
Approximate XML Joins

Sudipto Guha �

University of Pennsylvania
sudipto@cis.upenn.edu

H. V. Jagadishy

University of Michigan
jag@eecs.umich.edu

Nick Koudas
AT&T Labs–Research
koudas@research.att.com

Divesh Srivastava
AT&T Labs–Research
divesh@research.att.com

Ting Yu z

University of Illinois
tingyu@cs.uiuc.edu

ABSTRACT
XML is widely recognized as the data interchange standard for to-
morrow, because of its ability to represent data from a wide variety
of sources. Hence, XML is likely to be the format through which
data from multiple sources is integrated.

In this paper we study the problem of integrating XML data
sources through correlations realized as join operations. A chal-
lenging aspect of this operation is the XML document structure.
Two documents might convey approximately or exactly the same
information but may be quite different in structure. Consequently
approximate match in structure, in addition to, content has to be
folded in the join operation. We quantify approximate match in
structure and content using well defined notions of distance. For
structure, we propose computationally inexpensive lower and upper
bounds for the tree edit distance metric between two trees. We then
show how the tree edit distance, and other metrics that quantify dis-
tance between trees, can be incorporated in a join framework. We
introduce the notion of reference sets to facilitate this operation.
Intuitively, a reference set consists of data elements used to project
the data space. We characterize what constitutes a good choice of
a reference set and we propose sampling based algorithms to iden-
tify them. This gives rise to a variety of algorithmic approaches for
the problem, which we formulate and analyze. We demonstrate the
practical utility of our solutions using large collections of real and
synthetic XML data sets.

1. INTRODUCTION
XML is widely recognized as the data interchange standard for

tomorrow, in particular because of its ability to represent data from
a wide variety of sources. Hence, XML is likely to be the language
in which to integrate data from multiple sources. Data of string
type are prevalent in XML, thus the traditional inconsistencies be-
tween string attributes, such as mis-spelling, will persist in the

�Part of this work performed while the author was with AT&T
Labs.
yWork supported in part by NSF under grant IIS-0002356.
zWork performed while the author was visiting AT&T Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

paper

conference authors

author authorVLDB

title

XML for
the masses

Alice Bob

(a)

paper

conference authors

authorVLDB

title

XML for
the masses

(b)

Alice

publication

type

conference

VLDB

title

XML for
the masses

author

name

author

name

Alice

(c)

Rob

Figure 1: Example XML documents

XML world as well. Correlating XML data sources however, has
to cope with additional complexities due to the structure of XML
documents, which cannot be ignored. Autonomous data sources
may contain the same data, but may have differences in structure.
It is important to be able to correlate such data. Even when data
sources have the same Document Type Descriptor (DTD), they may
not have identical tree structure due to the presence of optional el-
ements and attributes.

EXAMPLE 1. Figure 1 presents three XML documents. Docu-
ments (a) and (b) originate from the same DTD, but document (c)
is an instance of a different DTD. It is apparent that all three docu-
ments describe the same publication. An application trying to inte-
grate data from various sources will have to face several challenges
in this example. In document (b) author Bob is not listed as one of
the authors of the paper “XML for the masses”. Based on the re-
maining elements and PCDATA fields however, documents (a) and
(b) represent the same paper. Document (c) represents the same pa-
per as documents (a) and (b) but originates from a different DTD.
Besides different labels for elements (e.g., publication versus
paper), structural differences exist (e.g., element authors is not
present, but element name is present) as well as spelling inconsis-
tencies (e.g., Rob versus Bob).

To address such difficulties, we need efficient techniques for ap-
proximately matching XML documents, based on the tree struc-
tured content of specified sub-elements of XML documents. When-
ever one deals with notions of approximate matching, one has to
specify a distance metric between the approximated entities that
effectively quantifies the approximate match. Such a metric has
to be amenable to efficient computation and general enough to en-
compass various types of differences between XML documents. As
Example 1 demonstrates, there is a clear need for metrics that can
handle inconsistencies, both in structure as well as content.

XML documents are ordered labeled trees; the problem of defin-
ing the distance between two ordered labeled trees has received
much attention in combinatorial pattern matching and the notion
of tree edit distance has been developed [16]. This distance is a a
natural generalization of edit distance from the domain of strings.
Informally, the tree edit distance between two trees is the mini-
mum number of operations (node insert, delete, relabel) required
to transform one tree to the other. A variety of computationally
expensive algorithms have been proposed for computing tree edit
distance between two trees. Such algorithms can serve as the basis
of approximate tree match quantification. For example, in Figure
1 trees (a) and (b) are at tree edit distance 2 apart. Insertion of
the subtree author-Bob in (b) will transform (b) to a document
that matches (a) perfectly. Our goal, however, is to embed such
approximate tree match algorithms in a broader correlation frame-
work between XML data sources. Clearly, there is a requirement
for efficient correlation (join) algorithms that can dispense with the
computation of the exact tree edit distance between all possible in-
put pairs, when possible.

In this paper, we initiate a formal study of join algorithms be-
tween XML data sources. We propose metrics and algorithms for
this problem. There exists a large body of work dealing with the
computation of string edit distance and its adaptation in a join frame-
work [6, 7, 13]. We focus the bulk of this paper on the novel as-
pect of adapting tree edit distance computation (matching based on
structural difference) into a join framework. Our algorithms are the
first to address this problem and lay the foundations for this impor-
tant area. More specifically, we make the following contributions:

� Computing tree edit distance between a pair of XML doc-
uments turns out to be a very expensive operation. Recog-
nizing this problem, we present upper and lower bounds for
the tree edit distance between XML document pairs. Such
bounds are much more efficient to compute. Using these
bounds as a basis, we develop efficient filtering techniques
that often avoid the need to compute the tree edit distance
between a pair of XML documents.

� We present algorithms for the efficient execution of approxi-
mate joins between XML documents using the tree edit dis-
tance as a join condition. Our algorithms are based on sam-
pling and can effectively reduce the volume of data examined
during the join operation. Our algorithmic framework is
easily adaptable to any metric one wishes to apply for quan-
tifying differences between XML documents.

� We present an experimental evaluation of our techniques us-
ing both real and synthetic data sets, analyzing the perfor-
mance tradeoffs inherent in our approach.

This paper is organized as follows. Section 2 discusseswork related
to the problems addressed in this paper. In section 3 we provide
definitions necessary for the bulk of the paper and formally define
the problem considered in the paper. Section 4 presents lower and
upper bounds for tree edit distance. In section 5 we introduce a
transform, based on the notion of reference sets, that effectively
reduces the problem of approximately joining XML documents to
that of joining vectors in a metric space. Section 6 elaborates on
the properties of the resulting metric space and proposes novel
algorithms for the approximate join problem between XML data
sources. In particular, we show how various bounds can be utilized
in this framework and give rise to various algorithmic approaches.
In section 7 we present a thorough experimental evaluation mea-
suring and comparing the performance of the algorithms proposed
herein for real and synthetic data sets. Finally, section 8 concludes

the paper and outlines problems of interest for further study in this
direction.

