpensivelower and upper
boundsfor the tree edit distance metric between two trees. We then
show how the tree edit distance, and other metrics that quantify dis-
tance between trees, can be incorporated in ajoin framework. We
introduce the notion of reference sets to facilitate this operation.
Intuitively, areference set consists of data elements used to project
the data space. We characterize what constitutes a good choice of
areference set and we propose sampling based algorithmsto iden-
tify them. Thisgivesriseto avariety of algorithmic approachesfor
the problem, which we formulate and analyze. We demonstrate the
practical utility of our solutions using large collections of real and
synthetic XML data sets.

1. INTRODUCTION

XML iswidely recognized as the data interchange standard for
tomorrow, in particular becauseof its ability to represent datafrom
awide variety of sources. Hence, XML islikely to be the language
in which to integrate data from multiple sources. Data of string
type are prevalent in XML, thus the traditional inconsistencies be-
tween string attributes, such as mis-spelling, will persist in the

*Part of this work performed while the author was with AT& T
Labs.

TWork supported in part by NSF under grant 11S-0002356.
tWork performed while the author was visiting AT& T Labs.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

ACM SIGMOD ' 2002 June 4-6, Madison, Wisconsin, USA

Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

H. V. Jagadisht
University of Michigan
j ag@ecs. um ch. edu

Nick Koudas
AT&T Labs—Research

koudas@ esearch. att.com

TingYu!
University of Illinois
tingyu@s. ui uc. edu

(ﬂ) bl ol

aper faper publication

type e athor author

.]
conference file authors conference gile authors conference XMlum nalme néme

| | \/!DB

VOB L ador auhor VB yyfy ahor A Rob
lhemasses| the masses |

themasses |

A Bob Al

Figurel: Example XML documents

XML world aswell. Correlating XML data sources however, has
to cope with additional complexities due to the structure of XML
documents, which cannot be ignored. Autonomous data sources
may contain the same data, but may have differencesin structure.
It is important to be able to correlate such data. Even when data
sourceshave the same Document Type Descriptor (DTD), they may
not have identical tree structure due to the presence of optional el-
ements and attributes.

ExXAMPLE 1. Figure 1 presentsthree XML documents. Docu-
ments (a) and (b) originate from the same DTD, but document (c)
isaninstanceof a different DTD. It is apparent that all threedocu-
ments describethe same publication. An application trying to inte-
grate data fromvarioussourceswill haveto face several challenges
in this example. In document (b) author Bob is not listed as one of
the authors of the paper “XML for the masses’. Based on the re-
maining elements and PCDATA fields however, documents (a) and
(b) represent the same paper. Document (c) representsthe same pa-
per as documents (a) and (b) but originates from a different DTD.
Besides different labels for elements (eg., publ i cati on versus
paper), structural differencesexist (e.g., element aut hor s isnot
present, but element narre is present) as well as spelling inconsis-
tencies (e.g., Rob versusBob).

To address such difficulties, we need efficient techniquesfor ap-
proximately matching XML documents, based on the tree struc-
tured content of specified sub-elementsof XML documents. When-
ever one deals with notions of approximate matching, one has to
specify a distance metric between the approximated entities that
effectively quantifies the approximate match. Such a metric has
to be amenableto efficient computation and general enough to en-
compassvarioustypesof differencesbetween XML documents. As
Example 1 demonstrates, there is a clear need for metrics that can
handle inconsistencies, both in structure as well as content.

XML documentsare ordered |abel ed trees; the problem of defin-
ing the distance between two ordered labeled trees has received
much attention in combinatorial pattern matching and the notion
of tree edit distance has been developed [16]. Thisdistanceisaa
natural generalization of edit distance from the domain of strings.
Informally, the tree edit distance between two trees is the mini-
mum number of operations (node insert, delete, relabel) required
to transform one tree to the other. A variety of computationally
expensive algorithms have been proposed for computing tree edit
distance between two trees. Such algorithms can serve as the basis
of approximate tree match quantification. For example, in Figure
1 trees (a) and (b) are at tree edit distance 2 apart. Insertion of
the subtree aut hor - Bob in (b) will transform (b) to a document
that matches (a) perfectly. Our goal, however, is to embed such
approximate tree match algorithms in a broader correlation frame-
work between XML data sources. Clearly, there is a requirement
for efficient correlation (join) algorithmsthat can dispensewith the
computation of the exact tree edit distance between all possiblein-
put pairs, when possible.

In this paper, we initiate a formal study of join algorithms be-
tween XML data sources. We propose metrics and algorithms for
this problem. There exists a large body of work dealing with the
computation of string edit distanceand its adaptationin ajoin frame-
work [6, 7, 13]. We focus the bulk of this paper on the novel as-
pect of adapting tree edit distance computation (matching based on
structural difference) into ajoin framework. Our algorithmsare the
first to addressthis problem and lay the foundationsfor thisimpor-
tant area. More specifically, we make the following contributions:

e Computing tree edit distance between a pair of XML doc-
uments turns out to be a very expensive operation. Recog-
nizing this problem, we present upper and lower bounds for
the tree edit distance between XML document pairs. Such
bounds are much more efficient to compute. Using these
bounds as a basis, we develop efficient filtering techniques
that often avoid the need to compute the tree edit distance
between apair of XML documents.

¢ We present algorithms for the efficient execution of approxi-
mate joins between XML documents using the tree edit dis-
tance asajoin condition. Our algorithms are based on sam-
pling and can effectively reducethe volume of dataexamined
during the join operation. Our algorithmic framework is
easily adaptable to any metric one wishesto apply for quan-
tifying differences between XML documents.

¢ \We present an experimental evaluation of our techniques us-
ing both real and synthetic data sets, analyzing the perfor-
mance tradeoffs inherent in our approach.

Thispaper isorganized asfollows. Section 2 discusseswork related
to the problems addressed in this paper. In section 3 we provide
definitions necessary for the bulk of the paper and formally define
the problem considered in the paper. Section 4 presents lower and
upper bounds for tree edit distance. In section 5 we introduce a
transform, based on the notion of reference sets, that effectively
reduces the problem of approximately joining XML documentsto
that of joining vectors in a metric space. Section 6 elaborates on
the properties of the resulting metric space and proposes novel

algorithms for the approximate join problem between XML data
sources. |n particular, we show how various boundscan be utilized

in this framework and give rise to various algorithmic approaches.
In section 7 we present a thorough experimental evaluation mea-

suring and comparing the performance of the algorithms proposed
herein for real and synthetic data sets. Finaly, section 8 concludes

the paper and outlines problems of interest for further study in this
direction.

2. RELATED WORK

Matching strings approximately is a problem of central interest
in pattern matching and a variety of algorithms exist to solve the
problem in several ways[11]. The notion of edit distanceis afun-
damental measure used to quantify distance between strings [9].
Approximately matching collections of stringsisaproblem of cen-
tral interest in the context of data integration and cleansing (see
eg., [6, 7, 13]). Join algorithms have been proposed to identify
pairs of approximately matching strings [6, 7] and commonly re-
duceto traditional join algorithms deployedin relational systems.

