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Abstract

We investigate the incremental validation of XML doc-
uments with respect to DTDs and XML Schemas,
under updates consisting of element tag renamings,
insertions and deletions. DTDs are modeled as ex-
tended context-free grammars and XML Schemas are
abstracted as ”specialized DTDs”, allowing to decou-
ple element types from element tags. For DTDs, we
exhibit an O(m logn) incremental validation algorithm
using an auxiliary structure of size O(n), where n is the
size of the document and m the number of updates.
For specialized DTDs, we provide an O(mlog®n) in-
cremental algorithm, again using an auxiliary struc-
ture of size O(n). This is a significant improvement
over brute-force re-validation from scratch.

1 Introduction

The emergence of XML as a standard representation
format for data on the Web has led to a proliferation
of databases that store, query, and update XML data.
Typically, valid XML documents must conform to a
specified type that places structural constraints on the
document. When an XML document is updated, it
has to be verified that the new document still satisfies
its type. Doing this efficiently is a challenging prob-
lem that is central to many applications. Brute-force
validation from scratch is often not practical, because
it requires reading and validating the entire database
following each update. Instead, it is desirable to de-
velop algorithms for incremental validation. However,
this approach has been largely unexplored. In this pa-
per we investigate the efficient incremental validation
of updates to XML documents.

An XML document can be viewed abstractly as a
tree of nested elements. The basic mechanism for speci-
fying the type of XML documents is provided by Docu-
ment Type Definitions (DTDs) [W3C98]. DTDs can be
abstracted as extended context-free grammars (CFGs).
Unlike usual CFGs, the productions of extended CFGs
have regular expressions on their right-hand sides. An
XML document satisfies a DTD if its abstraction as
a tree is a derivation tree of the extended CFG cor-
responding to the DTD. A more recent XML typing
mechanisms uses the XML Schema standard [W3C01],
which extends DTDs in several ways. Most notable is
the ability to decouple the type of an element from its
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label. In this paper we abstract XML schemas by spe-
cialized DTDs, that capture precisely this aspect. It is
a well-known and useful fact that specialized DTDs de-
fine precisely the regular languages of unranked trees,
and so are equivalent to top-down (and bottom-up)
non-deterministic tree automata.

Verifying that a word satisfies a regular expression' is
the starting point in checking that an XML document
satisfies a DTD. An obvious way to do this following an
update is to verify it from scratch, i.e. run the updated
sequence of labels through the non-deterministic finite
automaton (NFA) corresponding to the regular expres-
sion. However, this requires O(n) steps, under any rea-
sonable set of unit operations, where n is the length of
the sequence (note that, in complexity-theoretic terms,
membership of a word in a regular language is complete
in NC! under DLOGTIME reductions [Vol99].) We can
do better by using incremental validation, relying on an
appropriate auxiliary data structure. Indeed, we pro-
vide such a structure and corresponding incremental
validation algorithm that, given a regular expression r,
a string s of length n that satisfies 7, and a sequence
of m updates (inserts, deletes, label renamings) on s,
checks? in O(mlogn) whether the updated string sat-
isfies r. The auxiliary structure we use materializes in
advance relations that describe state transitions result-
ing from traversing certain substrings in s. These are
placed in a balanced tree structure that is maintained
similarly to B-trees and is well-behaved under inser-
tions and deletions. The size of the auxiliary struc-
ture is O(n). In addition, we provide an O(mlogn)
time algorithm that maintains the auxiliary structure,
so that subsequent updates can also be incrementally
validated.

Our approach to incremental validation of trees with
respect to specialized DTDs builds upon the incremen-
tal validation algorithm for strings. DTDs turn out to
be easier to validate than specialized DTDs. Indeed,
based on the algorithm for string validation, incremen-
tal validation of m updates to a tree T with respect to
a DTD can be done in time O(mlog |T|) using an aux-
iliary structure of size O(|T'|) which can also be main-
tained in time O(mlog|T|). Specialization introduces

1

LA word satisfies a regular expression if it belongs to the
corresponding language.

2For readability, we provide here the complexity with respect
to the string and update sequence, for fixed (specialized) DTD
or regular expression. The combined complexity is spelled out
in the paper.



another degree of complexity. Intuitively, this is due
to the fact that an update to a single node may have
global repercussions for the typing of the tree. This
stands in contrast with DTDs without specialization,
where a single update to a node needs to be validated
only with respect to the type of its parent and the
sequence of its children, so has local impact on type
checking.

We first attempt a rather straightforward extension
of the incremental validation for DTDs and obtain an
algorithm of time complexity O(m depth(T") log|T'|) us-
ing an auxiliary structure of size O(|T|). However, this
is not satisfactory when the tree is narrow and deep.
In the worst case, depth(T') = |T|. To overcome this,
we develop a more subtle approach that has the fol-
lowing main ingredients: First, the unranked tree T
representing the XML document is mapped into a bi-
nary tree encoding that allows us to unify the horizon-
tal and vertical components of validation. Then the
specialized DTD is translated into a bottom-up non-
deterministic tree automaton accepting precisely the
encodings of valid documents. Finally, an incremen-
tal validation algorithm for binary trees with respect
to tree automata is developed, based on a divide-and-
conquer strategy that focuses on computations along
certain paths in the tree chosen to appropriately di-
vide the work. Auxiliary structures are associated to
each of these paths. The resulting incremental valida-
tion algorithm has time complexity O(mlog® |T|) and
uses an auxiliary structure of size O(|T|).

Related Work As mentioned earlier, XML
databases need to efficiently validate updates on
their content. Ipedo’s XML database [Ipe] validates
update commands with respect to XML Schemas;
however, to our knowledge no technical information
is publicly available on the underlying structures
and algorithms. Another application where efficient
validation is useful is XML editors (see [XMLa] for
a survey of available products). Some XML editors
like XMLMind [XMLc] and XMLSpy [XMLDb] feature
incremental validation of DTDs. Recently, XMLSpy
also included validation of XML Schemas [XMLb]. No
information is provided on their incremental validation
algorithms.

Note that our abstraction of the content models
of DTDs [W3C98] by arbitrary regular expressions
removes the requirement for l-unambiguous regular
expressions. Furthermore, our abstraction of XML
Schemas [W3C01] as specialized DTDs has assumed
that the content of a type is described by an arbitrary
regular expression over types. XML Schema restricts
those regular expressions by requiring that no two dif-
ferent types with the same element name may partici-
pate in the same regular expression. The motivation of
such restrictions in DTDs and XML Schemas has been
the need for efficient validators. However, our efficient

incremental validation algorithms have not made use
of those restrictions besides stating how 1-unambiguity
changes the complexity of the problem.

