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17.1 Verteilte Systemarchitekturen

• Software-Component-Oriented:
• Client-Server Architecture
• Multi-Tier Architecture
• Federated Systems

• Data-Source-Oriented:
• Data Warehouses (and Digital Libraries)
• Wrapper-Mediator Architecture for Information Integration
(Example: Internet Portals) 

• Uncoordinated Decentralization:
• Service-Oriented Architecture for Web Services or Grid
• Peer-to-Peer Systems (P2P)
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Client-Server and (Federated) Multi-Tier Systems
Users . . .Clients

(Web)
Application 
Servers

...

...
request &
reply

application programs

ADT objects

dataData 
Servers
(DB, IR,
CMS, Mail,
etc.)
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Data Warehouses (and Digital Libraries)

...

Extract-
Transform-
Load

incl.
Data
Cleaning

periodic or continuous, incremental ETL into
DW with star or snowflake schema (facts, dimensions)

Fact table

Order 
OrderNo
OrdDate

Customer
CustomerNo
CustomerName
CustAddress
City

Salesperson
SalespersonID
SalespersName
City
Quota

ProdNo
ProdName
ProdDescr
Category
CatDescr
UnitPrice
QOH

City
CityName
State
Country

Date
DateKey
Date
Month
Year

OrderNo
SalespersonID
CustomerNo
ProdNo
DateKey
CityName
Quantity
TotalPrice

Product
Marketing

DB

Logistics
DB

Sales
DB
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Wrapper-Mediator Architecture for
Information Integration Systems

Wrapper
(for uniform
format &
protocol)

Mediator
(for „semantic“
transformation)

Metadata

Cache

Data
Source

request
& reply

Index

Wrappers may be
hand-engineered
or generated
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Examples: 
• Yahoo for news, business, etc.
• SRS for bioinformatics & life sciences
• intranet portals for organizations



Peer-to-Peer (P2P) Information Sharing

User post sharable files on autonomous computers (peers)
P2P system maintains (distributed) directory with file names
Users query file names and download files from other peers
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Peer-to-Peer (P2P) Architectures
Decentralized, self-organizing, highly dynamic
loose coupling of many autonomous computers

Applications:
• Large-scale distributed computation (SETI, PrimeNumbers, etc.)
• File sharing (Napster, Gnutella, KaZaA, etc.)
• Publish-Subscribe Information Sharing (Marketplaces, etc.)
• Collaborative Work (Games, etc.)
• Collaborative Data Mining
• (Collaborative) Web Search

Goals:
• make systems ultra-scalable and completely self-organizing
• make complex systems manageable and less susceptible to attacks
• break information monopolies, exploit small-world phenomenon
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1st-Generation P2P

Napster (1998-2001) and Gnutella (1999-now):
driven by file-sharing for MP3, etc.
very simple, extremely popular

can be seen as a mega-scale but very simple
publish-subscribe system:
• owner of a file makes it available under name x
• others can search for x, find copy, download it

invitation to break the law (piracy, etc.) ?
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Napster: Centralized Index

Napster server
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peer 1 peer 2

1: register
(user, files) 2: lookup (x)

3: peer 1 has x

4: download x.mp3

+ chat room, instant messaging, firewall handling, etc.



Gnutella: Message Flooding

1

1

2

2
2

2

2

3

3

3

3
3

all forward messages carry a TTL tag (time-to-live)
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1) contact neighborhood and establish virtual
topology (on-demand + periodically): Ping, Pong

2) search file: Query, QueryHit
3) download file: Get or Push (behind firewall)



2nd-Generation P2P
Freenet

emphasizes anonymity
eDonkey, KaZaA (based on FastTrack), Morpheus,
MojoNation, AudioGalaxy, etc. etc.