2. RELATED WORK
Matching strings approximately is a problem of central interest

in pattern matching and a variety of algorithms exist to solve the
problem in several ways [11]. The notion of edit distance is a fun-
damental measure used to quantify distance between strings [9].
Approximately matching collections of strings is a problem of cen-
tral interest in the context of data integration and cleansing (see
e.g., [6, 7, 13]). Join algorithms have been proposed to identify
pairs of approximately matching strings [6, 7] and commonly re-
duce to traditional join algorithms deployed in relational systems.

A large body of work in combinatorial pattern matching deals
with the problem of identifying the distance between ordered la-
beled trees [12, 1]. A very general notion of distance between trees
can be expressed using the tree edit distance [1, 12]. Several al-
gorithms have been developed to identify the tree edit distance be-
tween pairs of trees [16]. The problem of matching trees can be
arbitrarily hard depending on the specific cost model adopted (see
[16] and references therein for a comprehensive treatment of the
subject).

With the popularity of the semistructured data model, several
algorithms have been introduced to identify changes in pairs of
semistructured or XML documents [3, 2, 10, 5]. Such algorithms
focus on identifying changes in versions of a document and intro-
duce cost models to quantify change, based on assumptions specific
to the particular application. Since the version of the problem tar-
geted in those works is very hard, several heuristics are proposed
and evaluated. In this paper, we adopt the notion of tree edit dis-
tance due to its generality, and simplicity of operations that offer a
conceptually appealing quantification of the distance between trees.
We emphasize however that the algorithms presented herein can be
adapted easily to any distance function as long as it is a metric. For
example, previously proposed change detection techniques [10, 3]
can be used as a basis to construct distance functions between trees.
As long as these new notions of distance have metric properties,
they can be easily incorporated in our framework.

3. PRELIMINARIES
Let � be an alphabet of size j�j. Let � 62 � represent the null

symbol. For a DTD D, let � be the set of all ordered labeled trees,
well formed under D. Without loss of generality we will assume
that all node literals and atomic values of D as well as element
symbols are defined over �.

In the domain of strings, the notion of edit distance has been
widely applied to quantify differences between strings.

DEFINITION 1 (EDIT DISTANCE). The edit distance between
two strings�1; �2, ed(�1; �2) is defined as the minimum number of
edit operations (i.e., insertions, deletions, substitutions) on single
characters required to transform one string into another.

Edit distance is a well studied distance metric with a plethora of ap-
plications in various fields of computer science. Given two strings
�1 and �2 , there exists a well known algorithm [9] to compute the
edit distance between them in O(j�1jj�2j) time and space. Edit
operations are assumed to be unit cost. Non-unit costs and more
general edit operations are possible, and have been studied exten-
sively in a significant stream of research that followed. Notice that
ed() is a metric.

A generalization of string edit distance is the notion of tree edit
distance [1] defined for quantifying differences between pairs of

ordered labeled trees. Let T1; T2 be two well formed XML docu-
ments, under the same or different DTD’s. They can be conceptu-
ally represented (after parsing) as ordered labeled trees, where node
labels include element tags, PCDATA values, attribute names and
attribute values. The nesting of the elements is reflected in the tree
structure. Tree edit distance is defined as follows:

DEFINITION 2 (TREE EDIT DISTANCE). Given two treesT1; T2 ,
the tree edit distance between them, TDIST(T1; T2), is defined as
the minimum cost sequence of tree edit operations (i.e., node in-
sertions, deletions and label substitutions) on single tree nodes, re-
quired to transform one tree to another.

Computing the tree edit distance between trees is a well studied
problem as well. Given a tree T , let h(T) denote its height. For two
trees T1; T2 , there exists a well known algorithm to compute the
tree edit distance between them, running in O(jT1jjT2jh(T1)h(T2))
time and O(jT1jjT2j) space [16]. Once again, notice that TDIST is
a metric as well. As in the case of string edit distance, numerous
variants of tree edit distance have been introduced. Such variants
can be incorporated in our algorithms as long as the distance they
compute is a metric.

We briefly describe algorithm treedist() below that computes
the TDIST between two trees, and refer the reader to [16] for a
comprehensive treatment. Typically, the cost of each edit opera-
tion is assumed to be one unit, and the cost of a sequence of edit
operations is simply the sum of its component operation costs.

Notation. Let T be an ordered labeled tree. Order is obtained by
a left to right postorder numbering of the nodes in T 1. An ordered
sub forest of T is a collection of subtrees of T appearing in the
same order as they appear in T . Let t[i] represent the i node of
T , ni the children of i, T [i] the subtree rooted at t[i] and F [i] the
sub forest obtained by deleting from T [i] node t[i]. We represent
an edit operation as
(a ! b). The edit operation is an insert
operation if a = �, a delete operation if b = � and a substitution
operation if a 6= � and b 6= �. Notice that this makes
() a metric.
These operations are assumed to have unit costs.

Tree Edit Distance Computation. Let treedist(T1; T2) denote
the algorithm that computes the tree edit distance TDIST between
trees T1; T2. The algorithm constructs a mapping M between the
nodes of the two trees; this mapping dictates correspondences be-
tween nodes of the two trees. The goal is to compute the mapping
with the minimum cost subject to the specific cost model. The map-
ping consists of pairs of integers (i; j) such that:

� 1 � i � jT1j and 1 � j � jT2j
� For any pairs (i1; j1); (i2; j2) 2M

1. i1 = i2 if and only if (iff) j1 = j2

2. t1[i1] is to the left of t1[i2] iff t2[j1] is to the left of
t2[j2] (sibling order preserving)

3. t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of
t2[j2] (ancestor order preserving)

Figure 2 illustrates this algorithm with an example. The matching
M generated in this case is depicted with lines in the figure. Nodes
that are not matched have to be considered for insertions or dele-
tions. Nodes that are matched have to be considered for relabeling.
treedist() evaluated between the two trees in the figure returns a
value of 3 (delete node B, insert node H, relabel C to I).
1Without loss of generality, we use postorder numbering. Preorder
would work as well.

A

B C

D E F G

A

D H

E I

F G

(a) (b)

Figure 2: Example treedist() mapping between two trees

3.1 Problem Definition
Let S1 and S2 be two sources of XML data originating from the

same or different DTD’s. We are seeking algorithms to perform
an approximate join operation between the sources using tree edit
distance (TDIST) as a join predicate applied on pairs of subtrees of
the XML documents, corresponding to the sub elements that need
to be matched in the XML documents. For simplicity of exposition,
we assume in this paper that entire documents need to be matched.
More formally:

DEFINITION 3 (APPROXIMATE TDIST JOIN). Given two XML
data sources,S1 andS2 and a distance threshold� , let TDIST(d1; d2)
be a function that assesses the tree edit distance between two doc-
uments d1 2 S1 and d2 2 S2. The approximate join operation be-
tween two sourcesof XML documents reports in the output all pairs
of documents (d1; d2) 2 S1 � S2 such that TDIST(d1; d2) � � .