Closely related to incremental validation is incremen-
tal parsing, which is key to incremental program com-
pilation. Research on incremental parsing has focused
on LR parsing [GM80, WG98, JG82, Lar95, Pet95] and
LL (recursive descent parsing) [MPS90, Li95, Lin93],
since programming languages are typically described
by LR(0), LR(1), LL(1), LALR(1) and LL(1) gram-
mars. All techniques start by parsing the input text
and produce a parse tree, which is typically annotated
with auxiliary information. The parse tree is updated
as a result of the updates to the input text. A typical
theme of the incremental parsing techniques is identify-
ing minimal structural units of the parse tree that are
affected by the modifications (see [GM80] for LR(0)
parsing and [Lar95] for a generalization to LR(k).)
However, the performance of the incremental parsing
algorithms is hard to compare to our validation algo-
rithm because of the differences in settings and goals,
which typically involve minimization of the changes on
the parse tree. Indeed, the best-case performance of
incremental parsers will generally beat the one of our
regular expression validation algorithm, which always
takes O(log n) steps for a single update. This is because
incremental parsers take advantage of natural “termi-
nation points” used in programming languages syntax
[Lin93], that typically occur close to the update. Loga-
rithmic complexity in the size of the string is achieved
for LALR grammars by [WG98] but only if the gram-
mar is such that its parse trees have depth O(logn)
for a string of length n. One can easily see that there
are LALR grammars that do not meet this property,
and neither do the crGs corresponding to DTDs. Fur-
thermore, [WG98] require that the interpretation of it-
erative sequences be independent of the context. See
the appendix for an example from [WG98] of a regular
expression violating this condition.

The complexity of validation is related to that of
membership of a word in a regular language, and of
a tree in a regular tree language. The problem of
word membership in a regular language is known to be
complete in uniform NC! under DLOGTIME reductions
[Loh01] and acceptance of a tree over a ranked alpha-
bet by a tree automaton is complete in uniform NC!
under DLOGTIME reductions if the tree is presented in
prefix notation [Vol99], and complete in LOGSPACE if
the tree is presented as a list of its edges [Seg02]. To
our knowledge, no complexity results exist on the incre-
mental variants of these problems, with the exception
of a result of [PI97] discussed below.

Incremental evaluation of queries by first-order
means is studied by [DS95] using the notion of first-
order incremental evaluation systems (FOIES) A re-
lated descriptive complexity approach to incremental
computation is developed by Patnaik and Immerman



in [PI97]. They define the dynamic complexity class
Dyn-FO (equivalent to FOIES), consisting of proper-
ties that can be incrementally verified by first-order
means. They exhibit various problems in Dyn-FO, such
as multiplication, graph connectivity, and bipartite-
ness. Most relevant to our work, they show that mem-
bership of a word in a regular language is in Dyn-FO.
For label renamings, they sketch an approach similar to
ours. The incremental algorithm and auxiliary struc-
ture for node insertions and deletions that modify the
length of the string are not spelled out. Also, no exten-
sion to regular tree languages is discussed. The study in
[PI97] is pursued in [HI02], where an extension of Dyn-
FO is introduced and it is shown that the single-step
version of the circuit value problem is complete in Dyn-
FO under certain reductions. Complexity models of
incremental computation are considered in [MSVT94].
The focus is on the classes incr-POLYLOGTIME (incr-
POLYLOGSPACE) of properties that can be incremen-
tally verified in polylogarithmic time (space). Inter-
esting connections to parallel complexity classes are
exhibited, as well as complete problems for classical
complexity classes under reductions in the above incre-
mental complexity classes.

Organization The paper is organized as follows.
Section 2 presents our abstraction of XML documents,
DTDs, and XML Schemas, as well as the connection
between specialized DTDs and tree automata. We also
spell out formally the incremental validation problem
and the assumptions made in our complexity analy-
sis. In Section 3 we examine the incremental validation
of strings with respect to regular expressions and de-
velop the core divide-and-conquer strategy used later
for DTD validation. Section 4 presents the validation
algorithm for DTDs and a first attempt to handle spe-
cialized DTDs. Finally, Section 5 presents the full algo-
rithm for specialized DTDs yielding O(m log? |T|) in-
cremental validation. Section 6 contains some conclud-
ing remarks and future work.

2 Basic Framework

We introduce here the basic formalism used through-
out the paper, including our abstractions of XML docu-
ments, DTDs, and XML Schemas. We also recall basic
definitions relating to tree automata.

Labeled ordered trees We abstract XML docu-
ments as labeled ordered trees. Our abstraction ignores
data values present in XML documents, because their
validation with respect to an XML Schema is trivial.
For example, an XML document holding ads for used
cars and new cars is shown in Figure 1 (left), together
with its abstraction as a labeled tree.

An ordered labeled tree over finite alphabet X is a pair
T = (t, \), where ¢ is an ordered tree and \ is a mapping
associating to each node n of t a label A(n) € X. Trees
are assumed by default to be unranked, i.e. there is
no fixed bound on the number of children each node
may have. The set of all labeled ordered trees over X is
denoted by 7x. We sometimes denote a tree consisting
of a root v with subtrees T ... Ty by v(Ty...T}y). We
will also consider binary trees, where each node has at
most two children. If every internal node has exactly
two children, the binary tree is called complete.

We assume a representation of trees that allows one
to find in O(1) (i) the label, (ii) the parent, (iii) the
immediate left (right) sibling, and (iv) the first child of
a specified node.

Types and DTDs As usual, we define XML docu-
ment types in terms of the document’s structure alone,
ignoring data values. The basic specification method
is (an abstraction of) DTDs. A DTD consists of an
extended context-free grammar over alphabet ¥ (we
make no distinction between terminal and non-terminal
symbols). In an extended CFG, the right-hand sides of
productions are regular expressions over ¥.. An ordered
labeled tree (¢, A) over ¥ satisfies a DTD d if the tree
(t, \) is a derivation tree of the grammar. For example,
the tree is valid with respect to the DTD in Figure 1.

The start symbol of a DTD d is denoted by root(d).
We can assume without loss of generality that for each
a € 3 the DTD has a single rule a — r, with a on the
left-hand side. and we denote by N, a standard non-
deterministic finite-state automaton (NFA) recognizing
the language r,. The set of labeled trees satisfying a
DTD d is denoted by sat(d).

We use the following notation for NFA. An NFA is a
5-tuple N = (X,Q,qo, F,0) where X is a finite alpha-
bet, @ is a finite set of states, qo € @ is the start state,
F C (@ is the set of final states, and § is a mapping from
¥ x Q to P(Q). A string ay ...a, is accepted by N iff
there exists a mapping o : {1,...,n} — @ such that
o(a1) € 6(a1,qo), o(a,) € F, and for each i,1 < i < n,
o(air1) € 6(ait1,0(a;)). The set of strings accepted
by N is denoted L(N). N is a deterministic finite-state
automaton (DFA) iff 4 returns singletons on each input.
Recall that for each regular expression r there exists an
NFA N whose number of states is linear in 7, such that
N accepts the regular language r. In general, a DFA
accepting r requires exponentially many states wrt r.
However, for certain classes of regular expressions, the
corresponding DFA remains linear in the expression.
One such class consists of the 1-unambiguous regular
languages [BKW98]. This is relevant in the context
of XML types, since DTDs and XML Schemas require
the regular expressions used to specify the contents of
elements to be 1-unambiguous.

An important limitation of DTDs is the inability to
separate the type of an element from its name. For



root : dealer
<dealer> dealer — UC NC
<UsedCars> uc - ad"
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Figure 1: XML, DTD and specialized DTD (UC and NC stand for UsedCars and NewCars)

example, consider the dealer document in Figure 1.
Used cars have model and year while new cars have
model only. There is no mechanism to specify this
using DTDs, since rules depend only on the name of
elements, and not on its context. To overcome this
limitation, XML Schema provides a mechanism to de-
couple element names from their types and thus allow
context-dependent, definitions of their structure. We
abstract this mechanism using the notion of specialized
DTD (studied in [PV00] and equivalent to formalisms
proposed in [BM99, CDSS98]).