commercial, typically no longer open source;
often based on super-peers

JXTA
(Sun-sponsored) open API

Research prototypes (with much more
refined architecture and advanced algorithms):
Chord (MIT), CAN (Berkeley), OceanStore/Tapestry (Berkeley), Farsite (MSR),
Spinglass/Pepper (Cornell), Pastry/PAST (Rice, MSR), Viceroy (Hebrew U), 
P-Grid (EPFL), P2P-Net (Magdeburg), Pier (Berkeley), Peers (Stanford), 
Kademlia (NYU), Bestpeer (Singapore),  YouServ (IBM Almaden), 
Hyperion (Toronto), Piazza (UW Seattle), PlanetP (Rutgers), SkipNet (MSR), 
Galanx (U Wisconsin), Minerva (MPII), etc. etc.
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The Future of P2P: 
Challenging Requirements

Unlimited scalability with millions of nodes:
O(log n) hops to target, O(log n) state per node

Failure resilience, high availability, self-stabilization
(w.r.t. dynamics: many failures & high churn) 

Data placement, routing, load management, etc. 
in overlay networks

Robustness to DoS attacks & other traffic anomalies

Trustworthy computing and data sharing

Incentive mechanisms to reconcile selfish behavior
of individual nodes with strategic global goals
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P2P-Related Technologies
Web Services (SOAP, WSDL, etc.)

for e-business interoperability (supply chains, etc.)

Grid Computing
for scientific data interoperability

Autonomic / Organic / Introspective Computing
for self-organizing, zero-admin operation

Multi-Agent Technology
for interaction of autonomous, mobile agents

Sensor Networks
for data streams from measurement devices etc.

Content-Delivery Networks (e.g., Akamai)
for large content of popular Web sites
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17.2 Anfrageausführung in verteilten IR-Systemen

summary
peer

local
index
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• every peer is autonomous and has its own local search engine
• every peer posts (statistical) summary info about its contents

(index lists, bookmarks, cached docs, QoS properties, ...)
• query routing is driven by similarity to summaries
• summaries are organized into a (distributed) directory

• mapped onto DHT, random-graph overlay network, etc.
• lazily replicated at additional peers (via „gossiping“)

querying peer needs to
1. determine interesting peers (query routing)
2. plan, run, monitor, and adapt distributed top-k algorithm
3. reconcile results from different peers



Why Peer-to-Peer Web Search?
Goal: Self-organizing P2P Web Search Engine

with Google-or-better functionality
• Scalable & Self-Organizing Data Structures and Algorithms

(DHTs, Semantic Overlay Networks, Epidemic Spreading, Distr. Link Analysis, etc.)

• Powerful Search Methods for Each Peer
(Concept-based Search, Query Expansion, Personalization, etc.)

• Leverage Intellectual Input at Each Peer 
(Bookmarks, Feedback, Query Logs, Click Streams, Evolving Web, etc.)

• Collaboration among Peers
(Query Routing, Incentives, Fairness, Anonymity, etc.)

• Better Search Result Quality (Precision, Recall, etc.)

• Small-World Phenomenon
Breaking Information Monopolies
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Differences between Meta and P2P Search Engines

Meta Search Engine P2P Search Engine

small # sites (e.g., digital libraries) huge # sites
rich statistics about site contents poor/limited/stale summaries
static federation of servers highly dynamic system

each query fully executed single query may need content
at each site from multiple peers

interconnection topology highly dependent on overlay
largely irrelevant network structure
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P2P Query Routing

book-
marks
B0

term g: 13, 11, 45, ...term a: 17, 11, 92, ...
term f: 43, 65, 92, ...

peer lists (directory)

term g: 13, 11, 45, ...

term c: 13, 92, 45, ...
url x: 37, 44, 12, ...

url y: 75, 43, 12, ...

url z: 54, 128, 7, ...

query peer P0

local index X0

Query routing aims to optimize benefit/cost
driven by distributed statistics on
peers‘ content similarity, content overlap,
freshness, authority, trust, performability etc.

