
Oracle9 i

XML Database Developer’s Guide - Oracle XML DB

Release 2 (9.2)

October 2002

Part No. A96620-02

Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2)

Part No. A96620-02

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Shelley Higgins

Graphics: Valarie Moore

Contributing Authors: Nipun Agarwal, Abhay Agrawal, Omar Alonso, Sandeepan Banerjee, Mark
Bauer, Ravinder Booreddy, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao, Mark Drake, Fei Ge,
Wenyun He, Thuvan Hoang, Sam Idicula, Neema Jalali, Bhushan Khaladkar, Viswanathan
Krishnamurthy, Muralidhar Krishnaprasad, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick,
Nicolas Montoya, Steve Muench, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar,
Vipul Shah, Cathy Shea, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha Tarachandani,
Randy Urbano, Priya Vennapusa, James Warner

Contributors: Harish Akali, Deanna Bradshaw, Paul Brandenstein, Lisa Eldridge, Geoff Lee, Susan
Kotsovolos, Sonia Kumar, Roza Leyderman, Diana Lorentz, Yasuhiro Matsuda, Bhagat Nainani, Visar
Nimani, Sunitha Patel, Denis Raphaely, Rebecca Reitmeyer, Ronen Wolf

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, SQL*Plus, SQL*Net, Pro*C, On Oracle,
Oracle Store, ConText, and PL/SQL are trademarks or registered trademarks of Oracle Corporation.
Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xxix

Preface .. xxxi

Audience .. xxxii
Organization.. xxxii
Related Documentation ... xxxvii
Conventions.. xxxviii
Documentation Accessibility .. xli

What’s New In Oracle XML DB? ... xliii

Oracle XML DB: Oracle9i Release 2 (9.2.0.2): Enhancements.. xliii
Oracle XML DB, Oracle9i Release 2 (9.2.0.1): XMLType Enhancements..................................... xlv
Oracle XML DB, Oracle9i Release 2 (9.2.0.1): Repository .. xlvii
Oracle Tools Enhancements for Oracle XML DB ... xlix
Oracle Text Enhancements .. xlix
Oracle Advanced Queuing (AQ) Support... xlix
Oracle XDK Support for XMLType... l

Part I Introducing Oracle XML DB

1 Introducing Oracle XML DB

Introducing Oracle XML DB .. 1-2
Not a Separate Database Server ... 1-2

Benefits of Oracle XML DB... 1-3
iii

Key Features of Oracle XML DB .. 1-4
Oracle XML DB and XML Schema .. 1-7
Oracle XML DB Architecture.. 1-7

XMLType Tables and Views Storage... 1-9
Oracle XML DB Repository ... 1-10

XMLType Storage Architecture .. 1-11
Cached XML Object Management Architecture .. 1-14
XML Repository Architecture... 1-15

Why Use Oracle XML DB? .. 1-16
Unifying Data and Content with Oracle XML DB... 1-17
Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents........ 1-20
Oracle XML DB Helps You Integrate Applications... 1-21
When Your Data Is Not XML You Can Use XMLType Views... 1-21

Searching XML Data Stored in CLOBs Using Oracle Text ... 1-23
Building Oracle XML DB XML Messaging Applications with Advanced Queueing......... 1-23
Managing Oracle XML DB Applications with Oracle Enterprise Manager.......................... 1-24
Requirements for Running Oracle XML DB ... 1-25
Standards Supported by Oracle XML DB .. 1-25
Oracle XML DB Technical Support ... 1-26
Terminology Used in This Manual.. 1-26
Oracle XML DB Examples Used in This Manual ... 1-29

2 Getting Started with Oracle XML DB

Getting Started with Oracle XML DB ... 2-2
Installing Oracle XML DB.. 2-2

When to Use the Oracle XML DB .. 2-2
Designing Your XML Application ... 2-3
Oracle XML DB Design Issues: Introduction .. 2-3

a. Data... 2-3
b. Access ... 2-3
c. Application Language .. 2-4
d. Processing.. 2-4
Storage .. 2-4

Oracle XML DB Application Design: a. How Structured Is Your Data? 2-5
Oracle XML DB Application Design: b. Access Models ... 2-7
iv

Oracle XML DB Application Design: c. Application Language .. 2-8
Oracle XML DB Application Design: d. Processing Models.. 2-9
Oracle XML DB Design: Storage Models... 2-10

Using XMLType Tables ... 2-11
Using XMLType Views.. 2-12

3 Using Oracle XML DB

Storing Data in an XMLType Column or XMLType Table.. 3-3
Accessing Data in XMLType Columns or XMLType Tables ... 3-5
Using XPath with Oracle XML DB .. 3-5

Using existsNode() ... 3-7
Using extractValue()... 3-8
Using extract() ... 3-10
Using XMLSequence() ... 3-11

Updating XML Documents with updateXML() .. 3-13
Introducing the W3C XSLT Recommendation.. 3-15
Using XSL/XSLT with Oracle XML DB .. 3-16
Other XMLType Methods.. 3-17
Introducing the W3C XML Schema Recommendation ... 3-18

Using XML Schema with Oracle XML DB.. 3-19
XMLSchema-Instance Namespace ... 3-21

Validating an XML Document Using an XML Schema ... 3-22
Storing XML: Structured or Unstructured Storage... 3-24

Data Manipulation Language (DML) Independence.. 3-27
DOM Fidelity in Structured and Unstructured Storage ... 3-27

Structured Storage: XML Schema-Based Storage of XMLType ... 3-28
Structured Storage: Storing complexType Collections ... 3-32
Structured Storage: Data Integrity and Constraint Checking.. 3-33

Oracle XML DB Repository .. 3-35
Query-Based Access to Oracle XML DB Repository.. 3-37

Using RESOURCE_VIEW ... 3-37
Using PATH_VIEW.. 3-37
Creating New Folders and Documents ... 3-38
Querying Resource Documents.. 3-38
Updating Resources ... 3-38
v

Deleting Resources ... 3-39
Storage Options for Resources ... 3-40
Defining Your Own Default Table Storage for XML Schema-Based Documents 3-40
Accessing XML Schema-Based Content ... 3-44
Accessing Non-Schema-Based Content With XDBUriType ... 3-44
Oracle XML DB Protocol Servers... 3-44

Using FTP Protocol Server... 3-45
Using HTTP/WebDAV Protocol Server ... 3-49

Part II Storing and Retrieving XML Data in Oracle XML DB

4 Using XMLType

What Is XMLType? .. 4-2
Benefits of the XMLType Data Type and API .. 4-3

When to Use XMLType .. 4-4
Storing XMLType Data in Oracle XML DB.. 4-4

Pros and Cons of XML Storage Options in Oracle XML DB .. 4-5
When to Use CLOB Storage for XMLType ... 4-6

XMLType Member Functions ... 4-7
How to Use the XMLType API ... 4-7

Creating, Adding, and Dropping XMLType Columns ... 4-8
Inserting Values into an XMLType Column... 4-9
Using XMLType in an SQL Statement... 4-9
Updating an XMLType Column... 4-10
Deleting a Row Containing an XMLType Column ... 4-10

Guidelines for Using XMLType Tables and Columns... 4-11
Specifying Storage Characteristics on XMLType Columns.. 4-12
Changing Storage Options on an XMLType Column Using XMLData 4-13
Specifying Constraints on XMLType Columns.. 4-14

Manipulating XML Data in XMLType Columns/Tables ... 4-14
Inserting XML Data into XMLType Columns/Tables .. 4-15

Using INSERT Statements ... 4-15
Selecting and Querying XML Data ... 4-17

Selecting XML Data .. 4-17
Querying XML Data ... 4-18
vi

Using XPath Expressions for Searching XML Documents ... 4-18
Querying XML Data Using XMLType Member Functions .. 4-19
existsNode Function... 4-20
extract () Function... 4-21
extractValue() Function ... 4-24
More SQL Examples That Query XML ... 4-26

Updating XML Instances and Data in Tables and Columns .. 4-31
updateXML() SQL Function.. 4-31
Creating Views of XML Data with updateXML().. 4-35
Optimization of updateXML().. 4-35
updateXML() and NULL Values.. 4-36
Updating the Same XML Node More Than Once.. 4-37
XMLTransform() Function .. 4-37

Deleting XML Data... 4-38
Using XMLType In Triggers.. 4-38
Indexing XMLType Columns ... 4-39

Creating Function-Based Indexes on XMLType Columns... 4-39
Creating Oracle Text Indexes on XMLType Columns .. 4-40

5 Structured Mapping of XMLType

Introducing XML Schema ... 5-3
XML Schema and Oracle XML DB .. 5-3
Using Oracle XML DB and XML Schema .. 5-5

Why Do We Need XML Schema? .. 5-6

DTD Support in Oracle XML DB.. 5-7
Introducing DBMS_XMLSCHEMA.. 5-8
Registering Your XML Schema Before Using Oracle XML DB ... 5-8

Registering Your XML Schema Using DBMS_XMLSCHEMA .. 5-9
Local and Global XML Schemas... 5-11
Registering Your XML Schema: Oracle XML DB Sets Up the Storage and Access

Infrastructure ... 5-13
Deleting Your XML Schema Using DBMS_XMLSCHEMA... 5-13
Guidelines for Using Registered XML Schemas .. 5-14

Objects That Depend on Registered XML Schemas .. 5-14
vii

Creating XMLType Tables, Views, or Columns... 5-15
Validating XML Instances Against the XML Schema: schemaValidate()........................... 5-15
Fully Qualified XML Schema URLs... 5-16
Transactional Behavior of XML Schema Registration... 5-17

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema() 5-17
XML Schema-Related Methods of XMLType .. 5-19
Managing and Storing XML Schema .. 5-19

Root XML Schema, XDBSchema.xsd ... 5-19
How Are XML Schema-Based XMLType Structures Stored? .. 5-20

DOM Fidelity... 5-21
How Oracle XML DB Ensures DOM Fidelity with XML Schema 5-21
DOM Fidelity and SYS_XDBPD$... 5-21

Creating XMLType Tables and Columns Based on XML Schema... 5-22
SQL Object-Relational Types Store XML Schema-Based XMLType Tables....................... 5-23

Specifying SQL Object Type Names with SQLName, SQLType Attributes......................... 5-24
SQL Mapping Is Specified in the XML Schema During Registration 5-28

Mapping of Types Using DBMS_XMLSCHEMA .. 5-31
Setting Attribute Mapping Type Information .. 5-31
Setting Element Mapping Type Information.. 5-31

XML Schema: Mapping SimpleTypes to SQL... 5-33
simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBs 5-36

XML Schema: Mapping complexTypes to SQL .. 5-37
Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage................................... 5-37
Mapping XML Fragments to Large Objects (LOBs) .. 5-39

Oracle XML DB complexType Extensions and Restrictions... 5-41
complexType Declarations in XML Schema: Handling Inheritance 5-41
Mapping complexType: simpleContent to Object Types ... 5-44
Mapping complexType: Any and AnyAttributes.. 5-45
Handling Cycling Between complexTypes in XML Schema.. 5-46

Further Guidelines for Creating XML Schema-Based XML Tables .. 5-49
Specifying Storage Clauses in XMLType CREATE TABLE Statements 5-50
Inserting New Instances into XMLType Columns .. 5-51

Query Rewrite with XML Schema-Based Structured Storage ... 5-51
What Is Query Rewrite?... 5-51
When Does Query Rewrite Occur? .. 5-52
viii

What XPath Expressions Are Rewritten?.. 5-53
How are the XPaths Rewritten?.. 5-55
Rewriting XPath Expressions: Mapping Types and Issues .. 5-57
XPath Expression Rewrites for existsNode().. 5-62
Rewrite for extractValue() ... 5-65
Rewrite for extract().. 5-67
Optimizing Updates Using updateXML() .. 5-69

Creating Default Tables During XML Schema Registration.. 5-70
Ordered Collections in Tables (OCTs) .. 5-71

Using OCT for VARRAY Storage... 5-71
Cyclical References Between XML Schemas... 5-71
Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues 5-74

Why Do I Appear to get Memory Leaks When Using Bind Variables for XPath

 Expressions? ... 5-74
How Do I Check that Query Rewrite is Working Correctly?... 5-77
Why Does the XML DB Query Not Use My Index? .. 5-78
How Do I Specify Attributes in a complexType XML Schema Declaration? 5-79
Why Do the XML Schema and Element Not Match? .. 5-81
How Do I Pull a Stylesheet From RESOURCE_VIEW [S/MIME]?..................................... 5-82
Why for Our XML Parser Does selectSingleNode return NULL When the xmlns

Attribute is Added?.. 5-82
Why Do I Get Error ORA-19007: Schema and Element Do Not Match? 5-84
Is it Possible to Register XML Schema for Schemas? .. 5-86

6 Transforming and Validating XMLType Data

Transforming XMLType Instances... 6-2
XMLTransform() and XMLType.transform() ... 6-2

XMLTransform() Examples ... 6-3
Validating XMLType Instances .. 6-8
Validating XML Data Stored as XMLType: Examples ... 6-10

7 Searching XML Data with Oracle Text

Searching XML Data with Oracle Text ... 7-3
Introducing Oracle Text ... 7-3
Assumptions Made in This Chapter’s Examples.. 7-4
ix

Oracle Text Users and Roles.. 7-5
Querying with the CONTAINS Operator .. 7-6
Using the WITHIN Operator to Narrow Query Down to Document Sections....................... 7-8
Introducing SECTION_GROUPS.. 7-8

XML_SECTION_GROUP .. 7-8
AUTO_ SECTION_GROUP/ PATH_SECTION_GROUP for INPATH and HASPATH 7-10
Dynamically Adding Sections or Stop Section Using ALTER INDEX 7-10
WITHIN Syntax for Section Querying... 7-11
WITHIN Operator Limitations ... 7-11

INPATH or HASPATH Operators Search Using XPath-Like Expressions.............................. 7-12
Using INPATH Operator for Path Searching in XML Documents 7-13
Using HASPATH Operator for Path Searching in XML Documents.................................. 7-19

Building a Query Application with Oracle Text ... 7-21
What Role Do You Need?.. 7-21

Step 1. Create a Section Group Preference... 7-21
Deciding Which Section Group to Use .. 7-23
Creating a Section Preference with XML_SECTION_GROUP .. 7-23
Creating a Section Preference with AUTO_SECTION_GROUP.. 7-23
Creating a Section Preference with PATH_SECTION_GROUP .. 7-24

Step 2. Set the Preference’s Attributes .. 7-24
2.1 XML_SECTION_GROUP: Using CTX_DDL.add_zone_section.................................... 7-25
2.2 XML_SECTION_GROUP: Using CTX_DDL.Add_Attr_Section 7-25
2.3 XML_SECTION_GROUP: Using CTX_DDL.Add_Field_Section.................................. 7-26
2.5 AUTO_SECTION_GROUP: Using CtX_DDL.Add_Stop_Section................................. 7-28

Step 3. Create an Index Using the Section Preference Created in Step 2 7-28
Step 4. Create Your Query Syntax .. 7-30

Querying Within Attribute Sections .. 7-30
Presenting the Results of Your Query... 7-34
XMLType Indexing ... 7-35

You Need Query Rewrite Privileges.. 7-35
System Parameter is Set to the Default, CTXSYS.PATH_SECTION_GROUP................... 7-36
XMLType Indexes Work Like Other Oracle Text Indexes.. 7-36

Using Oracle Text with Oracle XML DB... 7-37
Creating an Oracle Text Index on an UriType Column .. 7-37
Querying XML Data: Use CONTAINS or existsNode()?.. 7-38
x

Full-Text Search Functions in XPath Using ora:contains .. 7-40
ora:contains Features.. 7-40
ora:contains Syntax... 7-40
ora:contains Examples ... 7-41

Oracle XML DB: Creating a Policy for ora:contains() .. 7-42
Oracle XML DB: Using CTXXPATH Indexes for existsNode() .. 7-45

Why do We Need CTXXPATH When ConText Indexes Can Perform XPath Searches?. 7-45
CTXXPATH Index Type .. 7-46
Creating CTXXPATH Indexes .. 7-46
Creating CTXXPATH Storage Preferences with CTX_DDL. Statements 7-47
Performance Tuning CTXXPATH Index: Synchronizing and Optimizing the Index 7-47

Using Oracle Text: Advanced Techniques.. 7-49
Highlight Support for INPATH/HASPATH Text Operators.. 7-49
Distinguishing Tags Across DocTypes.. 7-51
Specifying Doctype Limiters to Distinguish Between Tags ... 7-51
Doctype-Limited and Unlimited Tags in a Section Group... 7-52
XML_SECTION_GROUP Attribute Sections ... 7-52
Constraints for Querying Attribute Sections.. 7-54
Repeated Zone Sections ... 7-55
Overlapping Zone Sections ... 7-55
Nested Sections ... 7-55
Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View................................ 7-56

Case Study: Searching XML-Based Conference Proceedings .. 7-57
Searching for Content and Structure in XML Documents.. 7-57
Searching XML-Based Conference Proceedings Using Oracle Text 7-58
Searching Conference Proceedings Example: jsp .. 7-62

Frequently Asked Questions About Oracle Text.. 7-65
FAQs: General Questions About Oracle Text... 7-65
FAQs: Searching Attribute Values with Oracle Text... 7-71
FAQs: Searching XML Documents in CLOBs Using Oracle Text 7-71
xi

Part III Using XMLType APIs to Manipulate XML Data

8 PL/SQL API for XMLType

Introducing PL/SQL APIs for XMLType .. 8-2
Backward Compatibility with XDK for PL/SQL, Oracle9i Release 1 (9.0.1) 8-2
PL/SQL APIs For XMLType Features... 8-3
With PL/SQL APIs for XMLType You Can Modify and Store XML Elements 8-4

PL/SQL DOM API for XMLType (DBMS_XMLDOM) ... 8-5
Introducing W3C Document Object Model (DOM) Recommendation 8-5
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features ... 8-7
Designing End-to-End Applications Using XDK and Oracle XML DB................................ 8-8
Using PL/SQL DOM API for XMLType: Preparing XML Data .. 8-9
Generating an XML Schema Mapping to SQL Object Types ... 8-10
Wrapping Existing Data into XML with XMLType Views... 8-11
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods.. 8-11
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Exceptions 8-20
PL/SQL DOM API for XMLType: Node Types... 8-20
Working with XML Schema-Based XML Instances... 8-22
DOM NodeList and NamesNodeMap Objects... 8-22
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequence 8-23
PL/SQL DOM API for XMLType Examples .. 8-24

PL/SQL Parser API for XMLType (DBMS_XMLPARSER) ... 8-26
PL/SQL Parser API for XMLType: Features .. 8-26
PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence 8-28
PL/SQL Parser API for XMLType Example... 8-29

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) 8-30
Enabling Transformations and Conversions with XSLT .. 8-30
PL/SQL XSLT Processor for XMLType: Features.. 8-30
PL/SQL XSLT Processor API (DBMS_XSLPROCESSOR): Methods 8-31
PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence 8-32
PL/SQL XSLT Processor for XMLType Example .. 8-33

9 Java API for XMLType

Introducing Java DOM API for XMLType ... 9-2
xii

Java DOM API for XMLType.. 9-2
Accessing XML Documents Stored in Oracle9i Database (Java) ... 9-2
Using JDBC to Manipulate XML Documents Stored in a Database...................................... 9-5

Java DOM API for XMLType Features ... 9-15
Java DOM API for XMLType Classes ... 9-17

Non-Supported Java Methods.. 9-18
Java DOM API for XMLType: Calling Sequence ... 9-18

Part IV Viewing Existing Data as XML

10 Generating XML Data from the Database

Oracle XML DB Options for Generating XML Data From Oracle9i Database..................... 10-2
Generating XML Using SQLX Functions .. 10-2
Generating XML Using Oracle Extensions to SQLX ... 10-2
Generating XML Using DBMS_XMLGEN.. 10-2
Generating XML Using SQL Functions... 10-2
Generating XML with XSQL Pages Publishing Framework .. 10-3
Generating XML Using XML SQL Utility (XSU) ... 10-3

Generating XML from the Database Using SQLX Functions .. 10-5
XMLElement() Function .. 10-5
XMLForest() Function .. 10-9
XMLSEQUENCE() Function ... 10-11
XMLConcat() Function... 10-15
XMLAgg() Function.. 10-17
Generating XML from the Database Using SQLX Functions .. 10-20
XMLColAttVal() Function ... 10-20
Generating XML from Oracle9i Database Using DBMS_XMLGEN 10-21

Sample DBMS_XMLGEN Query Result ... 10-21
DBMS_XMLGEN Calling Sequence .. 10-22

Generating XML Using Oracle-Provided SQL Functions .. 10-42
SYS_XMLGEN() Function... 10-42

Using XMLFormat Object Type.. 10-44
SYS_XMLAGG() Function .. 10-51
Generating XML Using XSQL Pages Publishing Framework ... 10-52
Generating XML Using XML SQL Utility (XSU) ... 10-54
xiii

11 XMLType Views

What Are XMLType Views? .. 11-2
Creating Non-Schema-Based XMLType Views ... 11-3
Creating XML Schema-Based XMLType Views .. 11-4

Creating XML Schema-Based XMLType Views Using SQL/XML Generation

 Functions 11-5
Creating XMLType Views Using Object Types and Views.. 11-11

Creating XMLType Views From XMLType Tables ... 11-17
Referencing XMLType View Objects Using REF() ... 11-18
DML (Data Manipulation Language) on XMLType Views .. 11-19
Query Rewrite on XMLType Views... 11-20

Query Rewrite on XML Schema-Based Views ... 11-21
Query Rewrite on Non-Schema-Based XMLType Views ... 11-21

Ad-Hoc Generation of XML Schema-Based XML .. 11-23
Validating User-Specified Information... 11-24

12 Creating and Accessing Data Through URLs

How Oracle9i Database Works with URLs and URIs .. 12-2
URI Concepts ... 12-4

What Is a URI?... 12-4
Advantages of Using DBUri and XDBUri... 12-5

 UriTypes Store Uri-References .. 12-6
Advantages of Using UriTypes .. 12-7
UriType Functions .. 12-7

HttpUriType Functions .. 12-8
getContentType() Function ... 12-9
getXML() Function.. 12-9

DBUri, Intra-Database References .. 12-10
Formulating the DBUri .. 12-10
Notation for DBUriType Fragments .. 12-13
DBUri Syntax Guidelines... 12-13

Some Common DBUri Scenarios ... 12-15
Identifying the Whole Table.. 12-15
Identifying a Particular Row of the Table ... 12-16
Identifying a Target Column... 12-16
xiv

Retrieving the Text Value of a Column... 12-17
How DBUris Differ from Object References... 12-18
DBUri Applies to a Database and Session .. 12-18
Where Can DBUri Be Used? ... 12-18

DBUriType Functions .. 12-19
XDBUriType... 12-20

How to Create an Instance of XDBUriType.. 12-21
Creating Oracle Text Indexes on UriType Columns .. 12-23
Using UriType Objects .. 12-23

Storing Pointers to Documents with UriType.. 12-23
Using HttpUriType and DBUriType ... 12-25

Creating Instances of UriType Objects with the UriFactory Package 12-26
Registering New UriType Subtypes with the UriFactory Package................................... 12-26

Why Define New Subtypes of UriType? .. 12-29
SYS_DBURIGEN() SQL Function ... 12-29

Rules for Passing Columns or Object Attributes to SYS_DBURIGEN()........................... 12-30
SYS_DBURIGEN Examples... 12-31

Turning a URL into a Database Query with DBUri Servlet ... 12-34
DBUri Servlet Mechanism... 12-34
Installing DBUri Servlet... 12-36
DBUri Security .. 12-37
Configuring the UriFactory Package to Handle DBUris .. 12-38

Part V Oracle XML DB Repository: Foldering, Security, and Protocols

13 Oracle XML DB Foldering

Introducing Oracle XML DB Foldering.. 13-2
Oracle XML DB Repository .. 13-4

Repository Terminology.. 13-4
Oracle XML DB Resources.. 13-6

Where Exactly Is Repository Data Stored? ... 13-6
Pathname Resolution ... 13-7
Deleting Resources ... 13-7

Accessing Oracle XML DB Repository Resources.. 13-8
Navigational or Path Access ... 13-9
xv

Accessing Oracle XML DB Resources Using Internet Protocols.. 13-10
Query-Based Access.. 13-12
Accessing Repository Data Using Servlets .. 13-13
Accessing Data Stored in Oracle XML DB Repository Resources .. 13-14
Managing and Controlling Access to Resources .. 13-16
Extending Resource Metadata Properties .. 13-17
Frequently Asked Questions (FAQs): XML DB Repository ... 13-18

Why Does XML Repository Hierarchical Index Not Work? .. 13-18

14 Oracle XML DB Versioning

Introducing Oracle XML DB Versioning.. 14-2
Oracle XML DB Versioning Features... 14-2
Oracle XML DB Versioning Terms Used in This Chapter .. 14-3
Oracle XML DB Resource ID and Path Name .. 14-3

Creating a Version-Controlled Resource (VCR) ... 14-4
Version Resource or VCR Version ... 14-4
Resource ID of a New Version.. 14-5
Accessing a Version-Controlled Resource (VCR) .. 14-6
Updating a Version-Controlled Resource (VCR)... 14-6

Access Control and Security of VCR... 14-8
Frequently Asked Questions: Oracle XML DB Versioning .. 14-12

Can I Switch a VCR to a Non-VCR?... 14-12
How Do I Access the Old Copy of a VCR After Updating It? ... 14-12
Can We Use Version Control for Data Other Than Oracle XML DB Data? 14-12

15 RESOURCE_VIEW and PATH_VIEW

Oracle XML DB RESOURCE_VIEW and PATH_VIEW .. 15-2
RESOURCE_VIEW Definition and Structure ... 15-3
PATH_VIEW Definition and Structure ... 15-4
Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW............... 15-5
Operations You Can Perform Using UNDER_PATH and EQUALS_PATH..................... 15-6

Resource_View, Path_View API... 15-7
UNDER_PATH... 15-7
EQUALS_PATH... 15-9
PATH.. 15-9
xvi

DEPTH .. 15-11
Using the Resource View and Path View API... 15-11

Accessing Paths and Repository Resources: Examples... 15-11
Inserting Data into a Repository Resource: Examples .. 15-12
Deleting Repository Resources: Examples.. 15-13
Updating Repository Resources: Examples.. 15-14

Working with Multiple Oracle XML DB Resources Simultaneously 15-15
Tuning XML DB to Obtain Faster Queries .. 15-16
Searching for Resources Using Oracle Text ... 15-16