Variants of this basic problem are also possible; for example we
might require the distance between two XML documents to be in
a range of user specified distance thresholds. Our algorithms can
provide solutions to these variants of the problem as well. We will
suppress this discussion for brevity. TDIST as defined assumes edit
operations of unit cost. Incorporating the capability to assess string
edit distance between string node labels into TDIST, can be per-
formed by evaluating the edit distance ed(), between two node la-
bels of string type. The edit function
() can be modified for this
purpose to assess ed() between two nodes, whenever these nodes
have string labels (e.g., CDATA,PCDATA etc). Since ed() is a met-
ric, the metric properties of function
() are preserved (a prop-
erty required by our proposal). Handling edit operations on strings
is an additional function call in the tree edit distance computation
treedist() whenever the nodes have string labels. This way of in-
corporating string edit distance in our framework does not affect
our algorithms or their correctness. In a similar fashion, an ontol-
ogy hierarchy can be incorporated, matching/comparing tag names.
In order to simplify the presentation in the remainder of this paper,
edit operations are assumed to be unit cost.

Executing an approximate TDIST join operation efficiently faces
two main challenges. First, evaluation of the TDIST function be-
tween two documents is a very expensive operation; in the worst
case it is an O(n4) operation for trees of size O(n). Clearly, even
for small values of n, straightforward evaluation of the function is
computationally prohibitive. Second, traditional wisdom in join al-
gorithms (sort merge, hash joins etc) does not extend easily in this
application domain. Novel join processing techniques are required
to deal with the intrinsic complexities of approximate matching of

XML documents.

Overview of our approach. We will present our proposal in the
following steps:

� We will develop lower and upper bounds for the TDIST func-
tion (Section 4). These bounds are computationally less ex-
pensive than the evaluation of TDIST and they serve as a ba-
sis for significant reduction in the overall computation costs.
We can utilize these bounds to design inexpensive filters for
TDIST. Application of our bounds provides a fast way to de-
cide if the application of TDIST to a pair of documents of
interest is within our distance threshold. For example, the
pair can be dismissed if the bounds indicate that it is not,
saving the expensive TDIST evaluation on the pair.

� We will present (Section 5) algorithms for evaluating joins
between pairs of XML data sources utilizing our bounds for
TDIST. Although bounding TDIST can reduce the computa-
tion for a single pair, one has still to improve on the overhead
of examining all pairs of documents. We develop sampling
based algorithms for this problem. Our algorithms guaran-
tee no false dismissals and effectively transform the prob-
lem of joining XML documents to that of performing a join
operation in a numeric vector space. Using this transform,
along with our bounds and properties of the resulting vector
space, we present a family of algorithms for the problem of
approximately joining XML data sources (Section 6). We
subsequently evaluate our proposed algorithms tuning vari-
ous parameters of interest and observe their comparative per-
formance (Section 7).

All the proofs of theorems and lemmas are omitted due to space
limitations.

4. BOUNDING TREE EDIT DISTANCE
Computation of the tree edit distance between two trees T 1; T2 ,

requires time O(jT1jjT2jh(T1)h(T2)) (where jTij is the number
of nodes in tree Ti and h(Ti) is the the height of Ti). Given large,
deeply nested XML document trees, such a computational cost may
be too high. In this section we devise computationally efficient
techniques to obtain both lower and upper bounds for TDIST. In
Section 6, we will show how to use these bounds to solve our ap-
proximate join problem faster.

4.1 Deriving Lower Bounds
Let T be an ordered labeled tree. Let pre(T) denote the preorder

traversal of T and post(T) its postorder traversal. Both pre(T) and
post(T) can be viewed as strings over � �. For two trees T1; T2 ,

LEMMA 1. If pre(T1) 6= pre(T2) or post(T1) 6= post(T2),
then T1 6= T2.

Intuitively the lemma states that if there is a difference between
the prefix or postfix traversals of the trees, then there has to be a
difference in the trees as well. There are natural examples showing
that there are differences in the trees that are not reflected in the tree
traversals. This is acceptable since we are searching for a lower
bound.

LEMMA 2. If the trees are at edit distance k, then the maximum
edit distance between their preorder or postorder traversals is at
most k.

Based on lemmas 1,2 we obtain the following relationship between
TDIST and the string edit distances corresponding to the two traver-
sals:

THEOREM 1. Let T1; T2 be ordered labeled trees. Then

max(ed(pre(T1); pre(T2)); ed(post(T1); post(T2)))

� TDIST(T1; T2)

We illustrate this bound through the following example.

EXAMPLE 2. Consider again the trees (a),(b) of Figure 2. We
have pre((a)) = ABDECFG and post((a)) = DEBFGCA.
Similarly pre((b)) = ADHEIFG and post((b)) = DEFGIHA.
Clearly,

max(ed(pre((a)); pre((b))); ed(post((a)); post((b))))

=max(3; 3) = 3 � treedist((a); (b))

We will denote the lower bound of theorem 1 as LBDIST(T1; T2)
for trees T1; T2 . Notice that for strings (preorder, postorder repre-
sentations) of length O(n), ed() can be computed in O(n 2) worst
case time and space. This can be substantially better than comput-
ing the tree edit distance directly.

4.2 Deriving Upper Bounds
We construct an upper bound UBDIST of TDIST by restricting

the freedom of choices algorithm treedist has when computing
the optimal set of operations to match two trees. More precisely,
we will impose additional constraints on the kinds of relationships
the algorithm maintains when devising the optimal set of opera-
tions. This effectively reduces the search space and enables the
development of a faster algorithm. We note, that such a measure
was introduced by Zhang [15], where an algorithm related to the
one presented herein was proposed.

Recall that the minimum cost mappingM that algorithm treedist
obtains is sibling and ancestor order preserving. For the upper
bound construction, we require that the mapping M also preserves
ancestor order for the lowest common ancestor of pairs of nodes.
For any triple (t1[i1]; t2[j1]); (t1[i2]; t2[j2]); (t1[i3]; t2[j3]) 2 M ,
let lca() be the lowest common ancestor function. We require that
mapping M respects:

CONDITION 1. t1[lca(t1[i1]; t1[i2])] is a proper ancestor of
t1[i3] iff t2[lca(t2[j1]; t2[j2])] is a proper ancestor of t 2[j3].

Intuitively, the new requirement ensures that two distinct sub-
trees of T1 will be mapped to two distinct subtrees of T2 . These
requirements are satisfied by a dynamic programming algorithm
related to the one computing edit distance between two trees [16].
Algorithm DistinctTreeEditDistance computing UBDIST be-
tween a pair of trees, is presented in Figure 3. It constructs a min-
imum cost mapping between the nodes of the two trees, respecting
the constraints of condition 1, as well as the constraints satisfied
by algorithm treedist. For any pair of subtrees it accounts for the
various types of correspondence between the tree node pairs. The
first two equations in formula (3) account for the case that exactly
one of the nodes under consideration does not belong in the map-
ping; in this case it considers the optimum cost to match a descen-
dent subtree of that node. The last equation accounts for the cost of
matching two subtrees (matching the respective forests after match-
ing the root nodes). Formula (2) in Figure 3 is similar to formula
(3) but for the case of forests in the two trees. The last equation in
formula (2) considers the cost of matching the children nodes of a
pair under consideration. Formula (1), in Figure 3, keeps track of
this cost.