Dynamically precompute „good peers“
to maintain a Semantic Overlay Network
using random but biased graphs
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Framework and Parameters for Query Routing
M terms ti, N documents dj, P peers with Nk docs at peer pk

local measures at peer k:
tfi

(k)(d) – freq. of term i in doc d 
dfi

(k) - # docs with term i 
idfi

(k) - inverse doc freq. of term i 
ttfi

(k) – total freq. of term i

mtfi
(k) – max. term freq.

mdf(k) – max. doc freq.
t(k) – # distinct terms
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select best peers based on expected benefit/cost ratio

global measures:
gidfi - inverse doc frequency of term i in P2P system
gipfi - inverse peer frequency of term i in P2P system
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Query Routing based on IPF (PlanetP)
Every peer conceptually maintains the global
inverse peer frequency (gipf) for each term i:

i
# peersgipf log 1

# peers with term i
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

For multi-keyword query q the quality of peer j is:

j i
i q

1 if peer j contains term i
R ( q ) : gipf

0 otherwise∈

⎧
= ⋅⎨

⎩
∑

To retrieve top k results for query q:
1. rank peers in descending order of Rj(q)
2. contact peers in groups of m in rank order
3. merge results
4. iterate steps 2 and 3 until no peer contributes to top-k result
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Example: Query Routing based on IPF
gipf = log (1 + 6/5) gipf = log (1+1) 

R1(         ) = log 11/5 * 1 + log 2 * 1 
R2(         ) = log 11/5 * 1 + log 2 * 1 
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PlanetP Implementation
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Each peer posts its summary in the form of a
Bloom-filter signature:
• bit vector S[1..s] of fixed length s, initially all bits zero
• if peer j has term i it sets bit h(i) to one using a hash function h
• other peers can test if peer j holds term set {q1, ..., qk}
by looking up S[h(q1)], ..., S[h(qk)] or by computing a
bit vector Q[1..s] for {q1, ..., qk} and ANDing S with Q,
both with the risk of „false positives“

Summaries are sent to other peers by asynchronous
gossiping in a combined push/pull mode:
• push: periodically send updates of global registry (small ∆s)
as „rumors“ to randomly chosen neighbors;
stop doing so when n consecutive peers already know the update

• (anti-entropy) pull: periodically ask randomly chosen neighbor
to send an updated summary of the global registry;
alternatively ask push-recipient for recent rumors



Query Routing based on Simple Heuristics
Consider df, ttf, mtf, gipf as quality measures of a peer

Choose peers in descending order of
( k ) ( k ) ( k )

1 i 2 i 3 i
i q

log df log mtf log ttfα α α
∈

+ +∑ or

( )( k ) ( k ) ( k )
i 1 i 2 i 3 i

i q
gipf log df log mtf log ttfα α α

∈
⋅ + +∑

with tunable weights α1, α2, α3 such that α1 + α2 + α3 = 1
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Example: Query Routing Heuristics
gipf = log (1 + 6/5) gipf = log (1+1) 

df = 2 

df = 4 

df = 2 

df = 2 

df = 1 

df = 3 

df = 2 

df = 2 

df = 0 

df = 1 

df = 1 

df = 2

mtf = 3 mtf = 4 

mtf = 5 

ttf = 6 
ttf = 6 

mtf = 2 

mtf = 3 

ttf = 2 
ttf = 6 

mtf = 4 

mtf = 2 

ttf = 5 
ttf = 4 

mtf = 0 

mtf = 1 

ttf = 0 
ttf = 1 

mtf = 2 

mtf = 5 

ttf = 2 
ttf = 8 

mtf = 3 

ttf = 5 
ttf = 8 
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Query Routing based on Statistical Similarity
For query q select peers p with highest value of sim(q, p), 
e.g., cosine(q, p) where p is represented by its centroid

Use statistical language model for similarity:

t q p

P[ t | q ]KL( q || p ) P[ t | q ] log
P[ t |C ] (1 )P[ t |G ]λ λ∈

=
+ −

∑

where P[t|q], P[t|Cp], P[t|G] are the (estimated) probabilities
that term t is generated by the language models for
the query q, the corpus Ck of peer k, and the general vocabulary,
and λ is a smoothing parameter between 0 and 1