Definition 2.1 (Specialized DTD) A specialized
DTD is a 4-tuple (3, %! d, u) where ¥ is a finite al-
phabet of labels, ¥¢ is a finite alphabet of types, d is a
DTD over ¢ and p is a mapping from X! to X. o

Intuitively, ¥ provides, for each a € ¥, a set of
types associated to a, namely those a! € ¥t for which
u(at) = a. In our specialized DTD example (lower
right corner of Figure 1) we create two types for the
element ad: a type ad" whose content is just a “model”
type, and a type ad" whose content is “model” and
“year”. Note that p induces a homomorphism on words
over ¥t and also on trees over X! (yielding trees over
¥)). We also denote by p the induced homomorphisms.

Let 7 = (X,¥%,d, 1) be a specialized DTD. A tree t
over ¥ satisfies 7 (or is valid wrt 7) if t € p(sat(d)).
Thus, ¢ is a homomorphic image under p of a derivation
tree in d. Equivalently, a labeled tree over ¥ is valid
if it can be “specialized” to a tree that is valid with
respect to the DTD over the alphabet of types. The
set of all trees over ¥ that are valid w.r.t. 7 is denoted
sat(r). When 7 is clear from the context, we simply
say that a tree is valid.

Tree automata There is a powerful connection be-
tween specialized DTDs and tree automata: they are
precisely equivalent, and define the regular tree lan-
guages [BKMWO01]. We will make use of this connec-
tion in the paper.

Tree automata are devices whose purpose is to ac-
cept or reject an input tree. Classical tree automata
are defined on complete binary trees. As in the case
of string automata, there are several equivalent vari-
ants: top-down nondeterministic automata are equiva-
lent to bottom-up (non)-deterministic ones. In contrast
to string automata, top-down deterministic automata
are weaker than their non-deterministic counterpart.
We next review bottom-up non-deterministic tree au-
tomata on complete binary trees. (For technical rea-
sons that will become clear shortly, we assume that all
leaves have the same label #.)

Definition 2.2 (Bottom-up non-deterministic
tree automaton) A bottom-up non-deterministic tree
automaton (BNTA) is a 5-tuple A = (%, Q, Qo, gy, 0)
where X is a finite alphabet, () is a finite set of states,
Qo is the set? of start states (Qo C Q), gy is the accept
state (¢ € Q) and ¢ is a mapping from ¥ x @ x @ to
P(Q).

A tree T = (t,\,) is accepted by the automaton
A iff there is a mapping o from the nodes of t to
@ such that: (i) if n is a leaf then o(n) € Qo,
(ii) if n is an internal node with children ny,ns then
o(n) € §(A(n),o(n1),0(nz2)), and (iii) if n is the root
then o(n) = ¢¢. The set of trees accepted by A is
denoted by T (A). O

There is a prima facie mismatch between DTDs and
tree automata: DTDs describe unranked trees, whereas
classical automata describe binary trees. There are two
ways around this. First, unranked trees can be encoded
in a standard way as binary trees. Alternatively, the
machinery and results developed for regular tree lan-
guages can be extended to the unranked case, as de-
scribed in [BKMWO1]. For technical reasons, it will be
useful to adopt here the first approach.

3Some definitions of BNTA require a single start state for each
leaf symbol, and allow a set of final states. Having multiple start
states and a single final state is a harmless variation, convenient
here for technical reasons.




The incremental validation problem Given a

(specialized) DTD 7, a tree T' € sat(r), and a sequence

s of updates to T yielding another tree 7', we wish to

efficiently check if 7' € sat(7). In particular, the cost

should be less than re-validation of 7" from scratch.

The individual updates are the following;:

(a) replace the current label of a specified node by
another label,

(b) insert a new leaf node after a specified node,

(c) insert a new leaf node as the first child of a
specified node, and

(d) delete a specified leaf node.

We allow some cost-free one-time pre-processing to
initialize incremental validation, such as computing the
NFA corresponding to the regular expressions used by
the DTDs. We will also initialize and then maintain an
auxiliary structure A(T') to help in the validation. The
cost of the incremental validation algorithm is evalu-
ated with respect to:

(a) the time needed to validate T" using T" and A(T),
as a function of |T'| and |s|

(b) the time needed to compute A(T") from T, s, and A(T)

(c) the size of the auxiliary structure A(T) as a func-
tion of |T'|.

The analysis will also make explicit the combined com-
plexity taking into account the specialized DTD.

3 Warmup: Incremental Valida-
tion of Strings

As warmup to the validation problem, we consider in
this section the incremental validation of strings with
respect to a regular language specified by an NFA. We
first consider the case when all updates consist of label
renamings. We discuss inserts and deletes later.

Consider an NFA N = (¥,Q, qo, F, 6), and a string
aj ...a, € L(N). For compatibility with our tree for-
malism, we view a string as a sequence of nodes (or
elements) each of which has a label. When there is no
confusion we sometimes blur the distinction between
an element and its label.

Consider a sequence of element renamings
u(ail,bl), .. .,u(aim,bm), where 77 < 12 < ... < G-
The renaming wu(a;,b;) requires that the label
of element a;; be renamed to b;. We would like
to efficiently check whether the updated string
a1 ...ail,lblailJrl ...aim,lbmaimﬂ L.y € L(N)
Validating the new string from scratch by running it
through N takes O(n|Q|?log|Q]). We can easily do
better by maintaining some auxiliary information. For
simplicity in the presentation, we assume that we can
find the rank of a specified node among its siblings in
O(1). This assumption is removed later.

Consider the case of a single renaming u(i,b) for
1 < i < n. Suppose that we have pre-computed, for

each i, 1 < i < n, the sets Pre(i) = 0(go, a1 -..a;—1)
and Post(i) = {s | §(s, ;41 ...an) € F}. If we precom-
pute Pre and Post in arrays then we can retrieve Pre(i)
or Post(i) in O(|Q|). An O(]Q|?) algorithm for check-
ing whether the string is in L(N) following the update
u(,b) is now obvious: If there is a state s; € Pre(i), a
state sy € Post(iy + 1) such that s, € 0(b, s1) then the
updated string is in L(N).

However, the Pre and Post technique does not scale
to m updates. Furthermore, maintaining Pre and Post
is problematic because, following each update u(i,b),
we need to recompute all Pre(j) for j > i and Post(j)
for j < i. This requires O(n|Q|*log|Q|) time.