Consider the example depicted in Figure 4. The match generated
by algorithm treedist is shown in dashed lines. The TDIST com-
puted is 3. The UBDIST computed with algorithm

Algorithm DistinctTreeEditDistance(T1; T2) f
D[jT1j][jT2j] records distances of subtrees (substructures) of T 1; T2
ED[jT1j][jT2j] records distances between children of a pair of nodes
1 � i � jT1j; 1 � j � jT2j
Initialize D[i][�];D[�][j]8i;j

for i = 1 to jT1j f
for j = 1 to jT2j f

for k = 1 to ni f /* the children of i */
for l = 1 to nj f /* the children of j */

(1)ED[k][l] = min

8<
:

ED[k][l� 1] +D[�][T2[jl]]
ED[k� 1][l] +D[T1[ik]][�]
ED[k� 1][l� 1] +D[T1[ik]][T2[jl]]

(2)D[F1[i]][F2[j]] = min

8<
:

D[�][F2[j]] +min1�l�nj
(D[F1[i]][F2[jl]]�D[�][F2[jl])

D[F1[i]][�]+min1�k�ni
(D[F1[ik]][F2[j]]�D[F1[ik]][�])

ED[ni][nj]

(3)D[T1[i]][T2[j]] = min

8<
:

D[�][T2[j]] +min1�l�nj
(D[T1[i]][T2[jl]]�D[�][T2[jl])

D[T1[i]][�] +min1�k�ni
(D[T1[ik]][T2[j]]�D[T1[ik]][�])

D[F1[i]][F2[j]] +
(t1[i]! t2[j])

Figure 3: Algorithm DistinctTreeEditDistance computing UBDIST

A

B C

D E F G

A

D H

E I

F G

Figure 4: Example matching between two trees

DistinctTreeEditDistance is 5 (delete B, delete E, insert H, in-
sert E, relabel C to I), however. The match generated by the al-
gorithm is shown in solid lines. Unlike algorithm treedist the al-
gorithm will not establish the match between E’s since this would
violate condition 1. We claim the following:

THEOREM 2. There exists an O(n2) algorithm to compute the

UBDIST distance between a pair of trees with O(n) nodes each.

Proof:
It is evident that

PjT1 j
i=1

PjT2 j
j=1

O(ni � nj) � O(jT1j � jT2j)
It is easy to see that UBDIST is reflexive and obeys the triangle

inequality, thus it is a metric. We establish the upper bound rela-
tionship between TDIST and UBDIST with the following theorem:

THEOREM 3.

For a pair of trees T1; T2;TDIST(T1; T2) � UBDIST(T1; T2)

In this section, we have shown how to compute fast lower and
upper bounds on the distance between any pair of trees. These met-

rics, LBDIST and UBDIST respectively, will be used in the efficient
algorithms we derive in Section 6.

5. REDUCTION INTO A METRIC SPACE
USING REFERENCE SETS

In the preceding section we focused on the time taken to compute
the distance between two trees, and presented efficient techniques
to bound this distance. In this section, we will devise a technique
to minimize the number of pairwise distance computations required
to evaluate the approximate tree join of two sets of XML trees.

Let S1; S2 be two sets of XML document trees, say from differ-
ent data sources, between which we wish to compute a join. Let
K � S1 [S2 be a chosen set of XML documents, which we will
refer to as a reference set. We will defer discussion on how best to
determine K until Section 5.1.

Let di 2 S1; dj 2 S2 be two XML documents. We will con-
struct a vector for each document consisting of the distances of
each document to the XML documents in K . This could be any ar-
bitrary metric distance function, in general, and not just the TDIST

function. To emphasize this point, we use dist rather than TDIST

in this section, even though our interest is in the special case when
the distance of each document to the documents in K are quantified
using TDIST.

Let k1; : : : kjKj be an arbitrary ordering of the reference set K .
Let vi (vj) be the vector for di (dj). Clearly each vector is of di-
mensionality jKj. Further let vi` = dist(di; k`); 1 � ` � jKj;
similarly vj` = dist(dj; k`); 1 � ` � jKj. Since dist() is a met-
ric, the following is true by application of the triangle inequality:

81 � ` � jKj jvi` � vj`j � dist(di; dj) � vi` + vj` (1)

Essentially the above procedure “projects” documents d i; dj onto
the reference set. Provided that dist() is a metric, the reference
set acts as a set of basis elements defining a metric space. Assume
that we wish to identify if the documents di,dj are within a specific
distance threshold, say � , of each other, that is if dist(d i; dj) � � .
The metric properties of dist(), namely equation 1 provides a way
to reason about the pair’s distance. It is evident due to equation 1
that if:

ut =min`;1�`�jKjvi` + vj` � � (2)

then the pair is certainly within distance of � . Similarly, if:

lt = max`;1�`�jKjjvi` � vj`j > � (3)

then the pair cannot be within distance � . Thus, the properties of
the metric space, constructed using the reference set, provide us
with additional capability to reason about the distance between a
pair of XML documents. Depending on the relationship of l t; ut
to � one can conclude that the pair is below or above the desired
threshold with certainty.

Clearly a projection of the entire XML sourcesS1; S2 can be ob-
tained in a similar way. For a reference set K , let S

0

1 (S
0

2) denote
the set of vectors vi; 1 � i � jS1j (vj; 1 � j � jS2j) obtained
after projecting each document di 2 S1 (dj 2 S2) onto the ref-
erence set. For a metric dist(), provided that the reference set K
is in memory, S

0

1; S
0

2 can be obtained with a single pass over the
underlying XML data sources. Moreover, the projection achieved
using the reference set effectively is a “dimensionality” reduction
technique. Assume that the average document size in S is �; the
original data volume is jSj�� in this case. After projection, using a
reference set of size jKj, the resulting data volume is jSj�(jKj+1)
(we add one to account for the document id recorded in conjunction
with each vector). If jKj is small compared to �, the reduction in
data volume can be substantial, possibly enabling the vector sets to
be memory resident.

5.1 Choosing the Reference Set
Given two sets of XML trees S1; S2 and a metric dist() that

assesses the distance between elements of the two sets, we seek to
identify a reference set K . We would like this set to be as small as
possible, since the amount of work we do is proportional to the size
of this set; yet we would like the set to generate filters lt; ut that
are as decisive as possible.

Given a distance threshold � , assume S = S 1 [S2 is divided
into k clusters such that documents within a cluster have small dis-
tance (say less than �

2
) and documents in different clusters have

large distance (say larger than 3�
2

). In this case we will say that S
is well separated. Suppose we choose one document d from a clus-
ter containing n1 documents in our reference set. Then any pair
of documents in this cluster is within distance half the threshold
from d. We would assert by the triangle inequality that the pair of
documents constitute a valid pair (distance � �) and should be in
the output, saving an evaluation of dist() for this pair. Thus, we
will save n1(n1 � 1)=2 such evaluations in total. Suppose that we
now have a pair in which one document belongs to this cluster and
the second document is in some other cluster. Then the distance
of the point in the cluster and d is at most �

2
; the distance of the

point outside the cluster to d is at least 3�
2

. Again from the trian-
gle inequality we can conclude that this pair is not close (distance
> �), and avoid evaluating dist(). This will save us n1(jSj � n1)
comparisons. We have to distinguish the other pairs by the other
points belonging to the reference set. Thus:

LEMMA 3. If S is well separated the optimal strategy for con-

structing a reference set is to always choose a single point from

each of the k largest clusters.