16 Oracle XML DB Resource API for PL/SQL (DBMS_XDB)

Introducing Oracle XML DB Resource API for PL/SQL ... 16-2
Overview of DBMS_XDB ... 16-2
DBMS_XDB: Oracle XML DB Resource Management ... 16-2

Using DBMS_XDB to Manage Resources, Calling Sequence... 16-3
DBMS_XDB: Oracle XML DB ACL-Based Security Management ... 16-5

Using DBMS_XDB to Manage Security, Calling Sequence .. 16-6
DBMS_XDB: Oracle XML DB Configuration Management... 16-8

Using DBMS_XDB for Configuration Management, Calling Sequence 16-9
DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes.. 16-11

Using DBMS_XDB to Rebuild Hierarchical Indexes, Calling Sequence........................... 16-11

17 Oracle XML DB Resource API for Java

Introducing Oracle XML DB Resource API for Java.. 17-2
Using Oracle XML DB Resource API for Java .. 17-2
Parameters for Oracle XML DB Resource API for Java... 17-2
Oracle XML DB Resource API for Java: Examples... 17-3

18 Oracle XML DB Resource Security

Introducing Oracle XML DB Resource Security and ACLs.. 18-2
How the ACL-Based Security Mechanism Works... 18-2

Access Control List Terminology ... 18-2
Oracle XML DB ACL Features ... 18-5

ACL Interaction with Oracle XML DB Table/View Security .. 18-5
xvii

LDAP Integration and User IDs ... 18-5
Oracle XML DB Resource API for ACLs (PL/SQL) .. 18-5
How Concurrency Issues Are Resolved with Oracle XML DB ACLs................................. 18-5

Access Control: User and Group Access... 18-6
ACE Elements Specify Access Privileges for Principals ... 18-6

Oracle XML DB Supported Privileges .. 18-7
Atomic Privileges.. 18-8
Aggregate Privileges .. 18-9

ACL Evaluation Rules .. 18-10
Using Oracle XML DB ACLs .. 18-10

Updating the Default ACL on a Folder ... 18-11
ACL and Resource Management.. 18-12

How to Set Resource Property ACLs... 18-12
Default Assignment of ACLs .. 18-12
Retrieving ACLs for a Resource ... 18-13
Changing Privileges on a Given Resource .. 18-13
Restrictions for Operations on ACLs ... 18-13

Using DBMS_XDB to Check Privileges ... 18-13
Row-Level Security for Access Control Security ... 18-14

19 Using FTP, HTTP, and WebDAV Protocols

Introducing Oracle XML DB Protocol Server.. 19-2
Session Pooling.. 19-2

Oracle XML DB Protocol Server Configuration Management ... 19-3
Configuring Protocol Server Parameters .. 19-4
Interaction with Oracle XML DB Filesystem Resources ... 19-6
Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents 19-7
Event-Based Logging ... 19-7

Using FTP and Oracle XML DB Protocol Server .. 19-7
Oracle XML DB Protocol Server: FTP Features .. 19-7

Using HTTP and Oracle XML DB Protocol Server... 19-9
Oracle XML DB Protocol Server: HTTP Features .. 19-9

Using WebDAV and Oracle XML DB ... 19-11
Oracle XML DB WebDav Features... 19-11
Using Oracle XML DB and WebDAV: Creating a WebFolder in Windows 2000 19-12
xviii

20 Writing Oracle XML DB Applications in Java

Introducing Oracle XML DB Java Applications ... 20-2
Which Oracle XML DB APIs Are Available Inside and Outside the Database? 20-2

Design Guidelines: Java Inside or Outside the Database?... 20-3
HTTP: Accessing Java Servlets or Directly Accessing XMLType Resources..................... 20-3
Accessing Many XMLType Object Elements: Use JDBC XMLType Support 20-3
Use the Servlets to Manipulate and Write Out Data Quickly as XML 20-3

Writing Oracle XML DB HTTP Servlets in Java ... 20-4
Configuring Oracle XML DB Servlets .. 20-4
HTTP Request Processing for Oracle XML DB Servlets... 20-8
The Session Pool and XML DB Servlets .. 20-9
Native XML Stream Support .. 20-9
Oracle XML DB Servlet APIs ... 20-10
Oracle XML DB Servlet Example... 20-10

Installing the Oracle XML DB Example Servlet ... 20-11
Configuring the Oracle XML DB Example Servlet .. 20-12
Testing the Example Servlet.. 20-12

Part VI Oracle Tools that Support Oracle XML DB

21 Managing Oracle XML DB Using Oracle Enterprise Manager

Introducing Oracle XML DB and Oracle Enterprise Manager .. 21-2
Getting Started with Oracle Enterprise Manager and Oracle XML DB 21-2

Oracle Enterprise Manager Oracle XML DB Features... 21-3
Configure Oracle XML DB .. 21-4
Create and Manage Resources.. 21-4
Manage XML Schema and Related Database Objects ... 21-4

The Enterprise Manager Console for Oracle XML DB.. 21-7
XML Database Management Window: Right-Hand Dialog Windows 21-7
Hierarchical Navigation Tree: Navigator ... 21-7

Configuring Oracle XML DB with Enterprise Manager ... 21-7
Viewing or Editing Oracle XML DB Configuration Parameters 21-11

Creating and Managing Oracle XML DB Resources with Enterprise Manager 21-12
Administering Individual Resources... 21-15
xix

Individual Resource Content Menu... 21-17
Enterprise Manager and Oracle XML DB: ACL Security ... 21-22
Granting and Revoking User Privileges with User > XML Tab .. 21-23
XML Database Resource Privileges.. 21-25

Managing XML Schema and Related Database Objects... 21-27
Navigating XML Schema in Enterprise Manager .. 21-28
Registering an XML Schema ... 21-31

Creating Structured Storage Infrastructure Based on XML Schema 21-34
Creating an XMLType Table ... 21-35
Creating Tables with XMLType Columns .. 21-37
Creating a View Based on XML Schema ... 21-39
Creating a Function-Based Index Based on XPath Expressions .. 21-42

22 Loading XML Data into Oracle XML DB

Loading XMLType Data into Oracle9i Database .. 22-2
Restoration ... 22-2

Using SQL*Loader to Load XMLType Columns ... 22-2

23 Importing and Exporting XMLType Tables

Overview of IMPORT/EXPORT Support in Oracle XML DB .. 23-2
Resource s and Foldering Do Not Fully Support IMPORT/EXPORT................................ 23-2

Non-XML Schema-Based XMLType Tables and Columns ... 23-2
XML Schema-Based XMLType Tables .. 23-2

Guidelines for Exporting Hierarchy-Enabled Tables .. 23-3
IMPORT/EXPORT Syntax and Examples... 23-4

User Level Import/Export... 23-4
Table Mode Export ... 23-5

Metadata in Repository is Not Exported During a Full Database Export.............................. 23-6
Importing and Exporting with Different Character Sets .. 23-6
xx

Part VII XML Data Exchange Using Advanced Queueing

24 Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams

What Is AQ? ... 24-2
How Do AQ and XML Complement Each Other?.. 24-2
Oracle Streams and AQ ... 24-5

Streams Message Queuing .. 24-6
XMLType Attributes in Object Types ... 24-6
Internet Data Access Presentation (IDAP)... 24-7
IDAP Architecture .. 24-7

XMLType Queue Payloads ... 24-8
Enqueue Using AQ XML Servlet... 24-10
Dequeue Using AQ XML Servlet .. 24-13
IDAP and AQ XML Schemas ... 24-14
Frequently Asked Questions (FAQs): XML and Advanced Queuing 24-14

Can I Store AQ XML Messages with Many PDFs as One Record? 24-14
Do I Specify Payload Type as CLOB First, Then Enqueue and Store? 24-15
Can I Add New Recipients After Messages Are Enqueued? ... 24-15
How Does Oracle Enqueue and Dequeue and Process XML Messages?......................... 24-15
How Can I Parse Messages with XML Content from AQ Queues?.................................. 24-16
Can I Prevent the Listener from Stopping Until the XML Document Is Processed?...... 24-17
How Can I Use HTTPS with AQ? .. 24-17
What Are the Options for Storing XML in AQ Message Payloads? 24-17
Can We Compare IDAP and SOAP? ... 24-18

Part VIII Oracle XML DB Case Studies

25 Oracle XML DB Case Study: Web Services Retrieve and Display XML
Documents

XML DB Web Services Case Study: Overview ... 25-2
What Happens When You Enter a PO Number?... 25-2
Oracle XML Db Web Services: Main Components.. 25-2

Running XML DB Web Services Case Study: Implementation Steps.................................... 25-3
Before You Run this Case Study Demo... 25-3
xxi

Steps for Implementing the XML DB Web Services Case Study ... 25-9
1. Run XDBServices.java .. 25-10
2. Implement GetPOXMLServlet.java.. 25-11
3. Deploy XDBServices Class to the Oracle9iAS/Web Services (SOAP) Server.............. 25-11
4. Deploy displayPOXML.html to Display Results on Client-Side Web Server.............. 25-12
5. Enter a PO Number and See the Retrieved PO Displayed ... 25-13

XML DB Web Services: Calling Sequence ... 25-14
XDBServices.java .. 25-15
getPOXMLServlet.java... 25-19

26 Oracle XML DB Basic Demo

Prerequisites for Running the XML DB Basic Demo .. 26-2
Database SQL*NET and XML DB Configuration .. 26-3
Verify SQL*NET and XML DB Configuration ... 26-7

Installing XML DB Basic Demo ... 26-8
Editing installParameters.xml... 26-9
Running the Installation Script ... 26-9

What is Oracle XML DB?... 26-11
Oracle XML DB Components.. 26-12

Starting the XML DB Basic Demo .. 26-12
0.1 XML DB Demo: Initial Setup (Run Once) ... 26-13
0.2 XML DB Demo: Resetting the Demo .. 26-14
1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support 26-14

1.1 Using SQL to Make Directories .. 26-17
1.2 Using FTP to Load Configuration Files ... 26-19

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML....................... 26-22
2.1 Registering XML Schema... 26-28
2.2 Objects Are Created With XML Schema Registration... 26-30

3.0 XML DB Demo: How XML Files Conform to the XML Schema...................................... 26-31
3.1 Using FTP to Load Instance Documents ... 26-33
3.2 Using SQL to Add Constraints to XML Data ... 26-34
3.3 Using FTP to Upload XML Documents that Attempt to Violate the Constraints..... 26-37

4.0 XML DB Demo: Simple XPath Queries Against XML Documents................................. 26-42
4.1 More Complex XPath Queries on XML Documents.. 26-44
4.2 EXPLAIN Plan of Queries on XML Tables ... 26-46
xxii

4.3 Using extractValue() and an XPath Expression to Create XML Indexes.................... 26-48
4.4 Using EXPLAIN Plan to Determine if the Index is Being Used 26-49

5.0 XML DB Demo: Using HTTP to Access XML Content.. 26-51
5.1 SQL Can Display the Retrieved XML Document Through XDBUriServlet............... 26-54
5.2 Editing XML Documents with WebDAV-Enabled Tools ... 26-56
5.3 Displaying and Verifying Updates Made to XML Documents, Using SQL 26-57
5.4 Updating XML Documents Using SQL... 26-59
5.5 Displaying Changes Made to an XML Document Using Both XML and SQL.......... 26-60

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL .. 26-62
6.1 XPath-Based Querying of RESOURCE_VIEWS Using Hierarchical Indexing.......... 26-68

7.0 XML DB Demo: Using Views to Access XML from Relational Tools 26-70
7.1 Relational Views of XML Act Like Other Views.. 26-73
7.2 Querying Using Rollup.. 26-75

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content
 Using XSL .. 26-76

8.1 PurchaseOrder Raw XML ... 26-77
8.2 Using Standard XSL Style Sheets to Transform XML Documents to HTML 26-79
8.3 Transforming PurchaseOrder Using XSLT... 26-81
8.4 Creating XMLType Views with SQL ... 26-83
8.5 Displaying DEPTVIEW Raw XML Using DBUriServlet .. 26-85
8.6 Transforming DEPTVIEW From XML to HTML Using a Style Sheet 26-86
8.7 Displaying the Transformed DEPTVIEW After XSL Transformation........................ 26-87

9.0 XML DB Demo: OracleText Examples .. 26-89

A Installing and Configuring Oracle XML DB

Installing Oracle XML DB .. A-2
Installing or Reinstalling Oracle XML DB from Scratch .. A-2

Installing a New Oracle XML DB with DBCA ... A-2
Dynamic Protocol Registration Registers FTP and HTTP Services with Local Listener.... A-3
Installing a New Oracle XML DB Manually Without DBCA... A-4
Reinstalling Oracle XML DB... A-4

Upgrading an Existing Oracle XML DB Installation ... A-5
Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2) ... A-5

Migrating Data From Release 2 (9.2.0.1) to Release 2 (9.2.0.2) ... A-6
Configuring Oracle XML DB .. A-9
xxiii

Oracle XML DB Configuration File, xdbconfig.xml ... A-9
Top Level Tag <xdbconfig> .. A-9
<sysconfig>... A-10
<userconfig>... A-10
<protocolconfig>.. A-10
<httpconfig> ... A-10

Oracle XML DB Configuration Example ... A-11
Oracle XML DB Configuration API.. A-14

Get Configuration, cfg_get()... A-14
Update Configuration, cfg_update()... A-14
Refresh Configuration, cfg_refresh() .. A-15

B XML Schema Primer

Introducing XML Schema ... B-2
Purchase Order Schema, po.xsd ... B-4

XML Schema Components .. B-6
Complex Type Definitions, Element and Attribute Declarations.. B-6
Naming Conflicts ... B-12

Simple Types... B-13
List Types .. B-17
Union Types ... B-19

Anonymous Type Definitions ... B-20
Element Content... B-21

Complex Types from Simple Types.. B-21
Mixed Content.. B-22
Empty Content ... B-23
AnyType.. B-24

Annotations ... B-25
Building Content Models ... B-26
Attribute Groups .. B-29
Nil Values .. B-31
How DTDs and XML Schema Differ ... B-31

DTD Limitations .. B-33
XML Schema Features Compared to DTD Features... B-34
Converting Existing DTDs to XML Schema?... B-37
xxiv

XML Schema Example, PurchaseOrder.xsd ... B-37

C XPath and Namespace Primer

Introducing the W3C XML Path Language (XPath) 1.0 Recommendation C-2
The XPath Expression .. C-3

Evaluating Expressions with Respect to a Context ... C-3
XPath Expressions Often Occur in XML Attributes .. C-4

Location Paths.. C-5
Location Path Syntax Abbreviations.. C-5
Location Path Examples Using Unabbreviated Syntax .. C-5
Location Path Examples Using Abbreviated Syntax... C-7
Relative and Absolute Location Paths... C-9
Location Path Syntax Summary .. C-10

XPath 1.0 Data Model.. C-10
Nodes... C-11

Introducing the W3C XML Path Language (XPath) 2.0 Working Draft C-17
XPath 2.0 Expressions ... C-17

Introducing the W3C Namespaces in XML Recommendation ... C-18
What Is a Namespace? .. C-19
Qualified Names.. C-21
Using Qualified Names .. C-21
Namespace Constraint: Prefix Declared .. C-22
Applying Namespaces to Elements and Attributes ... C-23
Namespace Scoping .. C-23
Namespace Defaulting.. C-24
Uniqueness of Attributes.. C-25
Conformance of XML Documents .. C-26

Introducing the W3C XML Information Set... C-26
Namespaces.. C-27
End-of-Line Handling... C-28
Base URIs .. C-28
Unknown and No Value... C-29
Synthetic Infosets... C-29
xxv

D XSLT Primer

Introducing XSL ... D-2
The W3C XSL Transformation Recommendation Version 1.0.. D-2
Namespaces in XML.. D-4
XSL Stylesheet Architecture ... D-4

XSL Transformation (XSLT) ... D-5
XML Path Language (Xpath) .. D-5
CSS Versus XSL .. D-5
XSL Stylesheet Example, PurchaseOrder.xsl .. D-6

E Java DOM API for XMLType, Resource API for Java: Quick Reference

Java DOM API For XMLType ... E-2
Non-Supported Java Methods .. E-2

Oracle XML DB Resource API for Java... E-6

F Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick
Reference

XMLType API... F-2
PL/SQL DOM API for XMLType (DBMS_XMLDOM) ... F-6
PL/SQL Parser for XMLType (DBMS_XMLPARSER).. F-14
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) F-15
DBMS_XMLSCHEMA... F-16
Oracle XML DB XML Schema Catalog Views... F-19
Resource API for PL/SQL (DBMS_XDB) ... F-20
DBMS_XMLGEN .. F-23
RESOURCE_VIEW, PATH_VIEW ... F-24
DBMS_XDB_VERSION .. F-25
DBMS_XDBT... F-27

G Example Setup scripts. Oracle XML DB - Supplied XML Schemas

Example Setup Scripts .. G-2
Chapter 3 Examples Set Up Script: Creating User and Directory .. G-2
Chapter 3 Examples Set Up Script: Granting Privileges, Creating Table... G-3
Chapter 3 Examples Script: invoice.xml... G-8
xxvi

Chapter 3 Examples Script: PurchaseOrder.xml... G-9
Chapter 3 Examples Script: FTP Script... G-10
Chapter 3 Examples Script: Configuring FTP and HTTP Ports.. G-11

RESOURCE_VIEW and PATH_VIEW Database and XML Schema...................................... G-12
Resource View Definition and Structure.. G-12
PATH_VIW Definition and Structure .. G-12

XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources G-12
 XDBResource.xsd.. G-12

acl.xsd: XML Schema for Representing Oracle XML DB ACLs.. G-15
ACL Representation XML Schema, acl.xsd ... G-15
acl.xsd.. G-15

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB .. G-18
xdbconfig.xsd ... G-18

Glossary

Index
xxvii

xxviii

Send Us Your Comments

Oracle9 i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2)

Part No. A96620-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xxix

xxx

Preface

This manual describes Oracle XML DB, the Oracle9i XML database. It describes

how XML data can be stored, generated, manipulated, managed, and queried in the

database using Oracle XML DB.

After introducing you to the heart of Oracle XML DB , namely the XMLType
framework and Oracle XML DB Repository, the manual provides a brief

introduction to design criteria to consider when planning your Oracle XML DB

application. It provides examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle

XML DB, APIs for manipulating XMLType data, and ways you can view, generate,

transform, and search on existing XML data. The remainder of the manual discusses

how to use Oracle XML Repository, including versioning and security, how to

access and manipulate Repository resources using protocols, SQL, PL/SQL, or Java,

and how to manage your Oracle XML DB application using Oracle Enterprise

Manager. It also introduces you to XML messaging and Advanced Queueing

XMLType support.

The Preface contains the following sections:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxxi

Audience
This manual is intended for developers building XML applications on Oracle9i
database.

Prerequisite Knowledge
An understanding of XML, XML Schema, XPath, and XSL is helpful when using

this manual.

Many examples provided here are in SQL, Java, or PL/SQL, hence, a working

knowledge of one or more of these languages is presumed.

Organization
This document contains the following parts, chapters, and appendixes:

PART I. Introducing Oracle XML DB
Introduces you to the Oracle XML DB components and architecture, including

XMLType and the Repository. It discusses some basic design issues and provides a

comprehensive set of examples of where and how you can use Oracle XML DB.

Chapter 1, "Introducing Oracle XML DB"
Introduces you to the Oracle XML DB components and architecture. It includes a

description of the benefits of using Oracle XML DB, the key features, standards

supported, and requirements for running Oracle XML DB. It lists Oracle XML

DB-related terms used throughout the manual.

Chapter 2, "Getting Started with Oracle XML DB"
Describes how to install Oracle XML DB, compatibility and migration, and some

preliminary application planning issues.

Chapter 3, "Using Oracle XML DB"
Introduces you to where and how you can use Oracle XML DB. It provides

examples of storing, accessing, updating, and validating your XML data using

Oracle XML DB.

PART II. Storing and Retrieving XML Data
Describes the ways you can store, retrieve, validate, and transform XML data using

Oracle9i database native XMLType API.
xxxii

Chapter 4, "Using XMLType"
Describes how to create XMLType tables and manipulate and query XML data for

non-schema-based XMLType tables and columns.

Chapter 5, "Structured Mapping of XMLType"
Describes how to use Oracle XML DB mapping from SQL to XML and back,

provides an overview of how you must register your XML schema, how you can

either use Oracle XML DBs default mapping or specify your own mapping. It also

describes how to use Ordered Collections in Tables (OCTs) in Oracle XML DB.

Chapter 6, "Transforming and Validating XMLType Data"
Describes how you can use SQL functions to transform XML data stored in the

database and being retrieved or generated from the database. It also describes how

you can use SQL functions to validate XML data being input into the database.

Chapter 7, "Searching XML Data with Oracle Text"
Describes how you can create an Oracle Text index on DBUriType or Oracle XML

DB UriType columns and search XML data using Oracle Text’s CONTAINS()
function and XMLType’s existsNode() function. It includes how to use

CTXXPATH index for XPath querying of XML data.

PART III. Using XMLType APIs to Manipulate XML Data
Describes the PL/SQL and Java XMLType APIs and how to use them.

Chapter 8, "PL/SQL API for XMLType"
Introduces the PL/SQL DOM API for XMLType, PL/SQL Parser API for XMLType,

and PL/SQL XSLT Processor API for XMLType. It includes examples and calling

sequence diagrams.

Chapter 9, "Java API for XMLType"
Describes how to use the Java (JDBC) API for XMLType. It includes examples and

calling sequence diagrams.

PART IV. Viewing Existing Data as XML

Chapter 10, "Generating XML Data from the Database"
Discusses SQLX, Oracle SQLX extension functions, and SQL functions for

generating XML. SQLX functions include XMLElement() and XMLForest() .
xxxiii

Oracle SQLX extension functions include XMLColAttValue() . SQL functions

include SYS_XMLGEN(), XMLSEQUENCE(), and SYS_XMLAGG(). It also describes

how to use DBMS_XMLGEN, XSQL Pages Publishing Framework, and XML SQL

Utility (XSU) to generate XML data from data stored in the database.

Chapter 11, "XMLType Views"
Describes how to create XMLType views based on XML generation functions, object

types, or transforming XMLType tables. It also discusses how to manipulate XML

data in XMLType views.

Chapter 12, "Creating and Accessing Data Through URLs"
Introduces you to how Oracle9i database works with URIs and URLs. It describes

how to use UriTypes and associated sub-types: DBUriType , HttpUriType , and

XDBUriType to create and access database data using URLs. It also describes how

to create instances of UriType using the UriFactory package, how to use SYS_
DBURIGEN() SQL function, and how to turn a URL into a database query using

DBUri Servlet.

PART V. Oracle XML DB Repository: Foldering, Security, and Protocols
Describes Oracle XML DB Repository, the concepts behind it, how to use

Versioning, ACL security, the Protocol Server, and the various associated Oracle

XML DB Resource APIs.

Chapter 13, "Oracle XML DB Foldering"
Describes hierarchical indexing and foldering. Introduces you to the various Oracle

XML DB Repository components such as Oracle XML DB Resource View API,

Versioning, Oracle XML DB Resource API for PL/SQL and Java.

Chapter 14, "Oracle XML DB Versioning"
Describes how to create a version-controlled Oracle XML DB resource (VCR) and

how to access and update a VCR.

Chapter 15, "RESOURCE_VIEW and PATH_VIEW"
Describes how you can use SQL to access data stored in Oracle XML DB Repository

using Oracle XML DB Resource View API. This chapter also compares the

functionality of the other Oracle XML DB Resource APIs.
xxxiv

Chapter 16, "Oracle XML DB Resource API for PL/SQL (DBMS_XDB)"
Describes DBMS_Oracle XML DB and the Oracle XML DB Resource API for

PL/SQL.

Chapter 17, "Oracle XML DB Resource API for Java"
Describes Oracle XML DB Resource API for Java/JNDI and how to use it to access

Oracle XMl DB Repository data.

Chapter 18, "Oracle XML DB Resource Security"
Describes how to use Oracle XML DB resources and ACL security, how to share

ACL, and how to retrieve ACL information.

Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"
Introduces Oracle XML DB Protocol Server and how to use FTP, HTTP, and

WebDAV with Oracle XML DB.

Chapter 20, "Writing Oracle XML DB Applications in Java"
Introduces you to writing Oracle XML DB applications in Java. It describes which

Java APIs are available inside and outside the database, tips for writing Oracle XML

DB HTTP servlets, which parameters to use to configure servlets in the

configuration file /xdbconfig.xml , and HTTP request processing.

PART VI. Oracle Tools That Support Oracle XML DB Development
Includes chapters that describe the tools you can use to build and manage your

Oracle XML DB application.

Chapter 21, "Managing Oracle XML DB Using Oracle Enterprise Manager"
Describes how you can use Oracle Enterprise Manager to register your XML

schema; create resources, XMLType tables, views, and columns; manage ACL

security, configure Oracle XML DB; and create function-based indexes.

Chapter 22, "Loading XML Data into Oracle XML DB"
Describes ways you can load XMLType data using SQL*Loader.

Chapter 23, "Importing and Exporting XMLType Tables"
Describes the IMPORT/EXPORT utility support for loading XMLType tables.
xxxv

PART VII. XML Data Exchange Using Advanced Queueing
Describes Oracle Advanced Queueing support for XML and XMLType messaging.

Chapter 24, "Exchanging XML Data Using Advanced Queueing (AQ) and
Oracle Streams"
Introduces how you can use Advancd Queueing to exchange XML data. It briefly

describes Oracle Streams, Internet Data Access Presentation (IDAP), using AQ XML

Servlet to enquue and dequeue messages, using IDAP, and AQ XML schemas.

PART VIII. Oracle XML DB Case Studies
Describes two XML DB-based applications.

Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve and Display
XML Documents"
Provides the calling sequence and code for building an XML DB Web Services based

purchase order application.

Chapter 26, "Oracle XML DB Basic Demo"
Provides many examples and illustrations of ways to store, access, and manipulate

purchase order XML document using XML DB.

Appendix A, "Installing and Configuring Oracle XML DB"
Describes how to install and configure Oracle XML DB.

Appendix B, "XML Schema Primer"
Provides a summary of the W3C XML Schema Recommendation.

Appendix C, "XPath and Namespace Primer"
Provides an introduction to W3C XPath Recommendation, Namespace

Recommendation, and Information Sets.

Appendix D, "XSLT Primer"
Provides an introduction to the W3C XSL/XSLT Recommendation.