A large body of work in combinatorial pattern matching deals
with the problem of identifying the distance between ordered la-
beled trees[12, 1]. A very general notion of distance between trees
can be expressed using the tree edit distance [1, 12]. Several a-
gorithms have been devel oped to identify the tree edit distance be-
tween pairs of trees [16]. The problem of matching trees can be
arbitrarily hard depending on the specific cost model adopted (see
[16] and references therein for a comprehensive treatment of the
subject).

With the popularity of the semistructured data model, several
algorithms have been introduced to identify changes in pairs of
semistructured or XML documents[3, 2, 10, 5]. Such agorithms
focus on identifying changesin versions of a document and intro-
duce cost model sto quantify change, based on assumptionsspecific
to the particular application. Since the version of the problem tar-
geted in those works is very hard, severa heuristics are proposed
and evaluated. In this paper, we adopt the notion of tree edit dis-
tance dueto its generality, and simplicity of operationsthat offer a
conceptually appealing quantification of the distance betweentrees.
We emphasize however that the algorithms presented herein can be
adapted easily to any distancefunction aslong asit isametric. For
example, previously proposed change detection techniques[10, 3]
can be used asa basisto construct distancefunctions between trees.
As long as these new notions of distance have metric properties,
they can be easily incorporated in our framework.

3. PRELIMINARIES

Let 3 be an alphabet of size |X|. Lete ¢ X represent the null
symbol. For aDTD D, let A bethe set of all ordered labeled trees,
well formed under 2. Without loss of generality we will assume
that al node literals and atomic values of 1D as well as element
symbolsare defined over 3.

In the domain of strings, the notion of edit distance has been
widely applied to quantify differences between strings.

DErFINITION1 (EDIT DISTANCE). Theedit distance between
twostringso, o2, ed(o1, o2) isdefined asthe minimum number of
edit operations (i.e, insertions, deletions, substitutions) on single
charactersrequiredto transformone string into another.

Edit distanceisawell studied distance metric with aplethoraof ap-
plicationsin various fields of computer science. Given two strings
o1 and o2, there exists awell known algorithm [9] to compute the
edit distance between them in O(|o1]||o2]|) time and space. Edit
operations are assumed to be unit cost. Non-unit costs and more
general edit operations are possible, and have been studied exten-
sively in asignificant stream of research that followed. Notice that
ed() isametric.

A generalization of string edit distanceis the notion of tree edit
distance [1] defined for quantifying differences between pairs of

ordered labeled trees. Let T4, 7> betwo well formed XML docu-
ments, under the same or different DTD’s. They can be conceptu-
ally represented (after parsing) asordered |abeled trees, where node
labels include element tags, PCDATA values, attribute names and
attribute values. The nesting of the elementsisreflectedin the tree
structure. Treeedit distanceis defined asfollows:

DEFINITION2 (TREE EDIT DISTANCE). GiventwotreesTy, 7T,

the tree edit distance between them, TDisT(7"1, 12), is defined as
the minimum cost sequence of tree edit operations (i.e., node in-
sertions, deletionsand label substitutions) on single tree nodes, re-
quired to transform one tree to another.

Computing the tree edit distance between trees is a well studied
problemaswell. Givenatree T, let h(T') denoteits height. For two
trees 71, 1>, there exists a well known agorithm to compute the
tree edit distance betweenthem, runningin O(|71 || 12 |h(11)h(12))
time and O(|T1||7z|) space[16]. Once again, notice that TDIST is
ametric aswell. Asin the case of string edit distance, numerous
variants of tree edit distance have been introduced. Such variants
can be incorporated in our algorithms as long as the distance they
computeisametric.

We briefly describe agorithm ¢reedist() below that computes
the TDIST between two trees, and refer the reader to [16] for a
comprehensive treatment. Typically, the cost of each edit opera-
tion is assumed to be one unit, and the cost of a sequence of edit
operationsis simply the sum of its component operation costs.

Notation. Let T be an ordered labeled tree. Order is obtained by
aleft to right postorder numbering of the nodesin 7' *. An ordered
sub forest of T is a collection of subtrees of T" appearing in the
same order as they appear in 7. Let ¢[z] represent the : node of
T, n; the children of ¢, T[] the subtree rooted at ¢[i] and F'[¢] the
sub forest obtained by deleting from 7] node ¢[:]. We represent
an edit operation as v(« — b). The edit operation is an insert
operation if a« = ¢, a delete operation if & = ¢ and a substitution
operation if a # e and b # e. Notice that this makes () ametric.
These operations are assumed to have unit costs.

Tree Edit Distance Computation. Let treedist(T,1%) denote
the algorithm that computes the tree edit distance TDiIST between
trees 71, T>. The agorithm constructs a mapping M between the
nodes of the two trees; this mapping dictates correspondences be-

tween nodes of the two trees. The goal isto compute the mapping
with the minimum cost subject to the specific cost model. The map-

ping consists of pairs of integers (¢, 5) such that:

o 1<i<|Ti|andl <y < |13
. Foranypairs(i17j1)7(i27j2) eM
1. 41 =4 if andonly if (iff) j1 = 52

2. tl[il] is to the left of t1 [12] iff t2[j1] is to the left of
t2[72] (sibling order preserving)

3. t1[i1] isan ancestor of ¢1[i2] iff t2[71] is an ancestor of
t2[72] (ancestor order preserving)

Figure 2 illustrates this algorithm with an example. The matching
M generated in this caseis depicted with linesin the figure. Nodes
that are not matched have to be considered for insertions or dele-
tions. Nodesthat are matched have to be considered for relabeling.
treedist() evaluated between the two trees in the figure returns a
value of 3 (delete node B, insert node H, relabel Cto |).

LWwithout loss of generality, we use postorder numbering. Preorder
would work as well.

— —_—

A ~A
B SN c— " —::fD/\\\ H

Figure2: Exampletreedist() mapping between two trees

3.1 Problem Definition

Let S; and S2 betwo sourcesof XML dataoriginating from the
same or different DTD’s. We are seeking algorithms to perform
an approximate join operation between the sources using tree edit
distance (TDIsT) asajoin predicate applied on pairs of subtrees of
the XML documents, corresponding to the sub elements that need
to bematchedin the XML documents. For simplicity of exposition,
we assumein this paper that entire documents need to be matched.
Moreformally:

DEFINITION3 (APPROXIMATE TDIST JOIN). Giventwo XML
datasources, 51 and S, andadistancethresholdr, let TDIST(d 1, d2)
be a function that assessesthe tree edit distance between two doc-
umentsd; € S; andd. € S». The approximatejoin operation be-
tween two sourcesof XML documentsreportsin the output all pairs
of documents (dq,d>) € S1 x Sz suchthat TDIsT(d1,d2) < 7.

Variants of this basic problem are also possible; for example we
might require the distance between two XML documentsto bein
a range of user specified distance thresholds. Our agorithms can
provide solutions to these variants of the problem aswell. We will
suppressthis discussionfor brevity. TDIST asdefined assumesedit
operations of unit cost. Incorporating the capability to assessstring
edit distance between string node labels into TDiIST, can be per-
formed by evaluating the edit distanceed(), between two node la-
bels of string type. The edit function () can be modified for this
purpose to assess ed() between two nodes, whenever these nodes
have string labels (e.g., CDATA,PCDATA etc). Sinceed() is amet-
ric, the metric properties of function ~() are preserved (a prop-
erty required by our proposal). Handling edit operations on strings
is an additional function call in the tree edit distance computation
treedist() whenever the nodes have string labels. Thisway of in-
corporating string edit distance in our framework does not affect
our algorithms or their correctness. In asimilar fashion, an ontol-
ogy hierarchy can beincorporated, matching/comparing tag names.
In order to simplify the presentation in the remainder of this paper,
edit operations are assumed to be unit cost.