Implementation may estimate P[t|Ck] ≈ ttft
(k) / Σi ttfi

(k)
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The Kullback-Leibler divergence (aka. relative entropy) is a
measure for the distance between two probability distributions:

∑=
x xg

xfxfgfKL
)(
)(log)(:)(



CORI Query Routing
Apply probabilistic IR method with heuristic elements
(Okapi BM25 term weighting) to peer selection by
treating a peer‘s complete index contents as a „document“

P[ q | p ] ~

( k )
i

( k ) ( k ) ( )
i q i

ttf
ttf 0.5 1.5 t / avg ( t )ν

ν∈ + +
∑

tlog( gipf (0.5 # peers ))
log(1 # peers )

⋅ +
⋅

+
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GlOSS Query Routing based on Goodness
Goodness (q, s, l) = ∑ {sim(q, d) | d ∈ result(q, s) ∧ lsim(q,d)>l}
for query q, source s, and score threshold l

GlOSS (Glossary Of Servers Server) aims to rank sources by goodness

Approximate goodness by using for source s:
• dfi(s): number of docs in s that contain term i
• wi(s): ∑ {tfi(d)*idfi | d ∈ s} (total weight of term i in s)

Uniformity assumption: 
wi(s) is distributed uniformly over all docs in s that contain i

Informationssysteme SS2005 17-26



GlOSS Goodness with High-correlation Assumption
High-correlation assumption: 
dfi(s) ≤ dfj(s) ⇒ every doc in s that contains i also contains j
Example:

NBA
Basketball
Sport

NBA
Basketball
Sport

Basketball
Sport

Basketball
Sport

Basketball
Sport

Sport Sport

For fixed source s and query q = t1 ... tn with dfi ≤ dfi+1 for i=1..n-1
consider subqueries qp = tp ... tn (p=1..n).
Every doc d in s that contains only tp ... tn has query similarity

..
( )( , )
( )

i
p ii p n

i

w ssim q d t
df s== ∑

Find p such that simp(q,d) > l and simp+1(q,d) ≤ l

Informationssysteme SS2005 17-27

EstGoodness(q,s,l) = ∑i=1..p (dfi(s) – dfi-1(s)) * simi



GlOSS Goodness with Disjointness Assumption
Disjointness assumption: 
{d∈s|d contains term i} ∩ {d∈s|d contains term j} = ∅ for all i,j ∈q

Uniformity assumption: 
wi(s) is distributed uniformly over all docs in s that contain i

EstGoodness(q,s,l) =

( )( , )
( )

i
i i

i

w ssim q d t
df s

=

1..
( )( )
( )

i
i ii n sim li i

w sdf s t
df s= ∧ > ⋅∑

1.. ( )i ii n sim li t w s= ∧ >= ∑
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Usefulness Estimation Based on MaxSim

Def.: A set S of sources is optimally ranked for query q in the
order s1, s2, ..., sm if for every n>0 there exists k, 0<k≤m,
such that s1, ..., sk contain the n best matches to q
and each of s1, ..., sk contains at least one of these n matches

Thm.: Let MaxSim(q,s) = max{sim(q,d)|q∈s}.
s1, ..., sm are optimally ranked for query q if and only if
MaxSim(q,s1) > MaxSim(q,s2) > ... > MaxSim(q,sm).