Appendix E, "Java DOM API for XMLType, Resource API for Java: Quick
Reference"
Provides a quick reference for the Oracle XML DB Java APIs.
xxxvi

Appendix F, "Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL
APIs: Quick Reference"
Provides a quick reference for the Oracle XML DB PL/SQL APIs.

Appendix G, "Example Setup scripts. Oracle XML DB - Supplied XML
Schemas"
Provides a description of the setup scripts used for the examples in Chapter 3. It

also descibes the RESOURCE_VIEW and PATH_VIEW structures and lists the

Oracle XML DB- supplied sample resource XML schema.

Glossary

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database New Features for information about the differences between

Oracle9i and the Oracle9i Enterprise Edition and the available features and

options. This book also describes features new to Oracle9i Release 2 (9.2).

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle9i XML Case Studies and Applications (contains XDK examples, no

Oracle XML DB examples for this release)

■ Oracle9i Database Error Messages

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

■ Oracle9i Database Concepts.

■ Oracle9i Java Developer’s Guide

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Application Developer’s Guide - Advanced Queuing

■ Oracle9i Supplied PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.
xxxvii

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.
xxxviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.
xxxix

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE... AS subquery ;

SELECT col1 , col2 ,... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;
xl

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xli

xlii

What’s New In Oracle XML DB?

This chapter describes the new features, enhancements, APIs, and product

integration added through Oracle XML DB as a part of Oracle9i Release 2 (9.2.0.2)

and Oracle9i Release 2 (9.2.0.1).

Oracle XML DB: Oracle9i Release 2 (9.2.0.2): Enhancements
This section summarizes the Oracle XML DB enhancements provided with patch

release, Oracle9i Release 2 (9.2.0.2).

Exporting and Importing XML Data
Oracle9i Release 2 (9.2.0.2) provides enhanced IMPORT/EXPORT utility support to

assist in loading XML data into Oracle XML DB. See Chapter 23, "Importing and

Exporting XMLType Tables".

XMLAgg() SQLX Function
XMLAgg() now supports the ORDER BY clause. See Chapter 10, "Generating XML

Data from the Database", "XMLAgg() Function".

updateXML() XMLType Function
The updateXML() section has been reworked to include more comprehensive

examples.

See Also: Oracle9i Release Notes, Release 2 (9.2.0.2) available

with your software.
xliii

Globalization Support: Multibyte Characters
Oracle XML DB can handle multibyte characters as long as the client character set is

the same as the database character set.

Updated Oracle XML DB - Supplied XML Schema
The end of Appendix G, "Example Setup scripts. Oracle XML DB - Supplied XML

Schemas" lists the three updated Oracle XML DB - supplied XML schema,

XDBResource.xsd , acl.xsd , and xdbconfig.xsd .

Migrating from Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
Notes have been adding describing how to migrate from Release 2 (9.2.0.1) to

Release 2 (9.2.0.2). See Appendix A, "Installing and Configuring Oracle XML DB".

RESOURCE_VIEW PATH Operator
Further examples and explanation have been added to this section for determining

paths under multiple correlations or specified path name arguments. See

Chapter 15, "RESOURCE_VIEW and PATH_VIEW", "PATH" on page 15-9.

New Configuration Parameters
A new tuning parameter, resource-view-cache-size has been added. When

querying large RESOURCE_VIEWs you can now tune the

resource-view-cache-size parameter in the xdbconfig file. See Chapter 15,

"RESOURCE_VIEW and PATH_VIEW", "Tuning XML DB to Obtain Faster Queries".

HTTP/webDAV parameter default-url-charset has been added. This is the

character set in which an HTTP Protocol Server assumes the incoming URL is

encoded when it is not encoded in UTF-8 or the request’s Content-Type field

Charset parameter. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols",

Table 19–3.

PL/SQL DOM API for XMLType: New Methods
Several new DBMS_XMLDOM methods are now supported for the PL/SQL DOM API

for XMLType. See Chapter 8, "PL/SQL API for XMLType". Note that there are a few

methods that have been de-supported in this release.

Java DOM API for XMLType: Desupported Methods
A few methods in XDBDocument, XDBNode, and XDBDOMImplementation classes

have been de-supported in this release. See Chapter 9, "Java API for XMLType".
xliv

Highlight Support for XML Documents with INPATH/HASPTH Oracle Text
Operators
You can now highlight XML documents in Oracle Text with the INPATH/HASPATH
query element(s) highlighted and using CTX_DOC.MARKUP or HIGHLIGHT
procedures. See Chapter 7, "Searching XML Data with Oracle Text", "Highlight

Support for INPATH/HASPATH Text Operators" on page 7-49.

Oracle XML DB Case Studies are Provided
See Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve and Display

XML Documents" and Chapter 26, "Oracle XML DB Basic Demo".

Oracle XML DB, Oracle9i Release 2 (9.2.0.1): XMLType Enhancements
XMLType datatype was first introduced in Oracle9i. This datatype has been

significantly enhanced in Oracle9i Release 2 (9.2.0.1). This release is also referred to,

in general, as Release 2 (9.2). The following sections describe these enhancements.

XMLType Tables
Datatype XMLType can now be used to create tables of XMLType. This gives you the

flexibility to store XML either in a column, in a table, or as a whole table, much like

objects.

XMLType Constructors
Additional XMLType constructors have been added. Besides the createXML()
functions, XMLType can now also be constructed using user-defined constructors.

W3C XML Schema Support
Extensive XML schema support has been added in this release to Oracle XML DB.

You can now perform the following:

■ Construct an XMLType object based on an XML schema and have it be

continuously validated.

See Also:

http://otn.oracle.com/tech/xml/content.html for the

latest Oracle XML DB updates and notes.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
xlv

■ Create XML schema-based XMLType tables. This feature automatically

creates appropriate storage structures for optimal storage of XML

schema-based documents. Unlike SQL DDL, this process does not require

knowledge of all column data types and their definitions.

■ Register annotated XML schema using the DBMS_XMLSCHEMA package, to

share storage and type definitions. Registered XML schema can be shared

across all database users to allow for instance wide common document

definition. The registration process optionally creates default tables. With

XML schema annotation you can specify various objects such as, SQL types,

default storage tables, and so on.

■ Pre-parse incoming XML documents and automatically direct them to

default storage tables. This allows protocols such as FTP and WebDAV to

accept structured XML documents and store them in object-relational

tables.

■ Automatically validate XML documents or instances against W3C XML

Schema when the XML documents or instances are added to Oracle XML

DB.

■ Explicitly validate XML documents and instances against XML schema

using XMLIsSchemaValid() method on XMLType.

■ Use datatype -aware extraction of part of an XML document using the

extractValue operator.

SQLX Functions and Oracle Extensions
This release includes support for SQLX operations for generating XML from

existing relational and object relational tables. This is based on ISO-ANSI Working

Draft for XML-Related Specifications (SQL/XML) [ISO/IEC 9075 Part 14 and ANSI]

which defines ways in which the database language SQL can be used in conjunction

with XML.

For example, the following functions defined by the SQLX standards body are

supported: XMLElement (), XMLForest() , XMLConcat() , andXMLAgg() . Oracle

XML DB also extends the SQLX operations with functions such as:

XMLColAttVal() , XMLSequence() , SYS_XMLGEN(), and SYS_XMLAGG().

W3C XPath Support for Extraction, Condition Checks, and Updates
Oracle9i Release 1 (9.0.1) provided the extract() and existsNode() functions

on XMLType objects. These allowed XPath-based queries against XML documents.

This release provides additional support as follows:
xlvi

■ extract() , existsNode() , and extractValue() now allow for a

namespace-based operation.

■ extract() , existsNode() , and extractValue() support the full

XPath function set, including axis operators.

■ updateXML() function (new) replaces part of the XMLType DOM by using

XPath as a locator.

ToObject Method
ToObject method allows the caller to convert an XMLType object to a PL/SQL

object type.

XMLType Views
This release supports XMLType-based views. These enable you to view any data in

the database as XML. XMLType views can be XML schema-based or non-XML

schema-based. See Chapter 11, "XMLType Views".

W3C XSLT Support
This release introduces a new function, XMLTransform() that allows for a

database-based transformation of in-memory or on disk XML documents. See

Chapter 6, "Transforming and Validating XMLType Data".

JDBC Support for XMLType
Oracle XML DB allows database clients to bind and define XMLType. JDBC support

includes a function-rich XMLType class that allows for native (for thick JDBC) XML

functionality support. See Chapter 9, "Java API for XMLType".

C-Based PL/SQL DOM, Parser, and XSLT APIs
This release includes native PL/SQL DOM, Parser, and XSLT APIs integrated in the

database code. These PL/SQL APIs are compatible with the Java-based PLSQL

APIs shipped as part of XDK for PL/SQL with Oracle9i Release 1 (9.0.1) and higher.

See Chapter 8, "PL/SQL API for XMLType".

Oracle XML DB, Oracle9i Release 2 (9.2.0.1): Repository
In this release, Oracle XML DB Repository adds advanced foldering and security

mechanisms to the database. Oracle XML DB Repository is a new feature that

provides a novel file system-like access to all database data. The Repository allows

the following actions:
xlvii

■ Viewing the database and its content as a file system containing resources,

typically referred to as files and folders.

■ Access and manipulation of resources through path name-based SQL and

Java API.

■ Access and manipulation of resources through built-in native Protocol

Servers for FTP, HTTP, and WebDAV.

■ ACL-based security for Oracle XML DB resources.

Oracle XML DB Resource API (PL/SQL): DBMS_XDB
DBMS_XDB package provides methods to access and manipulate Oracle XML DB

resources. Chapter 16, "Oracle XML DB Resource API for PL/SQL (DBMS_XDB)".

Oracle XML DB Resource API (JNDI)
This uses JNDI (Java Naming and Directory Interface) to locate resources, and

manage collections. It supports JNDI Service Provider Interface (SPI). This interface

works only inside the database server on the JServer platform. See Chapter 17,

"Oracle XML DB Resource API for Java".

Oracle XML DB Resource View API (SQL)
ResourceView is a public XMLType view that you can use to perform path

name-based queries against all resources in a database instance. This view merges

path-based queries with queries against relational and object-relational tables and

views. See Chapter 15, "RESOURCE_VIEW and PATH_VIEW".

In Release 2 (9.2.0.2) the XDBconfig file includes a tuning parameter,

resource-view-cache-size to allow faster queries. See the end of Chapter 15,

"RESOURCE_VIEW and PATH_VIEW".

Oracle XML DB Versioning: DBMS_XDB_VERSION
DBMS_XDB_VERSION package provides methods to version Oracle XML DB

resources. See Chapter 14, "Oracle XML DB Versioning".

Oracle XML DB ACL Security
Methods that implement ACL-based security are a part of DBMS_XDB package.

They allow you to create high-performance access control lists for any XMLType

object. See Chapter 18, "Oracle XML DB Resource Security".
xlviii

Oracle XML DB Protocol Servers
The Protocol Servers provide access to any foldered XMLType row through FTP,

HTTP, and WebDAV. Note that XMLType can manage arbitrary binary data as well

in any file format. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".

XDBURIType
URIType now includes a new subtype, XDBURIType, that represents a path name

within Oracle XML DB. See Chapter 12, "Creating and Accessing Data Through

URLs".

Oracle Tools Enhancements for Oracle XML DB

Oracle Enterprise Manager
Oracle Enterprise Manager provides a graphical interface to manage, administer,

and configure Oracle XML DB. See Chapter 21, "Managing Oracle XML DB Using

Oracle Enterprise Manager".

Oracle Text Enhancements
This release offers the following Oracle Text enhancements:

■ Columns of type XMLType can now be indexed natively in Oracle9i
database using Oracle Text.

■ CONTAINS() is a new function for use as ora:contains in an XPath

query and as part of the existsNode() function.

■ CTXXPATHis a new index type for use with existsNode() to speedup the

performance of XPath searching.

See Chapter 7, "Searching XML Data with Oracle Text".

Oracle Advanced Queuing (AQ) Support
With this release, the Advanced Queueing (AQ) Internet Data Access Presentation

(IDAP) has been enhanced. IDAP facilitates your using AQ over the Internet. You

can now use AQ XML servlet to access Oracle9i AQ using HTTP and SOAP.

Also in this release, IDAP is the Simple Object Access Protocol (SOAP)

implementation for AQ operations. IDAP now defines the XML message structure

used in the body of the SOAP request.
xlix

You can now use XMLType as the AQ payload type instead of having to embed

XMLType as an attribute in an Oracle object type.

Oracle XDK Support for XMLType

XDK for Java Support
XSQL Servlet and XML SQL Utility (XSU) for Java now support XMLType. Most

methods on XMLType object, such as, getClobVal() , are now available in XSU for

Java.

XDK for PLSQL Support
XML SQL Utility (XSU) for PLSQL now supports XMLType.

See:

■ Chapter 24, "Exchanging XML Data Using Advanced Queueing

(AQ) and Oracle Streams"

■ Oracle9i Application Developer’s Guide - Advanced Queuing

See:

■ "Generating XML Using XSQL Pages Publishing Framework"

on page 10-52. and "Generating XML Using XML SQL Utility

(XSU)" on page 10-54

■ Oracle9i XML Developer’s Kits Guide - XDK
l

Part I

 Introducing Oracle XML DB

Part I of this manual introduces Oracle XML DB. It contains the following chapters:

■ Chapter 1, "Introducing Oracle XML DB"

■ Chapter 2, "Getting Started with Oracle XML DB"

■ Chapter 3, "Using Oracle XML DB"

Introducing Oracle XM
1

Introducing Oracle XML DB

This chapter introduces you to Oracle XML DB by describing the Oracle XML DB

benefits, features, and architecture. This chapter contains the following sections:

■ Introducing Oracle XML DB

■ Benefits of Oracle XML DB

■ Key Features of Oracle XML DB

■ Oracle XML DB and XML Schema

■ Oracle XML DB Architecture

■ XMLType Storage Architecture

■ Why Use Oracle XML DB?

■ Searching XML Data Stored in CLOBs Using Oracle Text

■ Building Oracle XML DB XML Messaging Applications with Advanced

Queueing

■ Managing Oracle XML DB Applications with Oracle Enterprise Manager

■ Requirements for Running Oracle XML DB

■ Oracle XML DB Technical Support

■ Terminology Used in This Manual

■ Oracle XML DB Examples Used in This Manual
L DB 1-1

Introducing Oracle XML DB
Introducing Oracle XML DB
This chapter introduces you to Oracle XML DB. It discusses the features available

for building XML applications on the Oracle9i database.

From its beginnings, XML's core characteristics of self-description and dynamic

extensibility have provided the flexibility needed to transport messages between

various applications, and loosely couple distributed business processes.

XML is also language-independent and platform-independent. As XML support has

become standard in browsers, application servers, and databases, enterprises have

wished to tie legacy applications to the Web using XML to transform various

proprietary file- and document-exchange templates into XML.

More recently, a new generation of XML standards, such as XML Schema, has

enabled a unified data model that can address both structured data and documents.

XML Schema has emerged as a key innovation in managing document content with

the same rigor as data by enabling documents marked up as XML to move into the

database.

Oracle XML DB is a set of built-in high-performance storage and retrieval

technologies geared to XML. Oracle XML DB fully absorbs the World Wide Web

Consortium (W3C) XML data model into Oracle9i database and provides new

standard access methods for navigating and querying XML. You get all the

advantages of relational database technology and XML technology at the same

time. Oracle XML DB can be used to store, query, update, transform, or otherwise

process XML, while at the same time providing SQL access to the same XML data.

Not a Separate Database Server
Oracle XML DB is not some separate server but rather the name for a distinct group

of technologies related to high-performance XML storage and retrieval that are

available within the familiar Oracle database. Oracle XML DB can also be thought

of as an evolution of the Oracle database that encompasses both SQL and XML data

models in a highly interoperable manner, thus providing native XML support.

You use Oracle XML DB in conjunction with Oracle XML Developer’s Kit (XDKs).

XDKs provide common development-time utilities that can run in the middle tier in

Oracle9iAS or in Oracle9i database.

See Also: Oracle9i XML Developer’s Kits Guide - XDK. for more

information about XDK
1-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Benefits of Oracle XML DB
Benefits of Oracle XML DB
Applications often manage structured data as tables and unstructured data as files

or Large Objects (LOBs). This subjects developers to different paradigms for

managing different kinds of data. Systems channel application-development down

either of the following paths:

■ Unstructured. This typically makes document access transparent and table

access complex.

■ Structured. This typically makes document access complex and table access

transparent.

Oracle XML DB provides the following benefits:

■ The ability to store and manage both structured and unstructured data under

the same standard W3C XML data model (XML Schema).

■ Complete transparency and interchangeability between the XML and SQL data

views.

■ Valuable Repository functionality: foldering, access control, FTP, and WebDAV

protocol support with versioning. This enables applications to retain the file

abstraction when manipulating XML data brought into Oracle. As a result, you

can store XML in the database (rendering it queryable) and at the same time

access it through popular desktop tools.

■ Better management of unstructured XML data by supporting

■ Piecewise updates

■ XML indexing

■ Integrated XML text search with Oracle Text

■ Multiple views on the data, including relational views for SQL access

■ Enforcement of intra- and inter-document relationships in XML documents

■ Users today face a performance barrier in storing and retrieving complex XML.

Oracle XML DB provides high performance and scalability for XML operations

with the help of a number of specific optimizations that relate to XML-specific

data-caching and memory management, query optimization on XML, special

hierarchical indexes on the XML Repository, and so on.

■ Enables data and documents from disparate systems to be accessed, for

example, through Oracle Gateway and External Tables, and combined into a
Introducing Oracle XML DB 1-3

Key Features of Oracle XML DB
standard data model. This integrative aspect reduces the complexity of

developing applications that must deal with data from different stores.

Key Features of Oracle XML DB
Table 1–1 describes Oracle XML DB features. This list includes XML features

available since Oracle9i Release 1 (9.0.1).

Table 1–1 Oracle XML DB Features

Oracle XML DB Features Description

XMLType The native datatype XMLType helps store and manipulate XML. Multiple storage
options (Character Large Object (CLOB), structured XML) are available with
XMLType, and administrators can choose a storage that meets their requirements.
CLOB storage is an un-decomposed storage that is like an image of the original
XML.

The native structured XML storage is a shredded decomposition of XML into
underlying object-relational structures (automatically created and managed by
Oracle) for better SQL queriability.

With XMLType, you can perform SQL operations such as:

■ Queries, OLAP function invocations, and so on, on XML data, as well as XML
operations

■ XPath searches, XSL transformations, and so on, on SQL data

You can build regular SQL indexes or Oracle Text indexes on XMLType for high
performance for a very broad spectrum of applications. See Chapter 4, "Using
XMLType".

DOM fidelity The Document Object Model (DOM) is a standard programmatic representation of
XML documents. Oracle XML DB can shred XML documents while storing them
(structured XML Storage) in a manner that maintains DOM fidelity: the DOM that
you store is the DOM that you get back. DOM fidelity means that your programs
can manipulate exactly the same XML data that you got, and the process of storage
does not affect the order of elements, the presence of namespaces and so on. DOM
fidelity does not, however, imply maintenance of whitespaces, and the like; if you
want to preserve the exact layout of XML including whitespaces you can use
CLOB storage. See Chapter 5, "Structured Mapping of XMLType".

Document fidelity For applications that need to store XML while maintaining complete fidelity to the
original, including whitespace characters, the CLOB storage option is available.
1-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Key Features of Oracle XML DB
XML Schema Oracle XML DB gives you the ability to constrain XML documents to XML
schemas. You can create tables and types automatically given a W3C standard
XML Schema. You can also enforce that an XML document being stored is
schema-valid. This means you have a standard data model for all your data
(structured and unstructured) and can use the database to enforce this data model.
See Chapter 5, "Structured Mapping of XMLType".

XML Schema storage
with DOM fidelity

Use structured storage (object-relational) columns, VARRAYs, nested tables, and
LOBs to store any element or element-subtree in your XML schema and still
maintain DOM fidelity (DOM stored == DOM retrieved). See Chapter 5,
"Structured Mapping of XMLType".

Note: If you choose CLOB storage option, available with XMLType since Oracle9i
Release 1 (9.0.1), you can keep whitespaces.

XML Schema
validation

While storing XML documents in Oracle XML DB you can optionally ensure that
their structure complies (is “valid” against) with specific XML Schema. See
Chapter 6, "Transforming and Validating XMLType Data".

XML piecewise
update

You can use XPath to specify individual elements and attributes of your document
during updates, without rewriting the entire document. This is more efficient,
especially for large XML documents. See Chapter 5, "Structured Mapping of
XMLType".

XPath search You can use XPath syntax (embedded in an SQL statement or as part of an HTTP
request) to query XML content in the database. See Chapter 4, "Using XMLType"
and Chapter 7, "Searching XML Data with Oracle Text".

XML indexes Use XPath to specify parts of your document to create indexes for XPath searches.
Enables fast access to XML documents. See Chapter 4, "Using XMLType".

SQLX operators New SQL member functions tracking the emerging ANSI SQLX standard, such as,
XMLElement (to create XML elements on the fly) and others, to make XML
queries and on-the-fly XML generation easy. These render SQL and XML
metaphors interoperable.See Chapter 10, "Generating XML Data from the
Database".

XSL transformations
for XMLType

Use XSLT to transform XML documents through an SQL operator.
Database-resident, high-performance XSL transformations. See Chapter 6,
"Transforming and Validating XMLType Data" and Appendix D, "XSLT Primer".

Lazy XML loading Oracle XML DB provides a virtual DOM; it only loads rows of data as they are
requested, throwing away previously referenced sections of the document if
memory usage grows too large. You can use this to get high scalability when many
concurrent users are dealing with large XML documents. The virtual DOM is
available through Java interfaces running in a Java execution environment at the
client or with the server. See Chapter 8, "PL/SQL API for XMLType".

Table 1–1 Oracle XML DB Features (Cont.)

Oracle XML DB Features Description
Introducing Oracle XML DB 1-5

Key Features of Oracle XML DB
XML views You can create XML views to create permanent aggregations of various XML
document fragments or relational tables. You can also create views over
heterogeneous data sources using Oracle Gateways. See Chapter 11, "XMLType
Views".

PL/SQL and OCI
interfaces

Use DOM and other APIs for accessing and manipulating XML data. You can get
static and dynamic access to XML. See Chapter 8, "PL/SQL API for XMLType".

Schema caching Structural information (such as element tags, datatypes, and storage location) is
kept in a special schema cache, to minimize access time and storage costs. See
Chapter 5, "Structured Mapping of XMLType".

XML generation SQL operators such as SYS_XMLGEN and SYS_XMLAGG provide native,
high-performance generation of XML from SQL queries. New operators such as
XMLElement() , to create XML tables and elements on the fly, make XML
generation more flexible. See Chapter 10, "Generating XML Data from the
Database". These operators track the emerging ANSI SQLX standard.

Oracle XML DB
Repository

A built-in XML Repository. This Repository can be used for foldering whereby you
can view XML content stored in Oracle XML DB as a hierarchy of directory-like
folders. See Chapter 13, "Oracle XML DB Foldering".

■ The repository supports access control lists (ACLs) for any XMLType object, and
lets you define your own privileges in addition to providing certain
system-defined ones. See Chapter 18, "Oracle XML DB Resource Security".

■ You can use the Repository to view XML content as navigable directories
through a number of popular clients and desktop tools. Items managed by the
repository are called resources.

■ Hierarchical indexing is enabled on the Repository. Oracle XML DB provides
a special hierarchical index to speed folder search. Additionally, you can
automatically map hierarchical data in relational tables into folders (where the
hierarchy is defined by existing relational information, such as with CONNECT
BY).

SQL Repository
search

You can search the XML Repository using SQL. Operators like UNDER_PATH and
DEPTH allow applications to search folders, XML file metadata (such as owner
and creation date), and XML file content. See Chapter 15, "RESOURCE_VIEW and
PATH_VIEW".

WebDav, HTTP, and
FTP access

You can access any foldered XMLType row using WebDAV and FTP. Users
manipulating XML data in the Oracle9i database can use the HTTP API. See
Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".

Versioning Oracle XML DB provides versioning and version-management capabilities over
resources managed by the XML Repository. See Chapter 14, "Oracle XML DB
Versioning".

Table 1–1 Oracle XML DB Features (Cont.)

Oracle XML DB Features Description
1-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Architecture
Oracle XML DB and XML Schema
XML schema unifies both document and data modeling. In Oracle XML DB, you can

create tables and types automatically using XML Schema. In short, this means that

you can develop and use a standard data model for all your data, structured,

unstructured, and pseudo/semi-structured. You can now use Oracle9i database to

enforce this data model for all your data.

You can create XML schema-based XMLType tables and columns and optionally

specify, for example, that they:

■ Conform to pre-registered XML schema

■ Are stored in structured storage format specified by the XML schema

maintaining DOM fidelity

You can also choose to wrap existing relational and object-relational data into XML

format using XMLType views.

You can store an XMLType object as an XML schema-based object or a non-XML

schema-based object:

■ XML Schema-based objects. These are stored in Oracle XML DB as LOBs or in

structured storage (object-relationally) in tables, columns, or views.

■ Non-XML schema-based objects. These are stored in Oracle XML DB as Large

Objects (LOBs).

You can map from XML instances to structured or LOB storage. The mapping can

be specified in XML schema and the XML schema must be registered in Oracle XML

DB. This is a required step before storing XML schema-based instance documents.

Once registered, the XML schema can be referenced using its URL.

Oracle XML DB Architecture
Figure 1–1 shows the Oracle XML DB architecture. The two main features in Oracle

XML DB architecture are:

■ The XMLType tables and views storage, which includes storage of XMLType
tables and views

■ The Oracle XML DB Repository, also referred to in this manual as "XML

Repository" or "Repository"

The section following Figure 1–1 describes the architecture in more detail.
Introducing Oracle XML DB 1-7

Oracle XML DB Architecture
Figure 1–1 Oracle XML DB Architecture: XMLType Storage and Repository

AQ and
Oracle9 i
Streams
Access

Gateways
to external

sources

XMLType Tables
and Views

Oracle XML DB
Repository

Oracle XML DB

Oracle9 i Database

Direct
HTTP

Access

Oracle
Net

Services
Access

Browser
or other

UI

WebDAV
Access

FTP
Access

Browser JDBC
Application

Desktop
Tool

FTP
Tool

XML Services
• XML Validation
• XML Transformation
• XML Schema

Registration
• Create Tables

Store in LOB or O-R
• Insert, Delete, Update

XMLType tables
• Indexing

Retrieve / Generate
XML Using
XMLType APIs
• SQL
• Java
• PL/SQL

XML Services
• Versioning
• ACL Security
• Foldering

Retrieve XML Using
Resource APIs
• SQL
• Java / JNDI
• PL / SQL
1-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Architecture
XMLType Tables and Views Storage
"XMLType tables and views storage" in Oracle XML DB provides a native XML

storage and retrieval capability in the database, strongly integrated with SQL.