Executing an approximate TDIST join operation efficiently faces
two main challenges. First, evaluation of the TDIST function be-
tween two documentsis a very expensive operation; in the worst
caseit isan O(n*) operation for trees of size O(n). Clearly, even
for small values of n, straightforward evaluation of the functionis
computationally prohibitive. Second, traditional wisdomin join al-
gorithms (sort merge, hash joins etc) does not extend easily in this
application domain. Novel join processing techniques are required
to deal with the intrinsic complexities of approximate matching of

XML documents.

Overview of our approach. We will present our proposa in the
following steps:

¢ Wewill developlower and upper boundsfor the TDIST func-
tion (Section 4). These bounds are computationally less ex-
pensive than the evaluation of TDIST and they serve asaba-
sisfor significant reduction in the overall computation costs.
We can utilize these bounds to design inexpensivefilters for
TDisT. Application of our bounds provides afast way to de-
cide if the application of TDIST to a pair of documents of
interest is within our distance threshold. For example, the
pair can be dismissed if the bounds indicate that it is not,
saving the expensive TDIST evaluation on the pair.

¢ We will present (Section 5) algorithms for evaluating joins
between pairs of XML data sources utilizing our bounds for
TDisT. Although bounding TDIST can reduce the computa-
tion for asingle pair, onehasstill to improve on the overhead
of examining all pairs of documents. We develop sampling
based algorithms for this problem. Our agorithms guaran-
tee no false dismissals and effectively transform the prob-
lem of joining XML documentsto that of performing ajoin
operation in a numeric vector space. Using this transform,
along with our bounds and properties of the resulting vector
space, we present a family of algorithms for the problem of
approximately joining XML data sources (Section 6). We
subsequently evaluate our proposed agorithms tuning vari-
ous parameters of interest and observetheir comparative per-
formance (Section 7).

All the proofs of theorems and lemmas are omitted due to space
limitations.

4. BOUNDING TREE EDIT DISTANCE

Computation of the tree edit distance between two trees T, 1>,
requires time O(|11||T2|h(T1)h(12)) (Where |T;| is the number
of nodesin tree T; and h(T;) isthe the height of T;). Given large,
deeply nested XML document trees, such acomputational cost may
be too high. In this section we devise computationally efficient
techniques to obtain both lower and upper bounds for TDIST. In
Section 6, we will show how to use these bounds to solve our ap-
proximate join problem faster.

4.1 Deriving Lower Bounds

Let 7" bean ordered labeledtree. Let pre(T') denotethe preorder
traversal of T'and post(T') itspostorder traversal. Both pre(1") and
post(1") canbeviewed as strings over X *. For two trees 71, 715,

LEMMA 1. If pre(Ty) # pre(T2) or post(T1) # post(13),
then T ;é T5.

Intuitively the lemma states that if there is a difference between
the prefix or postfix traversals of the trees, then there has to be a
differencein the treesaswell. There are natural examples showing
that there are differencesin the treesthat are not reflectedin the tree
traversals. Thisis acceptable since we are searching for a lower
bound.

LEMMA 2. If thetreesareat edit distancek, then the maximum
edit distance between their preorder or postorder traversalsis at
most k.

Based on lemmas 1,2 we obtain the following relationship between
TDi1sT and the string edit distances corresponding to the two traver-
sls:

THEOREM 1. Let T3, 7T> beorderedlabeled trees. Then
maz(ed(pre(T1), pre(T2)), ed(post(T1), post(12)))
< TDIST(11,1%)
We illustrate this bound through the following example.

ExAMPLE 2. Consider again the trees (a),(b) of Figure 2. We
have pre((a)) = ABDECFG and post((a)) = DEBFGCA,
Smilarly pre((b)) = ADHEIFG andpost((b)) = DEFGIHA.
Clearly,

maz(ed(pre((a)), pre((b))), ed(post((a)), post((b))))
= maz(3,3) = 3 < treedist((a), (b))

We will denote the lower bound of theorem 1 asLBDIST(T'1,13)
for trees 71, T>. Notice that for strings (preorder, postorder repre-
sentations) of length O(n), ed() can be computed in O(n?) worst
casetime and space. This can be substantially better than comput-
ing the tree edit distance directly.

4.2 Deriving Upper Bounds

We construct an upper bound UBDIST of TDIST by restricting
the freedom of choices agorithm treedist has when computing
the optimal set of operations to match two trees. More precisely,
we will impose additional constraints on the kinds of relationships
the algorithm maintains when devising the optimal set of opera-
tions. This effectively reduces the search space and enables the
development of a faster algorithm. We note, that such a measure
was introduced by Zhang [15], where an algorithm related to the
one presented herein was proposed.

Recall that the minimum cost mapping M that algorithm treedist
obtains is sibling and ancestor order preserving. For the upper
bound construction, we require that the mapping M also preserves
ancestor order for the lowest common ancestor of pairs of nodes.
For any triple (¢1[i1], t2[51]), (ta[12], 2052]), (£2[0s], t2[55]) € M,
let lca() bethe lowest common ancestor function. We require that
mapping M respects:

CONDITION 1. ¢1[lea(t,[i1], ¢1[22])] is a proper ancestor of
2] [13] iff to [lca(t2 [j1]7 to []2])] isaproper ancestor of t2[j3].

Intuitively, the new requirement ensures that two distinct sub-
trees of 77 will be mapped to two distinct subtrees of 7T>. These
requirements are satisfied by a dynamic programming agorithm
related to the one computing edit distance between two trees [16].
Algorithm DistinctTree Edit Distance computing UBDIST be-
tween apair of trees, is presented in Figure 3. It constructs a min-
imum cost mapping between the nodes of the two trees, respecting
the constraints of condition 1, as well as the constraints satisfied
by algorithm ¢reedsist. For any pair of subtreesit accountsfor the
various types of correspondence between the tree node pairs. The
first two equationsin formula (3) account for the casethat exactly
one of the nodes under consideration does not belong in the map-
ping; in this caseit considersthe optimum cost to match a descen-
dent subtree of that node. Thelast equation accountsfor the cost of
matching two subtrees (matching the respectiveforests after match-
ing the root nodes). Formula (2) in Figure 3 is similar to formula
(3) but for the case of forestsin the two trees. Thelast equationin
formula (2) considersthe cost of matching the children nodes of a
pair under consideration. Formula (1), in Figure 3, keepstrack of
this cost.

