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Abstract

We investigate the incremental validation of XML doc�
uments with respect to DTDs and XML Schemas�
under updates consisting of element tag renamings�
insertions and deletions� DTDs are modeled as ex�
tended context�free grammars and XML Schemas are
abstracted as �specialized DTDs�� allowing to decou�
ple element types from element tags� For DTDs� we
exhibit an O�m log n� incremental validation algorithm
using an auxiliary structure of size O�n�� where n is the
size of the document and m the number of updates�
For specialized DTDs� we provide an O�m log� n� in�
cremental algorithm� again using an auxiliary struc�
ture of size O�n�� This is a signi�cant improvement
over brute�force re�validation from scratch�

� Introduction

The emergence of XML as a standard representation
format for data on the Web has led to a proliferation
of databases that store� query� and update XML data�
Typically� valid XML documents must conform to a
speci�ed type that places structural constraints on the
document� When an XML document is updated� it
has to be veri�ed that the new document still satis�es
its type� Doing this e�ciently is a challenging prob�
lem that is central to many applications� Brute�force
validation from scratch is often not practical� because
it requires reading and validating the entire database
following each update� Instead� it is desirable to de�
velop algorithms for incremental validation� However�
this approach has been largely unexplored� In this pa�
per we investigate the e�cient incremental validation
of updates to XML documents�
An XML document can be viewed abstractly as a

tree of nested elements� The basic mechanism for speci�
fying the type of XML documents is provided by Docu�
ment Type De�nitions �DTDs� 	W
C��� DTDs can be
abstracted as extended context�free grammars �CFGs��
Unlike usual CFGs� the productions of extended CFGs
have regular expressions on their right�hand sides� An
XML document satis�es a DTD if its abstraction as
a tree is a derivation tree of the extended CFG cor�
responding to the DTD� A more recent XML typing
mechanisms uses the XML Schema standard 	W
C���
which extends DTDs in several ways� Most notable is
the ability to decouple the type of an element from its

label� In this paper we abstract XML schemas by spe�
cialized DTDs� that capture precisely this aspect� It is
a well�known and useful fact that specialized DTDs de�
�ne precisely the regular languages of unranked trees�
and so are equivalent to top�down �and bottom�up�
non�deterministic tree automata�
Verifying that a word satis�es a regular expression� is

the starting point in checking that an XML document
satis�es a DTD� An obvious way to do this following an
update is to verify it from scratch� i�e� run the updated
sequence of labels through the non�deterministic �nite
automaton �NFA� corresponding to the regular expres�
sion� However� this requires O�n� steps� under any rea�
sonable set of unit operations� where n is the length of
the sequence �note that� in complexity�theoretic terms�
membership of a word in a regular language is complete
in NC� under dlogtime reductions 	Vol���� We can
do better by using incremental validation� relying on an
appropriate auxiliary data structure� Indeed� we pro�
vide such a structure and corresponding incremental
validation algorithm that� given a regular expression r�
a string s of length n that satis�es r� and a sequence
of m updates �inserts� deletes� label renamings� on s�
checks� in O�m logn� whether the updated string sat�
is�es r� The auxiliary structure we use materializes in
advance relations that describe state transitions result�
ing from traversing certain substrings in s� These are
placed in a balanced tree structure that is maintained
similarly to B�trees and is well�behaved under inser�
tions and deletions� The size of the auxiliary struc�
ture is O�n�� In addition� we provide an O�m log n�
time algorithm that maintains the auxiliary structure�
so that subsequent updates can also be incrementally
validated�
Our approach to incremental validation of trees with

respect to specialized DTDs builds upon the incremen�
tal validation algorithm for strings� DTDs turn out to
be easier to validate than specialized DTDs� Indeed�
based on the algorithm for string validation� incremen�
tal validation of m updates to a tree T with respect to
a DTD can be done in time O�m log jT j� using an aux�
iliary structure of size O�jT j� which can also be main�
tained in time O�m log jT j�� Specialization introduces

�A word satis�es a regular expression if it belongs to the
corresponding language�

�For readability� we provide here the complexity with respect
to the string and update sequence� for �xed �specialized� DTD
or regular expression� The combined complexity is spelled out
in the paper�
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another degree of complexity� Intuitively� this is due
to the fact that an update to a single node may have
global repercussions for the typing of the tree� This
stands in contrast with DTDs without specialization�
where a single update to a node needs to be validated
only with respect to the type of its parent and the
sequence of its children� so has local impact on type
checking�
We �rst attempt a rather straightforward extension

of the incremental validation for DTDs and obtain an
algorithm of time complexity O�m depth�T � log jT j� us�
ing an auxiliary structure of size O�jT j�� However� this
is not satisfactory when the tree is narrow and deep�
In the worst case� depth�T � � jT j� To overcome this�
we develop a more subtle approach that has the fol�
lowing main ingredients� First� the unranked tree T
representing the XML document is mapped into a bi�
nary tree encoding that allows us to unify the horizon�
tal and vertical components of validation� Then the
specialized DTD is translated into a bottom�up non�
deterministic tree automaton accepting precisely the
encodings of valid documents� Finally� an incremen�
tal validation algorithm for binary trees with respect
to tree automata is developed� based on a divide�and�
conquer strategy that focuses on computations along
certain paths in the tree chosen to appropriately di�
vide the work� Auxiliary structures are associated to
each of these paths� The resulting incremental valida�
tion algorithm has time complexity O�m log� jT j� and
uses an auxiliary structure of size O�jT j��

Related Work As mentioned earlier� XML
databases need to e�ciently validate updates on
their content� Ipedo�s XML database 	Ipe validates
update commands with respect to XML Schemas�
however� to our knowledge no technical information
is publicly available on the underlying structures
and algorithms� Another application where e�cient
validation is useful is XML editors �see 	XMLa for
a survey of available products�� Some XML editors
like XMLMind 	XMLc and XMLSpy 	XMLb feature
incremental validation of DTDs� Recently� XMLSpy
also included validation of XML Schemas 	XMLb� No
information is provided on their incremental validation
algorithms�
Note that our abstraction of the content models

of DTDs 	W
C�� by arbitrary regular expressions
removes the requirement for ��unambiguous regular
expressions� Furthermore� our abstraction of XML
Schemas 	W
C�� as specialized DTDs has assumed
that the content of a type is described by an arbitrary
regular expression over types� XML Schema restricts
those regular expressions by requiring that no two dif�
ferent types with the same element name may partici�
pate in the same regular expression� The motivation of
such restrictions in DTDs and XML Schemas has been
the need for e�cient validators� However� our e�cient

incremental validation algorithms have not made use
of those restrictions besides stating how ��unambiguity
changes the complexity of the problem�

Closely related to incremental validation is incremen�
tal parsing� which is key to incremental program com�
pilation� Research on incremental parsing has focused
on LR parsing 	GM��� WG��� JG��� Lar��� Pet�� and
LL �recursive descent parsing� 	MPS��� Li��� Lin�
�
since programming languages are typically described
by LR���� LR���� LL���� LALR��� and LL��� gram�
mars� All techniques start by parsing the input text
and produce a parse tree� which is typically annotated
with auxiliary information� The parse tree is updated
as a result of the updates to the input text� A typical
theme of the incremental parsing techniques is identify�
ing minimal structural units of the parse tree that are
a�ected by the modi�cations �see 	GM�� for LR���
parsing and 	Lar�� for a generalization to LR�k���
However� the performance of the incremental parsing
algorithms is hard to compare to our validation algo�
rithm because of the di�erences in settings and goals�
which typically involve minimization of the changes on
the parse tree� Indeed� the best�case performance of
incremental parsers will generally beat the one of our
regular expression validation algorithm� which always
takesO�logn� steps for a single update� This is because
incremental parsers take advantage of natural �termi�
nation points� used in programming languages syntax
	Lin�
� that typically occur close to the update� Loga�
rithmic complexity in the size of the string is achieved
for LALR grammars by 	WG�� but only if the gram�
mar is such that its parse trees have depth O�logn�
for a string of length n� One can easily see that there
are LALR grammars that do not meet this property�
and neither do the cfgs corresponding to DTDs� Fur�
thermore� 	WG�� require that the interpretation of it�
erative sequences be independent of the context� See
the appendix for an example from 	WG�� of a regular
expression violating this condition�

The complexity of validation is related to that of
membership of a word in a regular language� and of
a tree in a regular tree language� The problem of
word membership in a regular language is known to be
complete in uniform NC� under dlogtime reductions
	Loh�� and acceptance of a tree over a ranked alpha�
bet by a tree automaton is complete in uniform NC�

under dlogtime reductions if the tree is presented in
pre�x notation 	Vol��� and complete in logspace if
the tree is presented as a list of its edges 	Seg��� To
our knowledge� no complexity results exist on the incre�
mental variants of these problems� with the exception
of a result of 	PI�� discussed below�

Incremental evaluation of queries by �rst�order
means is studied by 	DS�� using the notion of �rst�
order incremental evaluation systems �FOIES� A re�
lated descriptive complexity approach to incremental
computation is developed by Patnaik and Immerman
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in 	PI��� They de�ne the dynamic complexity class
Dyn�FO �equivalent to FOIES�� consisting of proper�
ties that can be incrementally veri�ed by �rst�order
means� They exhibit various problems in Dyn�FO� such
as multiplication� graph connectivity� and bipartite�
ness� Most relevant to our work� they show that mem�
bership of a word in a regular language is in Dyn�FO�
For label renamings� they sketch an approach similar to
ours� The incremental algorithm and auxiliary struc�
ture for node insertions and deletions that modify the
length of the string are not spelled out� Also� no exten�
sion to regular tree languages is discussed� The study in
	PI�� is pursued in 	HI��� where an extension of Dyn�
FO is introduced and it is shown that the single�step
version of the circuit value problem is complete in Dyn�
FO under certain reductions� Complexity models of
incremental computation are considered in 	MSVT���
The focus is on the classes incr�polylogtime �incr�
polylogspace� of properties that can be incremen�
tally veri�ed in polylogarithmic time �space�� Inter�
esting connections to parallel complexity classes are
exhibited� as well as complete problems for classical
complexity classes under reductions in the above incre�
mental complexity classes�

Organization The paper is organized as follows�
Section � presents our abstraction of XML documents�
DTDs� and XML Schemas� as well as the connection
between specialized DTDs and tree automata� We also
spell out formally the incremental validation problem
and the assumptions made in our complexity analy�
sis� In Section 
 we examine the incremental validation
of strings with respect to regular expressions and de�
velop the core divide�and�conquer strategy used later
for DTD validation� Section � presents the validation
algorithm for DTDs and a �rst attempt to handle spe�
cialized DTDs� Finally� Section � presents the full algo�
rithm for specialized DTDs yielding O�m log� jT j� in�
cremental validation� Section � contains some conclud�
ing remarks and future work�

� Basic Framework

We introduce here the basic formalism used through�
out the paper� including our abstractions of XML docu�
ments� DTDs� and XML Schemas� We also recall basic
de�nitions relating to tree automata�

Labeled ordered trees We abstract XML docu�
ments as labeled ordered trees� Our abstraction ignores
data values present in XML documents� because their
validation with respect to an XML Schema is trivial�
For example� an XML document holding ads for used
cars and new cars is shown in Figure � �left�� together
with its abstraction as a labeled tree�

An ordered labeled tree over �nite alphabet � is a pair
T � ht� �i� where t is an ordered tree and � is a mapping
associating to each node n of t a label ��n� � �� Trees
are assumed by default to be unranked� i�e� there is
no �xed bound on the number of children each node
may have� The set of all labeled ordered trees over � is
denoted by T�� We sometimes denote a tree consisting
of a root v with subtrees T� � � � Tk by v�T� � � � Tk�� We
will also consider binary trees� where each node has at
most two children� If every internal node has exactly
two children� the binary tree is called complete�
We assume a representation of trees that allows one

to �nd in O��� �i� the label� �ii� the parent� �iii� the
immediate left �right� sibling� and �iv� the �rst child of
a speci�ed node�

Types and DTDs As usual� we de�ne XML docu�
ment types in terms of the document�s structure alone�
ignoring data values� The basic speci�cation method
is �an abstraction of� DTDs� A DTD consists of an
extended context�free grammar over alphabet � �we
make no distinction between terminal and non�terminal
symbols�� In an extended cfg� the right�hand sides of
productions are regular expressions over �� An ordered
labeled tree ht� �i over � satis�es a DTD d if the tree
ht� �i is a derivation tree of the grammar� For example�
the tree is valid with respect to the DTD in Figure ��
The start symbol of a DTD d is denoted by root�d��

We can assume without loss of generality that for each
a � � the DTD has a single rule a � ra with a on the
left�hand side� and we denote by Na a standard non�
deterministic �nite�state automaton �NFA� recognizing
the language ra� The set of labeled trees satisfying a
DTD d is denoted by sat�d��
We use the following notation for NFA� An NFA is a

��tuple N � h�� Q� q�� F� �i where � is a �nite alpha�
bet� Q is a �nite set of states� q� � Q is the start state�
F � Q is the set of �nal states� and � is a mapping from
��Q to P�Q�� A string a� � � � an is accepted by N i�
there exists a mapping � � f�� � � � � ng � Q such that
��a�� � ��a�� q��� ��an� � F � and for each i� � � i � n�
��ai��� � ��ai��� ��ai��� The set of strings accepted
by N is denoted L�N�� N is a deterministic �nite�state
automaton �DFA� i� � returns singletons on each input�
Recall that for each regular expression r there exists an
NFA N whose number of states is linear in r� such that
N accepts the regular language r� In general� a DFA
accepting r requires exponentially many states wrt r�
However� for certain classes of regular expressions� the
corresponding DFA remains linear in the expression�
One such class consists of the ��unambiguous regular
languages 	BKW��� This is relevant in the context
of XML types� since DTDs and XML Schemas require
the regular expressions used to specify the contents of
elements to be ��unambiguous�
An important limitation of DTDs is the inability to

separate the type of an element from its name� For






�dealer�

�UsedCars�

�ad�

�model�Honda��model�

�year�����year�

��ad�

��UsedCars�

�NewCars�

�ad�

�model�BMW��model�

��ad�

��NewCars�

��dealer�

dealer

NewCars

ad ad

UsedCars

yearmodel model

��DOCTYPE dealer�

��ELEMENT dealer

�UsedCars� NewCars	�

��ELEMENT UsedCars �ad
	�

��ELEMENT NewCars �ad
	�

��ELEMENT ad �model� year�	�

��ELEMENT model PCDATA�

��ELEMENT year PCDATA�

root � dealer

dealer � UC NC

UC � ad�

NC � ad�

ad � model �yearj��
model � �

year � �

root � dt

dt � UCt NCt ��dt� � dealer

UCt � �adu�� ��UCt� � UC

NCt � �adn�� ��NCt� � NC

adu � mt yt ��adu� � ad

adn � mt ��adn� � ad

mt � � ��mt� � model

yt � � ��yt� � year

Figure �� XML� DTD and specialized DTD �UC and NC stand for UsedCars and NewCars�

example� consider the dealer document in Figure ��
Used cars have model and year while new cars have
model only� There is no mechanism to specify this
using DTDs� since rules depend only on the name of
elements� and not on its context� To overcome this
limitation� XML Schema provides a mechanism to de�
couple element names from their types and thus allow
context�dependent de�nitions of their structure� We
abstract this mechanism using the notion of specialized
DTD �studied in 	PV�� and equivalent to formalisms
proposed in 	BM��� CDSS����

De�nition ��� �Specialized DTD� A specialized
DTD is a ��tuple h���t� d� �i where � is a �nite al�
phabet of labels� �t is a �nite alphabet of types� d is a
DTD over �t and � is a mapping from �t to �� �

Intuitively� �t provides� for each a � �� a set of
types associated to a� namely those at � �t for which
��at� � a� In our specialized DTD example �lower
right corner of Figure �� we create two types for the
element ad� a type adn whose content is just a �model�
type� and a type adu whose content is �model� and
�year�� Note that � induces a homomorphism on words
over �t� and also on trees over �t �yielding trees over
��� We also denote by � the induced homomorphisms�
Let � � h���t� d� �i be a specialized DTD� A tree t

over � satis�es � �or is valid wrt �� if t � ��sat�d���
Thus� t is a homomorphic image under � of a derivation
tree in d� Equivalently� a labeled tree over � is valid
if it can be �specialized� to a tree that is valid with
respect to the DTD over the alphabet of types� The
set of all trees over � that are valid w�r�t� � is denoted
sat���� When � is clear from the context� we simply
say that a tree is valid�

Tree automata There is a powerful connection be�
tween specialized DTDs and tree automata� they are
precisely equivalent� and de�ne the regular tree lan�
guages 	BKMW��� We will make use of this connec�
tion in the paper�

Tree automata are devices whose purpose is to ac�
cept or reject an input tree� Classical tree automata
are de�ned on complete binary trees� As in the case
of string automata� there are several equivalent vari�
ants� top�down nondeterministic automata are equiva�
lent to bottom�up �non��deterministic ones� In contrast
to string automata� top�down deterministic automata
are weaker than their non�deterministic counterpart�
We next review bottom�up non�deterministic tree au�
tomata on complete binary trees� �For technical rea�
sons that will become clear shortly� we assume that all
leaves have the same label ���

De�nition ��� �Bottom�up non�deterministic
tree automaton� A bottom�up non�deterministic tree
automaton �BNTA� is a ��tuple A � h�� Q�Q�� qf � �i
where � is a �nite alphabet� Q is a �nite set of states�
Q� is the set

� of start states �Q� � Q�� qf is the accept
state �qf � Q� and � is a mapping from ��Q�Q to
P�Q��
A tree T � ht� �� i is accepted by the automaton

A i� there is a mapping � from the nodes of t to
Q such that� �i� if n is a leaf then ��n� � Q��
�ii� if n is an internal node with children n�� n� then
��n� � ����n�� ��n��� ��n���� and �iii� if n is the root
then ��n� � qf � The set of trees accepted by A is
denoted by T �A�� �

There is a prima facie mismatch between DTDs and
tree automata� DTDs describe unranked trees� whereas
classical automata describe binary trees� There are two
ways around this� First� unranked trees can be encoded
in a standard way as binary trees� Alternatively� the
machinery and results developed for regular tree lan�
guages can be extended to the unranked case� as de�
scribed in 	BKMW��� For technical reasons� it will be
useful to adopt here the �rst approach�

�Some de�nitions of BNTA require a single start state for each
leaf symbol� and allow a set of �nal states� Having multiple start
states and a single �nal state is a harmless variation� convenient
here for technical reasons�
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The incremental validation problem Given a
�specialized� DTD � � a tree T � sat���� and a sequence
s of updates to T yielding another tree T �� we wish to
e�ciently check if T � � sat���� In particular� the cost
should be less than re�validation of T � from scratch�
The individual updates are the following�
�a� replace the current label of a speci�ed node by

another label�
�b� insert a new leaf node after a speci�ed node�
�c� insert a new leaf node as the �rst child of a

speci�ed node� and
�d� delete a speci�ed leaf node�

We allow some cost�free one�time pre�processing to
initialize incremental validation� such as computing the
NFA corresponding to the regular expressions used by
the DTDs� We will also initialize and then maintain an
auxiliary structure A�T � to help in the validation� The
cost of the incremental validation algorithm is evalu�
ated with respect to�
�a� the time needed to validate T � using T and A�T ��

as a function of jT j and jsj
�b� the time needed to compute A�T �� from T� s� and A�T ��
�c� the size of the auxiliary structure A�T � as a func�

tion of jT j�

The analysis will also make explicit the combined com�
plexity taking into account the specialized DTD�

� Warmup� Incremental Valida�

tion of Strings

As warmup to the validation problem� we consider in
this section the incremental validation of strings with
respect to a regular language speci�ed by an NFA� We
�rst consider the case when all updates consist of label
renamings� We discuss inserts and deletes later�
Consider an NFA N � h�� Q� q�� F� �i� and a string

a� � � � an � L�N�� For compatibility with our tree for�
malism� we view a string as a sequence of nodes �or
elements� each of which has a label� When there is no
confusion we sometimes blur the distinction between
an element and its label�
Consider a sequence of element renamings

u�ai� � b��� � � � � u�aim � bm�� where i� � i� � � � � � im�
The renaming u�aij � bj� requires that the label
of element aij be renamed to bj � We would like
to e�ciently check whether the updated string
a� � � � ai���b�ai��� � � � aim��bmaim�� � � � an � L�N��
Validating the new string from scratch by running it
through N takes O�njQj� log jQj�� We can easily do
better by maintaining some auxiliary information� For
simplicity in the presentation� we assume that we can
�nd the rank of a speci�ed node among its siblings in
O���� This assumption is removed later�
Consider the case of a single renaming u�i� b� for

� � i � n� Suppose that we have pre�computed� for

each i� � � i � n� the sets Pre�i� � ��q�� a� � � � ai���
and Post�i� � fs j ��s� ai�� � � � an� � Fg� If we precom�
pute Pre and Post in arrays then we can retrieve Pre�i�
or Post�i� in O�jQj�� An O�jQj�� algorithm for check�
ing whether the string is in L�N� following the update
u�i� b� is now obvious� If there is a state s� � Pre�i�� a
state s� � Post�i� � �� such that s� � ��b� s�� then the
updated string is in L�N��
However� the Pre and Post technique does not scale

to m updates� Furthermore� maintaining Pre and Post

is problematic because� following each update u�i� b��
we need to recompute all Pre�j� for j 	 i and Post�j�
for j � i� This requires O�njQj� log jQj� time�
As the next step in the warmup� we can try to

keep some additional auxiliary information in order
to better handle multiple updates� For each i� j�
� � i � j � n� let Tij be the transition relation
fhp� qi j p� q � Q� q � ��p� ai � � � aj�g� Note that
Tij � Tik � Tkj � i � k � j� where � denotes com�
position of binary relations� We also denote by �a
the relation fhp� qi j q � ��p� a�g for a � �� If all
Tij are available� then checking validity of the up�
dated string a� � � � ai���b�ai��� � � � aim��bmaim�� � � � an
reduces to verifying that

hq�� fi � T��i���� � �b� � T�i�����i���� � � � � � T�im����n�

for some f � F � This takes time O�mjQj� log jQj�� if we
assume that we have precomputed in a ��dimensional
array all relations Tij � In particular� the composi�
tion of two relations is a join operation� It can be
accomplished in O�jQj� log jQj�� � O�jQj� log jQj� by
employing sort�merge join� Each relation is sorted in
O�jQj� log jQj� and then they are merged in O�jQj���
The same complexity can be derived if we assume bi�
nary tree indices on each attribute of the relations and
we employ index�based join 	GMUW��� The size of
the array required for the precomputation is n�jQj��
However� maintaining the precomputed structure is
prohibitively expensive� since we have to recompute ev�
ery relation Tij if there is an update between the ith
and jth position of the string� We are therefore led to
consider a more promising approach� which provides
the basis for the solution we adopt�

Divide�and�conquer validation We describe a
divide�and�conquer approach that allows validating
a sequence of m renamings to a string of length
n� as well as update the auxiliary structure� in
O�mjQj� log jQj logn� time� The size of the auxiliary
structure is O�jQj�n�� Note that the approach below
is similar to that brie�y sketched in 	PI���
For simplicity� assume �rst that n is a power of ��

say n � �k� The main idea is to keep as auxiliary
information just the Tij for intervals 	i� j obtained by
recursively splitting 	�� n into halves� until i � j�
More precisely� consider the transition relation tree Tn
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T��

T�� T��

T�� T�� T�� T��

T�� T�� T�� T�� T�� T�� T�� T��

Figure �� The tree T�	

whose nodes are the sets Tij � de�ned inductively as
follows�

� the root is T���k
� each node Tij for which j 	 i 	 � has children Tik
and T�k���j where k �

j�i��
� �

� Tii are leaves� � � i � n�

For example� T	 is shown in Figure ��
Note that Tn has n��n
�� � � � � � � � � � �n	

� nodes and has depth logn� Thus� the size of the
auxiliary structure is O�njQj���
Consider now a string a� � � � an � L�N�� and a

sequence of renamings u�i�� b��� � � � � u�im� bm�� where
i� � i� � � � � � im� The updated string is
a� � � � ai���b�ai��� � � � aim��bmaim�� � � � an� Note that
the relations Tij that are a�ected by the updates are
those laying on the path from a leaf Tiviv �� � v � m�
to the root of Tn� Let I be the set of such relations�
and note that its size is at most m logn�
The tree Tn can now be updated by recomputing

the Tij �s in I bottom�up as follows� First� the leaves
Tiviv � I are set to �bv � � � v � m� Then each
Tij � I with children Tiv and Tvj for which at least
one has been recomputed is replaced by Tiv � Tvj �
Thus� at most m logn Tij �s have been recomputed�
each in time O�jQj� log jQj�� yielding a total time of
O�mjQj� log jQj logn��
The validation of the string

a� � � � ai���b�ai��� � � � aim��bmaim�� � � � an is now
trivial� it is enough to check� in the updated auxiliary
structure� that hq�� fi � T�n for some f � F � Thus�
validation is also done in time O�mjQj� log jQj logn��
The above approach can easily be adapted to strings

whose length is not a power ot � �for example� by ap�
propriately truncating T�k where k � dlogne��

Dealing with inserts and deletes We next extend
the divide�and�conquer approach outlined for renam�
ings to the case when node inserts and deletes are also
allowed� The above approach no longer works� for two
reasons� First� inserts and deletes cause the position
of nodes in the string to change� Second� the length n
of the string� and therefore the set of relevant intervals
used to construct Tn� are now dynamic� Due to these
di�erences� inserts and deletes would require recomput�
ing the entire tree Tn� which is ine�cient� Instead� we
would like to use a tree structure T that can be incre�
mentally maintained under inserts and deletes� as well

as renamings� while preserving the properties that en�
abled our divide�and�conquer approach� Most impor�
tantly� the tree should continue to be balanced and have
depth O�logn�� This suggests adopting an approach
based on B�trees� that we describe next� We assume
basic familiarity with B�trees �e�g�� see 	GMUW����
The B�tree variant we use� denoted T � has nodes

containing 
 cells each� Each cell is either empty or
contains a set Ts corresponding to some subsequence
s of the string� At most one of the 
 cells in a node
can be empty �assuming the current string has length
at least two�� Each nonempty cell is either at a leaf or
has one node �with three cells� as a child�
In the tree Tn� the interval 	i� j associated to a node

Tij is made explicit� In the tree T � it is not necessary to
compute explicitly the subsequence s associated to each
Ts� The maintenance algorithm automatically ensures
the following�

� the sequence of non�empty leaf cells is Ts� � � � Tsn
where the length of the current string is n and
Tsi � Tii� � � i � n�

� if an internal cell contains a relation Ts and its
child node contains Ts� � Ts� �resp� Ts� � Ts� � and
Ts�� then Ts � Ts� �Ts� �resp� Ts � Ts� �Ts� �Ts���

We also maintain pointers providing in O���� for each
element v in the input string� the leaf cell Ts for which
the singleton s consists of v� Note that the position of
the element is never recorded explicitly�
For example� the left part of Figure 
 shows a se�

quence of seven nodes� several subsequences� and the
corresponding tree� Note that the subscript of a node
does not necessarily indicate its position in the string�
Each sequence si is the singleton sequence ni� for
i � f�� �� 
� �� �� �� �g�
The requirement of having 
 cells per node of which

at least � are non�empty ensures that the tree T re�
mains balanced and of depth O�logn� as it is updated�
This follows from the standard analysis of B�tree be�
havior under the maintenance algorithm 	GMUW���
which we describe here� In a disk�based implementa�
tion one should set the maximum number of cells per
node to the number of items that �t in one disk page�
Recall that we wish to validate strings with respect

to an NFA N � h�� Q� q�� F� �i� We describe below
the maintenance algorithm for T � Once T is computed
for the current string� validation is easy� check that
for some f � F � hq�� fi belongs to the composition of
the sets Ts in the cells of the root node of T � at cost
O�jQj� log jQj��
The auxiliary structure T corresponding to a valid

string w is initialized by starting from the empty string
and constructing w by a sequence of inserts� using the
maintenance algorithm� Then T is maintained incre�
mentally as follows� If the update is a renaming of
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Figure 
� A T tree before and after the insertion of nodes n� and n	

element v� T is updated much like Tn� we use the in�
dex to �nd the leaf cell of Tv corresponding to v� then
update all sets Ts along the path from Tv to the root�
This involves O�log n� updates�

If the update is the insertion or deletion of a new la�
beled element� the maintenance algorithm mimicks the
one for B�trees� In particular� recall that if nodes in a
B�tree become too full as the result of an insertion they
are split� and if they contain fewer than two non�empty
cells as a result of a deletion they are either merged
with a sibling node or non�empty cells are transferred
from a sibling node� The node splits and merges may
propagate all the way to the root� Due to the similarity
to classical B�tree maintenance we omit the details but
illustrate how to handle the �rst variant of insertion�
deletion and the second variant of insertion are simi�
lar� Assume that an element y with label a is inserted
after element x in the current string� If there is some
empty cell in the leaf node n of T containing the set
Tx corresponding to x we insert the relation Ty � �a in
the cell following that for x and we revise the appro�
priate Ts relations in ancestor nodes� For example� if
a new node n	 is inserted in the left string of Figure 

after n�� we insert Ts	 in the node hTs� � Ts�i� as shown
in the right side of Figure 
� and we revise Tsc � which
becomes Ts� � Ts	 � Ts� �

If the leaf node n for x has no non�empty cells� then
we split n into two nodes n� and n�� containing two
relations each� We delete from the parent the relation
Ts� where s is the subsequence that corresponds to the
node n� and we attempt to insert in the parent relations
Ts� and Ts�� � which correspond to n� and n��� If the
parent already has three relations� the deletion of Ts
and the insertion of Ts� and Ts�� will require splitting
the parent into two nodes� As is the case for B�trees�
this process may propagate all the way to the root and
may end up creating a new root� For example� the
insertion of a node n� following n� leads to splitting
the node hTs� � Ts� � Ts�i into hTs� � Ts�i and hTs� � Ts�i�
The relation Tsb is deleted and two new relations Tsb�
and Tsb�� are inserted into hTsa � Tsb � Tsci� which leads
to a new split and a new root� The result tree is shown
in the right side of Figure 
� In the worst case� when an
insertion in a leaf node results in splits propagating all
the way to the root� we need to recompute � logn new

relations �one at the leaf level� one at the new root�
and ��logn 	 �� at the internal nodes�� Hence� the
worst case complexity is O�jQj� log jQj logn�� Deletion
proceeds similarly and may lead to node merging or
root deletion� with the same complexity� As in the
case of B�trees� the maintenance algorithm guarantees
that T always has depth O�logn� for strings of length
n� Altogether� maintenance of T after m updates takes
time O�mjQj� log jQj logn��

��unambiguous regular expressions As discussed
earlier� XML Schemas require regular expressions used
in type de�nitions to be ��unambiguous� If r is a
��unambiguous regular expression� the corresponding
DFA is of size linear in r� In this case� the relations Ts
used in the above auxiliary structure have size O�jQj�
rather than O�jQj��� This brings down the size of the
auxiliary structure to O�jQjn� and the complexity of
maintenance and validation to O�mjQj log jQj logn��

� Incremental DTD Validation

The incremental validation of DTDs extends the
divide�and�conquer algorithm for incremental valida�
tion of strings described in Section 
� Let d be a DTD�
T � ht� �i a labeled tree satisfying d� and consider �rst
updates consisting of a sequence of m label modi�ca�
tions yielding a new tree T � � ht�� ��i� To check that T �

satis�es d� we must verify that for each node v in t� with
children v� � � � vn for which at least one label was mod�
i�ed� the sequence of labels ���v�� � � � �

��vn� belongs to
r���v�� If the label of v has not been modi�ed� i�e�
��v� � ���v�� then validation can be done using the
divide�and�conquer algorithm described in Section 
 for
strings� However� if the label of v has been modi�ed�
so that ��v� 
� ���v�� the sequence ���v�� � � � �

��vn� has
to be validated with respect to the new regular lan�
guage r���v� rather than r��v�� Thus� it would seem
that� in this case� validation has to start again from
scratch� To avoid this� we preemptively maintain in�
formation about the validity of each string of siblings
with respect to all regular languages ra for a � �� To
this end we maintain some additional auxiliary infor�
mation� Speci�cally� for each sequence of siblings in
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the tree� we compute the transitions relations Ts of the
divide�and�conquer algorithm described in Section 
�
for each NFA Na corresponding to ra� and a � �� We
denote the sets Ts for a particular a � � by T a

s � Since
the auxiliary structure for each �xed NFA and string of
length n has size O�jQj�n� �where Q is the set of states
of the NFA�� the size of the new auxiliary structure is
at most O�j�jjdj�jT j�� where jT j is the size of T and
jdj � maxfjraj j a� ra � dg� The maintenance of the
auxiliary structure is done in the same way as in the
string case� at a cost of O�mj�jjdj� log jdj log jT j� for a
sequence of m modi�cations� Finally� the updated tree
T � is valid wrt d if for each node v with label a in T �

such that either v or one of its children has been up�
dated� hq�� fi is in the relation T a

s where s is the list of
children of v� q� is the start state of Na� and f is one of
its �nal states� Each such test takes O�jdj� log jdj� and
the number of tests is m in the worst case� This yields
a total validation time of O�mj�jjdj� log jdj log jT j��
Insertions and deletions of leaves are handled by a

straightforward extension of the B�tree approach out�
lined in Section 
�

Specialized DTDs� a �rst attempt Specialized
DTDs add another degree of complexity to the up�
date validation problem� Intuitively� they abstract the
ability of XML Schemas to associate di�erent types
to each element label� Consider a specialized DTD
� � h���t� d� �i� Recall that a tree T over � satis�
�es � i� there exists some tree T � over �t� satisfying
d� such that ��T �� � T � Essentially� T � associates a
type in �t to each node in T so that the DTD d over
�t is satis�ed� The existence of such a type assign�
ment� and therefore the validity of T � can be tested
in a bottom�up manner as follows� For each leaf v of
T � let types�v� � f� j ���� � ��v� and � � r�g� Thus�
types�v� consists of all types in �t that may be assigned
to the label of v and allow it to be a leaf�
Then apply the following procedure recursively� for

each internal node v of T with children v� � � � vn
for which types�vi� has already been computed� let
types�v� consist of the types � � ������v�� for which
types�v�� � � � types�vn�� r� 
� �� where �� r� � d� In
other words� types�v� consists of all types allowed for
the label of v for which there is at least one choice of
allowed types for its children that is compatible with
d� Clearly� T � sat��� i� types�root�T �� 
� �� This pro�
cedure closely corresponds to the evaluation on T of a
bottom�up unranked tree automaton corresponding to
� �
Consider now a tree T � sat���� We �rst consider la�

bel modi�cations� We maintain the following auxiliary
structure�

� for each node v in T � maintain the set of allowed
types types�v�� This has size O�jT jj�tj��

� for each sequence of siblings v� � � � vn in T and � �

�t� maintain the sets

T�
s � fhp� qi j q � ���p� i � � � j��

k � types�vk�� i � k � jg

where s is a subsequence vi � � � vj used in T � for�
mulated by the usual divide�and�conquer strategy�
This has size O�j�tjjdj�jT j��

We describe how to maintain the auxiliary structure
when a single label is modi�ed� For m modi�cations�
we apply this for each modi�cation� Validity is checked
after the auxiliary structure has been updated for all
modi�cations�
Suppose the node whose label is modi�ed is v� the

old label is a� and the new label is b� We need to
update the sets types�w� for all nodes w on the path
from root to v in T � as well as the sets T�

s for the
sequences s of siblings where such nodes occur� This
is done in a bottom�up fashion as follows� First� if
v is a leaf� then types�v� � f j ��� � b� � � r�g�
If v has children v� � � � vn then types�v� contains all
types  � ����b� such that hq�� fi � T �

s where q�
is the start state of N�� f is one of its accepting
states� and T �

s is the root of the auxiliary structure
corresponding to  and the children of v� Note that
this step takes O�j�tjjdj� log jdj�� Next� suppose
that w is a node in T whose sequence of children
w� � � � wn contains one node wk for which types�wk�
has been updated� First� the sets T�

s need to be
updated for the logn a�ected subsequences s as
in the divide�and�conquer string validation algo�
rithm� This takes time O�j�tjjdj� log jdj logn�� Next�
types�w� is updated as in the base case to contain
the types  � ������w�� for which hq�� fi � T �

s

where q� is the start state of N� � f is one of its
accepting states and s is the sequence w� � � � wn�
This takes time O�j�tjjdj� log jdj�� Thus� the main�
tenance time for this step is O�j�tjjdj� log jdj logn��
and this has to be repeated at most depth�T �
times� This yields a total maintenance time of
O�j�tjjdj� log jdjdepth�T � log jT j� for a single label
modi�cation� For m modi�cations� the maintenance
time is O�mj�tjjdj� log jdjdepth�T � log jT j�� Finally
the updated tree is valid i� root�d� � types�root�T ���
Hence� the total validation time is also
O�mj�tjjdj� log jdjdepth�T � log jT j��
Node insertions and deletions can be handled by

adapting the B�tree approach used for strings� The
resulting complexity is the same as for label renam�
ings�
Note that for �xed specialized DTD and update se�

quence� the validation algorithm outlined above takes
time O�depth�T � log jT j�� Thus� the algorithm works
well for shallow trees� However� in the worst case
depth�T � could equal jT j� in which case the complexity
is O�jT j log jT j�� This is not satisfactory� We will see in
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the next section how to use a more subtle strategy that
reduces the overall maintenance and validation cost to
O�log� jT j��

� Incremental Validation via Bi�

nary Trees Encodings

In this section we develop a re�nement of the incremen�
tal validation technique for specialized DTDs described
in the previous section� This results in maintenance
and validation algorithms of complexity O�log� jT j� for
�xed DTD and update sequence� instead of the previ�
ous O�jT j log jT j�� Intuitively� the algorithm of Section
� is based on a divide�and�conquer strategy to split
the work of validating sequences of siblings in the tree�
However� for trees of small width and large depth� this
strategy is defeated� The re�nement presented in this
section extends the divide�and�conquer strategy to val�
idation of the overall tree� by splitting the work simul�
taneously with respect to the horizontal and vertical
components� To this end� it is useful to adopt a rep�
resentation of unranked trees as complete binary trees
and reduce the problem of validating specialized DTDs
on unranked trees to that of acceptance of the binary
tree encodings by a corresponding bottom�up tree au�
tomaton� The advantage of this approach is that it
uni�es the horizontal and vertical components of vali�
dation and facilitates a natural formulation of the new
divide�and�conquer strategy�

Binary tree encoding of unranked trees We next
describe the encoding of unranked trees as binary trees�
We use one of the standard encodings in the literature
�e�g� see 	Nev���� To each unranked labeled ordered
tree T � ht� �i over alphabet � we associate a binary
tree enc�T � over alphabet �� � �f�g� where � 
� ��
The input of enc is a �possibly empty� sequence of
unranked trees over �� and the output is a complete
binary tree over ��� The mapping enc is de�ned re�
cursively as follows �where �T� and �T are sequences of
trees� possibly �� and n� is a single node��

� enc��� � �
� enc�n�� �T�� �T � � n��enc� �T��� enc� �T ��

For example� a tree T and its encoding enc�T � are
shown in Figure � �neglect for now the boxes and bold
letters��
We would like to reduce the validation of unranked

trees T wrt a specialized DTD � to the question
of whether enc�T � is accepted by a bottom�up non�
deterministic tree automaton� To this end� we show
the following result �a variant of known results on
equivalences of specialized DTDs and unranked tree au�
tomata� and of unranked tree automata and automata
on binary trees� see 	Nev����

Lemma ��� For each specialized DTD � �
h���t� d� �i there exists a BNTA A� over ��

whose number of states is O�j�tjjdj�� such that
T �A� � � fenc�T � j T � sat���g� �

Proof� See Appendix� �

Our approach is based on reducing the validation
of unranked trees with respect to specialized DTDs to
the validation of their binary encodings with respect to
the corresponding BNTA� say A � h�� Q�Q�� qf � �i� As
before� the problem really amounts to e�ciently updat�
ing the auxiliary structure associated with the input�
In our case� the auxiliary structure will include �among
other information to be speci�ed shortly� the binary en�
coding enc�T � of the input T � and will provide� for each
node v in enc�T �� the set types�v� consisting of the pos�
sible states of A at node v after consuming the subtree
rooted at v� Once the auxiliary structure is updated�
validity amounts to checking that types�root�enc�T ���
contains the accept state of A� where T is the updated
tree� The strategy for updating the types associated
with nodes applies the divide�and conquer strategy for
string validation to certain paths in the tree� chosen
to appropriately divide the work� More precisely� we
will select� in every subtree T� of a given tree enc�T ��
a particular path from the root to a leaf� We call this
path the principal line of T�� denoted by line�T��� and
de�ned as follows�

� root�T�� belongs to line�T���

� let v be an internal node of T� that belongs to
line�T��� and suppose v has children v�� v�� If
jtree�v��j � jtree�v��j� then v� belongs to line�T���
otherwise� v� belongs to line�T���

Validation of enc�T � can be done by associating to each
maximal principal line� an NFA that validates that par�
ticular line� We make this more precise next�

From BNTA to NFA on principal lines Consider
the principal line v� � � � vn of a binary tree encoding
enc�T � where v� is the root and vn is a leaf� By the
de�nition of binary encodings� each non�leaf node vi
has one child v�i that does not belong to the principal
line v� � � � vn� for � � i � n� Consider the sets types�v�i��
Note that if these sets are given� we can validate enc�T �
by an NFA N that works on the string v� � � � vn� For
technical reasons� the constructed NFA recognizes the
reverse word vn � � � v�� Essentially� the NFA guesses a
sequence of state assignments to vn � � � v� that is com�
patible with the transition function of A� given the sets
of states types�v�i��
The above intuition is captured as follows� We de�

�ne new labels for the nodes vi� which include both

�A principal line is maximal if it is not included in another
principal line�
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��vi� and the set types�v�i�� More precisely� let �� �
f�g  �P�Q� � ��  �� � P�Q�� and �� be the
labeling function de�ned as follows�

� ���vi� � h��vi�� types�v�i�i� if v
�
i is the right child of

vi� � � i � n�
� ���vi� � htypes�v�i�� ��vi�i� if v

�
i is the left child of vi�

� � i � n�
� ���vn� � ��vn� � ��

The NFA N we construct will accept the string
���vn� � � � �

��v�� i� A � h��� Q�Q�� qf � �i accepts
enc�T �� At any rate� it will compute the type de�
rived by the sequence� More precisely� let N �
h��� Q� q�� F

�� ��i� where �� is as described above� F � �
fqfg� and �� is de�ned by the following �and is empty
everywhere else�

� ����� q�� � Q��
� ���ha� Si� q� �

S
q��S ��a� q� q

�� for a � �

� ���hS� ai� q� �
S
q��S ��a� q

�� q� for a � �

Intuitively� the NFA simulates A by allowing only
state transitions compatible with the transition func�
tion of A and the sets of states associated to siblings�
It is easy to verify that N works as desired�
Note that the number of states of N is O�jQj�� Re�

call that jQj is itself O�j�tjjdj� where � � h���t� d� �i
is the specialized DTD to which the BNTA A corre�
sponds� The size of its alphabet �� is O�j�j�jQj� which

is O�j�j�j�
tjjdj�� Hence� each symbol in �� can be rep�

resented in space O�j�tjjdj � log j�j�� Notice however
that our auxiliary structure never represents the alpha�
bet or the transition mapping of N explicitly�

The auxiliary structure The auxiliary structure
used for incremental validation includes �i� the binary
tree enc�T �� �ii� for each subtree of enc�T � its principal
line and �iii� for each maximal principal line in enc�T ��
the auxiliary transition relation tree for the NFA cor�
responding to that line�
Note that the principal lines can be speci�ed con�

cisely by annotating each node in enc�T � with � or
� by a labeling � as follows� ��root�enc�T ��� � ��
and for every pair of siblings v�� v�� ��v�� � � and
��v�� � � if jtree�v��j � jtree�v��j� otherwise� ��v�� � �
and ��v�� � �� Clearly� the principal line of a subtree
T� is the unique path from root�T�� to a leaf where all
non�root nodes are labeled �� Note that the principal
line of T� is maximal i� ��root�T��� � ��
For example� consider the unranked tree represented

in Figure � �top�� and its binary encoding in the same
�gure �bottom�� In the binary encoding in the �gure�
the nodes w for which ��w� � � are those inside a
box� Note that this identi�es all maximal principal
lines� The bold and underlined nodes participate in
the principal line of enc�T �� The nodes of one of the
secondary principal lines �line j� k� are in italics�

a

b d j k

c e

f h

g i

a �

b d j k �

c � e � � �

� f h �

g � i �

� �

Figure �� A tree T �top� and its encoding enc�T �

Part �iii� of the auxiliary structure provides the tran�
sition relation trees for the NFAs associated with the
maximal principal lines� The size of each transition re�
lation tree for an NFA N is O�jenc�T �jjQj�� where Q
is the number of states of N �
In summary� consider an input tree T and a special�

ized DTD � � h���t� d� �i� In view of our construc�
tion of the BNTA A from � �Lemma ����� of the NFA
N from A �above�� and of the tree of transition rela�
tions for each NFA N �Section 
� it follows that the
size of the auxiliary structure associated with T and �
is O��j�tj�jdj�jT j��

Validation and maintenance for label renamings
Let us consider �rst the validation and maintenance of
updates consisting of label renamings� Note that la�
bel renamings in T translate straightforwardly to la�
bel renamings in enc�T �� To validate a sequence of
label renamings� it is su�cient to show how the aux�
iliary structure is maintained for a single renaming�
For a sequence of renamings this is iterated one up�
date at a time and validity is checked at the end us�
ing the updated auxiliary structure� So� suppose the
label of some node v in enc�T � is modi�ed from a
to b� Suppose �rst that v belongs to the maximal
principal line l � v� � � � vn of enc�T �� say v � vk�
In the string ���v�� � � � �

��vn� the label renaming cor�
responds to modifying the label of vk from a to b
if k � n and from ha� types�v�k�i to hb� types�v�k�i if
k � n and v�k is the right child of vk �left is analogous��
Then the transition relation tree associated to l is up�
dated as in the string case in time O�jQj� log jQj log jlj��
that is O�j�tj�jdj� log�j�tjjdj� log jlj�� Since log jlj is
O�jenc�T �j� and jenc�T �j is O�jT j�� the update takes
time O�j�tj�jdj� log�j�tjjdj� log jT j��
Now suppose that v does not belong to the princi�

pal line l of enc�T �� Then there is some k 	 � such
that v belongs to tree�v�k� where v

�
k is the child of some
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Figure �� Scenario of Line Rearrangement

vk belonging to l� Note that the update to the label
of v may cause a change in the value of types�v�k�� In
order to update l� we now have to �rst compute the
new value for types�v�k�� then apply the update pro�
cedure for the corresponding modi�cation in the label
h��vk�� types�v�k�i of vk� If v belongs to the principal
line l� of tree�v�k� then the transition relation tree as�
sociated with the NFA for l� can be updated as before
in time O�j�tj�jdj� log�j�tjjdj� log jT j�� This provides�
in particular� the new value for types�v�k�� Continuing
inductively� it is clear that renaming the label of a node
v a�ects precisely the maximal principal lines encoun�
tered in the path from root to v� LetM be the number
of such maximal principal lines� Clearly�M is precisely
the number of nodes w along the path from root to v
for which ��w� � �� We next provide a bound on this
number� using the notion of line diameter of a tree�

De�nition ��� �Line diameter� The line diameter
of enc�T � is the maximum number of distinct maximal
principal lines crossed by any path from root to leaf
in enc�T �� Equivalently� the line diameter of enc�T � is
the maximum number of nodes w for which ��w� � ��
occurring along a path from root to leaf in enc�T ��
where � is de�ned as above� �

For example� the line diameter of enc�T � in Figure �
is 
� The following is proven in the Appendix�

Lemma ��� The line diameter of enc�T � is no larger
than � � log jenc�T �j� �

From the bound on the line diameter of enc�T ��
it follows that a label renaming can cause at most
O�log jenc�T �j� updates to distinct transition relation
trees of maximal principal lines in enc�T �� Since
each update takes time O�j�tj�jdj� log�j�tjjdj� log jT j��
the entire auxiliary structure can be updated in
time O�j�tj�jdj� log�j�tjjdj� log� jT j�� For a sequence
of m label renamings� updating the auxiliary struc�
ture and validating the new tree therefore takes time
O�mj�tj�jdj� log�j�tjjdj� log� jT j��

Insertions and deletions We next describe how to
extend the maintenance and validation algorithm de�
scribed above to updates that include insertions and
deletions of leaf nodes�

For a maximal principal line l in enc�T �� we denote
by Nl the NFA corresponding to l and by Tl the tran�
sition relation tree corresponding to l and Nl�

Note that each insertion or deletion of a leaf node in
T translates into up to four node insertions and dele�
tions into enc�T � �for example� deleting a node in T
may require deleting in enc�T �� besides the node itself�
up to two leaves labeled �� and may require inserting
another such leaf�� This constant factor blow�up in the
number of updates does not a�ect our analysis�

Insertions and deletions are handled by an extension
of the technique used to maintain the transition rela�
tion trees for maximal principal lines in the case of label
renamings� Insertions and deletions that do not cause
a change in the set of maximal principal lines exist�
ing prior to the update are handled straightforwardly�
More precisely� let us call an insertion or deletion line
preserving if the restriction of � to the nodes of enc�T �
that are not a�ected by the update is the same before
and after the update� Note that an insertion may be
line preserving but nonethelss introduce a new single�
ton maximal principal line consisting of the new node�
Also observe that line�preserving updates a�ect pre�
cisely the maximal principal lines intersected by the
path from the root of enc�T � to the newly inserted
node or to the parent of the deleted node� The tran�
sition relation trees for these maximal principal lines
are updated as in the case of label renamings� at the
same cost� If a new singleton maximal line l consisting
of an inserted node needs to be added� computing its
auxiliary transition relation tree takes additional time
O�jQj�� where Q is the set of states of the NFA Nl�
This is dominated by the rest of the cost�

Handling inserts and deletes that are not line pre�
serving requires more care� In this case� the set of
maximal principal lines in enc�T � changes as the re�
sult of updates� To illustrate the problem� consider the
situation depicted in Figure �� The maximal principal
line l� � line�tree�v��� contains a node v� which has a
sibling v�� Initially� jtree�v�j � jtree�v��j� However� a
deletion in tree�v� or an insertion in tree�v�� may make
tree�v�� larger than tree�v�� In this case a new line
structure is needed� where the line l � line�tree�v��
becomes a maximal principal line and the new prin�
cipal line line�tree�v��� is the concatenation of l�� and
l� � line�tree�v���� This requires updating the auxiliary
structure in two steps� First we compute the transition
relation tree Tl for the new maximal principal line l
obtained by truncating l�� Then we compute the tran�
sition relation tree Tl��l� for the new maximal principal
line obtained by concatenating l�� and l��

Fortunately� the new transition relation trees can be
computed e�ciently from the old ones� Speci�cally�
Tl is obtained by truncating Tl
 � and Tl��l� is obtained
by merging a subtree of Tl
 corresponding to l�� with
the tree Tl� � This is done by adapting usual B�tree
techniques� We next provide more details�
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Given the balanced tree Tl
 of the line l�� we compute
the balanced tree Tl by traversing bottom�up the path
in Tl
 from the leaf that contains v to the root� Note
that the path has maximum length dlog jl�je� At each
cell n along the path we delete the relations Ts� where
s� � l � � and we recompute the relation Ts� where the
segment s contains v� Recall that each cell in Tl
 has
between two and three relations� so it is not possible
for any cell to become empty after these deletions� In
addition� if the deletions have left only the relation Ts
at cell n then we do the following� assuming n is not
the root �the case where n is root is simple��

� if the right sibling n� of n has two relations we
delete n and we transfer Ts �and the corresponding
child node� to n�� In the parent of n and n� we
delete the relation that corresponds to n and we
continue our processing at the parent of n and n��

� if the right sibling n� of n has three relations we
move its leftmost relation �and the corresponding
child node� to the cell n� so that n also has two
relations� We recompute the entry of n� at the
parent of n and n��

� if n has no right sibling the we delete n and we
copy Ts at the parent cell� Notice that this case
reduces the depth of the balanced tree�

In all cases we continue recursively with the par�
ent cell� The complexity of this procedure is
O�jQj� log jQj log jl�j� where Q is the set of states of
Nl
 � since the size of the traversed path is at most
dlog jl�je and in each step we recompute at most two
relations�
Next� consider the computation of the balanced

tree Tl��l� of the new main line l�� l�� First� we
compute a balanced tree Tl�� for the segment l�� in
O�jQj� log jQj log jl��j�� Then we merge Tl�� and Tl� as
follows� Assume that the depth of Tl�� is equal or less
to the depth of Tl� � the other case is symmetrical� Lo�
cate a node n� on the leftmost path of Tl� such that
the depth of the tree rooted at n� is depth�Tl�� �� Then
insert each segment �and corresponding child node� of
the root of Tl�� into n�� The insertions are handled as
usual� if there is not enough space in n� then n� will
be split� and so on� It is easy to see that the merge
takes O�jQj� log jQj log jl�j� since we have to recompute
one or two relations at each level on the path from n�
to the root of Tl� � Overall� the rearrangement of these
lines requires O�jQj� log jQj�log jl�j� log jl�j��� which is
O�jQj� log jQj log jenc�T �j�� Also� note that a single in�
sertion or deletion may cause at most O�log jenc�T �j�
line rearrangements �one for each maximal principal
line intersected by the path from root to the a�ected
node�� Thus� all line rearrangements can be done
in time O�jQj� log jQj log� jenc�T �j�� In terms of the
original specialized DTD and input tree T � this is
O��j�tj�jdj� log�j�tjjdj� log� jT j��

Once the line rearrangements have been computed�
additional updates to the transition relation trees of
maximal principal lines may have to be computed� as
in the case of label renamings� This takes again time
O��j�tj�jdj� log�j�tjjdj� log� jT j��

In summary� the size of the auxiliary structure used
for incremental validation is O��j�tj�jdj�jT j�� Main�
taining the auxiliary structure and validating the up�
dated tree following a sequence of m updates �label
renamings� insertions� or deletions� is done in time
O�mj�tj�jdj� log�j�tjjdj� log� jT j��

� Conclusions and Future Work

The incremental validation algorithms we exhibited
are signi�cant improvements over brute�force valida�
tion from scratch� However� several issues need further
investigation�

Lower bounds To understand how close our al�
gorithms are from optimal� it would be of interest
to exhibit lower bounds on incremental maintenance
of strings� DTDs� and specialized DTDs� There are
known results that yield lower bounds for validation
from scratch� acceptance of a tree by a tree automaton
is complete for uniform NC� under dlogtime reduc�
tions 	Loh��� However� this does not seem to yield any
non�trivial lower bound on the incremental validation
problem� We are not aware of any work providing such
lower bounds applicable to our framework�

Optimizing over multiple updates For a se�
quence of m updates� our incremental validation al�
gorithm modi�es the auxiliary structure one update
at a time� then checks validity of the �nal updated
tree� Clearly� it is sometimes more e�cient to consider
groups of updates at a time� For example� this may
avoid performing unnecessary intermediate line rear�
rangements in the incremental algorithm for special�
ized DTDs� Also� if the number of updates is large
compared to the size of the resulting tree� it may be
more e�cient to re�validate from scratch�

More complex updates on trees We only con�
sidered here elementary updates a�ecting one node at
a time� Some scenarios� such as XML editors� require
more complex updates arising from manipulation of en�
tire subtrees �deletion� insertion� cut�and�paste� etc��
Our approach can still be applied by reducing each
of these updates to a sequence of elementary updates�
However� in this case it may be more e�cient to con�
sider updates of coarser granularity�
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Appendix

A comment on the worst�case complexity of the
�WG	
� algorithms The O�log n� performance guar�
antee provided by �WG��	� where n is the size of the string�
does not apply to the case when the interpretation of the
yield of a sequence of symbols of unbounded length depends
on its context
 In particular� �WG��	 provide the following
�bad grammar�� which recognizes the regular expression
�ajb�x�

S � aC	jbD	

C � x

D � x

This grammar is problematic for their algorithm because
the reduction of an x to either a C or a D is determined
by the initial symbol in the sentence� which is arbitrarily

�




distant
 In this case their algorithm needs O�n� recom�
putation� where n is the size of the string
 Notice that
our divide�and�conquer algorithm for the incremental vali�
dation of regular expressions does not pose any restriction
on the regular expression


Proof of Lemma ��� For each � � �t� let N� �
h�t� Q�� q

�

 � F�� ��i be a standard NFA that accepts the

language r�� � fwr j w � r�g where wr is the reverse
of w
 Distinct N� have disjoint sets of states
 Let
Qd �

S
���t

Q�
 Let A� be the BNTA h��� Q�Q
� qf � �i

where Q � fqfg � Qd� Q
 � fq�
 j� � �tg� qf is the accept
state �qf �� Qd�� and � is de�ned as follows �� is empty
whenever not speci�ed��

� If a � �� � � �t� � �� root�d�� ���� � a� � � �t� q� �
Q� and q�f � F� then

��a� q�f � q
�� � ����� q

��

� If � � root�d�� r � ����� q�f � F�� � � �t and q� � Q�

then
��r� q�f � q

�� � ����� q
�� � fqfg

It is easily seen that T �A�� � fenc�T � j T � sat���g


Proof of Lemma ��� Consider a path from root to
leaf in enc�T � and let w� 	 	 	 wM be the sequence of nodes
w along the path for which ��w� � �
 Note that� by the
de�nition of �� w� is the root of enc�T �� and each node wi

other than wM has two children w�

i and w��

i where w�

i is on
the path from wi to wi	� and jtree�w�

i�j � jtree�w��

i �j
 It
easily follows that jenc�T �j � M�� soM � ��log jenc�T �j
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