XML data, including XML schema definition files can be stored in LOBs, in

structured storage (object-relationally), or using any hybrid combining both LOBs

and structured storage. See Chapter 3, "Using Oracle XML DB" and Chapter 4,

"Using XMLType".

Supported XML Access APIs
■ PL/SQL and Java APIs for XMLType. Use these APIs to:

■ Create XMLType tables, columns, and views

■ Query and retrieve XML data

■ SQL functions, such as XMLElement() and XMLForest() . Applications can

query XML data in the database using standard SQL and SQL member

functions that comply with the SQLX standard.

Supported XML Services
In Oracle XML DB, besides accessing or generating XML data, you can also perform

various operations on the data:

■ PL/SQL and Java APIs for XMLType. These enable you to manipulate

XMLType data, such as update, delete, and insert XML data.

■ Indexing. This speeds up data searches where XPath features are not critical. It

is most suited for XML data stored in LOBs.

■ Transforming XML data to other XML, HTML, and so on, using XMLType’s
XMLTransform() function, XDK’s XSLT Processors, or XSQL Servlet Pages

Publishing Framework. See Chapter 6, "Transforming and Validating XMLType

Data" and Chapter 10, "Generating XML Data from the Database".

■ Validating XML data. Validates XML data against XML schema when the XML

data is stored in the database.

See Also: Part IV. Viewing Existing Data as XML.

See Also: "XMLType Storage Architecture" on page 1-11.
Introducing Oracle XML DB 1-9

Oracle XML DB Architecture
Oracle XML DB Repository
Oracle XML DB Repository (XML Repository or Repository) is an XML data

repository in the Oracle9i database optimized for handling XML data. At the heart

of Oracle XML DB Repository is the Oracle XML DB foldering module.

The contents of Oracle XML DB Repository are referred to as resources. These can be

either containers (or directories / folders) or files. All resources are identified by a

path name and have a (extensible) set of (metadata) properties such as Owner,

CreationDate, and so on, in addition to the actual contents defined by the user.

Supported XML Access APIs
Figure 1–1 lists the following Oracle XML DB supported XML access and

manipulation APIs:

■ Oracle XML DB Resource APIs. Use these APIs to access the foldered XMLType
and other data, that is, data accessed using the Oracle XML DB hierarchically

indexed Repository. The APIs are available in the following languages:

– SQL (through the RESOURCE_VIEW and PATH_VIEW APIs)

– PL/SQL (DBMS_XDB) API

– Java API

■ Oracle XML DB Protocol Server. Oracle XML DB supports FTP, HTTP, and

WebDav protocols, as well as JDBC, for fast access of XML data stored in the

database in XMLType tables and columns. See Chapter 19, "Using FTP, HTTP,

and WebDAV Protocols".

Supported XML Services
XML Repository, besides supporting APIs to access and manipulate XML and other

data, also supports the following services:

■ Versioning. Oracle XML DB provides support for versioning resources. The

DBMS_XDB_VERSION PL/SQL package implements functions to make a

resource version-controlled. Any subsequent updates to the resource results in

See Also: Chapter 13, "Oracle XML DB Foldering".

See Also: Part V. Oracle XML DB Repository: Foldering, Security,

and Protocols
1-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture
new versions being created while the data corresponding to the previous

versions is retained.

■ ACL Security. Security of accessing Oracle XML DB resources is based on the

ACL (Access Control Lists) mechanism. Every resource in Oracle XML DB has

an associated ACL that lists its privileges. Whenever resources are accessed or

manipulated, these ACLs determine if the operation is legal.

■ Foldering. XML Repository’s foldering module manages a persistent hierarchy

of containers, also known as folders or directories, and resources. Other Oracle

XML DB modules, such as protocol servers, the schema manager, and the

Oracle XML DB RESOURCE_VIEW API, use the foldering module to map path

names to resources.

XMLType Storage Architecture
Figure 1–2 describes the XMLType tables and views storage architecture in more

detail.

For XMLType tables, tables with XMLType columns, and views, if XML

schema-based and the XML schema is registered with Oracle XML DB, XML

elements are mapped to database tables. These can be easily viewed and accessed in

XML Repository.

Data in XMLType tables and tables containing XMLType columns can be stored in

Character Large Objects (CLOBs) or natively in structured XML storage.

Data in XMLType views can be stored in local tables or remote tables that are

accessed using DBLinks.

Both XMLType tables and views can be indexed using B*Tree, Oracle Text,

function-based, or bitmap indexes.

Options for accessing data in XML Repository include:

■ HTTP, through the HTTP protocol handler.

■ WebDav and FTP, through the WebDav and FTP protocol server.

■ SQL, through Oracle Net Services including JDBC. Oracle XML DB also

supports XML data messaging using Advanced Queueing (AQ) and SOAP.
Introducing Oracle XML DB 1-11

XMLType Storage Architecture
See Also:

■ Part II. Storing and Retrieving XML Data in Oracle XML DB

■ Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

■ Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"

■ Chapter 24, "Exchanging XML Data Using Advanced Queueing

(AQ) and Oracle Streams"
1-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture
Figure 1–2 Oracle XML DB: XMLType Storage and Retrieval Architecture

Oracle9 i
Database

Direct
HTTP

Access

HTTP
Protocol
Handler

Oracle
Net

Access

CLOB
Storage

Native
Structured

XML
Storage

SQL
Engine

JDBC

WebDAV Access
and

FTP Access

AQ
Access

DAV, FTP
Protocol
Handlers

Local
Tables DBLinks

Remote
Tables

Accessed
via DBLinks

Indexes:
• B*Tree
• Text
• Function-
 based
• Bitmap

XML Schemas

XMLType
Tables

XMLType
Views

Repository

Hierarchical
Index

Oracle XML DB
Introducing Oracle XML DB 1-13

XMLType Storage Architecture
Cached XML Object Management Architecture
Figure 1–3 shows the Oracle XML DB Cached XML Object Management

Architecture, relevant for programmatic access to XMLType instances. The Oracle

XML DB cache can be deployed at the client (with Oracle JDBC OCI driver) or

within the server. This cache provides:

■ A lazily materialized virtual DOM from the stored XMLType, whose nodes are

fetched on demand

■ A cache for XML schemas

You can thus get dynamic access to XML without having to materialize an entire

XML DOM in memory. This is accomplished by calculating offsets to the nodes in

the DOM during compilation.

Figure 1–3 Cached XML Object Management Architecture

XML
Schemas Cache

Cached XML
Object
Management

Dynamic
Java

Access

Virtual
DOM
1-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture
XML Repository Architecture
Figure 1–4 describes the Oracle XML DB Repository (XML Repository) architecture.

A resource is any piece of content managed by Oracle XML DB, for which we desire

to maintain or view the file/folder metaphor.

Each resource has a name, an associated access control list that determines who can

see the resource, certain static properties, and some extra ones that are extensible by

the application. The application using the Repository obtains a logical view of

folders in parent-child arrangement. The Repository is available in the database (for

example, for SQL access) using the RESOURCE_VIEW.

The RESOURCE_VIEW in Oracle9i database consists of a Resource (itself an

XMLType), that contains the queryable name of the resource, its ACLs, and its

properties, static or extensible.

■ If the content comprising the resource is XML (stored somewhere in an

XMLType table or view), the RESOURCE_VIEW points to that XMLType row

that stores the content.

■ If the content is not XML, then the RESOURCE_VIEW stores it as a LOB.

Parent-child relationships between folders (necessary to construct the hierarchy) are

maintained and traversed efficiently using the hierarchical index. Text indexes are

available to search the properties of a resource, and internal B*Tree indexes over

Names and ACLs speed up access to these attributes of the Resource XMLType.

In addition to the resource information, the RESOURCE_VIEW also contains a Path

column, which holds the paths to each resource.

See Also:

■ Chapter 13, "Oracle XML DB Foldering"

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW"
Introducing Oracle XML DB 1-15

Why Use Oracle XML DB?
Figure 1–4 Oracle XML DB: Repository Architecture

Why Use Oracle XML DB?
The following section describes Oracle XML DB advantages for building XML

database applications. The main advantages are:

■ Unifying Data and Content with Oracle XML DB

■ Oracle XML DB Offers Faster Storage and Retrieval of Complex XML

Documents

■ Oracle XML DB Helps You Integrate Applications

Table
Name ACL Property 1 Property N Property N

RESOURCE_VIEW (XMLType)

Name ACL Property 1 Property N Extra Content Parent

abc

LOB

XMLType
Rows

Tables or
Views
of XML

Application Logical View of
Oracle XML DB Repository

Path

Database View of Oracle XML DB Repository

B*Tree
Index

Text
Index

Hierarchical
Index

Oracle9 i Database

WebDAV
FTP
1-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?
■ When Your Data Is Not XML You Can Use XMLType Views

Unifying Data and Content with Oracle XML DB
Most applications’ data and Web content is stored in a relational database or a file

system, or a combination of both. XML is used mostly for transport and is

generated from a database or a file system. As the volume of XML transported

grows, the cost of regenerating these XML documents grows and these storage

methods become less effective at accommodating XML content. See Figure 1–5.

Oracle XML DB is effective at accommodating XML content. It provides enhanced

native support for XML.

Figure 1–5 Unifying Data and Content: Some Common XML Architectures

Application Server

Applications

XML Processing and
Repository Layer

RDBMS

Structured Data
and Metadata

Multimedia and
Document Content

Application Server

Applications

RDBMS

Structured DataMultimedia, Document
Content and XML,

Metadata

XML
Repository

Oracle iAS

Applications

Oracle
XML DB

Multimedia and
Document Content,

Structured Data,
XML, Metadata

File
System

Non-Native XML Processing Separate Data and Content Servers Oracle XML DB
Introducing Oracle XML DB 1-17

Why Use Oracle XML DB?
Organizations today typically manage their structured data and unstructured data

differently:

■ Unstructured data, in tables, makes document access transparent and table

access complex

■ Structured data, often in binary large objects (such as in BLOBs) makes access

more complex and table access transparent.

With Oracle XML DB you can store and manage both structured, unstructured, and

pseudo or semi-structured data, using a standard data model, and standard SQL

and XML.

Oracle XML DB provides complete transparency and interchangeability between

XML and SQL. You can perform both the following:

■ XML operations on object-relational (such as table) data

■ SQL operations on XML documents

This makes the database much more accessible to XML-shaped data content.

Exploiting Database Capabilities
In previous releases, without strong database XML support, you most likely stored

your XML data in files or in unstructured storage such as CLOBs. Whether you

stored your XML data in files or CLOBs, you did not exploit several key capabilities

of Oracle database:

■ Indexing and Search: Applications use queries such as “find all the product

definitions created between March and April 2002", a query that is typically

supported by a B*Tree index on a date column. Previously, content management

vendors have had to build proprietary query APIs to handle this problem.

Oracle XML DB can enable efficient structured searches on XML data. See

Chapter 4, "Using XMLType", Chapter 10, "Generating XML Data from the

Database", and Chapter 7, "Searching XML Data with Oracle Text".

■ Updates and Transaction Processing: Commercial relational databases use fast

updates of subparts of records, with minimal contention between users trying

to update. As traditionally document-centric data participate in collaborative

environments through XML, this requirement becomes more important. File- or

CLOB- storage cannot provide the granular concurrency control that Oracle

XML DB does. See Chapter 4, "Using XMLType".

■ Managing Relationships: Data with any structure typically has foreign key

constraints. Currently, XML data-stores lack this feature, so you must

implement any constraints in application code. Oracle XML DB enables you to
1-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?
constrain XML data according to XML schema definitions and hence achieve

control over relationships that structured data has always enjoyed. See

Chapter 5, "Structured Mapping of XMLType" and the purchase order case

study/examples at the end of Chapter 4, "Using XMLType".

■ Multiple Views of Data: Most enterprise applications need to group data

together in different ways for different modules. This is why relational views

are necessary—to allow for these multiple ways to combine data. By allowing

views on XML, Oracle XML DB creates different logical abstractions on XML

for, say, consumption by different types of applications. See Chapter 11,

"XMLType Views".

■ Performance and Scalability: Users expect data storage, retrieval, and query to

be fast. Loading a file or CLOB and parsing is typically slower than relational

data access. Oracle XML DB dramatically speeds up XML storage and retrieval.

See Chapter 2, "Getting Started with Oracle XML DB" and Chapter 3, "Using

Oracle XML DB".

■ Ease of Development: Databases are foremost an application platform that

provides standard, easy ways to manipulate, transform, and modify individual

data elements. While typical XML parsers give standard read access to XML

data they do not provide an easy way to modify and store individual XML

elements. Oracle XML DB supports a number of standard ways to store, modify,

and retrieve data: using XML Schema, XPath, DOM, and Java.

Exploiting XML Capabilities
If the drawbacks of XML file storage force you to break down XML into database

tables and columns, there are several XML advantages you have left:

■ Structure Independence: The open content model of XML cannot be captured

easily in the pure tables-and-columns world. XML Schemas allow global

element declarations, not just scoped to a container. Hence you can find a

particular data item regardless of where in the XML document it moves to as

your application evolves. See Chapter 5, "Structured Mapping of XMLType".

See Also:

■ Chapter 9, "Java API for XMLType"

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

■ Chapter 16, "Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)"
Introducing Oracle XML DB 1-19

Why Use Oracle XML DB?
■ Storage Independence: When you use relational design, your client programs

must know where your data is stored, in what format, what table, and what the

relationships are among those tables. XMLType enables you to write

applications without that knowledge and allows DBAs to map structured data

to physical table and column storage. See Chapter 5, "Structured Mapping of

XMLType" and Chapter 13, "Oracle XML DB Foldering".

■ Ease of Presentation: XML is understood natively by browsers, many popular

desktop applications, and most internet applications. Relational data is not

generally accessible directly from applications, but requires programming to be

made accessible to standard clients. Oracle XML DB stores data as XML and

pump it out as XML, requiring no programming to display your database

content. See:

■ Chapter 6, "Transforming and Validating XMLType Data".

■ Chapter 10, "Generating XML Data from the Database".

■ Chapter 11, "XMLType Views".

■ Oracle9i XML Developer’s Kits Guide - XDK, in the chapter, “XSQL Pages

Publishing Framework”. It includes XMLType examples.

■ Ease of Interchange: XML is the language of choice in Business-to-Business

(B2B) data exchange. If you are forced to store XML in an arbitrary table

structure, you are using some kind of proprietary translation. Whenever you

translate a language, information is lost and interchange suffers. By natively

understanding XML and providing DOM fidelity in the storage/retrieval

process, Oracle XML DB enables a clean interchange. See:

■ Chapter 6, "Transforming and Validating XMLType Data"

■ Chapter 11, "XMLType Views"

Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents
Users today face a performance barrier when storing and retrieving complex, large,

or many XML documents. Oracle XML DB provides very high performance and

scalability for XML operations. The major performance features are:

■ Native XMLType. See Chapter 4, "Using XMLType".

■ The lazily evaluated virtual DOM support. See Chapter 8, "PL/SQL API for

XMLType".
1-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?
■ Database-integrated ad-hoc XPath and XSLT support. This support is described

in several chapters, including Chapter 4, "Using XMLType" and Chapter 6,

"Transforming and Validating XMLType Data".

■ XML Schema-caching support. See Chapter 5, "Structured Mapping of

XMLType".

■ CTXPATH Text indexing. See Chapter 7, "Searching XML Data with Oracle

Text".

■ The hierarchical index over the Repository. See Chapter 13, "Oracle XML DB

Foldering".

Oracle XML DB Helps You Integrate Applications
Oracle XML DB enables data from disparate systems to be accessed through

gateways and combined into one common data model. This reduces the complexity

of developing applications that must deal with data from different stores.

When Your Data Is Not XML You Can Use XMLType Views
XMLType views provide a way for you wrap existing relational and object-relational

data in XML format. This is especially useful if, for example, your legacy data is not

in XML but you need to migrate to an XML format. Using XMLType views you do

not need to alter your application code.

To use XMLType views you must first register an XML schema with annotations

that represent the bi-directional mapping from XML to SQL object types and back to

XML. An XMLType view conforming to this schema (mapping) can then be created

by providing an underlying query that constructs instances of the appropriate SQL

object type. Figure 1–6 summarizes the Oracle XML DB advantages.

See Also: Chapter 11, "XMLType Views".
Introducing Oracle XML DB 1-21

Why Use Oracle XML DB?
Figure 1–6 Oracle XML DB Benefits

Oracle
XML DB

Faster Storage and
Retrieval of Complex

XML Documents
Unifies Data
and Content

Helps
Integrate

Applications

Also Handles
non-XML Data
with XMLType

Views

Higher performance
of XML operations

Higher scalability
of XML operations

Facilitates migrating of
legacy and non-XML to
XML data

Enhanced native
database support for
XML

Stores and manages
structured, unstructured,
and semi-structured data

Transparent XML and SQL
 interoperability

Exploits database features:

Exploits XML features:

XMLType views
over local or remote
sources

Connectivity to other
databases, files, ...

Uniform SQL / XML
queries over data
integrated from
multiple sources

indexing, searching

updating, transaction processing

manages constraints

multiple data views
speeds up XML storage, retrieval

supports standards for storing,
modifying, retrieving data

structure and storage independence

facilitates presentation and data display

facilitates B2B data exchange
1-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Building Oracle XML DB XML Messaging Applications with Advanced Queueing
Searching XML Data Stored in CLOBs Using Oracle Text
Oracle enables special indexing on XML, including Oracle Text indexes for section

searching, special operators to process XML, aggregation of XML, and special

optimization of queries involving XML.

XML data stored in Character Large Objects (CLOBs) or stored in XMLType
columns in structured storage (object-relationally), can be indexed using Oracle

Text. HASPATH() and INPATH() operators are designed to optimize XML data

searches where you can search within XML text for substring matches.

Oracle9i Release 2 (9.2) also provides:

■ CONTAINS() function that can be used with existsNode() for XPath based

searches. This is for use as the ora:contains function in an XPath query, as

part of existsNode() .

■ The ability to create indexes on UriType and XDBUriType columns.

■ A new index type, CTXXPATH, that allows higher performance XPath searching

in Oracle XML DB under existsNode() .

Building Oracle XML DB XML Messaging Applications with Advanced
Queueing

Advanced Queueing now supports the use of:

■ XMLType as a message/payload type, including XML schema-based XMLType

■ Queueing/dequeuing of XMLType messages

See Also:

■ Chapter 7, "Searching XML Data with Oracle Text"

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference
Introducing Oracle XML DB 1-23

Managing Oracle XML DB Applications with Oracle Enterprise Manager
Managing Oracle XML DB Applications with Oracle Enterprise Manager
You can use Oracle Enterprise Manager (Enterprise Manager) to manage and

administer your Oracle XML DB application. Enterprise Manager’s graphical user

interface facilitates your performing the following tasks:

■ Configuration

■ Configuring Oracle XML DB, including protocol server configuration

■ Viewing and editing Oracle XML DB configuration parameters

■ Registering XML schema

■ Create resources

■ Managing resource security, such as editing resource ACL definitions

■ Granting and revoking resource privileges

■ Creating and editing resource indexes

■ Viewing and navigating your Oracle XML DB hierarchical Repository

■ Create XML schema-based tables and views

■ Creating your storage infrastructure based on XML schemas

■ Editing an XML schema

■ Creating an XMLType table and a table with XMLType columns

■ Creating a view based XML schema

■ Creating a function-based index based on XPath expressions

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

information about using XMLType with Oracle Advanced

Queuing

■ Chapter 24, "Exchanging XML Data Using Advanced Queueing

(AQ) and Oracle Streams"

See Also: Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"
1-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Standards Supported by Oracle XML DB
Requirements for Running Oracle XML DB
Oracle XML DB is available with Oracle9i Release 2 (9.2).

Standards Supported by Oracle XML DB
Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

■ W3C XML Schema 1.0 Recommendation. You can register XML schemas,

validate stored XML content against XML schemas, or constrain XML stored in

the server to XML schemas.

■ W3C XPath 1.0 Recommendation. You can search or traverse XML stored inside

the database using XPath, either from HTTP requests or from SQL.

■ ISO-ANSI Working Draft for XML-Related Specifications (SQL/XML) [ISO/IEC

9075 Part 14 and ANSI]. You can use the emerging ANSI SQLX functions to

query XML from SQL.

■ Java Database Connectivity (JDBC) API. JDBC access to XML is available for

Java programmers.

■ W3C XSL 1.0 Recommendation. You can transform XML documents at the

server using XSLT.

■ W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML

stored in the server as an XML DOM, for dynamic access.

■ Protocol support. You can store or retrieve XML data from Oracle XML DB

using standard protocols such as HTTP, FTP, IETF WebDAV, as well as Oracle

Net. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".

■ Java Servlet version 2.2, (except that the Servlet WAR file, web.xml is not

supported in its entirety, and only one ServletContext and one web-app are

currently supported, and stateful servlets are not supported). See Chapter 20,

"Writing Oracle XML DB Applications in Java".

■ Simple Object Access Protocol (SOAP). You can access XML stored in the server

from SOAP requests. You can build, publish, or find Web Services using Oracle

XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle

See:

■ http://otn.oracle.com/tech/xml for the latest news

and white papers on Oracle XML DB

■ Chapter 2, "Getting Started with Oracle XML DB"
Introducing Oracle XML DB 1-25

Oracle XML DB Technical Support
Advanced Queuing IDAP, the SOAP specification for queuing operations, on

XML stored in Oracle9i databases. See Chapter 24, "Exchanging XML Data

Using Advanced Queueing (AQ) and Oracle Streams" and Oracle9i Application
Developer’s Guide - Advanced Queuing.

Oracle XML DB Technical Support
Besides your regular channels of support through your customer representative or

consultant, technical support for Oracle XML-enabled technologies is available free

through the Discussions option on Oracle Technology Network (OTN):

http://otn.oracle.com/tech/xml

You do not need to be a registered user of OTN to post or reply to XML-related

questions on the OTN technical discussion forum. To use the OTN technical forum

follow these steps:

1. In the left-hand navigation bar of the OTN site, select Support > Discussions.

2. Click Enter a Technical Forum.

3. Scroll down to the Technologies section. Select XML.

4. Post any questions, comments, requests, or bug reports.

Terminology Used in This Manual
Table 1–2 describes terms used in this manual.

See Also: "Glossary"
1-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Terminology Used in This Manual
Table 1–2 Terminology Used in This Manual

Term Used in Manual Description

XML Schema XML Schema is a schema definition language (also in XML) that can be used to
describe the structure and various other semantics of conforming instance
documents. See Appendix B, "XML Schema Primer".

Oracle XML DB uses annotated XML schemas, that is, XML schemas that include
additional attributes defined by Oracle XML DB. The Oracle XML DB attributes
serve to specify metadata that in turn determines both the XML structuring and its
mapping to a database schema. You can register XML schemas and then use the

appropriate XML schema URLs while creating XMLType tables and columns and

also to define XMLType views. See:

■ Chapter 5, "Structured Mapping of XMLType"

■ Appendix B, "XML Schema Primer"

XPath A language for addressing parts of an XML document, for use by XSLT and
XPointer. XPath uses the directory traversal syntax to traverse an XML document.
It includes syntax for specifying predicate expressions on the nodes traversed. The
result of a XPath traversal is an XML fragment. See Appendix C, "XPath and
Namespace Primer".

XSL A stylesheet language used for transforming XML documents to HTML, XML or
any other formats. See Appendix D, "XSLT Primer".

DOM Document Object Model (DOM) is an application program interface (API) for
HTML and XML documents. It defines the logical structure of documents and the
way a document is accessed and manipulated. In the DOM specification, the term
“document” is used in the broad sense.

XML is increasingly being used as a way of representing many different kinds of
information that may be stored in diverse systems, and much of this would
traditionally have been seen as data rather than as documents. Nevertheless, XML
presents this data as documents, and DOM can be used to manage this data.

With DOM, you can build documents, navigate their structure, and add, modify,
or delete elements and content. Anything in an HTML or XML document can be
accessed, changed, deleted, or added using DOM, with a few exceptions. DOM is
designed for use with any programming language.

Oracle XML DB provides implementations of DOM APIs to operate on XMLType
instances using various client APIs including PL/SQL DOM, Java DOM, and C
DOM (for OCI clients). See

■ Chapter 5, "Structured Mapping of XMLType"

■ Chapter 8, "PL/SQL API for XMLType"

Oracle XML DB
Repository

See also Chapter 3, "Using Oracle XML DB"
Introducing Oracle XML DB 1-27

Terminology Used in This Manual
Resource An object identified by a URL. In compliance with HTTP and WebDAV standards,
it has a set of system properties, such as displayname , creationdate , and so
on. In all cases, it maintains a reference count and destroys any associated data
when the last URL binding to it is removed. It maintains an access control list

(ACL) and owner. An Oracle XML DB resource is an XMLType mapped to a path
name that contains these properties. See Chapter 15, "RESOURCE_VIEW and
PATH_VIEW".

Repository Oracle XML DB Repository is the set of all Oracle XML DB resources. The

Repository is a hierarchically organized set of XMLType objects, each with a path
name to identify them. Think of the Oracle XML DB Repository as a file system of
objects rather than files. There is one root to this Repository (“/”), which contains a
set of resources, each with a path name. Resources that contain (“contain” with
respect to the hierarchical naming system) other resources are called folders (see
“Folder” in the following).

Oracle XML DB objects can have many path names (that is, a resource can be in
more than one folder). In some sense, the database itself is the Repository, since
any database object can be mapped to a path name. However, Oracle XML DB uses
“Repository” to refer to the set of database objects, in any schema, that are mapped
to path names. See Chapter 13, "Oracle XML DB Foldering".

Folder A non-leaf node object in Oracle XML DB Repository, or one with the potential to
be such a node. Oracle XML DB has special storage semantics for collections for
optimization reasons. It maintains a special kind of hierarchical index used to
navigate the hierarchy of collections, and defines a property, called name that is
used to form path names in the hierarchy. There are many names for collections,
such as folders and directories. Any XML element type can be a folder by specifying
the isFolder attribute in the Oracle XML DB schema. See Chapter 13, "Oracle
XML DB Foldering".