Practical approach („Fast-Similarity method“):
Capture, for each s, dfi(s), avgwi(s), maxwi(s) as source summary.
Estimate for query q = t1 ... tk

MaxSim(q,s) :=max i=1..k {ti * maxwi(s) + ∑ν≠i tν * avgwν(s)}
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estimation time linear in query size,
space for statistical summaries linear in #sources * #terms



Overlap Aware Query Routing
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# queried peers

Experiments:
based on 100 .Gov partitions (1.25 Mio. docs), assigned to 50 peers,
with each peer holding 10 partitions and 80% overlap for Pi, Pi+1
with 50 TREC-2003 Web queries, e.g.: „juvenile delinquency“

re
ca

ll

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

overlap-aware
Minerva

CORI baseline

First execute q on initiator peer‘s local index X0, 
then select peers Pi with highest benefit/cost ratio where
• benefit(Pi) ~ sim (X0, Xi) and ~ 1/overlap(X0, Xi)
• cost(Pi) ~ estimated response time or communication costs

precompute sim:
terms x

freq( x,X 0 )KL( X 0,Xi ) : freq( x,X0 ) log
freq( x,Xi )

= ∑
approximate overlap by Bloom filters, hash sketches, etc.



Distributed Query Execution Issues
Algorithm:
• Determine the number of results to be retrieved from each source
a priori based on the source‘s content quality

vs.
• Run distributed version of top-k query processing algorithm

Dynamic adaptation:
• Plan query execution only once before initiating it vs. 
• Dynamic plan adjustment based on sources‘ 
result quality and responsiveness (incl. failures)

Parallelism:
• Start querying all selected sources in parallel vs.
• Consider (initial) results from one source

when querying the next sources
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Result Reconciliation

Case 1: all peers use the same scoring function,
e.g. cosine similarities based on tf*idf weights

Case 2: peers may use different scoring functions
that are publicly known

Case 3: peers may use different & unknown scoring functions
but provide scored results

Case 4: peers provide only result rankings, no scores

Baseline case:
when gidf values are known at the query initiator,
we can recompute tf values from the different peers‘ result docs
and compute global scores based on gidf and tf values
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Techniques for Result Reconciliation (1)
for case 1:

∑
∑ ⋅⋅∑

⋅⋅
=

i
i iii i

iii

lidfdtfq

lidfdtfq
dqlsim

222 )(

)(
),(local sim is

∑
∑ ⋅⋅∑

⋅⋅
=

i
i iii i

iii

gidfdtfq

gidfdtfq
dqsim

222 )(

)(
),(global sim is

either recompute tf of result docs, infer lidf values, and compute sim
or submit additional single-term queries (one for each query term)
such that each result d to the original query q is retrieved:

∑ ⋅

⋅
=

∑ ⋅⋅

⋅⋅
=

j jj

ii

j jji

iii
i

lidfdtf

lidfdtf

lidfdtfq

lidfdtfq
dqlsim

2222 )(

)(

)(

)(
),(

i i
2 2

ij jj

lidf lsim( q ,d )
tf ( d )tf ( d ) lidf

⇒ =
⋅∑
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solve equation system
for tf and lidf values (if possible) 
and compute sim



Techniques for Result Reconciliation (2)
for case 4:

set global score of doc j retrieved from source i to

i
jlocalj rm

rdrdg
⋅

⋅−−= min)1)((1:)( where

• rlocal(dj) is the local rank of dj,
• ri is the score of source i among the queried sources, 
• rmin is the lowest such score, and
• m is the number of desired global results

Intuition:
• initially local ranks are linearly mapped to scores
• the factor rmin / (m ri) is the score difference for
consecutive ranks from source i
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Wrap-Up: P2P Query Routing & Execution
Research on distributed IR has provided many approaches
– principled as well as heuristic ones – that can be
carried over to a P2P setting

However, the scale, dynamics, and usage patterns of a
P2P search engine entail additional issues,
many of which are widely open:

• peer statistics collection and dissemination
(frequency, quality, overlap, resource util., response times, etc.)