Even if S is well separated into k clusters, however, we don’t know
apriori which are the k clusters that we should choose points from.
It is evident, however, that every time we choose a sample from
one of the clusters, we have to perform additional jSj comparisons
when constructing the vectors, but we also save a number of com-
parisons due to pruning via the triangle inequality. The optimal

strategy minimizes the overall number of dist() computations we
perform. Let the optimal number of comparisons identified by the
optimal strategy be W ; We will show how to identify k clusters
by sampling. Our strategy consists of first choosing a sample and
then clustering the sample into k clusters with a clustering algo-
rithm of choice [8, 17]. The following theorem shows how to iden-
tify k clusters in a well separated data set via sampling, such that
the optimal number of comparisons we perform if we use a single
point from each of these clusters identified as our reference set, is
(1 + �)W , for � > 0. We claim the following:

LEMMA 4. If S is well separated into k clusters, a sample size

of

12

p
kjSj
�

log jSj

is enough to identify all k such clusters with high probability.

In practice, however, although clustering might exist in the un-
derlying data set, we don’t expect it to be well separated. Moreover,
clustering algorithms require the number of clusters as a parameter
in the input and strive to derive the best clustering optimizing some
measure function, with respect to the number of clusters specified.
In our problem however, the user only specifies a distance threshold
desired for the approximate join operation.

We build on the intuition gained by the preceding analysis and
we propose the following strategy to identify the reference set. If
the number of points k we choose in our reference set is known,
we derive a sample size as computed in lemma 4. Clearly more
samples are required since the data set is expected not to be well
separated. We perform our clustering by repeatedly picking a point
from the sample and covering all points within 1

2
the user specified

distance threshold. We then choose the k clusters which have the
largest number of sample points and pick a random point from each
to be in our reference set.

If we do not know the size of the reference set, we draw a sam-
ple according to lemma 4, of size at least O(

pjSj log jSj) and we
cluster to half the threshold as before. We then compute f i as the
fraction of points in the first i clusters. As i increases and f i in-
creases, we will be comparing (1� fi)

2n2 pairs. Thus the number
of comparisons decreases by ratio (1 � f i+1)

2=(1 � fi)
2 and the

size of the reference set increases by 1 + 1=i in size. We balance
these two and choose k � i � 2 such that

(1� fi+1)
2

(1� fi)2
>

i

i + 1

We will evaluate this strategy in section 7.

6. APPROXIMATE JOIN ALGORITHMS:
BOUNDS + REFERENCE SETS

We present several algorithmic approaches for the efficient solu-
tion of the approximate join problem between XML data sources.
We begin with a naive “current-practice” algorithm and enhance
it in multiple ways by exploiting the techniques developed in the
preceding sections.

6.1 A Baseline Algorithm
In relational databases, a well studied set of algorithms for com-

puting joins between single valued attributes exists, like hash joins,
sort merge joins and nested loop joins. Unfortunately, hash joins
and sort merge joins do not carry over easily to the approximate
XML join problem, as the join predicate makes use of a distance

Algorithm Bounds
for each d1 2 S1 f

for each d2 2 S2 f
if (UBDIST(d1 ; d2) � �)

output((d1; d2))
if (LBDIST(d1; d2) � �)

if (treedist(d1; d2) � �)
output((d1; d2))

g
g

Figure 5: Algorithm Bounds

threshold which requires an evaluation of an expensive function be-
tween every input pair. This feature of the problem deems all algo-
rithms that treat each joining attribute in isolation in their first step
(e.g., hashing or sorting single attributes) inapplicable. A nested
loops approach is readily applicable as it examines all pairs of in-
put documents.

Distance based join algorithms, proposed in the field of spatial
and multimedia databases, are also not easy to adapt in a straight-
forward way, as the underlying data type is a vector obtained through
the application of various transforms. There is no obvious way of
converting a document in isolation to a numeric vector.

Given two XML data sources S1; S2 , a naive solution to the
approximate join problem would compute a nested loop join be-
tween the two sources evaluating algorithm treedist(d i; dj)8di 2
S1; dj 2 S2 . Such an approach, has O(jS 1j � jS2j) worst case
I/O complexity. Provided that each document is of size O(n) it
invokes treedist for each pair requiring O(n4) time in the worst
case. Clearly such an approach has very high I/O and processor
complexity but can serve as a baseline solution to this problem. We
refer to this approach as Naive (N) in the sequel.

6.2 Improving the Baseline Using Bounds
A first improvement to the naive algorithm can be obtained by

utilizing the upper and lower bounds introduced for TDIST. Let �
be the distance threshold specified for the join operation. From the-
orem 1, LBDIST(d1; d2) � TDIST(d1; d2). A viable approach is
to first evaluate LBDIST between the pair. If LBDIST(d1; d2) >
� , we can safely prune this pair away, saving the invocation of
the expensive treedist(:) function. In case LBDIST(d 1; d2) �
� , however, the upper bound of theorem 3 could provide a quick
way to decide if indeed the pair belongs to the answer set. If
UBDIST(d1; d2) � � then (d1; d2) belongs to the final answer
and evaluating treedist(d1; d2) is not required. In these cases,
the lower and upper bounds can safely determine if a pair is not
in the answer set (assuring no false negatives) or if a pair is in
fact in the answer set (assuring no false positives). However, if
LBDIST(d1; d2) � � < UBDIST(d1; d2) the pair cannot be pruned
or definitely included. In this case, one has to test if the pair is
within distance � by executing algorithm treedist(:) on the pair.
We refer to this improvement of algorithm Naive as Bounds
(B) to signify the use of bounds. Pseudo code for this algorithm is
given in Figure 5. Algorithm Bounds has the potential to reduce
the processor time as evaluating the bounds is substantially cheaper
than evaluating treedist(:). Moreover, depending on how effective
pruning is, the number of treedist(:) computations can be substan-
tially reduced. We will experimentally evaluate the effectiveness of
these filters in Section 7.

6.3 Pruning Work with a Reference Set
Given a reference set K , first use TDIST to obtain S

0

1; S
0

2 . Join-

Approximate Join Algorithm
Construct S

0

1
; S

0

2
using dist() between

elements of S1; S2 and the reference set
vectors vi, corresponding to documents d i

for each vi 2 S
0

1 f

for each vj 2 S
0

2
f

if (UpperBound � �)
output(di; dj)
if (LowerBound � �)

if (TDIST(di; dj) � �)
output(di; dj)

g
g

Figure 6: Approximate Join Template

ing the two data sets takes place by application of Equation 1 on
each pair. If the lower bound lt > � , the pair can be pruned away.
Otherwise, if the upper bound lu � � , the pair belongs to the out-
put. In the case lt � � < ut, application of treedist() on the pair
of corresponding XML documents is required to identify their true
distance and decide if the pair belongs to the output. In this case,
the actual documents are retrieved from secondary storage, based
on their document identifiers and treedist(:) is used to evaluate the
actual distance. The advantage of this approach is that the bounds
computed with Equation 1 for the TDIST between each pair, are
exact since TDIST is used to compute the distances to the refer-
ence set. However, the algorithm has to perform (jS1j+ jS2j)jKj
invocations of TDIST to compute the vector collections S

0

1; S
0

2 .
We refer to this algorithm as ReferenceSets (RS) to sig-

nify that it uses a reference set to project the XML data sources,
evaluating treedist() between the elements of the sources and the
elements of the reference set; it then utilizes the triangle inequality
to prune the result space. The approach can be instantiated in Fig-
ure 6 usingdist = TDIST; LowerBound = lt andUpperBound =
ut from Equation 1.