Consider the example depicted in Figure 4. The match generated
by algorithm ¢reedist is shown in dashed lines. The TDIST com-
putedis 3. The UBDIST computed with algorithm

Algorithm DistinctTree Edit Distance(11, 1) {
DI[|T1|][|T>|] records distances of subtrees (substructures) of T'1, T
ED[|T1]][|T2|] records distances between children of apair of nodes

1< <1, 1 <5 < |
Initialize D[i][e], D[e][4]V1,
fori=1to|T1|{
for y =1to|Tz| {
fork = 1ton; { /* thechildrenof i */
forl =1ton; { /* thechildrenof j */

ED[kl — 1] + DIe

()ED[K[l] = min { ED[k — 1][{]+ D[
ED[k—l][l— 1]+

| DB+
(2)D[FL]][F2[5]] = min < D[Fi[i]][e] +
ED[ni][n,]

20 +

Dle
(3) DT[] = man { %

1[1]][e] + mini<r<n,

Fi[F2[50) + v (i) = t20])

1[72[5]]
Ti[ix]][€]
D[T1[ix])[T2[5:]]
miny <i<n, (DIFA[]|[F2[50]] — DIe][F2[5])
mini <k<n, (D[F1[ea]][F2[5]] — D[F1[ix]][€])
mini<i<n; (DIN[)[12[0]) — DIe][T2[5])
(Dt[Tl[I[T2[5]] = D[T1[ax]][e])

Figure 3: Algorithm DistinctTree Edit Distance computing UBDIST

Figure 4. Example matching between two trees

DistinctTree Edit Distance is5 (delete B, delete E, insert H, in-
sert E, relabel Cto |), however. The match generated by the al-
gorithm is shown in solid lines. Unlike algorithm treedist the al-
gorithm will not establish the match between E’s since this would
violate condition 1. We claim the following:

THEOREM 2. Thereexistsan O(r?) algorithm to compute the

UBD ST distance between a pair of treeswith O(n) nodes each.

Proof:

Itisevidentthat 3" =121 O(ny x ny) < O(ITh| x |T2]) O
It is easy to seethat UBDI ST is reflexive and obeys the triangle

inequality, thusit is a metric. We establish the upper bound rela-

tionship between TD1ST and UBDIST with the following theorem:

THEOREM 3.

For a pair of trees T1,T5, TDIST(11,1%) < UBDIST(T1, T2)

In this section, we have shown how to compute fast lower and
upper bounds on the distance between any pair of trees. Thesemet-

rics, LBDIST and UBDI ST respectively, will be usedin the efficient
algorithms we derive in Section 6.

5. REDUCTION INTO A METRIC SPACE
USING REFERENCE SETS

In the preceding section we focused on the time taken to compute
the distance between two trees, and presented efficient techniques
to bound this distance. In this section, we will devise atechnique
to minimizethe number of pairwise distance computationsrequired
to evaluate the approximate tree join of two setsof XML trees.

Let S1, .52 betwo sets of XML document trees, say from differ-
ent data sources, between which we wish to compute a join. Let
K C S; U .S, beachosen set of XML documents, which we will
refer to asareference set. We will defer discussion on how best to
determine K until Section 5.1.

Letd: € Si,d; € S2 betwo XML documents. We will con-
struct a vector for each document consisting of the distances of
each document to the XML documentsin /&. Thiscould beany ar-
bitrary metric distance function, in general, and not just the TDIST
function. To emphasize this point, we use dist rather than TDIST
in this section, even though our interest is in the special case when
the distance of each document to the documentsin K are quantified
using TDIST.

Let ki1, ... kx| be an arbitrary ordering of the reference set K.
Let v; (v;) bethe vector for d; (d;). Clearly each vector is of di-
mensionality | K'|. Further let vi, = dist(ds, ke),1 < £ < |K]|;
similarly vj, = dist(d;, ke),1 < £ < |K|. Sincedist() isamet-
ric, the following is true by application of the triangle inequality:

V1 <€ <|K||vie — vje| < dist(di, dy) <vie+vye (1)

Essentially the above procedure “projects’ documentsd ;, d; onto
the reference set. Provided that dist() is a metric, the reference
set acts as a set of basis elements defining a metric space. Assume
that we wish to identify if the documentsd; ,d; arewithin aspecific
distance threshold, say =, of each other, that isif dist(d;,d;) < 7
The metric properties of dist(), namely equation 1 provides away
to reason about the pair's distance. It is evident due to equation 1
that if:

@

U = Ming 1 <o<|K|Vie TV < T

then the pair is certainly within distance of =. Similarly, if:
Iy = mawy 1<o<isc)|vie — vje| > 7 3)

then the pair cannot be within distance =. Thus, the properties of
the metric space, constructed using the reference set, provide us
with additional capability to reason about the distance between a
pair of XML documents. Depending on the relationship of ., u;
to 7 one can conclude that the pair is below or above the desired
threshold with certainty.

Clearly aprojection of the entire XML sources.S , S> can be ob-
tained in asimilar way. For areference set K, let Si (S;) denote
the set of vectorsv;, 1 < ¢ < |S1] (v;, 1 < j < |S2|) obtained
after projecting each document d; € Si (d; € S2) onto the ref-
erence set. For ametric dist(), provided that the reference set K
isin memory, Si , S; can be obtained with a single pass over the
underlying XML data sources. Moreover, the projection achieved
using the reference set effectively is a“dimensionality” reduction
technique. Assume that the average document sizein S is y; the
original datavolumeis|.S|x w inthiscase. After projection, usinga
referenceset of size| |, theresulting datavolumeis | S| x (| /{|+1)
(we add oneto account for the document id recorded in conjunction
with each vector). If | K| is small compared to 4, the reduction in
data volume can be substantial, possibly enabling the vector setsto
be memory resident.

5.1 Choosingthe Reference Set

Given two sets of XML trees 51, 5> and a metric dist() that
assessesthe distance between elements of the two sets, we seek to
identify areference set K. We would like this set to be as small as
possible, sincethe amount of work wedo is proportional to the size
of this set; yet we would like the set to generate filters 14, u, that
are as decisive as possible.

Given adistance threshold v, assume S = S; U S, is divided
into & clusters such that documentswithin a cluster have small dis-
tance (say less than %) and documents in different clusters have
large distance (say larger than 27). In this case we will say that .5
iswell separated. Supposewe choose one document d from aclus-
ter containing .; documents in our reference set. Then any pair
of documentsin this cluster is within distance half the threshold
from d. We would assert by the triangle inequality that the pair of
documents constitute a valid pair (distance < 7) and should bein
the output, saving an evaluation of dist() for this pair. Thus, we
will save ni(n1 — 1)/2 suchevaluationsin total. Supposethat we
now have apair in which one document belongsto this cluster and
the second document is in some other cluster. Then the distance
of the point in the cluster and d is at most Z; the distance of the
point outside the cluster to d is at least Z. Again from the trian-
gle inequality we can concludethat this pair is not close (distance
> 7), and avoid evaluating dist(). Thiswill saveusn(|.S| — n1)
comparisons. We have to distinguish the other pairs by the other
points belonging to the reference set. Thus:

LeEMMA 3. If S iswell separated the optimal strategy for con-
structing a reference set is to always choose a single point from
each of the k largest clusters.

Evenif S iswell separatedinto k clusters, however, we don’t know
apriori which arethe k clusters that we should choose points from.
It is evident, however, that every time we choose a sample from
one of the clusters, we have to perform additional |.S| comparisons
when constructing the vectors, but we also save a number of com-
parisons due to pruning via the triangle inequality. The optimal

strategy minimizes the overall number of d:st() computations we
perform. Let the optimal number of comparisonsidentified by the
optimal strategy be W'; We will show how to identify & clusters
by sampling. Our strategy consists of first choosing a sample and
then clustering the sample into & clusters with a clustering algo-
rithm of choice[8, 17]. Thefollowing theorem shows how to iden-
tify & clustersin awell separated data set via sampling, such that
the optimal number of comparisons we perform if we useasingle
point from each of these clusters identified as our reference set, is
(14 ¢)W, for e > 0. Weclaim thefollowing:

LEMMA 4. If S iswell separatedinto & clusters, a samplesize

of

VEk|S
12¢log|5|
€

is enough to identify all & such clusterswith high probability.