As the next step in the warmup, we can try to
keep some additional auxiliary information in order
to better handle multiple updates. For each i,7,
1 <4 < j < n, let Ty; be the transition relation
{p,9) | p.a € Q,q € §(p,a;...a;)}. Note that
Tij = Tix o Ty, i < k < j, where o denotes com-
position of binary relations. We also denote by d,
the relation {(p,q) | ¢ € d(p,a)} for a € T. If all
T;; are available, then checking validity of the up-
'dated string aq ...a;; —1biai, 41 ... a4, —10mGi, 41 ... Cp
reduces to verifying that

(90, F) € Togi,—1) © 6y © Ty 41)(ia—1) © - - - © T(io+1)(n)

for some f € F. This takes time O(m|Q|? log |Q|), if we
assume that we have precomputed in a 2-dimensional
array all relations Tj;. In particular, the composi-
tion of two relations is a join operation. It can be
accomplished in O(|Q|*log |Q|*) = O(|Q|*1og|Q]) by
employing sort-merge join. Each relation is sorted in
O(|Q)?log|Q|) and then they are merged in O(]Q|?).
The same complexity can be derived if we assume bi-
nary tree indices on each attribute of the relations and
we employ index-based join [GMUWO1]. The size of
the array required for the precomputation is n?|Q|?.
However, maintaining the precomputed structure is
prohibitively expensive, since we have to recompute ev-
ery relation Tj; if there is an update between the ith
and jth position of the string. We are therefore led to
consider a more promising approach, which provides
the basis for the solution we adopt.

Divide-and-conquer validation We describe a
divide-and-conquer approach that allows validating
a sequence of m renamings to a string of length
n, as well as update the auxiliary structure, in
O(m|Q|*log |Q|logn) time. The size of the auxiliary
structure is O(|Q|?n). Note that the approach below
is similar to that briefly sketched in [PI97].

For simplicity, assume first that n is a power of 2,
say n = 2. The main idea is to keep as auxiliary
information just the T;; for intervals [i, j] obtained by
recursively splitting [1,n] into halves, until ¢ = j.
More precisely, consider the transition relation tree T,
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whose nodes are the sets Tj};
follows:

ij, defined inductively as

e the root is T} o«

e cach node Tj; for which j —¢ > 0 has children Tj;
and T{j41); where k = %

o T;; are leaves, 1 <i < n.

)

For example, 7Tg is shown in Figure 2.

Note that 7, hasn+(n/2) + ... + 2+ 1 = 2n—
1 nodes and has depth logn. Thus, the size of the
auxiliary structure is O(n|Q|?).

Consider now a string ay...a, € L(N), and a
sequence of renamings u(zl,bl) < W(im, b)), where
11 <ty < .. < iy The updated string is
ay...0 101G 41 ...ai, —1bma; 4+1...a,. Note that
the relations T;; that are affected by the updates are
those laying on the path from a leaf T; ;, (1 <v < m)
to the root of 7,. Let Z be the set of such relations,
and note that its size is at most m logn.

The tree 7, can now be updated by recomputing
the T;;’s in 7 bottom-up as follows: First, the leaves
Ti,i, € I are set to &,, 1 < v < m. Then each
T;; € T with children T;, and T,; for which at least
one has been recomputed is replaced by Ty, o Ty;.
Thus, at most mlogn Tj;’s have been recomputed,
each in time O(|Q|?log|Q|), yielding a total time of
O(m|QJ*log |Q|logn).

The validation of the string
a1 ...ail_lblail_,_l ...aim_lbmaimH .. Qp is now
trivial: it is enough to check, in the updated auxiliary
structure, that (qo, f) € Ti, for some f € F. Thus,
validation is also done in time O(m|Q|? log |Q|logn).

The above approach can easily be adapted to strings
whose length is not a power ot 2 (for example, by ap-
propriately truncating 7o« where k = [logn]).

Dealing with inserts and deletes We next extend
the divide-and-conquer approach outlined for renam-
ings to the case when node inserts and deletes are also
allowed. The above approach no longer works, for two
reasons: First, inserts and deletes cause the position
of nodes in the string to change. Second, the length n
of the string, and therefore the set of relevant intervals
used to construct 7,, are now dynamic. Due to these
differences, inserts and deletes would require recomput-
ing the entire tree 7,, which is inefficient. Instead, we
would like to use a tree structure 7 that can be incre-
mentally maintained under inserts and deletes, as well

as renamings, while preserving the properties that en-
abled our divide-and-conquer approach. Most impor-
tantly, the tree should continue to be balanced and have
depth O(logn). This suggests adopting an approach
based on B-trees, that we describe next. We assume
basic familiarity with B-trees (e.g., see [GMUWO1]).

The B-tree variant we use, denoted 7, has nodes
containing 3 cells each. Each cell is either empty or
contains a set Ts corresponding to some subsequence
s of the string. At most one of the 3 cells in a node
can be empty (assuming the current string has length
at least two). Each nonempty cell is either at a leaf or
has one node (with three cells) as a child.

In the tree T,, the interval [i, j] associated to a node
T;; is made explicit. In the tree 7, it is not necessary to
compute explicitly the subsequence s associated to each
T,. The maintenance algorithm automatically ensures
the following;:

o the sequence of non-empty leaf cells is T, ... T,
where the length of the current string is n and
Ts, =T, 1 <i<m

e if an internal cell contains a relation Ty and its
child node contains T,, T, (resp. Ts,, Ts,, and
Ts,) then Ty = Ty, 0T, (resp. Ts = T, 0T, 0Ts,).

We also maintain pointers providing in O(1), for each
element v in the input string, the leaf cell T for which
the singleton s consists of v. Note that the position of
the element is never recorded explicitly.

For example, the left part of Figure 3 shows a se-
quence of seven nodes, several subsequences, and the
corresponding tree. Note that the subscript of a node
does not necessarily indicate its position in the string.
Each sequence s; is the singleton sequence n;, for
i€{1,2,3,5,6,7,9}.

The requirement, of having 3 cells per node of which
at least 2 are non-empty ensures that the tree 7 re-
mains balanced and of depth O(logn) as it is updated.
This follows from the standard analysis of B-tree be-
havior under the maintenance algorithm [GMUWO1],
which we describe here. In a disk-based implementa-
tion one should set the maximum number of cells per
node to the number of items that fit in one disk page.

Recall that we wish to validate strings with respect
toan NFA N = (¥,Q,qo,F,d). We describe below
the maintenance algorithm for 7. Once 7 is computed
for the current string, validation is easy: check that
for some f € F, (qo, f) belongs to the composition of
the sets T in the cells of the root node of 7, at cost
0(1QI? log |Q))-

The auxiliary structure 7 corresponding to a valid
string w is initialized by starting from the empty string
and constructing w by a sequence of inserts, using the
maintenance algorithm. Then 7 is maintained incre-
mentally as follows. If the update is a renaming of
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Figure 3: A T tree before and after the insertion of nodes n4 and ng

element v, 7 is updated much like 7,: we use the in-
dex to find the leaf cell of T, corresponding to v, then
update all sets T along the path from T, to the root.
This involves O(logn) updates.

If the update is the insertion or deletion of a new la-
beled element, the maintenance algorithm mimicks the
one for B-trees. In particular, recall that if nodes in a
B-tree become too full as the result of an insertion they
are split, and if they contain fewer than two non-empty
cells as a result of a deletion they are either merged
with a sibling node or non-empty cells are transferred
from a sibling node. The node splits and merges may
propagate all the way to the root. Due to the similarity
to classical B-tree maintenance we omit the details but
illustrate how to handle the first variant of insertion;
deletion and the second variant of insertion are simi-
lar. Assume that an element y with label a is inserted
after element x in the current string. If there is some
empty cell in the leaf node n of 7 containing the set
T, corresponding to x we insert the relation T,y = d, in
the cell following that for z and we revise the appro-
priate T relations in ancestor nodes. For example, if
a new node ng is inserted in the left string of Figure 3
after n7, we insert T, in the node (T%,,Ts,), as shown
in the right side of Figure 3, and we revise T, , which
becomes T, o Ts, o T, .