• precomputation of good peers → „semantic overlay network“
• consideration of strong correlations
• combination with PageRank-style authority etc.
• consideration of P0 query execution and feedback
• coping with tradeoffs in network bandwidth & latency, 
per-peer resource consumption, search result quality
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17.3 Skalierbare verteilte Indexierung und Suche
Goals:
Decentralize

data store (MP3 files, Web documents, etc.) or
index (term-doc-score entries) or
directory (statistical info about peers)

across N peers with large N 
and provide file-name / keyword lookup

with good properties:
• scalability: throughput is proportional to N, response time is

independent of N (or grows very slowly with N)
• efficiency: overhead should be O(1) or ≤ O(log N)
• load balance: factor between least loaded and most loaded peer

should be O(log N) or even O(log log N)
• robustness to failures: peers being temporarily down
• robustness to churn: peers joining and leaving at high rate
• self-organization regarding
data growth, load growth, dynamics of system and load patterns
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Structured P2P Interface
Basic operations:
store (key, data) - inserts a new data item
lookup (key) returns data - finds a data item by its key
delete (key) - removes a data item
join (node) - new node joins the P2P network
leave (node) - node leaves the P2P network

Applications:
• file sharing
• distributed storage (personal photo albums etc.)
• distributed caching of Web content
• DNS (domain name service)
• news and discussion forums (Usenet etc.)
• search engine directory and statistical info
• network monitoring (incl. anomaly detection)
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Structured P2P: Example Chord
Distributed Hash Table (DHT):
map strings (file names, keywords) and numbers (IP addresses)
onto very large „cyclic“ key space 0..2m-1, the so-called Chord Ring
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Properties:
Unlimited scalability (> 106 nodes)
O(log n) hops to target, O(log n) state per node
Self-stabilization (many failures, high dynamics)

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56

K10

K24

K30K38

K54Key k (e.g., hash(file name))
is assigned to the node with
key n (e.g., hash(IP address))
such that k ≤ n and there is
no node n‘ with k ≤ n‘ and n‘<n



Request Routing in Chord
Every node knows its pred/succ
and has a finger table with log(n)
pointers: finger[i] = 
successor (node id + 2i-1) mod 2m

for i=1..m

For finding key k
perform repeatedly:
determine current node‘s
largest finger[i] (modulo 2m)
with finger[i] ≤ k
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pred/succ ring and finger tables
require dynamic maintenance
→ stabilization protocol

N48

N1
N8

N14

N21

N32
N38

N42

N51

N56
K54

lookup
(K54)

+1

+8

+16+32

N42+1 N48
N42+2 N48
N42+4 N48
N42+8 N51
N42+16 N1
N42+32 N14

N8+1 N14
N8+2 N14
N8+4 N14
N8+8 N21
N8+16 N32
N8+32 N42

Finger table:



Chord Operations (1)

lookup (key, n): //invoked by node n
id := hash(key);
if n.predecessor()<id ≤ n then return n.localfind(key).data
else // determine closest preceding node

for i:=m downto 1 do
if n.finger[i] ≤ id then exit loop;

lookup (key, n.finger[i]);

recursive lookup (see above) vs.
iterative lookup: finger[i] returned to original caller in each step

store (key, n):
lookup + local store

delete (key):
lookup + local delete
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Chord Operations (2)
join (n):

id := hash(n);
n.successor :=lookup (id, anyknownnode);  n.predecessor := nil;
p := n.successor.predecessor;  p.successor := n;
re-hash all keys (and data items) stored in n.successor;
if hash value <= id then

move key (and data item) to n;
n.successor.predecessor := n; n.predecessor := p;
for i:=0 to m do // build finger table

n.finger[i] := lookup (n+2i, n);
stabilize (n);

leave (n):
move all keys (and data items) owned by n to n.successor;
n.predecessor.successor := n.successor;
n.successor.predecessor := n.predecessor;
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Example of Node Joining
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Chord Stabilization
every node must periodically check its
successor & predecessor pointers and its finger table

stabilize (n):
// find, verify & reconfirm/adjust successor

s := lookup(n+1); x:= s.predecessor;  
if x.id > n.id then n.successor := x;  // test & adjust successor
notify x:  // x learns about n
if x knows no node between n and x then x.predecessor := n;