In practice, however, although clustering might exist in the un-
derlying data set, we don’t expect it to be well separated. Moreover,
clustering a gorithms require the number of clusters as a parameter
in theinput and strive to derive the best clustering optimizing some
measure function, with respect to the number of clusters specified.
In our problem however, the user only specifiesadistancethreshold
desired for the approximate join operation.

We build on the intuition gained by the preceding analysis and
we propose the following strategy to identify the reference set. If
the number of points & we choosein our reference set is known,
we derive a sample size as computed in lemma 4. Clearly more
samples are required since the data set is expected not to be well
separated. We perform our clustering by repeatedly picking a point
from the sample and covering all pointswithin 1 the user specified
distance threshold. We then choose the & clusters which have the
largest number of sample pointsand pick arandom point from each
to bein our reference set.

If we do not know the size of the reference set, we draw a sam-
ple according to lemma 4, of size at least O(+/]S|log | S|) and we
cluster to haf the threshold as before. We then compute f; as the
fraction of pointsin the first ¢ clusters. As: increasesand f; in-
creases, we will be comparing (1 — £;)*n? pairs. Thusthe number
of comparisons decreasesby ratio (1 — f.4+1)?/(1 — f;)? and the
size of the reference set increasesby 1 + 1/¢ in size. We balance
thesetwo and choose k& > ¢ > 2 such that

(1- fl‘+1)2 S]
(1—fi)? 1+ 1
We will evaluatethis strategy in section 7.

6. APPROXIMATE JOINALGORITHMS:
BOUNDS + REFERENCE SETS

We present several algorithmic approachesfor the efficient solu-
tion of the approximate join problem between XML data sources.
We begin with a naive “current-practice” algorithm and enhance
it in multiple ways by exploiting the techniques developed in the
preceding sections.

6.1 A BasdineAlgorithm

In relational databases, awell studied set of algorithmsfor com-
puting joins between single valued attributes exists, like hash joins,
sort merge joins and nested loop joins. Unfortunately, hash joins
and sort merge joins do not carry over easily to the approximate
XML join problem, as the join predicate makes use of a distance

Algorithm Bounds
foreachd; € S {
foreachds € S {

if (UBDIST(d1,d2) < 7)
output((d1, d2))

if (LBDIST(d1,d2) < 7)

if (treedist(dy,d2) < 7)

output((d1, d2))

Figure5: Algorithm Bounds

threshold which requires an eval uation of an expensivefunction be-
tween every input pair. Thisfeature of the problem deemsall algo-
rithms that treat each joining attribute in isolation in their first step
(e.g., hashing or sorting single attributes) inapplicable. A nested
loops approach is readily applicable asit examines all pairs of in-
put documents.

Distance based join algorithms, proposed in the field of spatial
and multimedia databases, are also not easy to adapt in a straight-
forward way, astheunderlying datatypeisavector obtained through
the application of various transforms. There is no obvious way of
converting a document in isolation to a numeric vector.

Given two XML data sources S1,.52, a naive solution to the
approximate join problem would compute a nested loop join be-
tween the two sources evaluating algorithm ¢reedist(d, d;)Vd; €
S1,d; € Sz. Such an approach, has O(].S1| x |S2|) worst case
1/0 complexity. Provided that each document is of size O(n) it
invokes treedist for each pair requiring O(n*) time in the worst
case. Clearly such an approach has very high 1/0 and processor
complexity but can serve as abaseline solution to this problem. We
refer to this approachasNai ve (N) inthe sequel.

6.2 Improving the Baseline Using Bounds

A first improvement to the naive algorithm can be obtained by
utilizing the upper and lower boundsintroduced for TDIST. Let T
be the distance threshol d specified for thejoin operation. From the-
orem 1, LBDIST(d1,d2) < TDIST(d1,dz). A viable approach is
to first evaluate LBDIST between the pair. If LBDIST(d1,d2) >
7, we can safely prune this pair away, saving the invocation of
the expensive treedist(.) function. In case LBDIST(d1,d2) <
7, however, the upper bound of theorem 3 could provide a quick
way to decide if indeed the pair belongs to the answer set. If
UBDIsT(d1,d2) < 7 then (d1,d2) belongs to the final answer
and evaluating treedist(d1,d2) is not required. In these cases,
the lower and upper bounds can safely determine if a pair is not
in the answer set (assuring no false negatives) or if a pair isin
fact in the answer set (assuring no false positives). However, if
LBDIsT(d;,d2) < 7 < UBDIST(d\1, d2) the pair cannot be pruned
or definitely included. In this case, one has to test if the pair is
within distance = by executing algorithm treedist(.) on the pair.
We refer to this improvement of algorithm Nai ve as Bounds
(B) tosignify the use of bounds. Pseudo codefor this algorithmis
given in Figure 5. Algorithm Bounds has the potential to reduce
the processor time as eval uating the boundsis substantially cheaper
than evaluating treedist(.). Moreover, depending on how effective
pruning is, the number of treedist(.) computationscan be substan-
tially reduced. We will experimentally evaluatethe effectiveness of
thesefiltersin Section 7.

6.3 Pruning Work with a Reference Set

Given areference set /(, first use TDIST to obtain Si , S;. Join-

Approximate Join Algorithm
Construct Si , S; using dist() between
elementsof Sy, Sy and the reference set
vectorsv;, corresponding to documentsd ;
foreachv; € S {
7
foreachv; € S, {
if Upper Bound < 1)
output(d;, d;)
if (Lower Bound <)
if (TDIsT(d;,d;) < 7)
output(d;, d;)

Figure 6: Approximate Join Template

ing the two data sets takes place by application of Equation 1 on
each pair. If thelower boundi; > 7, the pair can be pruned away.
Otherwise, if the upper bound ., < 7, the pair belongsto the out-
put. Inthecasel; < 7 < u, application of treedist() onthe pair
of corresponding XML documentsis required to identify their true
distance and decide if the pair belongs to the output. In this case,
the actual documents are retrieved from secondary storage, based
ontheir documentidentifiersand éreedist(.) isused to evaluate the
actual distance. The advantage of this approach is that the bounds
computed with Equation 1 for the TDiIST between each pair, are
exact since TDIST is used to compute the distances to the refer-
ence set. However, the algorithm hasto perform (].51| + |.Sz2|)| |

invocationsof TDIST to compute the vector collections S 1, S; .

We refer to this algorithm as Ref er enceSet s (RS) to sig-
nify that it uses a reference set to project the XML data sources,
evauating treedist() between the elements of the sourcesand the
elements of the reference set; it then utilizes the triangle inequality
to prune the result space. The approach can be instantiated in Fig-
ure6usingdist = TDIST, Lower Bound = l; andU pper Bound
u; from Equation 1.