Pathname A hierarchical name is composed of a root element (the first /), element separators
(/), and various sub-elements (or path elements). A path element can be composed
of any character in the database character set except the following (’\’ ‘/’). In
Oracle XML DB, a forward slash is the default name separator in a path name.

Resource Name A resource here means any database object stored in Oracle XML DB Repository.
Resource name is the name of a resource within its parent folder. Resource names
are the path elements, that is, filenames within folders. Resource names must be
unique (potentially subject to case-insensitivity) within a folder.

Content The body of a resource is what you get when you treat the resource like a file and
ask for its contents.

XDBBinary An XML element defined by the Oracle XML DB schema that contains binary data.
XDBBinary elements are stored in the Repository when completely unstructured
binary data is uploaded into Oracle XML DB.

Table 1–2 Terminology Used in This Manual (Cont.)

Term Used in Manual Description
1-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Examples Used in This Manual
Oracle XML DB Examples Used in This Manual
This manual contains examples that illustrate the use of Oracle XML DB and

XMLType. The examples are based on a number of database schema, sample XML

documents, and sample XML schema. The infrastructure for the examples is

described, in most cases, with the examples in each chapter.

ACL Terminology See also Chapter 18, "Oracle XML DB Resource Security"

Access Control List
(ACL)

Restricts access to an object. Oracle XML DB uses ACLs to restrict access to any

Oracle XML DB resource, that is, any XMLType object that is mapped into the
Oracle XML DB file system hierarchy.

Protocol Terminology See also Chapter 19, "Using FTP, HTTP, and WebDAV Protocols" and Chapter 3,
"Using Oracle XML DB"

FTP “File Transfer Protocol”. Defined as an Internet Standard (STD009) in RFC959.
Oracle XML DB implements this standard. FTP is implemented by both dedicated
clients at the operating system level, file system explorer clients, and browsers.
FTP is commonly used for bulk file upload and download and for scripting of
Repository maintenance. FTP can be used in a mode similar to HTTP, with
frequent session establishment/destruction, by browsers in “passive” mode.

HTTP “HyperText Transfer Protocol”. Oracle XML DB implements HTTP 1.1 as defined
in RFC2616. Oracle XML DB implements cookies, basic authentication, and
HTTP/1.1 (RFC2616, 2109 & 2965) in this release.

WebDAV Web Distributed Authoring and Versioning (WebDav). Oracle XML DB supports
RFC2518 and access control in this release.

Servlets Sun developed a widely accepted standard for invoking Java code as the result of
protocol requests and passing parameters to that request. Servlets are most
commonly implemented with HTTP. The majority of Java services are
implemented as servlets, through mechanisms (implemented in Java) such as JSPs
(Java Server Pages) or SOAP (Simple Object Access Protocol). Servlets thus form
the architectural basis for a large percentage of web application development.

Oracle XML DB provides a method for invoking Java stored procedures over
protocols other than Oracle Services (Net Services). Oracle XML DB implements
most servlet standards. Chapter 20, "Writing Oracle XML DB Applications in Java".

Table 1–2 Terminology Used in This Manual (Cont.)

Term Used in Manual Description
Introducing Oracle XML DB 1-29

Oracle XML DB Examples Used in This Manual
See Also:

■ Appendix G, "Example Setup scripts. Oracle XML DB -

Supplied XML Schemas"

■ http://otn.oracle.com/tech/xml/doc.html for the updated

example listings.
1-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Getting Started with Oracle XM
2

Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when

planning your Oracle XML DB solution. It contains the following sections:

■ Getting Started with Oracle XML DB

■ When to Use the Oracle XML DB

■ Designing Your XML Application

■ Oracle XML DB Design Issues: Introduction

■ Oracle XML DB Application Design: a. How Structured Is Your Data?

■ Oracle XML DB Application Design: b. Access Models

■ Oracle XML DB Application Design: c. Application Language

■ Oracle XML DB Application Design: d. Processing Models

■ Oracle XML DB Design: Storage Models
L DB 2-1

Getting Started with Oracle XML DB
Getting Started with Oracle XML DB

Installing Oracle XML DB
Oracle XML DB is installed as part of the General Purpose Database shipping with

Oracle9i Release 2 (9.2) database. If you need to perform a manual installation or

de-installation of the Oracle XML DB, see Appendix A, "Installing and Configuring

Oracle XML DB" for further information.

When to Use the Oracle XML DB
Oracle XML DB is suited for any application where some or all of the data

processed by the application is represented using XML. Oracle XML DB provides

for high performance ingestion, storage, processing and retrieval of XML data.

Additionally, it also provides the ability to quickly and easily generate XML from

existing relational data.

The type of applications that Oracle XML DB is particularly suited to include:

■ Business-to-Business (B2B) and Application-to-Application (A2A) integration

■ Internet applications

■ Content-management applications

■ Messaging

■ Web Services

A typical Oracle XML DB application has one or more of the following

requirements and characteristics:

■ Large numbers of XML documents must be ingested or generated

■ Large XML documents need to be processed or generated

■ High performance searching, both within a document and across a large

collections of documents

■ High Levels of security. Fine grained control of security

■ Data processing must be contained in XML documents and data contained in

traditional relational tables

■ Uses languages such as Java that support open standards such as SQL, XML,

XPath, and XSLT
2-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Design Issues: Introduction
■ Accesses information using standard Internet protocols such as FTP,

HTTP/WebDav, or JDBC

■ Full queriability from SQL and integration with analytic capabilities

■ Validation of XML documents is critical

Designing Your XML Application
Oracle XML DB provides you with the ability to fine tune how XML documents will

be stored and processed in Oracle9i database. Depending on the nature of the

application being developed, XML storage must have at least one of the following

features

■ High performance ingestion and retrieval of XML documents

■ High performance indexing and searching of XML documents

■ Be able to update sections of an XML document

■ Manage highly either or both structured and non-structured XML documents

Oracle XML DB Design Issues: Introduction
This section discusses the preliminary design criteria you can consider when

planning your Oracle XML DB application. Figure 2–1 provides an overview of

your main design options for building Oracle XML DB applications.

a. Data
Will your data be highly structured (mostly XML), semi- structured (pseudo-

structured), or mostly non-structured? If highly structured, will your table(s) be

XML schema-based or non-schema-based? See "Oracle XML DB Application

Design: a. How Structured Is Your Data?" on page 2-5 and Chapter 3, "Using Oracle

XML DB".

b. Access
How will other applications and users access your XML and other data? How

secure must the access be? Do you need versioning? See "Oracle XML DB

Application Design: b. Access Models" on page 2-7.
Getting Started with Oracle XML DB 2-3

Oracle XML DB Design Issues: Introduction
c. Application Language
In which language(s) will you be programming your application? See "Oracle XML

DB Application Design: c. Application Language" on page 2-8.

d. Processing
Will you need to generate XML? See Chapter 10, "Generating XML Data from the

Database".

How often will XML documents be accessed, updated, and manipulated? Will you

need to update fragments or the whole document?

Will you need to transform the XML to HTML, WML, or other languages, and how

will your application transform the XML? See Chapter 6, "Transforming and

Validating XMLType Data".

Does your application need to be primarily database resident or work in both

database and middle tier?

Is your application data-centric, document- and content-centric, or integrated (is

both data- and document-centric). "Oracle XML DB Application Design: d.

Processing Models" on page 2-9.

Will you be exchanging XML data with other applications, across gateways? Will

you need Advanced Queueing (AQ) or SOAP compliance? See Chapter 24,

"Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams".

Storage
How and where will you store the data, XML data, XML schema, and so on? See

"Oracle XML DB Design: Storage Models" on page 2-10.

Note: Your choice of which models to choose in the preceding

four categories, a through d, are typically related to each other.

However, the storage model you choose is orthogonal to the choices

you make for the other design models. In other words, choices you

make for the other design modeling options are not dependent on

the storage model option you choose.
2-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: a. How Structured Is Your Data?
Figure 2–1 Oracle XML DB Design Options

Oracle XML DB Application Design: a. How Structured Is Your Data?
Figure 2–2 shows the following data structure categories and associated suggested

storage options:

■ Structured data. Is your data highly structured? In other words, is your data

mostly XML data?

■ Semi/pseudo-structured data. Is your data semi/pseudo-structured? In other

words does your data include some XML data?

■ Unstructured data. Is your data unstructured? In other words, is your data

mostly non-XML data?

XML Schema-Based or Non-Schema-Based
Also consider the following data modeling questions:

■ If your application is XML schema-based:

– For structured data, you can use either Character Large Object (CLOB) or

structured storage.

Data
Structure?

Access?

Repository
Path Access

SQL
Query Access

Language?
• Java
• JDBC
• PL/SQL
• JNDI

Processing and
Data

Manipulation?
• DOM
• SQL inserts /

updates
• XSLT
• Queriability
• Updatability

Storage Options ?

a cb d

XMLType Tables or XMLType Views
• You get the same Oracle XML DB functionality regardless

of which storage option you chose.
• The storage option affects the application's performance

and data fidelity
Getting Started with Oracle XML DB 2-5

Oracle XML DB Application Design: a. How Structured Is Your Data?
– For semi- or pseudo-structured data, you can use either CLOB, structured,

or hybrid storage. Here your XML schema can be more loosely coupled. See

also "Oracle XML DB Design: Storage Models" on page 2-10.

– For unstructured data, an XML schema design is not applicable.

■ If your application is non-schema-based. For structured, semi/

pseudo-structured, and unstructured data, you can store your data in either

CLOBs in XMLType tables or views or in files in Repository folders. With this

design you have many access options including path- and query-based access

through Resource Views.

Figure 2–2 Data Storage Models: How Structured Is Your Data?

How Structured is
Your Data?

Structured
Data

Unstructured
Data

Semi-structured
Psudo-structured

Data

XML
Schema
Based?

Non-Schema
Based?

XML
Schema
Based?

Non-Schema
Based?

Use either:
CLOB or
Structured
Storage

Store as:
• CLOB in

XMLType
Table

• File in
Repository
Folder
Views

• Access
through
Resource
APIs

Use either:
• CLOB
• Structured
• Hybrid

Storage
(semi-
structured
storage)

Store as:
• CLOB in

XMLType
Table

• File in
Repository
Folder
Views

• Access
through
Resource
APIs

Store as:
• CLOB in

XMLType
Table

• File in
Repository
Folder
Views

• Access
through
Resource
APIs
2-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: b. Access Models
Oracle XML DB Application Design: b. Access Models
Figure 2–3 shows the two main data access modes to consider when designing your

Oracle XML DB applications:

■ Navigation- or path-based access. This is suitable for both content/document

and data oriented applications. Oracle XML DB provides the following

languages and access APIs:

– SQL access through Resource/Path Views. See Chapter 15,

"RESOURCE_VIEW and PATH_VIEW".

– PL/SQL access through DBMS_XDB. See Chapter 16, "Oracle XML DB

Resource API for PL/SQL (DBMS_XDB)".

– Java access. See Chapter 17, "Oracle XML DB Resource API for Java".

– Protocol-based access using HTTP/WebDAV or FTP, most suited to

content-oriented applications. See Chapter 19, "Using FTP, HTTP, and

WebDAV Protocols".

■ Query-based access. This can be most suited to data oriented applications.

Oracle XML DB provides access using SQL queries through the following APIs:

– Java (through JDBC) access. See Chapter 9, "Java API for XMLType".

– PL/SQL access. See Chapter 8, "PL/SQL API for XMLType".

These options for accessing Repository data are also discussed in Chapter 13,

"Oracle XML DB Foldering".

You can also consider the following access model criteria:

■ What level of security do you need? See Chapter 18, "Oracle XML DB Resource

Security".

■ What kind of indexing will best suit your application? Will you need to use

Oracle Text indexing and querying? See Chapter 4, "Using XMLType" and

Chapter 7, "Searching XML Data with Oracle Text".

■ Do you need to version the data? If yes, see Chapter 14, "Oracle XML DB

Versioning".
Getting Started with Oracle XML DB 2-7

Oracle XML DB Application Design: c. Application Language
Figure 2–3 Data Access Models: How Will Users or Applications Access the Data?

Oracle XML DB Application Design: c. Application Language
You can program your Oracle XML DB applications in the following languages:

■ Java (JDBC, Java Servlets)

■ PLSQL

See Also:

■ Chapter 9, "Java API for XMLType"

■ Chapter 17, "Oracle XML DB Resource API for Java"

■ Chapter 20, "Writing Oracle XML DB Applications in Java"

■ Appendix E, "Java DOM API for XMLType, Resource API for

Java: Quick Reference"

Oracle XML DB
Data Access Options

Use SQL Use Repository

JDBC / Java bean

PL/SQL

Available Languages
and APIs

SQL (RESOURCE_ / PATH_VIEW)

JNDI

FTP

HTTP / WebDav

Available Language
and XMLType APIs

Query-based
Access

Path-based
Access
2-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: d. Processing Models
Oracle XML DB Application Design: d. Processing Models
The following processing options are available and should be considered when

designing your Oracle XML DB application:

■ XSLT. Will you need to transform the XML to HTML, WML, or other languages,

and how will your application transform the XML? While storing XML

documents in Oracle XML DB you can optionally ensure that their structure

complies (is “valid” against) with specific XML Schema. See Chapter 6,

"Transforming and Validating XMLType Data".

■ DOM. See Chapter 8, "PL/SQL API for XMLType". Use object-relational

columns, VARRAYs, nested tables, as well as LOBs to store any element or

Element-subtree in your XML Schema, and still maintain DOM fidelity (DOM

stored == DOM retrieved). Note: If you choose the CLOB storage option,

available with XMLType since Oracle9i Release 1 (9.0.1), you can keep white

spaces. If you are using XML schema, see the discussion on DOM fidelity in

Chapter 5, "Structured Mapping of XMLType".

■ XPath searching. You can use XPath syntax embedded in an SQL statement or

as part of an HTTP request to query XML content in the database. See

Chapter 4, "Using XMLType",Chapter 7, "Searching XML Data with Oracle

Text", Chapter 13, "Oracle XML DB Foldering", and Chapter 15,

"RESOURCE_VIEW and PATH_VIEW".

■ XML Generation and XMLType views. Will you need to generate or regenerate

XML? If yes, see Chapter 10, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? See

Chapter 4, "Using XMLType" and Chapter 15, "RESOURCE_VIEW and

PATH_VIEW".

Will you need to update fragments or the whole document? You can use XPath to

specify individual elements and attributes of your document during updates,

See Also:

■ Chapter 8, "PL/SQL API for XMLType"

■ Chapter 16, "Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)"

■ Appendix F, "Oracle XML DB XMLType API, PL/SQL and

Resource PL/SQL APIs: Quick Reference"
Getting Started with Oracle XML DB 2-9

Oracle XML DB Design: Storage Models
without rewriting the entire document. This is more efficient, especially for large

XML documents. Chapter 5, "Structured Mapping of XMLType".

Is your application data-centric, document- and content-centric, or integrated (is

both data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging Options
Advanced Queueing (AQ) supports XML and XMLType applications. You can

create queues with payloads that contain XMLType attributes. These can be used for

transmitting and storing messages that contain XML documents. By defining Oracle

objects with XMLType attributes, you can do the following:

■ Store more than one type of XML document in the same queue. The documents

are stored internally as CLOBs.

■ Selectively dequeue messages with XMLType attributes using the operators

existsNode() , extract() , and so on.

■ Define transformations to convert Oracle objects to XMLType.

■ Define rule-based subscribers that query message content using XMLType
operators such as existsNode() and extract() .

Oracle XML DB Design: Storage Models
Figure 2–4 summarizes the Oracle XML DB storage options with regards to using

XMLType tables or views. If you have existing or legacy relational data, use

XMLType Views.

Regardless of which storage options you choose for your Oracle XML DB

application, Oracle XML DB provides the same functionality. However, the option

you choose will affect your application’s performance and the data fidelity (data

accuracy).

Currently, the three main storage options for Oracle XML DB applications are:

■ LOB-based storage? LOB-based storage assures complete textual fidelity

including whitespaces. This means that if you store your XML documents as

See Also:

■ Chapter 24, "Exchanging XML Data Using Advanced Queueing

(AQ) and Oracle Streams"

■ Oracle9i Application Developer’s Guide - Advanced Queuing
2-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Design: Storage Models
CLOBs, when the XML documents are retrieved there will be no data loss. Data

integrity is high, and the cost of regeneration is low.

■ Structured storage? Structured storage loses whitespace information but

maintains fidelity to the XML DOM, namely DOM stored = DOM retrieved.

This provides:

– Better SQL ’queriability’ with improved performance

– Piece-wise updatability

■ Hybrid or semi-structured storage. Hybrid storage is a special case of

structured storage in which a portion of the XML data is broken up into a

structured format and the remainder of the data is stored as a CLOB.

The storage options are totally independent of the following criteria:

■ Data queryability and updatability, namely, how and how often the data is

queried and updated.

■ How your data is accessed. This is determined by your application processing

requirements.

■ What language(s) your application uses. This is also determined by your

application processing requirements.

Using XMLType Tables
If you are using XMLType tables you can store your data in:

■ CLOBs (unstructured) storage

■ Structured storage

■ Hybrid or semi-structured storage

See Also:

■ "Storing XML: Structured or Unstructured Storage", "Structured

Storage: XML Schema-Based Storage of XMLType" and "Storage

Options for Resources" in Chapter 3, "Using Oracle XML DB"

■ Chapter 4, "Using XMLType","Storing XMLType Data in Oracle

XML DB" on page 4-4

■ Chapter 5, "Structured Mapping of XMLType", "DOM Fidelity"

on page 5-21
Getting Started with Oracle XML DB 2-11

Oracle XML DB Design: Storage Models
Using XMLType Views
Use XMLType views if you have existing relational data. You can use the following

options to define the XMLType views:

■ SQLX operators. Using these operators you can store the data in relational

tables and also generate/regenerate the XML. See Chapter 10, "Generating XML

Data from the Database".

■ Object Types:

– Object tables

– Object constructors. You can store the data in relational tables using object

constructors.

– Object views

Figure 2–4 Structured Storage Options

XMLType
Views

Oracle XML DB Data
Storage Options

Your Storage Option Affects Performance
and Data Fidelity

If you have existing
relational data use
XMLType Views

CLOB or
Unstructured

Storage

Hybrid or
Semi-structured

Storage

SQLX
Operators

Relational
Tables

Object
Types

XMLType
Tables

Can define the
views using:

Structured
Storage

Object
Tables

Object
Views

Object
Constructors

Relational
Tables
2-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XM
3

Using Oracle XML DB

This chapter describes where and how you can use Oracle XML DB. It discusses and

includes examples on common Oracle XML DB usage scenarios including XMLType
data storage and access, updating and validating your data, and why it helps to

understand XPath and XML Schema. It provides you with ideas for how you can

use the Repository to store, access, and manipulate database data using standard

protocols from a variety of clients.

The chapter also discusses how you can define a default XML table for storing XML

schema-based documents and using XDBUriType to access non-schema-based

content.

It contains the following sections:

■ Storing Data in an XMLType Column or XMLType Table

■ Accessing Data in XMLType Columns or XMLType Tables

■ Using XPath with Oracle XML DB

■ Updating XML Documents with updateXML()

■ Introducing the W3C XSLT Recommendation

■ Using XSL/XSLT with Oracle XML DB

■ Other XMLType Methods

■ Introducing the W3C XML Schema Recommendation

■ Validating an XML Document Using an XML Schema

■ Storing XML: Structured or Unstructured Storage

■ Structured Storage: XML Schema-Based Storage of XMLType

■ Oracle XML DB Repository
L DB 3-1

■ Query-Based Access to Oracle XML DB Repository

■ Storage Options for Resources

■ Defining Your Own Default Table Storage for XML Schema-Based Documents

■ Accessing XML Schema-Based Content

■ Accessing Non-Schema-Based Content With XDBUriType

■ Oracle XML DB Protocol Servers

See Also:

■ Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve

and Display XML Documents"

■ Chapter 26, "Oracle XML DB Basic Demo"

for further examples of where and how you can use Oracle XML

DB.
3-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing Data in an XMLType Column or XMLType Table
Storing Data in an XMLType Column or XMLType Table
When storing XML documents in Oracle9i database you can use a number of

approaches, including:

■ Parsing the XML document apart, outside Oracle9i database, and storing the

data in the XML document as rows in one or more tables. In this scenario the

database has no idea that is managing XML content.

■ Storing the XML document in Oracle9i database using a CLOB or VARCHAR
column. Again in this scenario the database has no idea that it is managing

XML content, but you can programmatically use XDK to perform XML

operations.

■ Storing the XML document in Oracle9i database using the XMLType datatype.

Two options are available in this scenario.

■ The first is to store the XML document in an XMLType column.

■ The second is to store the XML document using an XMLType table.

Both these options mean that the database is aware that it is managing XML

content. Selecting this approach provides you with a number of significant

advantages, as the database provides a set of features that make it possible to

process XML content efficiently.

Example 3–1 Creating a Table with an XMLType Column

CREATE TABLE Example1
(
 KEYVALUE varchar2(10) primary key,
 XMLCOLUMN xmltype
);

Example 3–2 Creating a Table of XMLType

CREATE TABLE XMLTABLE OF XMLType;

Example 3–3 Storing an XML Document by First Creating an XMLType Instance Using
getDocument()

To store an XML document in an XMLType table or column the XML document

must first be converted into an XMLType instance. This is done using the different

constructors provided by the XMLType datatype. For example, given a PL/SQL

function called getCLOBDocument():

create or replace function getClobDocument(
Using Oracle XML DB 3-3

Storing Data in an XMLType Column or XMLType Table
filename in varchar2,
 charset in varchar2 default NULL)
 return CLOB deterministic
 is
 file bfile := bfilename(’DIR’,filename);
 charContent CLOB := ’ ’;
 targetFile bfile;
 lang_ctx number := DBMS_LOB.default_lang_ctx;
 charset_id number := 0;
 src_offset number := 1 ;
 dst_offset number := 1 ;
 warning number;
 begin
 if charset is not null then
 charset_id := NLS_CHARSET_ID(charset);
 end if;
 targetFile := file;
 DBMS_LOB.fileopen(targetFile, DBMS_LOB.file_readonly);
 DBMS_LOB.LOADCLOBFROMFILE(charContent, targetFile,
 DBMS_LOB.getLength(targetFile), src_offset, dst_offset,
 charset_id, lang_ctx,warning);
 DBMS_LOB.fileclose(targetFile);
 return charContent;
 end;
 /
-- create XMLDIR directory
-- connect system/manager
-- create directory XMLDIR as ’<location_of_xmlfiles_on_server>’;
-- grant read on directory xmldir to public with grant option;

-- you can use getCLOBDocument() to generate a CLOB from a file containin
-- an XML document. For example, the following statement inserts a row into the
-- XMLType table Example2 created earlier:

INSERT INTO XMLTABLE
VALUES(XMLTYPE(getCLOBDocument(’purchaseorder.xml’)));

Note the use of parameter, "charset". This is used to identify the character set of the

designated file. If omitted, the default character set id of the current database is

used.

For example, if a file, invoice.xml uses one of the Korean character sets,

KO16KSC5601, it can be loaded into XMLType table, XMLDOC as follows:

insert into xmldoc
3-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB
 values(xmltype(getClobDocument(’invoice.xml’,’KO16KSC5601’)));

The following example uses the UTF8 file format:

insert into xmldoc
 values(xmltype(getClobDocument(’invoice.xml’,’UTF8’)));

In the last example both the database and the file use the same character set such as

UTF8:

insert into xmldoc values(xmltype(getClobDocument(’invoice.xml’)));

Accessing Data in XMLType Columns or XMLType Tables
Once a collection of XML documents have been stored as XMLType tables or

columns the next step is to be able to retrieve them. When working with a collection

of XML documents you have two fundamental tasks to perform:

■ Decide how to select a subset of the available documents

■ Determine how best to access some subset of the nodes contained within the

documents

Oracle9i database and XMLType datatype provide a number of functions that make

it easy to perform these tasks. These functions make use of the W3C XPath

recommendation to navigate across and within a collection of XML documents.

Using XPath with Oracle XML DB
A number of the functions provided by the Oracle XML DB are based on the W3C

XPath recommendation. XPath traverses nested XML elements by your specifying

the elements to navigate through with a slash-separated list of element and attribute

names. By using XPath to define queries within and across XML documents. With

Oracle XML DB you can express hierarchical queries against XML documents in a

familiar, standards compliant manner.

Note: Oracle XML DB can handle multibyte characters as long as

the client character set is the same as the database character set.

See Also: Appendix C, "XPath and Namespace Primer" for an

introduction to the W3C XPath Recommendation.
Using Oracle XML DB 3-5

Using XPath with Oracle XML DB
The primary use of XPath in Oracle XML DB is in conjunction with the extract() ,

extractValue(), and existsNode() functions.

The existsNode() function evaluates whether or not a given document contains a

node which matches a W3C XPath expression. The existsNode() function returns

true (1) if the document contains the node specified by the XPath expression

supplied to the function. The functionality provided by the existsNode()
function is also available through the XMLType datatype existNode() method.

PurchaseOrder XML Document
Examples in this section are based on the following PurchaseOrder XML

document:

<PurchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.oracle.com/xdb/po.xsd">
 <Reference>ADAMS-20011127121040988PST</Reference>
 <Actions>
 <Action>
 <User>SCOTT</User>
 <Date>2002-03-31</Date>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Julie P. Adams</Requestor>
 <User>ADAMS</User>
 <CostCenter>R20</CostCenter>
 <ShippingInstructions>
 <name>Julie P. Adams</name>
 <address>Redwood Shores, CA 94065</address>
 <telephone>650 506 7300</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Ground</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>The Ruling Class</Description>
 <Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">

See Also:

■ Chapter 4, "Using XMLType"

■ Chapter 10, "Generating XML Data from the Database"
3-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB
 <Description>Diabolique</Description>
 <Part Id="037429135020" UnitPrice="29.95" Quantity="3"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>8 1/2</Description>
 <Part Id="037429135624" UnitPrice="39.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

Using existsNode()
The existsNode() syntax is shown in Figure 3–1.

Figure 3–1 existsNode() Syntax

Example 3–4 existsNode() Examples That Find a Node to Match the XPath Expression

Given this sample XML document, the following existsNode() operators return

true (1).