// find, verify & adjust predecessor: analogously
// test predecessor failure

if probe message to n.predecessor times out
then n.predecessor := nil; 

// refresh or fix finger table
for i:=0 to m do

n.finger[i] := lookup (n + 2i, n);      
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Example: Join & Stabilize (1)
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• Node with id=50 joins the ring
• Node 50 needs to know at least 

one node already in the system
– Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35



Example: Join & Stabilize (2)
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• Node 50 asks node 
15 to forward join 
message

• When join(50) 
reaches the 
destination (58), 
node 58 
1) updates its 

predecessor to 
50,

2) returns a notify 
message to node 
50

• Node 50 updates its 
successor to 58

join(50)

notify()

pred=50

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35



Example: Join & Stabilize (3)
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• Node 44 sends a stabilize 
message to its successor, node 
58

• Node 58 reply with a notify 
message

• Node 44 updates its successor 
to 50

succ=58 stabilize()no
tif

y(
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)
succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35



Example: Join & Stabilize (4)
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• Node 44 sends a stabilize 
message to its new successor, 
node 50

• Node 50 sets its predecessor to 
node 44

succ=58

succ=50

Stabilize()pred=44

pred=50

pred=35

succ=4

pred=nil



Example: Join & Stabilize (5)
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• This completes the joining 
operation!

succ=58

succ=50

pred=44

pred=50



Analysis of Chord Properties

Theorems (with dynamics and stabilization disregarded):

• distance between n and n.succ has expectation 2m/n
• distance is ≤ O(2m/n * log n) with probability 1 – n-c (with c > 1)
• node density:
in interval of length w*2m/n there are with high prob.
Θ(w) nodes if w = Ω(log n) and ≤ O(w log n) if w = O(log n)

• the number of nodes with finger to node x
has expectation O(log n) and is ≤ O(log n) with high prob.

• load balance:
each node holds ≤ (k/n * log n) keys with high prob.

• routing cost:
a lookup message has O(log n) hops with high prob.
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Extensions of Chord: Failures (1)
Node failures can lead to incorrect behavior
unless additional countermeasures are introduced
(note that there is no global locking/synchronization among peers)

N48

N1
N8

N14

N21N42

N51

N56

+1

+8

+16+32

N38
N32N8 could erroneously

skip N38 during lookup(35)

Informationssysteme SS2005 17-51



Extensions of Chord: Failures
Node failures can lead to violation of

strong consistency: all nodes form a single, doubly-linked ring,
and for each n there is no x between n and n.succ

but stabilization eventually guarantees
weak consistency: 
for each node n: n.succ.pred = n and n.pred.succ = n

N48

N1
N8

N14

N21

N38

N51

N56

weakly, but not strongly consistent

This anomaly can be avoided
with high probability
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Extensions of Chord: More Anomalies
Appendages Partitioning

N1

N48

N8

N14

N21N42

N51

N56

N38
N32

N1

N48

N8

N14

N21N42

N51

N56

N38
N32 N28 N23

N26 N24

Problem potentially arises when churn/failure rate is high
than the DHT maintenance rate
→ Solution is to ensure that stabilization runs at sufficient rate
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Chord System Dynamics

Poisson process
with rate λ for
new nodes joining

Poisson process
with rate µ
for nodes leaving

P[# new nodes per time unit k ]= =
k

e
k !

λ λ− P[# nodes leaving k ]= =
k

e
k !