6.4 ApplyingBoth Optimizationsin Sequence

One can complement the above RS algorithm by the applica-
tion of the lower and upper boundsintroduced in theorems 1,3. If
the bounds obtained by Equation 1 indicate that treedist(.) has
to be invoked between the pair under consideration to assess the
exact distance, one can possibly avoid such execution by applying
the computationally cheaper lower (LBD1sT) and upper (UBDIST)
boundson thepair. Only if theseboundsindicatethat the pair could
be in the result set, one should execute treedist(.) on the pair to
reach a conclusion.

Werefer to thisalgorithm asRSBounds (RSB) toindicatethe
use of TDIST in the construction of the vector sets and the use of
the I, u; aswell asthe bounds of lemmas 1,3. It can similarly be
instantiated in Figure 6 using dist = TDIST and applying both ;
and LBDisT for LowerBound and both «, and UBDI1ST for Upper-
Bound.

6.5 Estimating Distancestothe Reference Set

To lower the computational expense of evaluating treedist(.)
between the XML sources and the reference set, one could instead
estimate the distance between them using LBDIsT and UBDIST.
This has the potential of reducing the computational expenses of
this construction since we are evaluating much cheaper functions
between the sources and the reference set. However, since these
are bounds, once we use these in a manner that prevents false dis-

missals, we areleft with potentially more pairs of elementsbetween
which we haveto evaluate treedist().

During construction of the vector sets, we construct two vec-
tors for each document d;. Vector v! is a vector populated using
LBDIST between the document and elements of the reference set;
vector v is populated using UBDIST between the document and
elements of the reference set. When computing the!;, u; bounds,
equation 1 hasto be modified to assure correctnessin this case (no
false positives or negatives). In particular:

VO < €< K| Joi — vl < dist(di,dy) < oo +0fe (4

Then u; becomesmin 1 <e<|x|vi¢ + vj, andl; becomes
mazg 1 <e<|x||vie — vie|. We refer to this combined algorithm as
RSConbi ned (RSC) tosignify theuseof LBDIST and UBDIST
and the application of the (modified) I, u; bounds as well as the
bounds of theorems 1,3. Notice that this algorithm doubles the
size of the vector sets, since two vectors are constructed for each
document. This algorithm can be similarly instantiated with the
template of Figure 6.

7. EXPERIMENTAL EVALUATION

We implemented all the approaches proposed in this paper. In
this section we present a comparative study varying parameters of
interest. There are various parameters affecting the performance of
our agorithms, and we conducted a comprehensive set of experi-
ments to understand the impact of individual parametersto perfor-
mance.

We used both synthetic and real data setsin our experiments. We
choose to use synthetic data sets becauseit is easier to control the
parametersand vary them on demand to isolate performanceimpli-
cations. We demonstrate the strength of our algorithms however,
reporting performance results on real data sets. More specifically
we used the following data setsin our study.

e Data set A: Synthetic data set constructed with the IBM
XML data generator available through AlphaWorks. It con-
sists of 500 randomly generated documents.

e Data set B: Synthetic data set constructed by merging doc-
uments from different runs of the IBM XML data generator.
Thisdataset was artificially constructed to contain 8 clusters
of documents. It consists of 500 documents.

e Real DBLP data: We report experimental results on the
entire conference collection of the DBLP database of size
55MB.

We first present accuracy and performance results for the LBDIST
and UBDIsT boundsto TDIST introduced in Section 4. Then we
will present an evaluation of the algorithms presented in Section 6,
varying parameters of interest. Finally, we will evaluate our pro-
posal for the choice of a reference set and present results of the
performance of our agorithms on real XML data sets highlighting
the performance benefits of our proposal.

7.1 Evaluating Bounds

The results of the first experiment we present eval uatesthe qual-
ity of the LBDIST and UBDIST boundsto TDIST presented in Sec-
tion 4. Figures 7(a)(b) present the results of the following exper-
iment. For dataset A, we computed the pairwise distances using
algorithm treedist aswell asthe boundsto TDiIST using LBDIST
and UBDisT. We compute the ratio of the boundto TDisT and we
construct a histogram of the number of pairs of documentsfalling

00 T T T T T 0000

0000

50000

100

200

B Jﬁ‘ﬂ_ﬁ - M

o7 o 08 085 09 0% 1 1 12 1 15 18 2
R R

() Tightnessof LBDIsT bound(b) Tightnessof UBDIST bound

Figure 7: Evaluating thetightness of upper and lower bounds

1000

Seconds

o.001

©.0001

XML document size (number of nodes)

Figure 8: Time to compute treedist and bounds as the docu-

ment sizeincreases

within each ratio range. Figure 7(a) showsa histogram of the num-
ber of document pairs versus the ratio of LBDIST to TDIST. Sim-
ilarly, Figure 7(b) shows a histogram of the ratio of UBDIST to
TDisT for al pairs. We can observe that in Figure 7(a) dl pairs
are above 0.9 with the bulk above 0.98. In Figure 7(b) al pairs are
below 1.5 with the bulk of pairs below 1.2. Similar results were
obtained for the other data sets. From the results of Figure 7 we
can observe that both bounds are reasonably close to the actual dis-

tance obtained by algorithm ¢reedist(.). We next present the time
taken to compute these bounds for various document sizes. Figure
8 presentsthetime (in logarithmic scale) required by all algorithms
to compute the distance asthe size of the XML document, in terms
of number of nodes, increases. It is evident that asthe sizeincreases
the boundscomputationsbecomeprogressively faster relative to the
full computation, in accordance with our analytical expectations.
(The Y-axisis on alogarithmic scale, and the curves are diverging,

with a difference aready of an order of magnitude for documents
that are 500 elements).

7.2 Evaluatingthe Proposed Algorithms

There are two main parameters affecting the performance of the
algorithms proposed. In the case of algorithms based on reference
sets, the size and choice of the set is very important. The size of
the set affects performance while building the vector collections
and the choice of the reference set mainly determines the effect on
pruning achieved. The distance threshold specified during the join

operation affects the performance of baseline approaches as well
as the performance of algorithms using reference sets. We vary
both parameters in the sequel and we observe their performance
implications.

In our first experiment, we investigate the impact of the ref-
erence set size to the performance of the algorithms making use
of reference sets. Since we wish to vary the size of the refer-
ence set arbitrarily, we select it using uniform random samplingin
this experiment and observe the trends. Figures 9(a)(b)(c) present
the performance, as a fraction of the performance of Nai ve (N)
of the three algorithms (Ref er enceSet s (RS), RSBounds
(RSB), RSConbi ned (RSC)) asafunction of the size of the
reference set for data set A, for various distance thresholds. Algo-
rithm Bounds (B) isnot evaluated in this experiment as it does
not make use of reference sets. Figures 9(d)(e)(f) present the re-
sults of the same experiment for dataset B. Figure 9(a) presentsthe
performance of RS. Two observations are evident. First the run-
time of the algorithm increasesalmost linearly (to that of N) asthe
reference set size increases. Second, there appears to be a knee
in the performance curve for small reference set size. Runtime in-
creaseslinearly to N becausea larger reference set introduces more
comparisonswhile building the vectors. Moreover, the kneein the
curves signifies an optimum reference set size, around 1, which is
explained by the properties of dataset A. Dataset A issynthetically
generated and observation of the distances between pairs appears
to be uniformly distributed. The data appear asif they arein asin-
gle large cluster, thus a small sample size is enough as predicted
by lemma 3. For larger reference set sizes, the cost of building
vectorsis larger especialy for this agorithm, since the expensive
treedist(.) function isinvoked for this purpose. Moreover, asthe
distance threshold increases, large documents are not pruned away
by the application of {;; this causeslarge documents to be verified
using the expensive treedist(.) function and this dominates the
overall computation.