6.4 Applying Both Optimizations in Sequence
One can complement the above RS algorithm by the applica-

tion of the lower and upper bounds introduced in theorems 1,3. If
the bounds obtained by Equation 1 indicate that treedist(:) has
to be invoked between the pair under consideration to assess the
exact distance, one can possibly avoid such execution by applying
the computationally cheaper lower (LBDIST) and upper (UBDIST)
bounds on the pair. Only if these bounds indicate that the pair could
be in the result set, one should execute treedist(:) on the pair to
reach a conclusion.

We refer to this algorithm as RSBounds (RSB) to indicate the
use of TDIST in the construction of the vector sets and the use of
the lt; ut as well as the bounds of lemmas 1,3. It can similarly be
instantiated in Figure 6 using dist = TDIST and applying both l t
and LBDIST for LowerBound and both u t and UBDIST for Upper-
Bound.

6.5 Estimating Distances to the Reference Set
To lower the computational expense of evaluating treedist(:)

between the XML sources and the reference set, one could instead
estimate the distance between them using LBDIST and UBDIST.
This has the potential of reducing the computational expenses of
this construction since we are evaluating much cheaper functions
between the sources and the reference set. However, since these
are bounds, once we use these in a manner that prevents false dis-

missals, we are left with potentially more pairs of elements between
which we have to evaluate treedist().

During construction of the vector sets, we construct two vec-
tors for each document di. Vector vli is a vector populated using
LBDIST between the document and elements of the reference set;
vector vui is populated using UBDIST between the document and
elements of the reference set. When computing the l t; ut bounds,
equation 1 has to be modified to assure correctness in this case (no
false positives or negatives). In particular:

8`1 � ` � jKj jvli` � vuj`j � dist(di; dj) � vui` + vuj` (4)

Then ut becomesmin`;1�`�jKjv
u
i` + vuj` and lt becomes

max`;1�`�jKjjvli` � vuj`j. We refer to this combined algorithm as
RSCombined (RSC) to signify the use of LBDIST and UBDIST

and the application of the (modified) lt; ut bounds as well as the
bounds of theorems 1,3. Notice that this algorithm doubles the
size of the vector sets, since two vectors are constructed for each
document. This algorithm can be similarly instantiated with the
template of Figure 6.

7. EXPERIMENTAL EVALUATION
We implemented all the approaches proposed in this paper. In

this section we present a comparative study varying parameters of
interest. There are various parameters affecting the performance of
our algorithms, and we conducted a comprehensive set of experi-
ments to understand the impact of individual parameters to perfor-
mance.

We used both synthetic and real data sets in our experiments. We
choose to use synthetic data sets because it is easier to control the
parameters and vary them on demand to isolate performance impli-
cations. We demonstrate the strength of our algorithms however,
reporting performance results on real data sets. More specifically
we used the following data sets in our study.

� Data set A: Synthetic data set constructed with the IBM
XML data generator available through AlphaWorks. It con-
sists of 500 randomly generated documents.

� Data set B: Synthetic data set constructed by merging doc-
uments from different runs of the IBM XML data generator.
This data set was artificially constructed to contain 8 clusters
of documents. It consists of 500 documents.

� Real DBLP data: We report experimental results on the
entire conference collection of the DBLP database of size
55MB.

We first present accuracy and performance results for the LBDIST

and UBDIST bounds to TDIST introduced in Section 4. Then we
will present an evaluation of the algorithms presented in Section 6,
varying parameters of interest. Finally, we will evaluate our pro-
posal for the choice of a reference set and present results of the
performance of our algorithms on real XML data sets highlighting
the performance benefits of our proposal.

7.1 Evaluating Bounds
The results of the first experiment we present evaluates the qual-

ity of the LBDIST and UBDIST bounds to TDIST presented in Sec-
tion 4. Figures 7(a)(b) present the results of the following exper-
iment. For dataset A, we computed the pairwise distances using
algorithm treedist as well as the bounds to TDIST using LBDIST

and UBDIST. We compute the ratio of the bound to TDIST and we
construct a histogram of the number of pairs of documents falling

0

10000

20000

30000

40000

50000

60000

70000

80000

0.7 0.75 0.8 0.85 0.9 0.95 1

Ratio

0

10000

20000

30000

40000

50000

60000

70000

1 1.2 1.4 1.6 1.8 2

Ratio

(a) Tightness of LBDIST bound(b) Tightness of UBDIST bound

Figure 7: Evaluating the tightness of upper and lower bounds

0.0001

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000

XML document size (number of nodes)

Se
co

nd
s

LBDist

Tdist

UBDist

Figure 8: Time to compute treedist and bounds as the docu-

ment size increases

within each ratio range. Figure 7(a) shows a histogram of the num-
ber of document pairs versus the ratio of LBDIST to TDIST. Sim-
ilarly, Figure 7(b) shows a histogram of the ratio of UBDIST to
TDIST for all pairs. We can observe that in Figure 7(a) all pairs
are above 0.9 with the bulk above 0.98. In Figure 7(b) all pairs are
below 1.5 with the bulk of pairs below 1.2. Similar results were
obtained for the other data sets. From the results of Figure 7 we
can observe that both bounds are reasonably close to the actual dis-
tance obtained by algorithm treedist(:). We next present the time
taken to compute these bounds for various document sizes. Figure
8 presents the time (in logarithmic scale) required by all algorithms
to compute the distance as the size of the XML document, in terms
of number of nodes, increases. It is evident that as the size increases
the bounds computations become progressively faster relative to the
full computation, in accordance with our analytical expectations.
(The Y-axis is on a logarithmic scale, and the curves are diverging,
with a difference already of an order of magnitude for documents
that are 500 elements).

7.2 Evaluating the Proposed Algorithms
There are two main parameters affecting the performance of the

algorithms proposed. In the case of algorithms based on reference
sets, the size and choice of the set is very important. The size of
the set affects performance while building the vector collections
and the choice of the reference set mainly determines the effect on
pruning achieved. The distance threshold specified during the join

operation affects the performance of baseline approaches as well
as the performance of algorithms using reference sets. We vary
both parameters in the sequel and we observe their performance
implications.