SELECT existsNode(value(X),’/PurchaseOrder/Reference’)
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 ’/PurchaseOrder[Reference="ADAMS-20011127121040988PST"]’)
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[2]/Part[@Id="037429135020"]’)
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[Description="8 1/2"]’)
 FROM XMLTABLE X;

EXISTSNODE (XMLType_instance , XPath_string
namespace

)

,

Using Oracle XML DB 3-7

Using XPath with Oracle XML DB
Example 3–5 existsNode() Examples That Do Not Find a Node that Matches the XPath
Expression

The following existsNode() operations do not find a node that matches the

XPath expression and all return false(0):

SELECT existsNode(value(X),'/PurchaseOrder/UserName')
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 '/PurchaseOrder[Reference="ADAMS-XXXXXXXXXXXXXXXXXXXX"]')
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 '/PurchaseOrder/LineItems/LineItem[3]/Part[@Id="037429135020"]')
 FROM XMLTABLE X;

SELECT existsNode(value(X),
 '/PurchaseOrder/LineItems/LineItem[Description="Snow White"]')
 FROM XMLTABLE X;

The most common use for existsNode() is in the WHERE clause of SQL SELECT,

UPDATE, or DELETE statements. In this situation the XPath expression passed to

the existsNode() function is used to determine which of the XML documents

stored in the table will be processed by the SQL statement.

Example 3–6 Using existsNode() in the WHERE Clause

SELECT count(*)
 FROM XMLTABLE x
 WHERE existsNode(value(x),'/PurchaseOrder[User="ADAMS"]') = 1;

DELETE FROM XMLTABLE x
 WHERE existsNode(value(x),'/PurchaseOrder[User="ADAMS"]') = 1;
commit;

The extractValue() function is used to return the value of a text node or

attribute associated with an XPath Expression from an XML document stored as an

XMLType. It returns a scalar data type.

Using extractValue()
The extractValue() syntax is shown in Figure 3–2.
3-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB
Figure 3–2 extractValue() Syntax

The following are examples of extractValue() :

Example 3–7 Valid Uses of extractValue()

SELECT extractValue(value(x),'/PurchaseOrder/Reference')
 FROM XMLTABLE X;

Returns the following:

EXTRACTVALUE(VALUE(X),'/PURCHASEORDER/REFERENCE')
--
ADAMS-20011127121040988PST

SELECT extractValue(value(x),
 '/PurchaseOrder/LineItems/LineItem[2]/Part/@Id')
 FROM XMLTABLE X;

Returns the following:

EXTRACTVALUE(VALUE(X),'/PURCHASEORDER/LINEITEMS/LINEITEM[2]/PART/@ID')

037429135020

extractValue() can only return a the value of a single node or attribute value.

For instance the following example shows an invalid use of extractValue() . In

the first example the XPath expression matches three nodes in the document, in the

second example the Xpath expression identifies a nodetree, not a text node or

attribute value.

Example 3–8 Non-Valid Uses of extractValue()

SELECT extractValue(value(X),
 ’/PurchaseOrder/LineItems/LineItem/Description’)
 FROM XMLTABLE X;

-- FROM XMLTABLE X;
-- *
-- ERROR at line 3:
-- ORA-19025: EXTRACTVALUE returns value of only one node

EXTRACTVALUE (XMLType_instance , XPath_string
, value_expr

)

Using Oracle XML DB 3-9

Using XPath with Oracle XML DB
SELECT extractValue(value(X),
 ’/PurchaseOrder/LineItems/LineItem[1]’)
 FROM XMLTABLE X;

-- FROM XMLTABLE X
-- *
-- ERROR at line 3:
-- ORA-19025: EXTRACTVALUE returns value of only one node

Example 3–9 Using extractValue() in the WHERE Clause

extractValue() can also be used in the WHERE clause of a SELECT, UPDATE, or

DELETEstatement. This makes it possible to perform joins between XMLType tables

or tables containing XMLType columns and other relational tables or XMLType
tables. The following query shows you how to use extractValue() in both the

SELECT list and the WHERE clause:

SELECT extractValue(value(x),’/PurchaseOrder/Reference’)
 FROM XMLTABLE X, SCOTT.EMP
 WHERE extractValue(value(x),’/PurchaseOrder/User’) = EMP.ENAME
 AND EMP.EMPNO = 7876;

-- This returns:
-- EXTRACTVALUE(VALUE(X),’/PURCHASEORDER/REFERENCE’)
-- --
-- ADAMS-20011127121040988PST

Using extract()
The extract() syntax is shown in Figure 3–3.

Figure 3–3 extract() Syntax

extract() is used when the XPath expression will result in a collection of nodes

being returned. The nodes are returned as an instance of XMLType. The results of

extract() can be either a Document or a DocumentFragment . The functionality

of extract is also available through the XMLType datatype’s extract() method.

EXTRACT (XMLType_instance , XPath_string
namespace

)

,

3-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB
Example 3–10 Using extract() to Return an XML Fragment

The following extract() statement returns an XMLType that contains an XML

document fragment containing occurrences of the Description node. These

match the specified XPath expression shown.

set long 20000

SELECT extract(value(X),
 ’/PurchaseOrder/LineItems/LineItem/Description’)
 FROM XMLTABLE X;

-- This returns:
-- EXTRACT(VALUE(X),’/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION’)
-- --
-- <Description>The Ruling Class</Description>
-- <Description>Diabolique</Description>
-- <Description>8 1/2</Description>

Example 3–11 Using extract() to Return a Node Tree that Matches an XPath
Expression

In this example extract() returns the node tree that matches the specified XPath

expression:

SELECT extract(value(X),
 '/PurchaseOrder/LineItems/LineItem[1]')
 FROM XMLTABLE X;

This returns:

EXTRACT(VALUE(X),'/PURCHASEORDER/LINEITEMS/LINEITEM[1]')

<LineItem ItemNumber="1">
 <Description>The Ruling Class</Description>
 <Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
</LineItem>

Using XMLSequence()
The XMLSequence() syntax is shown in Figure 3–4.

Note: In this case the XML is not well formed as it contains more

than one root node.
Using Oracle XML DB 3-11

Using XPath with Oracle XML DB
Figure 3–4 XMLSequence() Syntax

An XML document fragment can be converted into a set of XMLTypes using the

XMLSequence() function. XMLSequence() takes an XMLType containing a

document fragment and returns a collection of XMLType objects. The collection will

contain one XMLType for each root level node in the fragment. The collection can

then be converted into a set of rows using the SQL TABLE function.

Example 3–12 Using XMLSequence() and TABLE() to Extract Description Nodes from
an XML Document

The following example shows how to use XMLSequence() and Table () to extract

the set of Description nodes from the purchaseorder document.

set long 10000
set feedback on
SELECT extractValue(value(t),'/Description')
 FROM XMLTABLE X,
 TABLE (xmlsequence (
 extract(value(X),
 '/PurchaseOrder/LineItems/LineItem/Description')
)
) t;

This returns:

EXTRACTVALUE(VALUE(T),'/DESCRIPTION')

The Ruling Class
Diabolique
8 1/2

XMLSEQUENCE (

XMLType_instance

sys_refcursor_instance
, fmt)
3-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Documents with updateXML()
Updating XML Documents with updateXML()
The updateXML() syntax is shown in Figure 3–5.

Figure 3–5 updateXML() Syntax

You can update XML documents using the updateXML() function. updateXML()
updates an attribute value, node, text node, or node tree. The target for the update

operation is identified using an XPath expression. The following examples show

how you can use updateXML() to modify the contents of an XML Document

stored as an XMLType.

Example 3–13 Using updateXML() to Update a Text Node Value Identified by an XPath
Expression

This example uses updateXML() to update the value of the text node identified by

the XPath expression ‘/PurchaseOrder/Reference’:

UPDATE XMLTABLE t
 SET value(t) = updateXML(value(t),
 '/PurchaseOrder/Reference/text()',
 'MILLER-200203311200000000PST')
 WHERE existsNode(value(t),
 '/PurchaseOrder[Reference="ADAMS-20011127121040988PST"]') = 1;

This returns:

1 row updated.

SELECT value(t)
 FROM XMLTABLE t;

This returns:

VALUE(T)

<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.oracle.com/xdb/po.xsd">
 <Reference>MILLER-200203311200000000PST</Reference>
...
</PurchaseOrder>

UPDATEXML (XMLType_instance , XPath_string , value_expr namespace)
Using Oracle XML DB 3-13

Updating XML Documents with updateXML()
Example 3–14 Using updateXML() to Replace Contents of a Node Tree Associated
with XPath Elements

In this example updateXML() replaces the contents of the node tree associated

with the element identified by the XPath expression

‘/PurchaseOrders/LineItems/LineItem[2] ’.

UPDATE XMLTABLE t
 SET value(t) =
 updateXML(value(t),
 '/PurchaseOrder/LineItems/LineItem[2]',
 xmltype('<LineItem ItemNumber="4">
 <Description>Andrei Rublev</Description>
 <Part Id="715515009928" UnitPrice="39.95"
 Quantity="2"/>
 </LineItem>'
)
)
 WHERE existsNode(value(t),
 '/PurchaseOrder[Reference="MILLER-200203311200000000PST"]'
) = 1;

This returns:

1 row updated.

SELECT value(t)
 FROM XMLTABLE t;

And this returns:

VALUE(T)
--
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNames
paceSchemaLocation="http://www.oracle.com/xdb/po.xsd">
 <Reference>MILLER-200203311200000000PST</Reference>
...
 <LineItems>

Note: In this example, since the replacement value is a Node tree,

the third argument to the updateXML() function is supplied as an

instance of the XMLType datatype.
3-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XSLT Recommendation
 <LineItem ItemNumber="1">
 <Description>The Ruling Class</Description>
 <Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="4">
 <Description>Andrei Rublev</Description>
 <Part Id="715515009928" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>8 1/2</Description>
 <Part Id="037429135624" UnitPrice="39.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

Introducing the W3C XSLT Recommendation
The W3C XSLT Recommendation defines an XML language for specifying how to

transform XML documents from one form to another. Transformation can include

mapping from one XML schema to another or mapping from XML to some other

format such as HTML or WML.

Example 3–15 XSL Stylesheet Example: PurchaseOrder.xsl

The following example, PurchaseOrder.xsl , is an example fragment of an XSL

stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:template match="/">
 <html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00"
 vlink="#66CC99" alink="#669999">

 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <center>

See Also: Appendix D, "XSLT Primer" for an introduction to the

W3C XSL and XSLT recommendations.
Using Oracle XML DB 3-15

Using XSL/XSLT with Oracle XML DB

 Purchase Order

 </center>

 ...
 <FONT FACE="Arial, Helvetica, sans-serif"
 COLOR="#000000">
 <xsl:for-each select="Part">
 <xsl:value-of select="@Quantity*@UnitPrice"/>
 </xsl:for-each>

 </td>
 </tr>
 </tbody>
 </xsl:for-each>
 </xsl:for-each>
 </table>
 </xsl:for-each>

 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Using XSL/XSLT with Oracle XML DB
Oracle XML DB complies with the W3C XSL/XSLT recommendation by supporting

XSLT transformations in the database. In Oracle XML DB, XSLT transformations can

be performed using either of the following:

■ XMLTransform() function

■ XMLType datatype’s transform() method

Since XSL stylesheets are valid XML documents both approaches apply when the

XSL stylesheets are provided as instances of the XMLType datatype. The results of

the XSL transformation are also returned as an XMLType.

See Also: Appendix D, "XSLT Primer" for the full listing of this

XSL stylesheet.
3-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Other XMLType Methods
Because the transformation takes place close to the data, Oracle XML DB can

optimize features such as memory usage, I/O operations, and network traffic

required to perform the transformation.

Example 3–16 Using transform() to Transform an XSL

The following example shows how transform() can apply XSLT to an XSL

stylesheet, PurchaseOrder.xsl , to transform the PurchaseOrder.xml
document:

SELECT value(t).transform(xmltype(getDocument('purchaseOrder.xsl')))
 from XMLTABLE t
 where existsNode(value(t),
 '/PurchaseOrder[Reference="MILLER-200203311200000000PST"]'
) = 1;

This returns:

VALUE(T).TRANSFORM(XMLTYPE(GETDOCUMENT('PURCHASEORDER.XSL')))

<html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#
669999">

 <center>
...

 </body>
</html>

Since the transformed document using XSLT is expected as in instance of XMLType,

the source could easily be a database table.

Other XMLType Methods
The following describes additional XMLType methods:

■ createXML (). A static method for creating an XMLType instance. Different

signatures allow the XMLType to created from an number of different sources

containing an XML document. Largely replaced by the XMLType constructor in

Oracle9i Release 2 (9.2).

See Also: Chapter 6, "Transforming and Validating XMLType

Data"
Using Oracle XML DB 3-17

Introducing the W3C XML Schema Recommendation
■ isFragment() . Returns true (1) if the XMLType contains a document
fragment . A document fragment is an XML document without a Root Node.

Document fragments are typically generated using the extract() function

and method.

■ getClobVal() . Returns a CLOB containing an XML document based on the

contents of the XMLType.

■ getRootElement() . Returns the name of the root element of the XML

document contained in the XMLType.

■ getNameSpace() . Returns the name of the root element of the XML document

contained in the XMLType.

Introducing the W3C XML Schema Recommendation
XML Schema provides a standardized way of defining what the expected contents

of a set of XML documents should be. An XML schema is a an XML document that

defines metadata. This metadata specifies what the member contents of the

document class should be. The members of a document class can be referred to as

instance documents.

Since an XML schema definition is simply an XML document that conforms to the

class defined by the XML Schema http://www.w3.org/2001/XMLSchema , XML

schemas can be authored using a simple text editor, such as Notepad, vi, a

schema-aware editor, such as the XML editor included with the Oracle9i JDeveloper

tool, or an explicit XML schema authoring tool, such as XMLSpy from Altova

Corporation. The advantage of using a tool such as XMLSpy, is that these tools

allow the XML schema to be developed using an intuitive, graphical editor which

hides much of the details of the XML schema definition from the developer.

Example 3–17 XML Schema Example, PurchaseOrder.xsd

The following example PurchaseOrder.xsd , is a standard W3C XML Schema

example fragment, in its native form, as an XML Document:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="ActionsType" >
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4" >
 <xs:complexType >
 <xs:sequence>
 <xs:element ref="User"/>
 <xs:element ref="Date"/>
 </xs:sequence>
3-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Schema Recommendation
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectType" >
 <xs:all>
 <xs:element ref="User" minOccurs="0"/>
 <xs:element ref="Date" minOccurs="0"/>
 <xs:element ref="Comments" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType" >
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="address"/>
 <xs:element ref="telephone"/>
 </xs:sequence>
...
....
 <xs:complexType>
 <xs:attribute name="Id" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="12"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="money"/>
 <xs:attribute name="UnitPrice" type="quantity"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Using XML Schema with Oracle XML DB
Oracle XML DB supports the use of the W3C XML Schema in two ways.

■ Automatic Validation of instance documents

■ Definition of Storage models

See Also: Appendix B, "XML Schema Primer" for the detailed

listing of PurchaseOrder.xsd .
Using Oracle XML DB 3-19

Introducing the W3C XML Schema Recommendation
To use a W3C XML Schema with Oracle XML DB, the XML schema document has

to be registered with the database. Once an XML schema has been registered

XMLType tables and columns can be created which are bound to the schema.

To register an XML schema you must provide two items. The first is the

XMLSchema document, the second is the URL which will be used by XML

documents which claim to conform to this Schema. This URL will be provided in

the root element of the instance document using either the

noNamespaceSchemaLocation attribute or schemaLocation attribute as

defined in the W3C XML Schema recommendation

XML schemas are registered using methods provided by PL/SQL package DBMS_
XMLSCHEMA. Schemas can be registered as global or local schemas. See Chapter 5,

"Structured Mapping of XMLType" for a discussion of the differences between

Global and Local Schemas.

Oracle XML DB provides a number of options for automatically generating default

database objects and Java classes as part of the schema registration process. Some of

these options are discussed later in this section.

Example 3–18 Registering PurchaseOrder.xsd as a Local XML Schema Using
registerSchema()

The following example shows how to register the preceding PurchaseOrder.xsd
XML schema as a local XML schema using the registerSchema() method.

begin
 dbms_xmlschema.registerSchema(
 ’http://www.oracle.com/xsd/purchaseOrder.xsd’,
 getDocument(’PurchaseOrder.xsd’),
 TRUE, TRUE, FALSE, FALSE
);
end;
/

--This returns:
-- PL/SQL procedure successfully completed.

The registerSchema() procedure causes Oracle XML DB to perform the

following operations:

■ Parse and validate the XML schema

■ Create a set of entries in Oracle Data Dictionary that describe the XML schema
3-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Schema Recommendation
■ Create a set of SQL object definitions, based on the complexTypes defined in the

XML schema

Once the XML schema has been registered with Oracle XML DB, it can be

referenced when defining tables that contain XMLType columns, or creating

XMLType tables.

Example 3–19 Creating an XMLType Table that Conforms to an XML Schema

This example shows how to create an XMLType table which can only contain XML

Documents that conform to the definition of the PurchaseOrder element in the

XML schema registered at

‘http://www.oracle.com/xsd/purchaseorder.xsd’ .

CREATE TABLE XML_PURCHASEORDER of XMLType
 XMLSCHEMA "http://www.oracle.com/xsd/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder";

This results in:

Table created.

DESCRIBE XML_PURCHASEORDER

Returns the following:

Name Null? Type
--- -------- ----------------------------
TABLE of SYS.XMLTYPE(XMLSchema "http://www.oracle.com/xsd/purchaseOrder.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE "PurchaseOrder538_T"

XMLSchema-Instance Namespace
Oracle XML DB must recognize that the XML document inserted into an XML

schema-based table or column is a valid member of the class of documents defined

by the XML schema. The XML document must correctly identify the XML schema

or XML schemas it is associated with.

This means that XML schema, for each namespace used in the document, must be

identified by adding the appropriate attributes to the opening tag for the root

element of the document. These attributes are defined by W3C XML Schema

recommendation and are part of the W3C XMLSchema-Instance namespace.

Consequently in order to define these attributes the document must first declare the

XMLSchema-instance namespace. This namespace is declared as follows:

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance :
Using Oracle XML DB 3-21

Validating an XML Document Using an XML Schema
Once the XMLSchema-instance namespace has been declared and given a

namespace prefix the attributes that identify the XML schema can be added to the

root element of the instance document. A given document can be associated with

one or more XML schemas. In the preceding example, the namespace prefix for the

XMLSchema-instance namespace was defined as xsi .

noNameSpaceSchemaLocation Attribute. The XML schema associated with the

unqualified elements is defined using the attribute

noNamespaceSchemaLocation . In the case of the PurchaseOrder.xsd XML

schema, the correct definition would be as follows:

<PurchaseOrder
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation="http://www.oracle.com/xsd/purchaseOrder.xsd">

Using Multiple Namespaces: schemaLocation Attribute. If the XML document uses

multiple namespaces then each namespace needs to be identified by a

schemaLocation attribute. For example, assuming that the Purchaseorder
document used the namespace PurchaseOrder , and the PurchaseOrder
namespace is given the prefix po . The definition of the root element of a

PurchaseOrder document would then be as follows:

<po:PurchaseOrder
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:po=”PurchaseOrder”
 xsi:schemaLocation="PurchaseOrder
http://www.oracle.com/xsd/purchaseOrder.xsd">

Validating an XML Document Using an XML Schema
By default Oracle XML DB performs a minimum amount of validation when a

storing an instance document. This minimal validation ensures that the structure of

the XML document conforms to the structure specified in the XML schema.

Example 3–20 Attempting to Insert an Invoice XML Document Into an XMLType Table
Conforming to PurchaseOrder XML Schema

The following example shows what happens when an attempt is made to insert an

XML Document containing an invoice into a XMLType table that is defined as

storing documents which conform to the PurchaseOrder Schema

INSERT INTO XML_PURCHASEORDER
 values (xmltype(getDocument('Invoice.xml')))
 values (xmltype(getDocument('Invoice.xml')))
3-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating an XML Document Using an XML Schema
 *
This returns:

ERROR at line 2:
ORA-19007: Schema and element do not match

The reason for not performing full instance validation automatically is based on the

assumption that, in the majority of cases it is likely that schema based validation

will have been performed prior to attempting to insert the XML document into the

database.

In situations where this is not the case, full instance validation can be enabled using

one of the following approaches:

■ A table level CHECK constraint

■ A PL/SQL BEFORE INSERT trigger

Example 3–21 Using CHECK Constraints in XMLType Tables

This example shows how to use a CHECK constraint to an XMLType table and the

result of attempting to insert an invalid document into the table:

ALTER TABLE XML_PURCHASEORDER
 add constraint VALID_PURCHASEORDER
 check (XMLIsValid(sys_nc_rowinfo$)=1);

-- This returns:
-- Table altered

INSERT INTO XML_PURCHASEORDER
 values (xmltype(getDocument(’InvalidPurchaseOrder.xml’)));
INSERT INTO XML_PURCHASEORDER;
*
-- This returns:
-- ERROR at line 1:
-- ORA-02290: check constraint (DOC92.VALID_PURCHASEORDER) violated

Example 3–22 Using BEFORE INSERT Trigger to Validate Data Inserted Into XMLType
Tables

The next example shows how to use a BEFORE INSERT trigger to validate that the

data being inserted into the XMLType table conforms to the specified schema

CREATE TRIGGER VALIDATE_PURCHASEORDER
 before insert on XML_PURCHASEORDER
 for each row
Using Oracle XML DB 3-23

Storing XML: Structured or Unstructured Storage
 declare
 XMLDATA xmltype;
 begin
 XMLDATA := :new.sys_nc_rowinfo$;
 xmltype.schemavalidate(XMLDATA);
 end;
/

-- This returns:
-- Trigger created.

insert into XML_PURCHASEORDER
 values (xmltype(getDocument(’InvalidPurchaseOrder.xml’)));

-- values (xmltype(getDocument(’InvalidPurchaseOrder.xml’)))
-- *
-- ERROR at line 2:
-- ORA-31154: invalid XML document
-- ORA-19202: Error occurred in XML processing
-- LSX-00213: only 0 occurrences of particle "User", minimum is 1
-- ORA-06512: at "SYS.XMLTYPE", line 0
-- ORA-06512: at "DOC92.VALIDATE_PURCHASEORDER", line 5
-- ORA-04088: error during execution of trigger ’DOC92.VALIDATE_PURCHASEORDER’

As can be seen both approaches ensure that only valid XML documents can be

stored in the XMLType table:

■ Table CHECK Constraint. The TABLEconstraint approach’s advantage is that it

is simpler to code. Its disadvantage is that, since it is based on the

isSchemaValid() method, it can only indicate whether or not the instance

document is valid. When the instance document is not valid it cannot give any

information as to why a document is invalid.

■ BEFORE INSERT Trigger. The BEFORE INSERT trigger requires a little more

coding. Its advantage is that it is based on the schemaValidate() method.

This means that when the instance document is not valid it can provide

information about what was wrong with the instance document. It also has the

advantage of allowing the trigger to take corrective action when appropriate.

Storing XML: Structured or Unstructured Storage
When designing an Oracle XML DB application you must first decide whether the

XMLType columns and table will be stored using structured or unstructured storage

techniques.
3-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XML: Structured or Unstructured Storage
Table 3–1 compares using structured and structured storage to store XML.

Table 3–1 Comparing Structured and Unstructured XML Storage

Feature Unstructured XML Storage Structured XML Storage

Storage technique Contents of XMLType columns and tables are
stored using the CLOB data type.

Contents of XMLType columns and tables are
stored as a collection of SQL objects. By
default, the underlying storage model for
XML schema-based XMLType columns and
tables is structured storage.

Can store
non-XML
schema-based
tables?

Only option available for XMLType tables
and columns that are not associated with an
XML schema.

Can only be used when the XMLType
column or table is based on an XML schema.
This means that the instance documents
must conform to the underlying XML
schema.

Performance:
Storage and
retrieval speed

It allows for higher rates of ingestion and
retrieval, as it avoids the overhead associated
with parsing and recomposition during
storage and retrieval operations.

Results in a slight overhead during ingestion
and retrieval operations in that the
document has to be shredded during
ingestion and re-constituted prior to
retrieval.

Performance:
operation speed

Slower than for structured storage. When an XML schema is registered, Oracle
XML DB generates a set of SQL objects that
correspond to complexTypes defined in the
XML schema. XPath expressions sent to
Oracle XML DB functions are translated to
SQL statements that operate directly against
the underlying objects.

This re-writing of XMLType operations into
object-relational SQL statements results in
significant performance improvements
compared with performing the same
operations against XML documents stored
using unstructured storage.

Flexible. Can
easily process
varied content?

Allows for a great deal of flexibility in the
documents being processed making it an
appropriate choice when the XML
documents contain highly variable content.

Leverages the object-relational capabilities of
the Oracle9i database.
Using Oracle XML DB 3-25

Storing XML: Structured or Unstructured Storage
Memory usage:
Do the XML
documents need
parsing?

Oracle XML DB must parse the entire XML
document and load it into an in-memory
DOM structure before any validation, XSL
Transformation, or XPath operations can be
performed on it.

Allows Oracle XML DB to minimize memory
usage and optimize performance of
DOM-based operations on XMLType table
and columns by using:

■ Lazy Manifestation (LM): Occurs when
Oracle XML DB constructs a DOM
structure based on an XML document.
With LM, instead of constructing the
whole DOM when the document is
accessed, Oracle XML DB only
instantiates the nodes required to
perform the immediate operation. As
other parts of the document are required
the appropriate node trees are
dynamically loaded into the DOM.

■ Least Recently Used (LRU): Strategy to
discard nodes in the DOM that have not
been accessed recently.

Update
processing

When stored, any update operations on the
document will result in the entire CLOB
being re-written.

If any part of the document is updated using
updateXML() then the entire document has
to be fetched from the CLOB, updated, and
written back to the CLOB.

Can update individual elements, attributes,
or nodes in an XML document without
rewriting the entire document.

Possible to re-write the updateXML()
operation to an SQL UPDATE statement that
operates on columns or objects referenced by
the XPATH expression.

Indexing You can use B*Tree indexes based on the
functional evaluation of XPath expressions
or Oracle Text inverted list indexes.

Unstructured storage make it impossible to
create B*TREE indexes based on the values
of elements or attributes that appear within
collections.

You can use B*Tree indexes and Oracle Text
inverted list indexes.

By tuning the way in which collections are
managed, indexes can be created on any
element or attribute in the document,
including elements or attributes that appear
with collections.

Table 3–1 Comparing Structured and Unstructured XML Storage (Cont.)