Figure 9(b) presents the results for RSB. The observations are
similar; the additional filtering applied in this algorithm, however,
achieves more effective pruning. Even in the case of alarge dis-
tance threshold, for the range of reference set sizesevaluatedin the
figure, the algorithm is much faster than N (and subsequently RS).
Finally, Figure 9(c) presentsthe resultsfor RSC. Improved filtering
and less expensive computations during the construction of vec-
tors, gives asignificant performance advantageto this algorithm. It
is much faster than competitors and managesto outperform N even
for large distance thresholds and very large reference set sizes.

In Figures 9(d)(e)(f) we present the results of the same experi-
ment, using data set B. Data set B is artificially constructed to con-
tain 8 distinct clusters. The overall performance trends as well as
therelative performance of the algorithms remains the same. How-
ever, in this case, we can clearly see that the optimal reference set
size is around 8, as predicted by Lemma 3. For agorithm RSB
(and to some extent algorithm RSC) and for the same values of the
distance threshold, performance appearslinear (to that of N) in the
size of the reference set. Thereason is that the additional filtering
step applied with the bounds of theorems 1,3 in these algorithmsis
very effective in these cases. A large number of pairsis pruned by
these filters as opposed to the sole application of { ¢, u; in the case
of RS. For this data set the performance benefits of RSC are very
large. For dl distancethresholds and reference set sizes, runtimeis
below 0.2 of that of N. In addition, the overhead imposed by larger
(or smaller) than optimal reference set sizeis not significant asthe
involved evaluations are relatively cheap.

The second experiment we report investigates the performance
of the algorithms (B, RS, RSB, RSC) as a function of the distance

threshold for various reference set sizes. Figure 10(a)(b) presents
theresultsfor data set A for areference set of size 5 (Figure 10(a))
and 100 (Figure 10(b)). In al casesthereis aclear “bell” shaped
curvewhichisexplained by theimpact of different filters applied as
the distance threshold increases. For small distance threshold, the
lower bounds applied by the algorithms are effective, in the sense
that they can prune away alot of pairs that don’'t belong to the an-
swer set. For large distance thresholds the upper bounds are more
effective asthey can admit alot of pairsin the answer, saving many
tree edit distance computations. Thus the performance curves of
all algorithms tail off in small and large distance thresholds, be-
cause the filters are extremely effective. In terms of performance,
RS appearsthe worst sinceits performance is dominated by the ex-
pensive ¢treedist(.) invocations while constructing the vectors; in
addition pruning solely onthel., u; boundsis not so affective, thus
treedist() is invoked on many pairs. Notice that B is more effi-
cient, becauseit avoids¢reedist computationsby first applying the
bounds of theorems 1,3. For the reference set size in Figurel0(a),
the performance of RSB and RSC are close and clearly outperform
all other algorithms. Increasing the reference set size in Figure
10(b) we observe that RSB becomesworse than B because running
time is dominated by expensive ¢reedist computations during the
construction of the vector sets. RSC appears to be the algorithm
of choice in this case as well. Even when the reference set size
is much larger than the optimal size (in this case close to 1) the
algorithm can still outperform all competitors because the penalty
incurred by increased cost during construction of the vectorssetsin
much smaller.

Figures 10(c)(d) present the results of the same experiment for
data set B. Overal trends remain similar, with the “bell” shaped
trend explained as before; with eight clustersin data set B, arefer-
ence set size less than 8 (Figure 10(c)) makes RSB dightly faster
than B, dueto lessoverhead of treedist computations. RSCis still
the algorithm of choice even with less than optimal reference set
size. As the reference set size increasesto 8, all algorithms im-
prove, but RSB starts becoming worse than B for small distance
thresholds, becausethe performance of the algorithm is dominated
by expensive treedist computations. For an even larger reference
set size, B becomes much better. In all cases, RSC s the algorithm
of choice.

7.3 Evaluating Reference Set Selection

To demonstrate the effectiveness of our proposed algorithms and
analysis for the choice of the reference set, we conducted the fol-
lowing experiments. For a variety of data sets, we measured the
response time as the distance threshold increases, for various sizes
of areference set chosen using a random strategy as well as cho-
sen using the algorithm proposed in Section 5.1 for the case of
a known reference set size. In all cases, the proposed algorithm
which derives a sample based on Lemma4 and then clustersto half
thethreshold distancewith aclustering algorithm of choice, aways
outperformed the strategy that randomly choosesthe reference set
of aspecified size. Figure 11(a) presents representative results for
dataset B with areferenceset size of 8, showing the performance of
algorithm RSC, as afraction of that of algorithm N, asthe distance
threshold increases. We can observe that RSC is much faster and
the effects of filtering are even more pronounced (the curve tails
off much more quickly) signifying the choice of a more effective
reference set. Similar results were obtained for the other data sets
aswell.

For the case of an unknown reference set size, we conducted
the following experiment. For a variety of real and synthetic data
sets, given ajoin threshold = wefirst draw a sample of size at least

1 1
L 11 21 31 41 51 61 71 81 11 21 51 61 71 81 91 r 11 21 31 41 51 61 71 81 91
0.1
0.1 0.1 - /
2 e 2
E E E]
2 B 2 o001
H & 3
0.01 4 0.01
0.001
0.001 0.001 0.0001
Reference Set Size Reference Set Size Reference Set Size
—-k<=10 —+k<=50 — k<=500 —k<=10 —k<=50 k<=500 —-k<=10 —k<=50 — k<=500
— k<=2000 —- k<=3000 —* k<=2000 —e— k<=3000 k<=2000 ——k<=3000
@RS (b) RSB (0 RSC

0.9 1

o8 0.9

0.7 > 08
0.6
LEER

os A

03 &

Ratio to Naive

Ratio to Naive

02

01

09

07

06

o0s

Ratio to Naive

0.4

03

1 11 21 31 a1 51 61 7
Reference Set Size

02

o

—e—k<=10 k<=50 —= k<=100 —¢ k<=200 —%— k<=300|

—@— k<=500 —+ k<=800

(d) RS

(e) RSB

Figure 9: Increasingreference set sizefor datasetsA and B

O(V/'Nlog |N|) (for adata set of size O(N)) and then iteratively
computeclusters, picking thereference set sizeusing Lemma4. We
then compared the reference set size so computed with the known
optimal set size (in the case of synthetic data sets) or with the one
estimated by observation of performance curves. In all cases, the
reference set size we select is very closeto the optimal one. Fig-
ure 11(b) showsthe outcome of this experiment for data set B. The
data set contains 8 well separated clusters and we report the num-
ber of reference set points our algorithm computes as a function
of the distance threshold =. For arange of = values the reference
set size selected is very close to the optimal. As r increases, the
size computed by the algorithm becomessmaller. Thisis explained
by observing the distribution of document distancesin the data set.
The minimum distance between clusters is around 250 in this data
set. Thus, twice above this threshold, the clusters computed in the
sample compared with the onesin the original data set start to mix
and as aresult the reference set size reported drops. However, con-
trasting thisrange of = valuesand reference set sizewith the perfor-
mance curves reported in Figure 9(f), we observe that in thisrange
asuboptimal reference set size haslittle impact in performance.