If the leaf node n for x has no non-empty cells, then
we split n into two nodes n’ and n/ containing two
relations each. We delete from the parent the relation
T, where s is the subsequence that corresponds to the
node n, and we attempt to insert in the parent relations
Ty and Ty, which correspond to n’ and n”. If the
parent already has three relations, the deletion of T
and the insertion of Ty and Ty~ will require splitting
the parent into two nodes. As is the case for B-trees,
this process may propagate all the way to the root and
may end up creating a new root. For example, the
insertion of a node ng4 following ng leads to splitting
the node (Ts,,Ts,,Ts,) into (Ts,,Ts,) and (Ts,, Ts,)-
The relation T, is deleted and two new relations T,
and Ty, are inserted into (T,,Ts,,Ts.), which leads
to a new split and a new root. The result tree is shown
in the right side of Figure 3. In the worst case, when an
insertion in a leaf node results in splits propagating all
the way to the root, we need to recompute 2logn new

relations (one at the leaf level, one at the new root,
and 2(logn — 1) at the internal nodes). Hence, the
worst case complexity is O(]Q]? log|Q]logn). Deletion
proceeds similarly and may lead to node merging or
root deletion, with the same complexity. As in the
case of B-trees, the maintenance algorithm guarantees
that 7 always has depth O(logn) for strings of length
n. Altogether, maintenance of T after m updates takes
time O(m|Q|?log|Q|logn).

1-unambiguous regular expressions As discussed
earlier, XML Schemas require regular expressions used
in type definitions to be l-unambiguous. If r is a
l-unambiguous regular expression, the corresponding
DFA is of size linear in 7. In this case, the relations T’
used in the above auxiliary structure have size O(|Q|)
rather than O(|Q|?). This brings down the size of the
auxiliary structure to O(]@Q|n) and the complexity of
maintenance and validation to O(m|Q|log|Q@|logn).

4 Incremental DTD Validation

The incremental validation of DTDs extends the
divide-and-conquer algorithm for incremental valida-
tion of strings described in Section 3. Let d be a DTD,
T = (t, \) a labeled tree satisfying d, and consider first
updates consisting of a sequence of m label modifica-
tions yielding a new tree 7" = (¢, \'). To check that 7"
satisfies d, we must verify that for each node v in ¢’ with
children vy ...v, for which at least one label was mod-
ified, the sequence of labels A'(vy1) ...\ (v,,) belongs to
Tx(v)- 1f the label of v has not been modified, i.e
A(v) = N (v), then validation can be done using the
divide-and-conquer algorithm described in Section 3 for
strings. However, if the label of v has been modified,
so that A(v) # X' (v), the sequence X' (vy) ...\ (v,) has
to be validated with respect to the new regular lan-
guage ryr(y) rather than ry). Thus, it would seem
that, in this case, validation has to start again from
scratch. To avoid this, we preemptively maintain in-
formation about the validity of each string of siblings
with respect to all regular languages r, for a € ¥. To
this end we maintain some additional auxiliary infor-
mation. Specifically, for each sequence of siblings in



the tree, we compute the transitions relations T of the
divide-and-conquer algorithm described in Section 3,
for each NFA N, corresponding to r,, and a € . We
denote the sets T, for a particular a € ¥ by T¢. Since
the auxiliary structure for each fixed NFA and string of
length n has size O(|Q|*n) (where @ is the set of states
of the NFA), the size of the new auxiliary structure is
at most O(|X||d|?|T|), where |T| is the size of T and
|d| = maz{|ry| | @ = r, € d}. The maintenance of the
auxiliary structure is done in the same way as in the
string case, at a cost of O(m|X||d|*log|d|log|T|) for a
sequence of m modifications. Finally, the updated tree
T' is valid wrt d if for each node v with label a in T'
such that either v or one of its children has been up-
dated, {(qo, f) is in the relation T® where s is the list of
children of v, g is the start state of N,, and f is one of
its final states. Each such test takes O(|d|? log|d|) and
the number of tests is m in the worst case. This yields
a total validation time of O(m|X||d|? log|d| log |T'|).

Insertions and deletions of leaves are handled by a
straightforward extension of the B-tree approach out-
lined in Section 3.

Specialized DTDs: a first attempt Specialized
DTDs add another degree of complexity to the up-
date validation problem. Intuitively, they abstract the
ability of XML Schemas to associate different types
to each element label. Consider a specialized DTD
T = (3,3 d, u). Recall that a tree T over X satis-
fies 7 iff there exists some tree 7" over X!, satisfying
d, such that u(T') = T. Essentially, 7' associates a
type in X! to each node in T so that the DTD d over
¥t is satisfied. The existence of such a type assign-
ment, and therefore the validity of 7', can be tested
in a bottom-up manner as follows. For each leaf v of
T, let types(v) = {a | p(a) = A(v) and € € ro}. Thus,
types(v) consists of all types in ¥f that may be assigned
to the label of v and allow it to be a leaf.

Then apply the following procedure recursively: for
each internal node v of T with children v;...v,
for which types(v;) has already been computed, let
types(v) consist of the types a € pu~t(A(v)) for which
types(v1) . . . types(v,) Nry # B, where a« = r, € d. In
other words, types(v) consists of all types allowed for
the label of v for which there is at least one choice of
allowed types for its children that is compatible with
d. Clearly, T € sat(7) iff types(root(T)) # 0. This pro-
cedure closely corresponds to the evaluation on T of a
bottom-up unranked tree automaton corresponding to
T.

Consider now a tree T' € sat(7). We first consider la-
bel modifications. We maintain the following auxiliary
structure:

e for each node v in T, maintain the set of allowed
types types(v). This has size O(|T||Z!|);

e for each sequence of siblings vy ...v, in T and « €

¥t maintain the sets

Tsa = {<p7 q> | qc 6a(paﬁi .. 6])7

Br. € types(vy),i <k < j}

where s is a subsequence v;...v; used in 7T, for-
mulated by the usual divide-and-conquer strategy.
This has size O(|Zt||d|*|T)).

We describe how to maintain the auxiliary structure
when a single label is modified. For m modifications,
we apply this for each modification. Validity is checked
after the auxiliary structure has been updated for all
modifications.

Suppose the node whose label is modified is v, the
old label is a, and the new label is b. We need to
update the sets types(w) for all nodes w on the path
from root to v in T, as well as the sets T for the
sequences s of siblings where such nodes occur. This
is done in a bottom-up fashion as follows. First, if
v is a leaf, then types(v) = {8 | n(B) = b,e € ra}.
If v has children vy ...v, then types(v) contains all
types 3 € p~'(b) such that (go,f) € TP where g
is the start state of N, f is one of its accepting
states, and T? is the root of the auxiliary structure
corresponding to 8 and the children of v. Note that
this step takes O(|¥!||d|*log|d|). Next, suppose
that w is a node in T whose sequence of children
wy ... w, contains one node wy for which types(wy)
has been updated. First, the sets T need to be
updated for the logn affected subsequences s as
in the divide-and-conquer string validation algo-
rithm. This takes time O(|X¢||d|* log|d|logn). Next,
types(w) is updated as in the base case to contain
the types 8 € p~'(AMw)) for which (g0, f) € T?
where ¢p is the start state of Ng, f is one of its
accepting states and s is the sequence wj ...w,.
This takes time O(|X¢||d|*log|d|). Thus, the main-
tenance time for this step is O(|X||d|? log|d|logn),
and this has to be repeated at most depth(T)
times.  This yields a total maintenance time of
O(1Zt||d)? log |d|depth(T) log |T|) for a single label
modification. For m modifications, the maintenance
time is O(m|¥!||d|? log |d|depth(T)log|T|). Finally
the updated tree is valid iff root(d) € types(root(T)).
Hence, the total validation time is also
O(m|Xt||d)? log |d|depth(T) log |T').