In our first experiment, we investigate the impact of the ref-
erence set size to the performance of the algorithms making use
of reference sets. Since we wish to vary the size of the refer-
ence set arbitrarily, we select it using uniform random sampling in
this experiment and observe the trends. Figures 9(a)(b)(c) present
the performance, as a fraction of the performance of Naive (N)
of the three algorithms (ReferenceSets (RS), RSBounds
(RSB), RSCombined (RSC)) as a function of the size of the
reference set for data set A, for various distance thresholds. Algo-
rithm Bounds (B) is not evaluated in this experiment as it does
not make use of reference sets. Figures 9(d)(e)(f) present the re-
sults of the same experiment for data set B. Figure 9(a) presents the
performance of RS. Two observations are evident. First the run-
time of the algorithm increases almost linearly (to that of N) as the
reference set size increases. Second, there appears to be a knee
in the performance curve for small reference set size. Runtime in-
creases linearly to N because a larger reference set introduces more
comparisons while building the vectors. Moreover, the knee in the
curves signifies an optimum reference set size, around 1, which is
explained by the properties of data set A. Data set A is synthetically
generated and observation of the distances between pairs appears
to be uniformly distributed. The data appear as if they are in a sin-
gle large cluster, thus a small sample size is enough as predicted
by lemma 3. For larger reference set sizes, the cost of building
vectors is larger especially for this algorithm, since the expensive
treedist(:) function is invoked for this purpose. Moreover, as the
distance threshold increases, large documents are not pruned away
by the application of lt; this causes large documents to be verified
using the expensive treedist(:) function and this dominates the
overall computation.

Figure 9(b) presents the results for RSB. The observations are
similar; the additional filtering applied in this algorithm, however,
achieves more effective pruning. Even in the case of a large dis-
tance threshold, for the range of reference set sizes evaluated in the
figure, the algorithm is much faster than N (and subsequently RS).
Finally, Figure 9(c) presents the results for RSC. Improved filtering
and less expensive computations during the construction of vec-
tors, gives a significant performance advantage to this algorithm. It
is much faster than competitors and manages to outperform N even
for large distance thresholds and very large reference set sizes.

In Figures 9(d)(e)(f) we present the results of the same experi-
ment, using data set B. Data set B is artificially constructed to con-
tain 8 distinct clusters. The overall performance trends as well as
the relative performance of the algorithms remains the same. How-
ever, in this case, we can clearly see that the optimal reference set
size is around 8, as predicted by Lemma 3. For algorithm RSB
(and to some extent algorithm RSC) and for the same values of the
distance threshold, performance appears linear (to that of N) in the
size of the reference set. The reason is that the additional filtering
step applied with the bounds of theorems 1,3 in these algorithms is
very effective in these cases. A large number of pairs is pruned by
these filters as opposed to the sole application of l t; ut in the case
of RS. For this data set the performance benefits of RSC are very
large. For all distance thresholds and reference set sizes, runtime is
below 0.2 of that of N. In addition, the overhead imposed by larger
(or smaller) than optimal reference set size is not significant as the
involved evaluations are relatively cheap.

The second experiment we report investigates the performance
of the algorithms (B, RS, RSB, RSC) as a function of the distance

threshold for various reference set sizes. Figure 10(a)(b) presents
the results for data set A for a reference set of size 5 (Figure 10(a))
and 100 (Figure 10(b)). In all cases there is a clear “bell” shaped
curve which is explained by the impact of different filters applied as
the distance threshold increases. For small distance threshold, the
lower bounds applied by the algorithms are effective, in the sense
that they can prune away a lot of pairs that don’t belong to the an-
swer set. For large distance thresholds the upper bounds are more
effective as they can admit a lot of pairs in the answer, saving many
tree edit distance computations. Thus the performance curves of
all algorithms tail off in small and large distance thresholds, be-
cause the filters are extremely effective. In terms of performance,
RS appears the worst since its performance is dominated by the ex-
pensive treedist(:) invocations while constructing the vectors; in
addition pruning solely on the lt; ut bounds is not so affective, thus
treedist() is invoked on many pairs. Notice that B is more effi-
cient, because it avoids treedist computations by first applying the
bounds of theorems 1,3. For the reference set size in Figure10(a),
the performance of RSB and RSC are close and clearly outperform
all other algorithms. Increasing the reference set size in Figure
10(b) we observe that RSB becomes worse than B because running
time is dominated by expensive treedist computations during the
construction of the vector sets. RSC appears to be the algorithm
of choice in this case as well. Even when the reference set size
is much larger than the optimal size (in this case close to 1) the
algorithm can still outperform all competitors because the penalty
incurred by increased cost during construction of the vectors sets in
much smaller.

Figures 10(c)(d) present the results of the same experiment for
data set B. Overall trends remain similar, with the “bell” shaped
trend explained as before; with eight clusters in data set B, a refer-
ence set size less than 8 (Figure 10(c)) makes RSB slightly faster
than B, due to less overhead of treedist computations. RSC is still
the algorithm of choice even with less than optimal reference set
size. As the reference set size increases to 8, all algorithms im-
prove, but RSB starts becoming worse than B for small distance
thresholds, because the performance of the algorithm is dominated
by expensive treedist computations. For an even larger reference
set size, B becomes much better. In all cases, RSC is the algorithm
of choice.

7.3 Evaluating Reference Set Selection
To demonstrate the effectiveness of our proposed algorithms and

analysis for the choice of the reference set, we conducted the fol-
lowing experiments. For a variety of data sets, we measured the
response time as the distance threshold increases, for various sizes
of a reference set chosen using a random strategy as well as cho-
sen using the algorithm proposed in Section 5.1 for the case of
a known reference set size. In all cases, the proposed algorithm
which derives a sample based on Lemma 4 and then clusters to half
the threshold distance with a clustering algorithm of choice, always
outperformed the strategy that randomly chooses the reference set
of a specified size. Figure 11(a) presents representative results for
data set Bwith a reference set size of 8, showing the performance of
algorithm RSC, as a fraction of that of algorithm N, as the distance
threshold increases. We can observe that RSC is much faster and
the effects of filtering are even more pronounced (the curve tails
off much more quickly) signifying the choice of a more effective
reference set. Similar results were obtained for the other data sets
as well.

For the case of an unknown reference set size, we conducted
the following experiment. For a variety of real and synthetic data
sets, given a join threshold � we first draw a sample of size at least

0.001

0.01

0.1

1
1 11 21 31 41 51 61 71 81 91

Reference Set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=500
k<=2000 k<=3000

0.001

0.01

0.1

1
1 11 21 31 41 51 61 71 81 91

Reference Set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=500
k<=2000 k<=3000

0.0001

0.001

0.01

0.1

1
1 11 21 31 41 51 61 71 81 91

Reference Set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=500
k<=2000 k<=3000

(a) RS (b) RSB (c) RSC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71

Reference Set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=100 k<=200 k<=300
k<=500 k<=800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71

Reference set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=100 k<=200 k<=300 k<=500 k<=800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71

Reference Set Size

Ra
tio

to
Na

iv
e

k<=10 k<=50 k<=100 k<=200 k<=300 k<=500 k<=800

(d) RS (e) RSB (f) RSC

Figure 9: Increasing reference set size for datasets A and B

O(
p
N log jN j) (for a data set of size O(N)) and then iteratively

compute clusters, picking the reference set size using Lemma 4. We
then compared the reference set size so computed with the known
optimal set size (in the case of synthetic data sets) or with the one
estimated by observation of performance curves. In all cases, the
reference set size we select is very close to the optimal one. Fig-
ure 11(b) shows the outcome of this experiment for data set B. The
data set contains 8 well separated clusters and we report the num-
ber of reference set points our algorithm computes as a function
of the distance threshold � . For a range of � values the reference
set size selected is very close to the optimal. As � increases, the
size computed by the algorithm becomes smaller. This is explained
by observing the distribution of document distances in the data set.
The minimum distance between clusters is around 250 in this data
set. Thus, twice above this threshold, the clusters computed in the
sample compared with the ones in the original data set start to mix
and as a result the reference set size reported drops. However, con-
trasting this range of � values and reference set size with the perfor-
mance curves reported in Figure 9(f), we observe that in this range
a suboptimal reference set size has little impact in performance.