Feature Unstructured XML Storage Structured XML Storage
3-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XML: Structured or Unstructured Storage
Data Manipulation Language (DML) Independence
Oracle XML DB ensures that all Data Manipulation Language (DML) operations

based on Oracle XML DB functions return consistent results. By abstracting the

storage model through the use of the XMLType datatype, and providing a set of

operators that use XPath to perform operations against XML documents, Oracle

XML DB makes it possible for you to switch between structured and unstructured
storage, and to experiment with different forms of structured storage without

affecting the application.

DOM Fidelity in Structured and Unstructured Storage
To preserve DOM fidelity a system must ensure that a DOM generated from the

stored representation of an XML Document is identical to a DOM generated from

Space needed Can be large. Since based on XML schema, it is not
necessary for Oracle XML DB to store XML
tag names when storing the contents of XML
documents. This can significantly reduce the
storage space required.

Data integrity -- Makes it possible to use a set of
database integrity constraints that allow
the contents of an XML document to be
validated against information held
elsewhere in the database.

Tuning:
Fine-grained
object control

None You can annotate XML schema, for fine grain
control over sets of SQL objects generated
from XML schema and how these objects are
stored in the database.

You can control how collections are
managed, define tablespace usage, and
partitioning of table or tables used to store
and manage the SQL objects. This makes it
possible to fine tune the performance of the
Oracle XML DB to meet the needs of the
application.

Other annotations control how Simple
elements and attributes are mapped to SQL
columns

Table 3–1 Comparing Structured and Unstructured XML Storage (Cont.)

Feature Unstructured XML Storage Structured XML Storage
Using Oracle XML DB 3-27

Structured Storage: XML Schema-Based Storage of XMLType
the original XML document. Preserving DOM integrity ensures that none of the

information contained in the XML Document is lost as a result of storing it.

The problem with maintaining DOM integrity is that an XML document can contain

a lot of information in addition to the data contained in element and attribute

values. Some of this information is explicitly provided, using Comments and

Processing Instructions. Other information can be implicitly provided, such as:

■ Ordering of the elements in a collection

■ Ordering of child elements within the parent

■ Relative position of Comments and Processing Instructions

One of the common problems application developers face when using a traditional

relational model to manage the contents of XML documents is how to preserve this

information. Table 3–2 compares DOM fidelity in structured and unstructured

storage:

Structured Storage: XML Schema-Based Storage of XMLType
Logically, an XML document consists of a collection of elements and attributes.

Elements can be either of the following:

■ complexTypes , containing child elements and attributes

■ simpleTypes , containing scalar values

An XML schema defines the set of elements and attributes that can exist in a

particular class of XML document and defines the relationships between them.

Table 3–2 DOM Fidelity: Unstructured and Structured Storage

DOM Fidelity with Unstructured Storage DOM Fidelity with Structured Storage

Relational systems do not provide any implicit
ordering, nor do they provide the flexibility to
make it easy to preserve out of band data such as
comments and processing instructions. With a
typical relational database, the only way to
preserve DOM Fidelity is to store the source
document using unstructured storage techniques

Oracle XML DB can preserve DOM Fidelity even
with structured storage. When an XML
Document is shredded and stored using
structured storage techniques, the Comments,
Processing Instructions, and any ordering
information implicit in the source document is
preserved as part of the SQL objects that are
created when the document is shredded. When
the document is retrieved this information is
incorporated back into the generated XML
document.
3-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType
During XML schema registration, Oracle XML DB generates an SQL Object Type for

each complexType defined in the XML schema. The definition of the SQL object

mirrors the definition of the complexType .

Each child element and attribute defined by the complexType maps to an attribute

of the SQL object type.

■ If a child element in the complexType is itself a complexType , the datatype of

the corresponding SQL attribute will be the appropriate SQL type.

■ If the child element is a simpleType or attribute, based on one of the scalar

datatypes defined by the W3C XML Schema recommendation, then the

datatype of the corresponding SQL attribute will be the appropriate primitive

SQL data type.

XML Schema Names and Defining Oracle XML DB Namespace
By default SQL Objects generated when an XML schema is registered are given

system-generated names. However, with Oracle XML DB you can specify the names

of SQL objects by annotating the schema. To annotate an XML schema, you must

first include the Oracle XML DB namespace in the XMLSchema tag, defined as:

http://xmlns.oracle.com/xdb

Hence an XML schema using Oracle XML DB annotations, must contain the

following attributes in the XMLSchema tag:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
 xmlns:xdb="http://xmlns.oracle.com/xdb" >
...
</xs:schema>

Once Oracle XML DB namespace has been defined, the annotations defined by

Oracle XML DB can be used.

Example 3–23 Defining the Name of SQL Objects Generated from complexTypes

This example uses xdb:SQLType to define the name of the SQL object generated

from complexType PurchaseOrder, as XML_PURCHASEORDER_TYPE.

<xs:element name="PurchaseOrder">
 <xs:complexType type="PurchaseOrderType"
 xdb:SQLType="XML_PURCHASEORDER_TYPE">
 <xs:sequence>
 <xs:element ref="Reference"/>
 <xs:element name="Actions" type="ActionsType"/>
Using Oracle XML DB 3-29

Structured Storage: XML Schema-Based Storage of XMLType
 <xs:element name="Reject" type="RejectType" minOccurs="0"/>
 <xs:element ref="Requestor"/>
 <xs:element ref="User"/>
 <xs:element ref="CostCenter"/>
 <xs:element name="ShippingInstructions"
 type="ShippingInstructionsType"/>
 <xs:element ref="SpecialInstructions"/>
 <xs:element name="LineItems" type="LineItemsType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

So executing the following statement:

DESCRIBE XML_PURCHASEORDER_TYPE
 XML_PURCHASEORDER_TYPE is NOT FINAL;

Returns the following structure:

Name Null? Type
------------------------------ -------- ----------------------------
SYS_XDBPD$ XDB.XDB$RAW_LIST_T
Reference VARCHAR2(26)
Actions XML_ACTIONS_TYPE
Reject XML_REJECTION_TYPE
Requestor VARCHAR2(128)
User VARCHAR2(10)
CostCenter VARCHAR2(4)
ShippingInstructions XML_SHIPPINGINSTRUCTIONS_TYPE
SpecialInstructions VARCHAR2(2048)
LineItems XML_LINEITEMS_TYPE

Using xdb:SQLName to Override Default Names
Oracle XML DB uses a predefined algorithm to generate valid SQL names from the

names of the XML elements, attributes, and types defined in the XML schema. The

xdb:SQLName annotation can be used to override the default algorithm and supply

explicit names for these items.

Note: In the preceding example, xdb:SQLType annotation was

also used to assign names to the SQL types that correspond to the

complexTypes: ActionsType , ShippingInstructionsType
and LineItemsType .
3-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType
Using xdb:SQLType to Override Default Mapping
Oracle XML DB also provides a default mapping between scalar datatypes defined

by the XML Schema recommendation and the primitive datatype defined by SQL.

Where possible the size of the SQL datatype is derived from restrictions defined for

the XML datatype. If required, the xdb:SQLType annotation can be used to

override this default mapping:

Example 3–24 Using xdb:SQLType and xdb:SQLName to Specify the Name and
Mapping of Objects Generated from complexTypes

This example shows how to override the name and type used for the

SpecialInstructions element and the effect these changes have on the

generated SQL Object type.

<xs:element name="SpecialInstructions" xdb:SQLType="CLOB" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="PurchaseOrder">
 <xs:complexType type="PurchaseOrderType"
 xdb:SQLType="XML_PURCHASEORDER_TYPE">
 <xs:sequence>
 <xs:element ref="Reference"/>
 <xs:element name="Actions" type="ActionsType"/>
 <xs:element name="Reject" type="RejectType" minOccurs="0"/>
 <xs:element ref="Requestor"/>
 <xs:element ref="User"/>
 <xs:element ref="CostCenter"/>
 <xs:element name="ShippingInstructions"
 type="ShippingInstructionsType"/>
 <xs:element ref="SpecialInstructions"
 xdb:SQLName="SPECINST"/>
 <xs:element name="LineItems" type="LineItemsType"/>

Note: The override for the name of the SpecialInstructions
element is applied where the element is used, inside the

PurchaseOrderType , not where it is defined
Using Oracle XML DB 3-31

Structured Storage: XML Schema-Based Storage of XMLType
 </xs:sequence>
 </xs:complexType>
</xs:element>

On executing the following statement:

DESCRIBE XML_PURCHASEORDER_TYPE
 XML_PURCHASEORDER_TYPE is NOT FINAL

The following structure is returned:

Name Null? Type
------------------------------ -------- ----------------------------
SYS_XDBPD$ XDB.XDB$RAW_LIST_T
Reference VARCHAR2(26)
Actions XML_ACTIONS_TYPE
Reject XML_REJECTION_TYPE
Requestor VARCHAR2(128)
User VARCHAR2(10)
CostCenter VARCHAR2(4)
ShippingInstructions XML_SHIPPINGINSTRUCTIONS_TYPE
SPECINST CLOB
LineItems XML_LINEITEMS_TYPE

Structured Storage: Storing complexType Collections
One issue you must consider when selecting structured storage, is what techniques

to use to manage Collections. Different approaches are available and each approach

offers different benefits. Generally, you can handle Collections in five ways:

■ CLOBS. If a complexType is defined with xdb:SQLType=”CLOB” then the

type, and all child elements are stored using unstructured storage techniques

■ Inline VARRAYS. If no other information is given for a complexType which

occurs more than once, the members of the collection are stored as a set of

serialized objects in-line as part of the SQL object for the parent element. You

cannot create B*Tree indexes on elements or attributes which are part of

collection

■ Nested Object Tables. The members of the collection are stored in a nested

object table. The SQL object, as in previous option, contains an attribute of type

VARRAY, but is stored as a table. The parent row contains a unique setid (set

identifier) value which is used to associate with the corresponding nested table

rows.
3-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType
■ Separate XMLType Table. The members of the collection are stored as a

separate XMLType table. Each member of the collection is stored as a row in the

table. The Parent SQL object contains an array of refs which point to the rows in

the child table which belong to this parent. All data is XMLType.

■ Creating multiple XMLType columns based on the XML schema

■ Linking from a child to the corresponding parent

■ Separate XMLType Table with Link Table. The members of the collection are

stored as a separate XMLType table. An link table is created which cross

references which member in the child table are linked to which members of the

parent. Table. All data is visible as XMLTypes. Possible to link from the child

back to the parent. Problems with creating multiple XMLType columns based on

the Schema.

Structured Storage: Data Integrity and Constraint Checking
In addition to schema-validation, structured storage makes it possible to introduce

traditional relational constraints on to XMLType columns and Tables. With database

integrity checking you can perform instance validation beyond what is achievable

with XML Schema-based validation.

The W3C XML Schema Recommendation only allows for validation based on

cross-referencing of values with an instance document. With database integrity

checking you can enforce other kinds of validation, such as enforcing the

uniqueness of a element or attribute across a collection of documents, or validating

the value of a element or attribute against information stored elsewhere in the

database.

Example 3–25 Adding a Unique and Referential Constraint to Table Purchaseorder

The following example shows how you can introduce a Unique and Referential

Constraint on the PurchaseOrder table.

XMLDATA.SQLAttributeName
alter table XML_PURCHASEORDER
add constraint REFERENCE_IS_UNQIUE
-- unique(extractValue(’/PurchaseOrder/Reference’))

See Also: Chapter 5, "Structured Mapping of XMLType"

Note: In Oracle9i Release 2 (9.2) constraints have to be specified

using object-relational syntax.
Using Oracle XML DB 3-33

Structured Storage: XML Schema-Based Storage of XMLType
unique (xmldata."Reference");

alter table XML_PURCHASEORDER
add constraint USER_IS_VALID
-- foreign key extractValue(’/PurchaseOrder/User’) references
SCOTT.EMP(ENAME)
foreign key (xmldata."User") references SCOTT.EMP(ENAME);

As can be seen, when an attempt is made to insert an XML Document that contains

a duplicate value for the element /PurchaseOrder/Reference into the table, the

database detects that the insert would violate the unique constraint, and raises the

appropriate error.

insert into xml_purchaseorder values (
 xmltype(getDocument(’ADAMS-20011127121040988PST.xml’))
);

This returns:

1 row created.

insert into xml_purchaseorder values (
 xmltype(getDocument(’ADAMS-20011127121040988PST.xml’))
);

insert into xml_purchaseorder values (
*

This returns:

ERROR at line 1:
ORA-00001: unique constraint (DOC92.REFERENCE_IS_UNQIUE) violated

Example 3–26 How Oracle9i Database Enforces Referential Constraint User_Is_Valid

The following example shows how the database will enforce the referential

constraint USER_IS_VALID, which states that the value of the element

/PurchaseOrder/User , that translates to the SQLAttribute xmldata.user” ,

must match one of the values of ENAME in SCOTT.EMP.

insert into xml_purchaseorder values (
 xmltype(getDocument(’HACKER-20011127121040988PST.xml’))
);

insert into xml_purchaseorder values (
*

3-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Repository
This returns:

ERROR at line 1:
ORA-02291: integrity constraint (SCOTT.USER_IS_VALID)
violated - parent key notfound

Oracle XML DB Repository
XML documents are by nature hierarchical animals. The information they contain is

represented by a hierarchy of elements, child elements, and attributes. XML

documents also view the world around them as a hierarchy. When an XML

document refers to another XML document, or any other kind of document, it does

so using a URL. URLs can be either relative or absolute. In either case, the URL

defines a path to the target document. The path is expressed in terms of a folder
hierarchy.

Oracle XML DB Repository makes it possible to view all of XML content stored in

the database using a File / Folder metaphor. The Repository provides support for

basic operations such as creating files and folders as well as more advanced features

such as version and access control.

The Repository is fully accessible, queryable, and updatable through SQL. It can

also be directly accessed through industry standard protocols such as HTTP,

WebDAV, and FTP.

Introducing the IETF WebDAV Standard
WebDAV is an Internet Engineering Task Force (IETF) Standard for Distributed

Authoring and Versioning of content. The standard is implemented by extending

the HTTP protocol allowing a Web Server to act as a File Server in a distributed

environment.

Oracle XML DB Repository is Based on WebDAV
Oracle XML DB Repository is based on the model defined by the WebDAV

standard. It uses the WebDAV resource model to define the basic metadata that is

maintained for each document stored in the Repository. The WebDAV protocol uses

XML to transport metadata between the client and the server.

Hence, you can easily create, edit, and access documents stored in Oracle XML DB

Repository using standard tools. For example, you can use:

■ Microsoft Web Folders

See Also: Chapter 13, "Oracle XML DB Foldering"
Using Oracle XML DB 3-35

Oracle XML DB Repository
■ Other WebDAV-enabled products, such as Microsoft Office, Macromedia, and

the Adobe range of authoring tools.

WebDAV uses the term Resource to define a file or folder. It defines a set of basic

operations that can be performed on a Resource. These operations require a

WebDAV server to maintain a set of basic metadata for each Resource. Oracle XML

DB exposes this metadata as a set of XML Documents in the following form:

Example 3–27 Oracle XML DB Exposes WebDAV Resource Metadata as XML
Documents

<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Hidden="false" Invalid="false" Container="false"
 CustomRslv="false">
 <CreationDate> 2002-02-14T16:01:01.066324000</CreationDate>
 <ModificationDate> 2002-02-14T16:01:01.066324000</ModificationDate>
 <DisplayName>testFile.xml</DisplayName>
 <Language>us english</Language>
 <CharacterSet>utf-8</CharacterSet>
 <ContentType>text/xml</ContentType>
 <RefCount>1</RefCount>
 <ACL>
 <acl description="/sys/acls/all_all_acl.xml"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd">
 <ace>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 <principal>PUBLIC</principal>
 </ace>
 </acl>
 </ACL>
 <Owner>DOC92</Owner>
 <Creator>DOC92</Creator>
 <LastModifier>DOC92</LastModifier>
 <SchemaElement>
 http://xmlns.oracle.com/xdb/XDBSchema.xsd#binary
 </SchemaElement>
 <Contents>
 <binary>02C7003802C77B7000081000838B1C240000000002C71E7C</binary>
 </Contents>
3-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query-Based Access to Oracle XML DB Repository
</Resource>

Query-Based Access to Oracle XML DB Repository
Oracle XML DB exposes the Repository to SQL developers as two views:

■ RESOURCE_VIEW

■ PATH_VIEW

It also provides a set of SQL functions and PL/SQL packages for performing

Repository operations.

Using RESOURCE_VIEW
RESOURCE_VIEW is the primary way for querying Oracle XML DB Repository.

There is one entry in the RESOURCE_VIEW for each document stored in the

Repository. The RES column contains the resource entry for the document, the ANY_
PATH entry provides a valid folder path from the root to the resource.

The definition of the RESOURCE_VIEW is:

SQL> describe RESOURCE_VIEW

 Name Null? Type
------------------------------- -------- ----------------------------
 RES SYS.XMLTYPE
 ANY_PATH VARCHAR2(4000)

Using PATH_VIEW
PATH_VIEW contains an entry for each Path in the Repository. Since a Resource can

be linked into more than one folder, PATH_VIEW shows all possible Paths in the

Repository and the resources they point to. The definition of the PATH_VIEW is:

SQL> describe PATH_VIEW

 Name Null? Type
------------------------------- -------- ----------------------------
 PATH VARCHAR2(1024)
 RES SYS.XMLTYPE
 LINK SYS.XMLTYPE

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"
Using Oracle XML DB 3-37

Query-Based Access to Oracle XML DB Repository
Creating New Folders and Documents
You can create new folders and documents using methods provided by DBMS_XDB
package. For example, a new folder can be created using the procedure

createFolder() and a file can be uploaded into that folder using

createResource() . The following examples show you how to do this:

Example 3–28 Creating a Repository Resource and Folder

SQL> declare
 2 result boolean;
 3 begin
 4 result := dbms_xdb.createFolder('/public/testFolder');
 5 end;
 6 /

PL/SQL procedure successfully completed.

SQL> declare
 2 result boolean;
 3 begin
4 result := dbms_xdb.createResource(
5 '/public/testFolder/testFile.xml',
6 getDocument('testFile.xml')
7);
 8 end;
 9 /

PL/SQL procedure successfully completed.

Querying Resource Documents
RESOURCE_VIEW can be queried just like any other view. Oracle XML DB provides

a new operator, UNDER_PATH, that provides a way for you to restrict queries to a

particular folder tree within the RESOURCE_VIEW.

extractValue() and existsNode() can be used on the Resource documents

when querying the RESOURCE_VIEW and PATH_VIEW Resource documents.

Updating Resources
You can update Resources using updateXML() .
3-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query-Based Access to Oracle XML DB Repository
Example 3–29 Updating Repository Resources

For example, the following query updates the OWNER and NAME of the document

created in the previous example.

update RESOURCE_VIEW
 set RES=updateXML(RES,
 ’/Resource/DisplayName/text()’,’RenamedFile’,
 ’/Resource/Owner/text()’,’SCOTT’
)
where any_path = ’/public/testFolder/testFile.xml’;

-- 1 row updated.

select r.res.getClobVal()
 from RESOURCE_VIEW r
 where ANY_PATH = ’/public/testFolder/testFile.xml’
/

-- Results in:
-- R.RES.GETCLOBVAL()
-- --
-- <Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
-- Hidden="false" Invalid="false" Container="false"
-- CustomRslv="false">
-- <CreationDate> 2002-02-14T16:01:01.066324000</CreationDate>
-- <ModificationDate> 2002-02-14T21:36:39.579663000</ModificationDate>
-- <DisplayName>RenamedFile</DisplayName>
-- <Language>us english</Language>
-- <CharacterSet>utf-8</CharacterSet>
-- <ContentType>text/xml</ContentType>
-- <RefCount>1</RefCount>
-- <ACL>
-- ...
-- </ACL>
-- <Owner>SCOTT</Owner>
-- <Creator>DOC92</Creator>
-- <LastModifier>DOC92</LastModifier>
-- </Resource>

Deleting Resources
Resource can be deleted using deleteResource() . If the resource is a folder then

the folder must be empty before it can be deleted.
Using Oracle XML DB 3-39

Storage Options for Resources
Example 3–30 Deleting Repository Resources

The following examples show the use of the deleteResource() procedure.

call dbms_xdb.deleteResource('/public/testFolder')
 /
call dbms_xdb.deleteResource('/public/testFolder')
 *
ERROR at line 1:
ORA-31007: Attempted to delete non-empty container /public//testFolder
ORA-06512: at "XDB.DBMS_XDB", line 151
ORA-06512: at line 1

call dbms_xdb.deleteResource('/public/testFolder/testFile.xml')
 /
Call completed.

call dbms_xdb.deleteResource('/public/testFolder')
/
Call completed.

Storage Options for Resources
RESOURCE_VIEW and PATH_VIEW are based on tables stored in Oracle XML DB

database schema. The metadata exposed through RESOURCE_VIEW and PATH_
VIEW is stored and managed using a set of tables in Oracle XML DB-supplied XML

schema, XDBSchema.xsd . The contents of the files are stored as BLOB or CLOB

columns in this XML schema.

Defining Your Own Default Table Storage for XML Schema-Based
Documents

There is an exception to this storage paradigm when storing XML schema-based

XML documents. When an XML schema is registered with Oracle XML DB you can

define a default storage table for each root element defined in the XML schema.

You can define your own default storage tables by adding an xdb:defaultTable
attribute to the definition of the top level element When the schema is registered,

Oracle XML DB establishes a link between the Repository and the default tables

See Also: Appendix G, "Example Setup scripts. Oracle XML DB -

Supplied XML Schemas", "xdbconfig.xsd: XML Schema for

Configuring Oracle XML DB" on page G-18
3-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Defining Your Own Default Table Storage for XML Schema-Based Documents
defined by your XML schema. You can choose to generate the default tables as part

of the XML schema registration.

Your Default Table is an XMLType Table and Hierarchically Enabled
A default table is an XMLType table, that is, it is an object table based on the

XMLType datatype. When an XML document, with a root element and XML schema

that match your default table’s root element and XML schema, is inserted into the

Repository, the XML content is stored as a row in the specified default table. A

resource is created that contains a reference to the appropriate row in the default

table.

One of the special features of an XMLType table is that it can be hierarchically enabled.

Default Tables, created as part of XML schema registration are automatically

hierarchically enabled. When a table is hierarchically enabled DML operations on

the default table may cause corresponding operations on the Oracle XML DB

Repository. For example, when a row is deleted from the default table, any entries

in the Repository which reference that row are deleted.

Example 3–31 Adding the xdb:defaultTable Attribute to the XML Schema’s Element
Definition

The following example shows the result of adding an xdb:defaultTable
attribute to the XML schema definition’s PurchaseOrder element and then

registering the XML schema with the Create Table option set to TRUE:

<xs:element name="PurchaseOrder" xdb:defaultTable="XML_PURCHASEORDER">
 <xs:complexType type="PurchaseOrderType"
 xdb:SQLType="XML_PURCHASEORDER_TYPE">
 <xs:sequence>
 <xs:element ref="Reference"/>
 <xs:element name="Actions" type="ActionsType"/>
 <xs:element name="Reject" type="RejectType" minOccurs="0"/>
 <xs:element ref="Requestor"/>
 <xs:element ref="User"/>
 <xs:element ref="CostCenter"/>
 <xs:element name="ShippingInstructions"
 type="ShippingInstructionsType"/>
 <xs:element ref="SpecialInstructions"
 xdb:SQLName="SPECINST"/>
 <xs:element name="LineItems" type="LineItemsType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
Using Oracle XML DB 3-41

Defining Your Own Default Table Storage for XML Schema-Based Documents
SQL> begin
 2 dbms_xmlschema.registerSchema(
 3 'http://www.oracle.com/xsd/purchaseOrder.xsd',
 4 getDocument('purchaseOrder3.xsd'),
 5 TRUE, TRUE, FALSE, TRUE
 6);
 7
 8 end;
 9 /

PL/SQL procedure successfully completed.

SQL> describe XML_PURCHASEORDER

 Name Null? Type
 ------------------------------- -------- ----------------------------
TABLE of SYS.XMLTYPE(XMLSchema
http://www.oracle.com/xsd/purchaseOrder.xsd Element "PurchaseOrder")
STORAGE Object-relational TYPE "XML_PURCHASEORDER_TYPE"

Example 3–32 Inserting an XML Document into Oracle XML DB Repository Causes a
Insertion of a Row into the Table

The following example shows how, once the XML schema is registered, and the

default table created, when inserting an XML document into Oracle XML DB

Repository causes a row to be inserted into the designated default table:

select count(*) from XML_PURCHASEORDER;

Results in:

 COUNT(*)

 0

-- create testFolder
declare
 result boolean;
begin
 result := dbms_xdb.createFolder(’/public/testFolder’);
end;
/

declare
 result boolean;
 begin
3-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Defining Your Own Default Table Storage for XML Schema-Based Documents
 result := dbms_xdb.createResource(
 ’/public/testFolder/purchaseOrder1.xml’,
 getDocument(’purchaseOrder1.xml’)
);
 end;
/

-- PL/SQL procedure successfully completed.

commit;

-- Commit complete.

select count(*) from XML_PURCHASEORDER;

Results in:

 COUNT(*)

 1

Example 3–33 Deleting a Row Causes Deletion of Corresponding Entry from the
Repository

This example shows when deleting a row from the hierarchy-enabled default table,

the corresponding entry is deleted from the hierarchy:

select extractValue(res,'Resource/DisplayName') "Filename"
 from RESOURCE_VIEW where under_path(res,'/public/testFolder') = 1;
/
Results in:

Filename
--
purchaseOrder1.xml

delete from XML_PURCHASEORDER;
1 row deleted.

SQL> commit;
Commit complete.

select extractValue(res,'Resource/DisplayName') "Filename"
 from RESOURCE_VIEW where under_path(res,'/public/testFolder') = 1
/
Results in:
Using Oracle XML DB 3-43

Accessing XML Schema-Based Content
no rows selected

Accessing XML Schema-Based Content
When a resource describes XML content that has been stored in a default table the

resource entry itself simply contains a reference to the appropriate row in the

default table. This reference can be used to perform join operations between the

resource and it’s content. This can be seen in the following example.