Node insertions and deletions can be handled by
adapting the B-tree approach used for strings. The
resulting complexity is the same as for label renam-
ings.

Note that for fixed specialized DTD and update se-
quence, the validation algorithm outlined above takes
time O(depth(T)log|T|). Thus, the algorithm works
well for shallow trees. However, in the worst case
depth(T') could equal |T'|, in which case the complexity
is O(|T'|log |T'|). This is not satisfactory. We will see in



the next section how to use a more subtle strategy that
reduces the overall maintenance and validation cost to
Ollog? IT').

5 Incremental Validation via Bi-
nary Trees Encodings

In this section we develop a refinement of the incremen-
tal validation technique for specialized DTDs described
in the previous section. This results in maintenance
and validation algorithms of complexity O(log® |T|) for
fixed DTD and update sequence, instead of the previ-
ous O(|T|log |T|). Intuitively, the algorithm of Section
4 is based on a divide-and-conquer strategy to split
the work of validating sequences of siblings in the tree.
However, for trees of small width and large depth, this
strategy is defeated. The refinement presented in this
section extends the divide-and-conquer strategy to val-
idation of the overall tree, by splitting the work simul-
taneously with respect to the horizontal and vertical
components. To this end, it is useful to adopt a rep-
resentation of unranked trees as complete binary trees
and reduce the problem of validating specialized DTDs
on unranked trees to that of acceptance of the binary
tree encodings by a corresponding bottom-up tree au-
tomaton. The advantage of this approach is that it
unifies the horizontal and vertical components of vali-
dation and facilitates a natural formulation of the new
divide-and-conquer strategy.

Binary tree encoding of unranked trees We next
describe the encoding of unranked trees as binary trees.
We use one of the standard encodings in the literature
(e.g, see [Nev02]). To each unranked labeled ordered
tree T = (t, \) over alphabet ¥ we associate a binary
tree enc(T') over alphabet £ = SU{#}, where # ¢ %.
The input of enc is a (possibly empty) sequence of
unranked trees over X, and the output is a complete
binary tree over Y. The mapping enc is defined re-
cursively as follows (where Ty and T are sequences of
trees, possibly €, and ng is a single node):

o encle) = # B B
e enc(ng(To) T) = no(enc(Tp),enc(T))

For example, a tree T and its encoding enc(T) are
shown in Figure 4 (neglect for now the boxes and bold
letters).

We would like to reduce the validation of unranked
trees T wrt a specialized DTD 7 to the question
of whether enc(T) is accepted by a bottom-up non-
deterministic tree automaton. To this end, we show
the following result (a variant of known results on
equivalences of specialized DTDs and unranked tree au-
tomata, and of unranked tree automata and automata
on binary trees, see [Nev02]):

Lemma 5.1 For each specialized DTD T =
(X,%4 d, ) there exists a BNTA A, over Yy
whose number of states is O(|XY||d|), such that
T(A;) ={enc(T) | T € sat(r)}.

Proof: See Appendix. &

Our approach is based on reducing the validation
of unranked trees with respect to specialized DTDs to
the validation of their binary encodings with respect to
the corresponding BNTA, say A = (£, Q, Qo, gy, ). As
before, the problem really amounts to efficiently updat-
ing the auxiliary structure associated with the input.
In our case, the auxiliary structure will include (among
other information to be specified shortly) the binary en-
coding enc(T') of the input T', and will provide, for each
node v in enc(T'), the set types(v) consisting of the pos-
sible states of A at node v after consuming the subtree
rooted at v. Once the auxiliary structure is updated,
validity amounts to checking that types(root(enc(T)))
contains the accept state of A, where T is the updated
tree. The strategy for updating the types associated
with nodes applies the divide-and conquer strategy for
string validation to certain paths in the tree, chosen
to appropriately divide the work. More precisely, we
will select, in every subtree Ty of a given tree enc(T),
a particular path from the root to a leaf. We call this
path the principal line of Ty, denoted by line(Tp), and
defined as follows:

e ro0t(Tp) belongs to line(Tp);

e let v be an internal node of Ty that belongs to
line(Ty), and suppose v has children vy,vs. If
|tree(vy)| > |tree(ve)], then vy belongs to line(To);
otherwise, vy belongs to line(Tp).

Validation of enc(T') can be done by associating to each
maximal principal line* an NFA that validates that par-
ticular line. We make this more precise next.

From BNTA to NFA on principal lines Consider
the principal line vy ...v, of a binary tree encoding
enc(T) where vy is the root and v, is a leaf. By the
definition of binary encodings, each non-leaf node v;
has one child v} that does not belong to the principal
line vy ... vy, for 1 <14 < n. Consider the sets types(v}).
Note that if these sets are given, we can validate enc(T')
by an NFA N that works on the string v; ...v,. For
technical reasons, the constructed NFA recognizes the
reverse word v, ...v;. Essentially, the NFA guesses a
sequence of state assignments to v, ...v; that is com-
patible with the transition function of A, given the sets
of states types(v}).

The above intuition is captured as follows: We de-
fine new labels for the nodes wv;, which include both

4A principal line is maximal if it is not included in another
principal line.



A(v;) and the set types(v;). More precisely, let ¥’ =
{#} U (P(Q) x %) U (2 xP(Q)) and X be the

labeling function defined as follows:

o XN (v;) = (A(w;), types(v})), if v} is the right child of
v, 1 <1 <n,

o X (v;) = (types(v}), A(v;)), if v} is the left child of v;,
1<i<n.

o \N(vy) = AMon) = #.

The NFA N we construct will accept the string
N(g)...N(n) iff A = (Z4,Q,Q0,qr,0) accepts
enc(T). At any rate, it will compute the type de-
rived by the sequence. More precisely, let N =
(X',Q,q0, F',¢'), where X' is as described above, F' =
{gs}, and ¢' is defined by the following (and is empty
everywhere else)

* §'(#,q90) = Qo;
¢ §'((a,S),q) = Uq,€5 d(a,q,q') fora € T
¢ §'((S;a),q) =U,es6(a,q',q) fora €

Intuitively, the NFA simulates A by allowing only
state transitions compatible with the transition func-
tion of A and the sets of states associated to siblings.
It is easy to verify that N works as desired.

Note that the number of states of N is O(|Q]). Re-
call that |Q| is itself O(|Xt||d|) where T = (%, %t d, u)
is the specialized DTD to which the BNTA A corre-
sponds. The size of its alphabet %' is O(|%|2/9!) which
is O(|=[2/®' 19y, Hence, each symbol in & can be rep-
resented in space O(|X!||d| + log|X]). Notice however
that our auxiliary structure never represents the alpha-
bet or the transition mapping of N explicitly.