7.4 Performance Results on Real Data
The experiments presented established the performance advan-

tages of algorithm RSC for a wide range of parameters affecting
the performance of the algorithms. We used synthetic data sets in
order to have the benefit of flexibility in setting these parameters. In

this section, we present results on the performance of this algorithm
using real data sets of large size. In particular we present perfor-
mance results for a self join operation, for varying thresholds for
the DBLP data set. Running N on this data set is terribly inefficient.
Our calculations indicate that it would take more than 81 days on a
high end machine to perform a self join on the entire data set. Thus,
we first present comparative results for a subset of DBLP records in
Figure 12(a). To keep the subset small, but each XML document
sizeable, we construct the subset by grouping together all the XML
documents corresponding to publications in the same conference,
into a single document. We select a subset consisting of 100 con-
ferences. The resulting XML data set is of size 2.2MB. In this case,
N requires approximately 3.5 hours to complete. The “bell” shaped
curve is evident and is explained due to the effect of filtering as
before. Clearly the performance benefits of the proposed algorithm
are very large. Figure 12(b) presents the performance of RSC for
the entire DBLP data set as a function of the distance threshold.
The size of the reference set for each value of the distance thresh-
old, is computed using our proposal in Section 5.1. Response time
increases smoothly with increasing distance threshold.

8. CONCLUSIONS
The projected prevalence of XML will inevitably impact several

data integration applications. To this end, in this paper, we con-
sidered metrics for quantifying distance between XML documents

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 410 810 1210 1610 2010 2410 2810 3210 3610 4010 4410 4810

Distance Threshold

Ra
tio

to
Na

ive

B RS RSB RSC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 410 810 1210 1610 2010 2410 2810 3210 3610 4010 4410 4810

Distance Threshold

Ra
tio

to
Na

ive

B RS RSB RSC

(a) Dataset A reference set size 5 (b) Dataset A reference set size 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 85 160 235 310 385 460 535 610 685

Distance Threshold

Ra
tio

to
Na

ive

B RS RSB RSC

0

0.05

0.1

0.15

0.2

0.25

0.3

10 60 110 160 210 260 310 360 410 460 510 560 610

Distance Threshold

Ra
tio

to
Na

ive

B RS RSB RSC

(c) Dataset B reference set size 4 (d) Dataset B reference set size 8

Figure 10: Increasing distance threshold

and subsequently proposed algorithms to perform join operations
between XML data sources based on these metrics.

Our work makes the following specific contributions: we pro-
posed lower and upper bounds for tree edit distance between or-
dered labeled trees, that are computationally more efficient. We
have presented a generic technique based on the notion of reference
sets that can be used to process joins between XML data sources.
We presented this approach along with an analysis on the selection
of the reference set. A particular appealing feature of our proposal
is that it can incorporate any proposal quantifying differences be-
tween trees as long as it is a metric. Although we choose to use our
technique in conjunction with tree edit distance because of its gen-
erality and wide acceptance, any other metric that is more meaning-
ful in a specific application context can be applied. Combining our
bounds with properties of the resulting metric space, we proposed
various algorithms for processing approximate XML joins and we
experimentally quantified the performance tradeoffs.

Several issues for further exploration and experimentation are
raised by this work. First, due to the generality of our distance join
framework, it would be worthwhile to incorporate in our frame-
work and experiment with other distance metrics as well, capable
of quantifying distance between XML documents. It would be in-
teresting to understand the impacts both in performance as well
as quality of the results observed in specific application scenar-
ios. Second, indicies have been traditionally applied in databases
to speed up the performance of various database operations. To-
wards this direction it would be worthwhile to explore the appli-

cation of various indexing schemes proposed for general metric
spaces [14][4] to the approximate XML join problem. We plan
to investigate these directions in our future work in this area.

9. ACKNOWLEDGEMENTS
We wish to thank the anonymous referees for their comments.

10. REFERENCES
[1] A. Apostolico and Z. Galil. Pattern Matching Algorithms.

Oxford University Press, 1992.
[2] S. Chawathe and H. Molina. Meaningful Change Detection

in Structured Data. Proceedings of ACM SIGMOD, May
1997.

[3] S. Chawathe, A. Rajaraman, H. Molina, and J. Widom.
Change Detection in Hierarchical Structured Information.
Proceedings of ACM SIGMOD, May 1996.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient
Access Method for Similarity Search Metric Spaces.
Proceedings of VLDB, pages 426–435, Aug. 1997.

[5] G. Cobena, S. Abideboul, and A. Marian. Detecting Changes
in XML Documents. Proceedings of ICDE, 2002.

[6] H. Garhaldas, D. Florescu, D. Shasha, E. Simon, and
E. Saita. Declerative Data Cleaning. Proceedings of VLDB,
2001.

[7] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate strings

0

0.1

0.2

0.3

0.4

0.5

0.6

50 200 350 500 650 800 950 1100 1250 1400

Distance Threshold

Ra
tio

to
Na

ive

Reference Set Random Reference Set

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500

Distance Threshold

Pre
dic

ted
Re

fer
en

ce
Se

tS
ize

(a) Fixed Reference Set Size (b) Unknown Reference Set size

Figure 11: Evaluating Reference Set Selection

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

Distance Threshold

Se
co

nd
s

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110

Distance Threshold

Ho
ur

(a) Increasing Distance threshold on a sample (b) Increasing Distance threshold on DBLP

Figure 12: Performance curves for DBLP collection

joins in a database (almost) for free. Proceedings of VLDB,
2001.

[8] S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. Proceedings of
ACM SIGMOD, pages 73–84, June 1998.

[9] V. Levenshtein. Binary Codes Capable of Correcting
Insertions, Deletions and Reversals. Cybernetics and Control
Theory, pages 707–710, 1966.

[10] A. Marian, S. Abideboul, G. Cobena, and L. Mignet. Change
Centric Management of Versions in an XML Warehouse.
Proceedings of VLDB, Rome Italy, 2001.

[11] G. Navarro. A Guided Tour to Approximate Strings
Matching. ACM Computing Surveys, Mar. 2001.

[12] D. Sankoff and J. Kruskal. Time Warps, String Edits and
Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, Reading, Mass.,, 1983.

[13] S. Sarawagi. Special issue on data cleaning. IEEE Data
Engineeing Bulleting, 23(4), 2000.

[14] P. Yianilos. Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces. Proceedings of
the Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 311–321, Oct. 1992.

[15] K. Zhang. A New Editing Based Distance Between

Unordered Labelled Trees. 4th Annual Symposium,
Combinatorial Pattern Matching, 1993.

[16] K. Zhang and D. Shasha. Tree Pattern Matching. Pattern
Matching Algorithms, Apostolico and Galil Editors, Oxford
Univesity Press, 1997.

[17] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large Databases.
Proceedings of ACM SIGMOD, Montreal Canada, pages
103–114, June 1996.