µ µ−

Informationssysteme SS2005 17-54

tP[ time until next new node t ] e λλ −= = tP[ time until next leaving t ] e µµ −= =

1E[ time until doubling ] N
λ

= 1E[ time until halving ] ln 2
µ

=

half-life τ



Limits of Self-Healing

Relationship of System Dynamics and Stabilization:

Theorem:
If a Chord ring runs fewer than k stabilizations per half-life τ
(i.e., one node n receives ≤ k notifications)
then it will become inconsistent (i.e., node n will be disconnected)
with probability ≥ k

k11 0.418
e 1

⎛ ⎞− ≈⎜ ⎟−⎝ ⎠
Corollary:
A Chord ring with n nodes that stays connected with high prob.
(i.e., becomes inconsistent with prob. O(1/n)) 
must notify Ω(log n) nodes per half-life τ

→ run stabilizations at sufficiently high rate ! 
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Extensions of Chord: Failure Resilience
and Handling of Churn

Each node n periodically checks
successor s (and predecessor p) failures:

if no „heartbeat“ reply then assume that s (or p) has failed
and adjust successor (pred.) pointer

For enhanced failure resilience
each node maintains pointers to its next b successors
(with b = Θ(log n))

For better handling of churn:
use small timeout values for assuming that non-replying node
is failed, and use alternative route around presumed failures

Informationssysteme SS2005 17-56



Extensions of Chord: Data Replication
Goals:
Increase reliability:

prob. that no data will be lost by permanent failures
Increase availability:

prob. that data will be accessible despite temp. failures (or churn)

Techniques:
replicate data across independent peers by
• using multiple hash functions for assigning data items
• placing copies of the same items
on b successive peers on the Chord ring

• chopping up data item into fragments
and replicating fragments in random/combinatorial manner

• computing error correcting codes (ECC) for
data items or fragments and carefully placing data + ECC
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Extensions of Chord: Enhanced Routing

routing table size O(log n) is minimum
→ could keep routing entries for additional nodes

fingers may point to nodes that exhibit high latency
(network time or node speed)
→ for forwarding lookup request, instead of using finger[i],

• choose s (e.g., 16) random samples of nodes
between finger[i-1] and finger[i], 

• probe their IP packet round-trip time (RTT), 
• and choose the fastest node
(nodes can cache RTT info about sampled nodes,
may form overlay network based on 
proximity neighbor selection)
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Extensions of Chord: 
Combination with Random Graph or SON

Idea:
use Chord neighbors (fingers) as backbone
and add more „interesting nodes“ as neighbors

• randomly chosen nodes that yield good properties of network
→ Random (Expander) Graph

• nodes with short RTT for faster routing
• nodes with thematic similarity (w.r.t. contents or interests)
→ Semantic Overlay Network (SON)

use additional neighbors (and fingers) for message routing
(queries, postings, etc.)
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Extensions of Chord: 
Combination with Random Graph (1)

Definitions:
An undirected graph G=(V,E) is connected if there for all x, y ∈ V
there is a path x →+ y ∈ (E∪E-1)+.
G is d-regular if every x ∈ V has exactly d > 1 neighbors.
The edge boundary δS ⊆ E of a node set S ⊂ V is the set of
edges that connect a node from S and a node from V-S.
G provides the expansion α > 0 if
for all node sets S with |S| ≤ |V|/2 the inequality |δS| ≥ α|S| holds.
G is then called an expander graph.

Theorem:
A random d-regular graph is a Θ(d)-expander with high prob.
An expander graph has diameter O(log |V|) with high prob.
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Extensions of Chord: 
Combination with Random Graph (2)

Start with any connected k-regular graph
Perform (uniformly chosen) random walks and apply
the following random k-flipper operations:

yx y xuk u0 uku0

Informationssysteme SS2005 17-61

Theorem:
A series of O(dn) random k-flippers transform, with
high prob. (1-n-c with c>1) any d-regular undirected graph
into an expander graph for k ∈ Ω(d2n2 log 1/ε) with any ε>0

... ...

flip nodes u1 and uk
(along with all their edges other than edges (x, u0) and (uk, y)) 



Extensions of Chord: 
Combination with SON

Approach 1:
• bias random walk by thematic similarity of peers
• apply random flipper only if newly neighboring nodes
have thematic similarity above some threshold

Approach 2:
• remember good peers (query results & performance)
in a local cache structure → „friends“ list

• drop friends from or add new friends to k-neighbors list
based on thematic similarity (and/or querying quality)
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