The auxiliary structure The auxiliary structure
used for incremental validation includes (i) the binary
tree enc(T), (ii) for each subtree of enc(T') its principal
line and (iii) for each maximal principal line in enc(T),
the auxiliary transition relation tree for the NFA cor-
responding to that line.

Note that the principal lines can be specified con-
cisely by annotating each node in enc(T) with 0 or
1 by a labeling p as follows: u(root(enc(T))) = 0,
and for every pair of siblings vy,vs, u(vy) = 1 and
wu(ve) = 0 if |tree(vy)| > |tree(vs)|; otherwise, p(vy) =0
and p(vy) = 1. Clearly, the principal line of a subtree
To is the unique path from root(Tp) to a leaf where all
non-root nodes are labeled 1. Note that the principal
line of Tp is maximal iff p(root(Ty)) = 0.

For example, consider the unranked tree represented
in Figure 4 (top), and its binary encoding in the same
figure (bottom). In the binary encoding in the figure,
the nodes w for which p(w) = 0 are those inside a
box. Note that this identifies all maximal principal
lines. The bold and underlined nodes participate in
the principal line of enc(T"). The nodes of one of the
secondary principal lines (line j, k) are in italics.
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Figure 4: A tree T (top) and its encoding enc(T)

Part (iii) of the auxiliary structure provides the tran-
sition relation trees for the NFAs associated with the
maximal principal lines. The size of each transition re-
lation tree for an NFA N is O(lenc(T)||Q|?) where Q
is the number of states of N.

In summary, consider an input tree T' and a special-
ized DTD 7 = (%,%% d, ). In view of our construc-
tion of the BNTA A from 7 (Lemma 5.1), of the NFA
N from A (above), and of the tree of transition rela-
tions for each NFA N (Section 3) it follows that the
size of the auxiliary structure associated with 7" and 7
is O((|S! PldPIT).

Validation and maintenance for label renamings
Let us consider first the validation and maintenance of
updates consisting of label renamings. Note that la-
bel renamings in T translate straightforwardly to la-
bel renamings in enc(T). To validate a sequence of
label renamings, it is sufficient to show how the aux-
iliary structure is maintained for a single renaming.
For a sequence of renamings this is iterated one up-
date at a time and validity is checked at the end us-
ing the updated auxiliary structure. So, suppose the
label of some node v in enc(T) is modified from a
to b. Suppose first that v belongs to the maximal
principal line I = vy ...v, of enc(T), say v = vy.
In the string A'(v1) ...\ (v,) the label renaming cor-
responds to modifying the label of vy from a to b
it k¥ = n and from (a, types(vy,)) to (b, types(vy,)) if
k < n and vy, is the right child of vy (left is analogous).
Then the transition relation tree associated to [ is up-
dated as in the string case in time O(|Q|* log|Q|log ||),
that is O(|Z!)?|d|* log(|=t||d|) logl]). Since log|l| is
O(lenc(T)|) and |enc(T)| is O(|T), the update takes
time O(|![2d[* log(|=*|ld) log |T}).

Now suppose that v does not belong to the princi-
pal line [ of enc(T). Then there is some k > 0 such
that v belongs to tree(v},) where v}, is the child of some



Figure 5: Scenario of Line Rearrangement

v belonging to [. Note that the update to the label
of v may cause a change in the value of types(v},). In
order to update [, we now have to first compute the
new value for types(v},), then apply the update pro-
cedure for the corresponding modification in the label
(A(vr), types(vy,)) of vg. If v belongs to the principal
line I' of tree(v),) then the transition relation tree as-
sociated with the NFA for I’ can be updated as before
in time O(|Xt[?|d|* log(|X||d|) log |T']). This provides,
in particular, the new value for types(v},). Continuing
inductively, it is clear that renaming the label of a node
v affects precisely the maximal principal lines encoun-
tered in the path from root to v. Let M be the number
of such maximal principal lines. Clearly, M is precisely
the number of nodes w along the path from root to v
for which p(w) = 0. We next provide a bound on this
number, using the notion of line diameter of a tree.

Definition 5.1 (Line diameter) The line diameter
of enc(T) is the maximum number of distinct maximal
principal lines crossed by any path from root to leaf
in enc(T). Equivalently, the line diameter of enc(T') is
the maximum number of nodes w for which u(w) =0,
occurring along a path from root to leaf in enc(T),
where p is defined as above. &

For example, the line diameter of enc(T") in Figure 4
is 3. The following is proven in the Appendix:

Lemma 5.2 The line diameter of enc(T) is no larger
than 1+ log|enc(T)]. &

From the bound on the line diameter of enc(T),
it follows that a label renaming can cause at most
O(log lenc(T)|) updates to distinct transition relation
trees of maximal principal lines in enc(T). Since
each update takes time O(|2¢|?|d|? log(|Zt||d]|) log |T|),
the entire auxiliary structure can be updated in
time O(|X¢|?|d|? log(|%t||d|) log® |T|). For a sequence
of m label renamings, updating the auxiliary struc-
ture and validating the new tree therefore takes time
O(mI=" |d]? 1og(|S|d]) log? |T').

Insertions and deletions We next describe how to
extend the maintenance and validation algorithm de-
scribed above to updates that include insertions and
deletions of leaf nodes.
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For a maximal principal line [ in enc(T), we denote
by N; the NFA corresponding to [ and by 7; the tran-
sition relation tree corresponding to [ and NV;.

Note that each insertion or deletion of a leaf node in
T translates into up to four node insertions and dele-
tions into enc(T) (for example, deleting a node in T
may require deleting in enc(T'), besides the node itself,
up to two leaves labeled #, and may require inserting
another such leaf). This constant factor blow-up in the
number of updates does not affect our analysis.

Insertions and deletions are handled by an extension
of the technique used to maintain the transition rela-
tion trees for maximal principal lines in the case of label
renamings. Insertions and deletions that do not cause
a change in the set of maximal principal lines exist-
ing prior to the update are handled straightforwardly.
More precisely, let us call an insertion or deletion line
preserving if the restriction of p to the nodes of enc(T')
that are not affected by the update is the same before
and after the update. Note that an insertion may be
line preserving but nonethelss introduce a new single-
ton maximal principal line consisting of the new node.
Also observe that line-preserving updates affect pre-
cisely the maximal principal lines intersected by the
path from the root of enc(T) to the newly inserted
node or to the parent of the deleted node. The tran-
sition relation trees for these maximal principal lines
are updated as in the case of label renamings, at the
same cost. If a new singleton maximal line [ consisting
of an inserted node needs to be added, computing its
auxiliary transition relation tree takes additional time
O(|Q)?) where @Q is the set of states of the NFA N;.
This is dominated by the rest of the cost.

Handling inserts and deletes that are not line pre-
serving requires more care. In this case, the set of
maximal principal lines in enc(T) changes as the re-
sult of updates. To illustrate the problem, consider the
situation depicted in Figure 5. The maximal principal
line 1y = line(tree(vy)) contains a node v, which has a
sibling v'. Initially, |¢ree(v)| > |tree(v')|. However, a
deletion in tree(v) or an insertion in tree(v') may make
tree(v') larger than tree(v). In this case a new line
structure is needed, where the line I = line(tree(v))
becomes a maximal principal line and the new prin-
cipal line line(tree(vp)) is the concatenation of " and
I" = line(tree(v')). This requires updating the auxiliary
structure in two steps: First we compute the transition
relation tree 7; for the new maximal principal line [
obtained by truncating lo. Then we compute the tran-
sition relation tree 7;; for the new maximal principal
line obtained by concatenating I and I'.