7.4 Performance Resultson Real Data

The experiments presented established the performance advan-
tages of agorithm RSC for a wide range of parameters affecting
the performance of the algorithms. We used synthetic data setsin
order to have the benefit of flexibility in setting these parameters. In

this section, we present results on the performance of this algorithm
using real data sets of large size. In particular we present perfor-
mance results for a self join operation, for varying thresholds for
the DBLP dataset. Running N on this data set is terribly inefficient.
Our calculationsindicate that it would take more than 81 dayson a
high end machineto perform aself join on theentire dataset. Thus,
wefirst present comparativeresultsfor asubset of DBLP recordsin
Figure 12(a). To keep the subset small, but each XML document
sizeable, we construct the subset by grouping together all the XML
documents corresponding to publications in the same conference,
into a single document. We select a subset consisting of 100 con-
ferences. Theresulting XML dataset isof size2.2MB. In this case,
N requires approximately 3.5 hoursto complete. The “bell” shaped
curve is evident and is explained due to the effect of filtering as
before. Clearly the performance benefits of the proposed algorithm
are very large. Figure 12(b) presents the performance of RSC for
the entire DBLP data set as a function of the distance threshold.
The size of the reference set for each value of the distance thresh-
old, is computed using our proposal in Section 5.1. Responsetime
increases smoothly with increasing distance threshold.

8. CONCLUSIONS

The projected prevalence of XML will inevitably impact several
data integration applications. To this end, in this paper, we con-
sidered metrics for quantifying distance between XML documents

Ratio to Naive

Ratio to Naive

o.a o -

Distance Threshold

—& === RSB =sc]

10 410 810 1210 1610 2010 2410 2810 3210 3610 4010 4410 4810

10 410 810 1210 1610 2010 2410 2810 3210 3610 4010 4410 4810
Distance Threshold

=5 = rs = rss = rsc]

(a) Dataset Areference set sizeb

(b) Dataset A reference set size 100

0.45

0.4 o
0.35 /
0.3

0.25 -

Ratio to Naive

0.2 o

0.1 o

o

Distance Threshold

= s e —rse]

10 85 160 235 310 385 460 535 610 685

BN
TN

0.15 o

o

10 60 110 160 210 260 310 360 410 460 510 560 610

Ratio to Naive

Distance Threshold

[~—B = RS =+« RSB = RSC]

(c) Dataset B reference set size 4

(d) Dataset B reference set size 8

Figure 10: Increasingdistance threshold

and subsequently proposed algorithms to perform join operations
between XML data sources based on these metrics.

Our work makes the following specific contributions. we pro-
posed lower and upper bounds for tree edit distance between or-
dered labeled trees, that are computationally more efficient. We
have presented a generic technique based on the notion of reference
sets that can be used to process joins between XML data sources.
We presented this approach along with an analysis on the selection
of the reference set. A particular appealing feature of our proposal
is that it can incorporate any proposal quantifying differences be-
tween treesaslong asit isametric. Although we chooseto use our
techniquein conjunction with tree edit distance because of its gen-
erality and wide acceptance, any other metric that is more meaning-
ful in a specific application context can be applied. Combining our
bounds with properties of the resulting metric space, we proposed
various algorithms for processing approximate XML joins and we
experimentally quantified the performance tradeoffs.

Several issues for further exploration and experimentation are
raised by thiswork. First, dueto the generality of our distancejoin
framework, it would be worthwhile to incorporate in our frame-
work and experiment with other distance metrics as well, capable
of quantifying distance between XML documents. It would bein-
teresting to understand the impacts both in performance as well
as quality of the results observed in specific application scenar-
ios. Second, indicies have been traditionally applied in databases
to speed up the performance of various database operations. To-
wards this direction it would be worthwhile to explore the appli-

cation of various indexing schemes proposed for general metric
spaces [14][4] to the approximate XML join problem. We plan
to investigate these directionsin our future work in this area.

9. ACKNOWLEDGEMENTS

We wish to thank the anonymousreferees for their comments.

10. REFERENCES

[1] A. Apostolico and Z. Galil. Pattern Matching Algorithms.
Oxford University Press, 1992.

[2] S. Chawatheand H. Molina. Meaningful Change Detection
in Structured Data. Proceedingsof ACM SGMOD, May
1997.

[3] S. Chawathe, A. Rgjaraman, H. Molina, and J. Widom.
Change Detection in Hierarchical Structured Information.
Proceedingsof ACM SGMOD, May 1996.

[4] P.Ciaccig, M. Patella, and P. Zezula. M-tree: An Efficient
AccessMethod for Similarity Search Metric Spaces.
Proceedingsof VLDB, pages426-435, Aug. 1997.

[5] G. Cobena, S. Abideboul, and A. Marian. Detecting Changes
in XML Documents. Proceedingsof ICDE, 2002.

[6] H. Garhaldas, D. Florescu, D. Shasha, E. Simon, and
E. Saita. Declerative Data Cleaning. Proceedings of VLDB,
2001.

[7] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,

S. Muthukrishnan, and D. Srivastava. Approximate strings

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

Ratio to Naive
o
w

1100 1250 1400
................

Set —=— Sot

Predicted Reference Set Size:

2000 2500

nnnnnnnnnnnnnnnnn

(a) Fixed Reference Set Size

(b) Unknown Reference Set size

Figure 11: Evaluating Reference Set Selection

ooooo

Seconds

00000

) 2000
aaaaaaaaaaaaa

ooooo

Hour

35

30 4

25 o

20

1s

10 4

sssssssssssss

(a) Increasing Distance threshold on a sample

(b) Increasing Distance threshold on DBLP

Figure 12: Performance curvesfor DBLP collection

joinsin a database (amost) for free. Proceedingsof VLDB,

2001.
S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. Proceedings of

ACM S GMOD, pages 73-84, June 1998.

V. Levenshtein. Binary Codes Capable of Correcting
Insertions, Deletions and Reversals. Cyberneticsand Control
Theory, pages 707710, 1966.

A. Marian, S. Abideboul, G. Cobena, and L. Mignet. Change
Centric Management of Versionsin an XML Warehouse.
Proceedingsof VLDB, Rome Italy, 2001.

G. Navarro. A Guided Tour to Approximate Strings
Matching. ACM Computing Surveys, Mar. 2001.

D. Sankoff and J. Kruskal. Time Warps, Sring Edits and
Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, Reading, Mass.,, 1983.

S. Sarawagi. Special issue on data cleaning. IEEE Data
Engineeing Bulleting, 23(4), 2000.

P. Yianilos. Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces. Proceedings of
the Third Annual ACM-SIAM Symposiumon Discrete
Algorithms, pages 311-321, Oct. 1992.

K. Zhang. A New Editing Based Distance Between

[16]

[17]

Unordered Labelled Trees. 4th Annual Symposium,
Combinatorial Pattern Matching, 1993.

K. Zhang and D. Shasha. Tree Pattern Matching. Pattern
Matching Algorithms, Apostolico and Galil Editors, Oxford
Univesity Press, 1997.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large Databases.
Proceedingsof ACM SSGMOD, Montreal Canada, pages
103-114, June 1996.