Fortunately, the new transition relation trees can be
computed efficiently from the old ones. Specifically,
Ti is obtained by truncating 7;,, and 7/ is obtained
by merging a subtree of 7, corresponding to I with
the tree 7;. This is done by adapting usual B-tree
techniques. We next provide more details.



Given the balanced tree 7;, of the line Iy, we compute
the balanced tree 7; by traversing bottom-up the path
in T, from the leaf that contains v to the root. Note
that the path has maximum length [log|lp|]. At each
cell n along the path we delete the relations T, where
s1 NIl = and we recompute the relation T, where the
segment s contains v. Recall that each cell in 7;, has
between two and three relations, so it is not possible
for any cell to become empty after these deletions. In
addition, if the deletions have left only the relation T
at cell n then we do the following, assuming n is not
the root (the case where n is root is simple):

e if the right sibling n’ of n has two relations we
delete n and we transfer T (and the corresponding
child node) to n'. In the parent of n and n' we
delete the relation that corresponds to n and we
continue our processing at the parent of n and n'.

e if the right sibling n’ of n has three relations we
move its leftmost relation (and the corresponding
child node) to the cell n, so that n also has two
relations. We recompute the entry of n' at the
parent of n and n'.

e if n has no right sibling the we delete n and we
copy T, at the parent cell. Notice that this case
reduces the depth of the balanced tree.

In all cases we continue recursively with the par-
ent cell. The complexity of this procedure is
O(|Q)? log |Q|log|lo|) where @ is the set of states of
Ny, since the size of the traversed path is at most
[log |lo|]] and in each step we recompute at most two
relations.

Next, consider the computation of the balanced
tree Tpvp of the new main line [ I'. First, we
compute a balanced tree 7;» for the segment " in
O(|Q)? log |Q|log|!"[). Then we merge T;» and T, as
follows. Assume that the depth of 7;» is equal or less
to the depth of 7 - the other case is symmetrical. Lo-
cate a node ns on the leftmost path of 7; such that
the depth of the tree rooted at ny is depth(T;). Then
insert each segment (and corresponding child node) of
the root of 7;» into ny. The insertions are handled as
usual: if there is not enough space in ns then ng will
be split, and so on. It is easy to see that the merge
takes O(|Q|? log|Q|log|l’|) since we have to recompute
one or two relations at each level on the path from ns
to the root of 7. Overall, the rearrangement of these
lines requires O(|Q|? log |Q|(log |lo| + log |I'])), which is
O(|Q* log |Q|log |enc(T)|). Also, note that a single in-
sertion or deletion may cause at most O(log |enc(T)|)
line rearrangements (one for each maximal principal
line intersected by the path from root to the affected
node). Thus, all line rearrangements can be done
in time O(|Q|?log|Q|log? [enc(T)|). In terms of the
original specialized DTD and input tree 7', this is
O((I=*|d* 10g (| |d]) 1og? ).
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Once the line rearrangements have been computed,
additional updates to the transition relation trees of
maximal principal lines may have to be computed, as
in the case of label renamings. This takes again time
O(([= P|dP? log(|=]|d]) log? |T')-

In summary, the size of the auxiliary structure used
for incremental validation is O((|X!|?|d|*|T|). Main-
taining the auxiliary structure and validating the up-
dated tree following a sequence of m updates (label
renamings, insertions, or deletions) is done in time
O(m[St2|d[? log(|=*|d]) log? |T).

6 Conclusions and Future Work

The incremental validation algorithms we exhibited
are significant improvements over brute-force valida-
tion from scratch. However, several issues need further
investigation:

Lower bounds To understand how close our al-
gorithms are from optimal, it would be of interest
to exhibit lower bounds on incremental maintenance
of strings, DTDs, and specialized DTDs. There are
known results that yield lower bounds for validation
from scratch: acceptance of a tree by a tree automaton
is complete for uniform NC! under DLOGTIME reduc-
tions [Loh01]. However, this does not seem to yield any
non-trivial lower bound on the incremental validation
problem. We are not aware of any work providing such
lower bounds applicable to our framework.

Optimizing over multiple updates For a se-
quence of m updates, our incremental validation al-
gorithm modifies the auxiliary structure one update
at a time, then checks validity of the final updated
tree. Clearly, it is sometimes more efficient to consider
groups of updates at a time. For example, this may
avoid performing unnecessary intermediate line rear-
rangements in the incremental algorithm for special-
ized DTDs. Also, if the number of updates is large
compared to the size of the resulting tree, it may be
more efficient to re-validate from scratch.

More complex updates on trees We only con-
sidered here elementary updates affecting one node at
a time. Some scenarios, such as XML editors, require
more complex updates arising from manipulation of en-
tire subtrees (deletion, insertion, cut-and-paste, etc).
Our approach can still be applied by reducing each
of these updates to a sequence of elementary updates.
However, in this case it may be more efficient to con-
sider updates of coarser granularity.
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Appendix

A comment on the worst-case complexity of the
[WG98| algorithms The O(logn) performance guar-
antee provided by [WG98], where n is the size of the string,
does not apply to the case when the interpretation of the
yield of a sequence of symbols of unbounded length depends
on its context. In particular, [WG98] provide the following
“bad grammar”, which recognizes the regular expression

(alb)z™

S—)aC+|bD+
C—zx
D—x

This grammar is problematic for their algorithm because
the reduction of an z to either a C' or a D is determined
by the initial symbol in the sentence, which is arbitrarily



distant. In this case their algorithm needs O(n) recom-
putation, where n is the size of the string. Notice that
our divide-and-conquer algorithm for the incremental vali-
dation of regular expressions does not pose any restriction
on the regular expression.

Proof of Lemma 5.1 For each a € X, let N, =
(%, Qa, 4, Fa,ds) be a standard NFA that accepts the
language 7, = {w" | w € ro} where w” is the reverse
of w. Distinct N, have disjoint sets of states. Let
Qa = U,est Qa- Let A- be the BNTA (X4, Q, Qo, qy,9)
where Q = {q5} U Qu4, Qo = {5 ]a € '}, gy is the accept
state (¢ € Qa), and 0 is defined as follows (4 is empty
whenever not specified):

e Ifac X act a# rootd),a) =a,3 €t e
Qp and ¢ € F, then
8(a,qf,4°) = dp(e,¢%)
o If p = root(d),r = pu(p),q} € F,,3 € =" and ¢° € Qs
then
(r,a4,4") = 0s(p,a°) U {as}
It is easily seen that T(A;) = {enc(T) | T € sat(r)}.

Proof of Lemma 5.2 Consider a path from root to
leaf in enc(T) and let wi ... wn be the sequence of nodes
w along the path for which pu(w) = 0. Note that, by the
definition of p, w1 is the root of enc(T'), and each node w;
other than wy; has two children w} and w} where w} is on
the path from w; to w;4+1 and [tree(w})| > |tree(w;)|. Tt
easily follows that |enc(T)| > 2™~ so M < 1+log |enc(T)|.
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