Accessing Non-Schema-Based Content With XDBUriType
XDBUriType can be used to access the contents of a file stored in the Repository

using a logical path. The following example shows how to access a resource

associated with a JPEG file. The JPEG file has been inserted into the Repository. The

example uses Oracle interMedia ordsys.ordimage class to extract the metadata

associated with the JPEG file.

create or replace function getImageMetaData (uri varchar2)
return xmltype deterministic
is
 resType xmltype;
 resObject xdb.xdb$resource_t;
 attributes CLOB;
 xmlAttributes xmltype;
begin
 DBMS_LOB.CREATETEMPORARY(attributes, FALSE, DBMS_LOB.CALL);
 -- ordsys.ordimage.getProperties(xdburitype(uri).getBlob(),
 -- attributes);
 select res into resType from resource_view where any_path = uri;
 resType.toObject(resObject);
 ordsys.ordimage.getProperties(resObject.XMLLOB,attributes);
 xmlAttributes := xmltype(attributes);
 DBMS_LOB.FREETEMPORARY(attributes);
 return xmlAttributes;
end;
/

Oracle XML DB Protocol Servers
Oracle XML DB includes three protocol servers through which you can access the

Repository directly from standard file-based applications.
3-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers
Using FTP Protocol Server
The FTP Protocol Server allows standard FTP clients to access content stored in the

Repository as if it were content behind a regular FTP server. FTP Protocol Server

works with standard FTP clients, including:

■ Command line clients, such as the command line clients supplied with Unix

and Windows Command Prompt

■ Graphical clients, such as WS-FTP

■ Web Browsers that support the FTP protocol

Figure 3–6, Figure 3–7, Figure 3–8, and Figure 3–9 show examples of how you can

access the root level of the Repository using various of standard FTP clients.

Figure 3–6 Accessing the Repository Root Level from the DOS Command Prompt Command Line

See Also: Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"
Using Oracle XML DB 3-45

Oracle XML DB Protocol Servers
Figure 3–7 Accessing the Repository Root Level fro m IE Browser Web Folder Menu
3-46 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers
Figure 3–8 Accessing the Repository Root Level fro m WS_FTP95LE FTP Interface Program
Using Oracle XML DB 3-47

Oracle XML DB Protocol Servers
Figure 3–9 Accessing the Repository Root Level from a Telnet Session
3-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers
Using HTTP/WebDAV Protocol Server
Oracle XML DB Repository can also be accessed using HTTP and WebDAV.

WebDAV support allows applications such as a Microsoft’s Web Folders client,

Microsoft Office, and Macromedia’s Dreamweaver to directly access Oracle XML

DB Repository. Figure 3–10 and Figure 3–11 are examples of using HTTP and

WebDAV to access the Repository.

Figure 3–10 Accessing the Repository Using HTTP/WebDAV from Microsoft Windows Explorer
Using Oracle XML DB 3-49

Oracle XML DB Protocol Servers
Figure 3–11 Accessing the Repository Using HTTP/WebDAV Protocol Server from Microsoft Web
Folders Client

By providing support for standard industry protocols, Oracle XML DB makes it

possible to upload and access data and documents stored in Oracle9i database

using standard, familiar interfaces.
3-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part II

Storing and Retrieving XML Data in Oracle

XML DB

Part II of this manual introduces you to ways you can store, retrieve, validate, and

transform XML data using Oracle XML DB. It contains the following chapters:

■ Chapter 4, "Using XMLType"

■ Chapter 5, "Structured Mapping of XMLType"

■ Chapter 6, "Transforming and Validating XMLType Data"

■ Chapter 7, "Searching XML Data with Oracle Text"

Using XM
4

Using XMLType

This chapter describes how to use the XMLType datatype, create and manipulate

XMLType tables and columns, and query on them. It contains the following

sections:

■ What Is XMLType?

■ When to Use XMLType

■ Storing XMLType Data in Oracle XML DB

■ XMLType Member Functions

■ How to Use the XMLType API

■ Guidelines for Using XMLType Tables and Columns

■ Manipulating XML Data in XMLType Columns/Tables

■ Inserting XML Data into XMLType Columns/Tables

■ Selecting and Querying XML Data

■ Updating XML Instances and Data in Tables and Columns

■ Deleting XML Data

■ Using XMLType In Triggers

■ Indexing XMLType Columns
LType 4-1

What Is XMLType?
What Is XMLType?
Oracle9i Release 1 (9.0.1) introduced a new datatype, XMLType, to facilitate native

handling of XML data in the database. The following summarizes XMLType:

■ XMLType can be used in PL/SQL stored procedures as parameters, return

values, and variables.

■ XMLType can represent an XML document as an instance (of XMLType) in SQL.

■ XMLType has built-in member functions that operate on XML content. For

example, you can use XMLType functions to create, extract, and index XML data

stored in Oracle9i database.

■ Functionality is also available through a set of Application Program Interfaces

(APIs) provided in PL/SQL and Java.

With XMLType and these capabilities, SQL developers can leverage the power of the

relational database while working in the context of XML. Likewise, XML

developers can leverage the power of XML standards while working in the context

of a relational database.

XMLType datatype can be used as the datatype of columns in tables and views.

Variables of XMLType can be used in PL/SQL stored procedures as parameters,

return values, and so on. You can also use XMLType in SQL, PL/SQL, and Java

(through JDBC).

Note:

■ Non-schema-based: XMLType tables and columns described in

this chapter are not based on XML schema. You can, however,

use the techniques and examples provided in this chapter

regardless of which storage option you choose for your

XMLType tables and columns. See Chapter 3, "Using Oracle

XML DB" for further storage recommendations.

■ XML schema-based: Appendix B, "XML Schema Primer" and

Chapter 5, "Structured Mapping of XMLType" describe how to

work with XML schema-based XMLType tables and columns.
4-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

What Is XMLType?
A number of useful functions that operate on XML content are provided. Many of

these are provided as both SQL and member functions of XMLType. For example,

the extract() function extracts a specific node(s) from an XMLType instance.

You can use XMLType in SQL queries in the same way as any other user-defined

datatypes in the system.

Benefits of the XMLType Data Type and API
The XMLType datatype and API provides significant advantages. It enables SQL

operations on XML content, as well as XML operations on SQL content:

■ Versatile API. XMLType has a versatile API for application development, as it

includes built-in functions, indexing support, navigation, and so on.

■ XMLType and SQL. You can use XMLType in SQL statements combined with

other columns and datatypes. For example, you can query XMLType columns

and join the result of the extraction with a relational column, and then Oracle

can determine an optimal way to execute these queries.

■ Optimized evaluation using XMLType. XMLType is optimized to not

materialize the XML data into a tree structure unless needed. Therefore when

SQL selects XMLType instances inside queries, only a serialized form is

exchanged across function boundaries. These are exploded into tree format only

when operations such as extract() and existsNode() are performed. The

internal structure of XMLType is also an optimized DOM-like tree structure.

Note: In Oracle9i Release 1 (9.0.1), XMLType was only supported

in the server in SQL, PL/SQL, and Java. In Oracle9i Release 2 (9.2),

XMLType is also supported on the client side through SQL, Java,

and protocols such as FTP and HTTP/WebDav.

See Also:

■ "Oracle XML DB Offers Faster Storage and Retrieval of

Complex XML Documents" on page 1-20

■ Chapter 26, "Oracle XML DB Basic Demo"

■ Oracle9i SQL Reference Appendix D, “Using XML in SQL

Statements”
Using XMLType 4-3

When to Use XMLType
■ Indexing. Oracle Text index has been enhanced to support XMLType columns.

You can also create function-based indexes on existsNode() and extract()
functions to speed up query evaluation.

When to Use XMLType
Use XMLType when you need to perform the following:

■ SQL queries on part of or the whole XML document: The functions

existsNode() and extract() provide the necessary SQL query functions

over XML documents.

■ Strong typing inside SQL statements and PL/SQL functions: Strong typing

implies that you ensure that the values passed in are XML values and not any

arbitrary text string.

■ XPath functionality provided by extract() and existsNode() functions:

Note that XMLType uses the built-in C XML parser and processor and hence

provides better performance and scalability when used inside the server.

■ Indexing on XPath searches on documents: XMLType has member functions

that you can use to create function-based indexes to optimize searches.

■ To shield applications from storage models. Using XMLType instead of CLOBs

or relational storage allows applications to gracefully move to various storage

alternatives later without affecting any of the query or DML statements in the

application.

■ To prepare for future optimizations. New XML functionality will support

XMLType. Since Oracle9i database is natively aware that XMLType can store

XML data, better optimizations and indexing techniques can be done. By

writing applications to use XMLType, these optimizations and enhancements

can be easily achieved and preserved in future releases without your needing to

rewrite applications.

Storing XMLType Data in Oracle XML DB
XMLType data can be stored in two ways or a combination thereof:

■ In Large Objects (LOBs). LOB storage maintains content accuracy to the

original XML (whitespaces and all). Here the XML documents are stored

composed as whole documents like files. In this release, for non-schema-based

storage, XMLType offers a CLOB storage option. In future releases, Oracle may

See Also: Chapter 10, "Generating XML Data from the Database"
4-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XMLType Data in Oracle XML DB
provide other storage options, such as BLOBs, NCLOBS, and so on. You can

also create a CLOB-based storage for XML schema-based storage.

When you create an XMLType column without any XML schema specification, a

hidden CLOB column is automatically created to store the XML data. The

XMLType column itself becomes a virtual column over this hidden CLOB

column. It is not possible to directly access the CLOB column; however, you can

set the storage characteristics for the column using the XMLType storage clause.

■ In Structured storage (in tables and views). Structured storage maintains DOM

(Document Object Model) fidelity. Here the XML documents are ’broken up

(decomposed)’ into object- relational tables or views. XMLType achieves DOM

fidelity by maintaining information that SQL or Java objects normally do not

provide for, such as:

■ Ordering of child elements and attributes.

■ Distinguishing between elements and attributes.

■ Unstructured content declared in the schema. For example,

content="mixed” or <any> declarations.

■ Undeclared data in instance documents, such as processing instructions,

comments, and namespace declarations.

■ Support for basic XML datatypes not available in SQL (Boolean, QName,

and so on).

■ Support for XML constraints (facets) not supported directly by SQL, such as

enumerated lists.

Native XMLType instances contain hidden columns that store this extra information

that does not quite fit in the SQL object model. This information can be accessed

through APIs in SQL or Java, using member functions, such as extractNode() .

Changing XMLType storage from structured storage to LOB, or vice versa, is

possible using database IMPORT and EXPORT. Your application code does not

have to change. You can then change XML storage options when tuning your

application, since each storage option has its own benefits.

Pros and Cons of XML Storage Options in Oracle XML DB
Table 4–1 summarizes some advantages and disadvantages to consider when

selecting your Oracle XML DB storage option.
Using XMLType 4-5

Storing XMLType Data in Oracle XML DB
When to Use CLOB Storage for XMLType
Use CLOB storage for XMLType in the following cases:

■ You need to store XML as a whole document in the database and retrieve it as a

whole document.

■ You do not need to perform piece-wise updates on XML documents.

Table 4–1 XML Storage Options in Oracle XML DB

Feature LOB Storage (with Oracle Text index) Structured Storage (with B*Tree index)

Database schema
flexibility

Very flexible when schemas change. Limited flexibility for schema changes. Similar
to the ALTER TABLE restrictions.

Data integrity
and accuracy

Maintains the original XML byte for byte -
important in some applications.

Trailing new lines, whites pace within tags, and
data format for non-string datatypes is lost. But
maintains DOM fidelity.

Performance Mediocre performance for DML. Excellent DML performance.

Access to SQL Some accessibility to SQL features. Good accessibility to existing SQL features,
such as constraints, indexes, and so on

Space needed Can consume considerable space. Needs less space in particular when used with
an Oracle XML DB registered XML schema.

Note: XMLType and Varray:

■ You cannot create VARRAYs of XMLType and store them in the

database since VARRAYs do not support CLOBs when stored

in tables.

■ You cannot create columns of VARRAY types that contain

XMLType. This is because Oracle does not support LOB locators

inside VARRAYs.

See Also:

■ Chapter 2, "Getting Started with Oracle XML DB"

■ Chapter 3, "Using Oracle XML DB", "Storing XML: Structured

or Unstructured Storage" on page 3-24

■ Chapter 10, "Generating XML Data from the Database", for

information on how to generate XMLType data.
4-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How to Use the XMLType API
XMLType Member Functions
Oracle9i Release 1 (9.0.1) introduced several SQL functions and XMLType member

functions that operate on XMLType values. Oracle9i Release 2 (9.2) has expanded

functionality. It provides several new SQL functions and XMLType member

functions.

All XMLType functions use the built-in C parser and processor to parse XML data,

validate it, and apply XPath expressions on it. They also use an optimized

in-memory DOM tree for processing, such as extracting XML documents or

fragments.

How to Use the XMLType API
You can use the XMLType API to create tables and columns. The createXML()
static function of the XMLType API can be used to create XMLType instances for

insertion. By storing your XML documents as XMLType, XML content can be

readily searched using standard SQL queries.

Figure 4–1 shows the syntax for creating an XMLType table:

CREATE TABLE [schema.] table OF XMLTYPE
 [XMLTYPE XMLType_storage] [XMLSchema_spec];

See Also:

■ Appendix F, "Oracle XML DB XMLType API, PL/SQL and

Resource PL/SQL APIs: Quick Reference"

■ Oracle9i XML API Reference - XDK and Oracle XML DB for a list

of all XMLType and member functions, their syntax, and

descriptions.

See Also: Appendix C, "XPath and Namespace Primer"
Using XMLType 4-7

How to Use the XMLType API
Figure 4–1 Creating an XMLType Table

This section shows some simple examples of how to create an XMLType column and

use it in a SQL statement, and how to create XMLType tables.

Creating, Adding, and Dropping XMLType Columns
The following are examples of creating, adding, and dropping XMLType columns:

Example 4–1 Creating XMLType: Creating XMLType Columns

The XMLType column can be created like any other user-defined type column:

CREATE TABLE warehouses(
 warehouse_id NUMBER(4),
 warehouse_spec XMLTYPE,
 warehouse_name VARCHAR2(35),
 location_id NUMBER(4));

Example 4–2 Creating XMLType: Creating XMLType Columns

As explained, you can create XMLType columns by simply using the XMLType as

the datatype. The following statement creates a purchase order document column,

poDoc , of XMLType:

CREATE TABLE po_xml_tab(
 poid number,
 poDoc XMLTYPE);

CREATE TABLE po_xtab of XMLType; -- this creates a table of XMLType. The default
 -- is CLOB based storage.

Example 4–3 Adding XMLType Columns

You can alter tables to add XMLType columns as well. This is similar to any other

datatype. The following statement adds a new customer document column to the

table:

CREATE TABLE
schema .

table OF XMLTYPE

XMLTYPE XMLType_storage XMLSchema_spec
4-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How to Use the XMLType API
ALTER TABLE po_xml_tab add (custDoc XMLType);

Example 4–4 Dropping XMLType Columns

You can alter tables to drop XMLType columns, similar to any other datatype. The

following statement drops column custDoc :

ALTER TABLE po_xml_tab drop (custDoc);

Inserting Values into an XMLType Column
To insert values into the XMLType column, you need to bind an XMLType instance.

Example 4–5 Inserting into XMLTYpe Using the XMLType() Constructor

An XMLType instance can be easily created from a VARCHAR or a Character Large

Object (CLOB) by using the XMLType() constructor :

INSERT INTO warehouses VALUES
 (100, XMLType(
 ’<Warehouse whNo="100">
 <Building>Owned</Building>
 </Warehouse>’), ’Tower Records’, 1003);

This example creates an XMLType instance from a string literal. The input to

createXML() can be any expression that returns a VARCHAR2 or CLOB.

createXML() also checks that the input XML is well-formed.

Using XMLType in an SQL Statement
The following simple SELECT statement shows how you can use XMLType in an

SQL statement:

Example 4–6 Using XMLType and in a SELECT Statement

SELECT
 w.warehouse_spec.extract('/Warehouse/Building/text()').getStringVal()
 "Building"
 FROM warehouses w;

where warehouse_spec is an XMLType column operated on by member function

extract() . The result of this simple query is a string (varchar2):

Building

Using XMLType 4-9

How to Use the XMLType API
Owned

Updating an XMLType Column
An XML document in an XMLType can be stored packed in a CLOB. Then updates

have to replace the whole document in place.

Example 4–7 Updating XMLType

To update an XML document, you can execute a standard SQL UPDATE statement.

You need to bind an XMLType instance, as follows:

UPDATE warehouses SET warehouse_spec = XMLType
 (’<Warehouse whono="200">
 <Building>Leased</Building>
 </Warehouse>’);

This example created an XMLType instance from a string literal and updates column

warehouse_spec with the new value.

Deleting a Row Containing an XMLType Column
Deleting a row containing an XMLType column is no different from deleting a row

containing any other datatype.

Example 4–8 Deleting an XMLType Column Row

You can use extract() and existsNode() functions to identify rows to delete

as well. For example to delete all warehouse rows for which the warehouse

building is leased, you can write a statement such as:

DELETE FROM warehouses e
 WHERE e.warehouse_spec.extract(’//Building/text()’).getStringVal()
 = ’Leased’;

See Also: "How to Use the XMLType API" on page 4-7.

Note: Any triggers would get fired on the UPDATE statement

You can see and modify the XML value inside the triggers.
4-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using XMLType Tables and Columns
Guidelines for Using XMLType Tables and Columns
The following are guidelines for storing XML data in XMLType tables and columns:

Define table/column of XMLType
First, define a table/column of XMLType. You can include optional storage

characteristics with the table/column definition.

Create an XMLType Instance
Use the XMLType constructor to create the XMLType instance before inserting into

the column/table. You can also use a variety of other functions that return

XMLType.

Select or Extract a Particular XMLType Instance
You can select out the XMLType instance from the column. XMLType also offers a

choice of member functions, such as extract() and existsNode() , to extract a

particular node and to check to see if a node exists respectively. See the table of

XMLType member functions in Oracle9i XML API Reference - XDK and Oracle XML
DB.

Note: In this release, Oracle supports XMLType as a public

synonym for sys.XMLType . XMLType now also supports a set of

user-defined constructors (mirroring the createXML static

functions). For example:

■ In Oracle9i Release 1 (9.0.1), you could use the following

syntax: sys.XMLType.createXML(’<Warehouse
whNo=”100”>...)

■ In Oracle9i Release 2 (9.2), you can use the following

abbreviated version: XMLType(’<Warehouse
whNo=”100”>...) .

Note: This release of Oracle supports creating tables of XMLType.

You can create object references (REFs) to these tables and use them

in the object cache.

See Also: "SYS_XMLGEN(): Converting an XMLType Instance"

on page 10-48, for an example.
Using XMLType 4-11

Guidelines for Using XMLType Tables and Columns
You can Define an Oracle Text Index
You can define an Oracle Text index on XMLType columns. This enables you to use

CONTAINS, HASPATH, INPATH, and other text operators on the column. All the

Oracle Text operators and index functions that operate on LOB columns also work

on XMLType columns.

You Can Define XPath Index, CTXXPATH
In this release, a new Oracle Text index type, CTXXPATH is introduced. This helps

existsNode() implement indexing and optimizes the evaluation of

existsNode() in a predicate.

Specifying Storage Characteristics on XMLType Columns
XML data in an XMLType column can be stored as a CLOB column. Hence you can

also specify LOB storage characteristics for that column. In example, "Creating

XMLType: Creating XMLType Columns" on page 4-8, the warehouse_spec
column is an XMLType column.

Example 4–9 Specifying Storage When Creating an XMLType Table

You can specify storage characteristics on this column when creating the table as

follows:

CREATE TABLE po_xml_tab(
 poid NUMBER(10),
 poDoc XMLTYPE
)
 XMLType COLUMN poDoc

See Also:

■ "Selecting XMLType Columns using getClobVal()" on page 4-18

■ "Extracting Fragments from XMLType Using extract()" on

page 4-30

See Also:

■ "Indexing XMLType Columns" on page 4-39

■ Chapter 7, "Searching XML Data with Oracle Text"

■ Chapter 10, "Generating XML Data from the Database"

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)
4-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using XMLType Tables and Columns
 STORE AS CLOB (
 TABLESPACE lob_seg_ts
 STORAGE (INITIAL 4096 NEXT 4096)
 CHUNK 4096 NOCACHE LOGGING
);

The STORE AS clause is also supported when adding columns to a table.

Example 4–10 Adding an XMLType Columns and Specifying Storage

To add a new XMLType column to this table and specify the storage clause for that

column, you can use the following SQL statement:

ALTER TABLE po_xml_tab add(
 custDoc XMLTYPE
)
 XMLType COLUMN custDoc
 STORE AS CLOB (
 TABLESPACE lob_seg_ts
 STORAGE (INITIAL 4096 NEXT 4096)
 CHUNK 4096 NOCACHE LOGGING
);

Changing Storage Options on an XMLType Column Using XMLData
In non- schema-based storage, you can use XMLDATA to change storage

characteristics on an XMLType column.

Example 4–11 Changing Storage Characteristics on an XMLType Column Using
XMLDATA

For example, consider table foo_tab :

CREATE TABLE foo_tab (a xmltype);

To change the storage characteristics of LOB column a in foo_tab , you can use

the following statement:

ALTER TABLE foo_tab MODIFY LOB (a.xmldata) (storage (next 5K) cache);

XMLDATA identifies the internal storage column. In the case of CLOB-based storage

this corresponds to the CLOB column. The same holds for XML schema-based

storage. You can use XMLDATA to explore structured storage and modify the values.
Using XMLType 4-13

Manipulating XML Data in XMLType Columns/Tables
You can use the XMLDATA attribute in constraints and indexes, in addition to

storage clauses.

Specifying Constraints on XMLType Columns
You can specify NOT NULL constraint on an XMLType column.

Example 4–12 Specifying Constraints on XMLType Columns

CREATE TABLE po_xml_tab (
 poid number(10),
 poDoc XMLType NOT NULL
);

prevents inserts such as:

INSERT INTO po_xml_tab (poDoc) VALUES (null);

Example 4–13 Using ALTER TABLE to Change NOT NULL of XMLType Columns

You can also use the ALTER TABLE statement to change NOT NULL information

of an XMLType column, in the same way you would for other column types:

ALTER TABLE po_xml_tab MODIFY (poDoc NULL);
ALTER TABLE po_xml_tab MODIFY (poDoc NOT NULL);

You can also define check constraints on XMLType columns. Other default values

are not supported on this datatype.

Manipulating XML Data in XMLType Columns/Tables
Since XMLType is a user-defined data type with functions defined on it, you can

invoke functions on XMLType and obtain results. You can use XMLType wherever

you use a user-defined type, including for table columns, views, trigger bodies, and

type definitions.

Note: In this release, the XMLDATA attribute helps access the

XMLType’s internal storage columns so that you can specify storage

characteristics, constraints, and so on directly on that column.

See also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) f and Oracle9i SQL Reference for more information about LOB
storage options
4-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Inserting XML Data into XMLType Columns/Tables
You can perform the following manipulations or Data Manipulation Language

(DML) on XML data in XMLType columns and tables:

■ Inserting XML Data into XMLType Columns/Tables

■ Selecting and Querying XML Data

■ Updating XML Instances and Data in Tables and Columns

■ Deleting XML Data

Inserting XML Data into XMLType Columns/Tables
You can insert data into XMLType columns in the following ways:

■ By using the INSERT statement (in SQL, PL/SQL, and Java)

■ By using SQL*Loader. See Chapter 22, "Loading XML Data into Oracle XML

DB"

XMLType columns can only store well-formed XML documents. Fragments and

other non-well-formed XML cannot be stored in XMLType columns.

Using INSERT Statements
To use the INSERT statement to insert XML data into XMLType , you need to first

create XML documents to perform the insert with. You can create the insertable

XML documents as follows:

■ By using XMLType constructors. This can be done in SQL, PL/SQL, and Java.

■ By using SQL functions like XMLElement() , XMLConcat() , and XMLAGG() .

This can be done in SQL, PL/SQL, and Java.

Example 4–14 Inserting XML Data Using createXML() with CLOB

The following examples use INSERT...SELECT and the XMLType constructor to first

create an XML document and then insert the document into the XMLType columns.

Consider table po_clob_tab that contains a CLOB, poClob , for storing an XML

document:

CREATE TABLE po_clob_tab
(
 poid number,
 poClob CLOB
);
Using XMLType 4-15

Inserting XML Data into XMLType Columns/Tables
-- some value is present in the po_clob_tab
INSERT INTO po_clob_tab
 VALUES(100, ’<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033, Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 </PO>');

Example 4–15 Inserting XML Data Using an XMLType Instance

You can insert a purchase order XML document into table, po_xml_tab , by simply

creating an XML instance from the CLOB data stored in the other po_clob_tab :

INSERT INTO po_xml_tab
 SELECT poid, XMLType(poClob)
 FROM po_clob_tab;

Example 4–16 Inserting XML Data Using XMLType() with String

This example inserts a purchase order into table po_tab using the XMLType
constructor:

INSERT INTO po_xml_tab
 VALUES(100, XMLType (’<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033, Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 </PO>'));

Note: You can also get the CLOB value from any expression,

including functions that can create temporary CLOBs or select out

CLOBs from other table or views.
4-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
Example 4–17 Inserting XML Data Using XMLElement()

This example inserts a purchase order into table po_xml_tab by generating it

using the XMLElement() SQL function. Assume that the purchase order is an

object view that contains a purchase order object. The whole definition of the

purchase order view is given in "DBMS_XMLGEN: Generating a Purchase Order

from the Database in XML Format" on page 10-34.

INSERT INTO po_xml_tab
 SELECT XMLelement("po", value(p))
 FROM po p
 WHERE p.pono=2001;

XMLElement() creates an XMLType from the purchase order object, which is then

inserted into table po_xml_tab . You can also use SYS_XMLGEN() in the INSERT

statement.

Selecting and Querying XML Data
You can query XML data from XMLType columns in the following ways:

■ By selecting XMLType columns through SQL, PL/SQL, or Java

■ By querying XMLType columns directly and using extract() and

existsNode()

■ By using Oracle Text operators to query the XML content. See "Indexing

XMLType Columns" on page 4-39 and Chapter 7, "Searching XML Data with

Oracle Text".

SQL Functions for Manipulating XML data
SQL functions such as existsNode() , extract() , XMLTransform() , and

updateXML() operate on XML data inside SQL. XMLType datatype supports most

of these as member functions. You can use either the selfish style of invocation or

the SQL functions.

Selecting XML Data
You can select XMLType data using PL/SQL or Java. You can also use the

getClobVal(), getStringVal() , or getNumberVal() functions to retrieve

XML as a CLOB, VARCHAR, or NUMBER, respectively.
Using XMLType 4-17

Selecting and Querying XML Data
Example 4–18 Selecting XMLType Columns using getClobVal()

This example shows how to select an XMLType column using SQL*Plus:

SET long 2000

SELECT e.poDoc.getClobval() AS poXML
 FROM po_xml_tab e;

POXML

<?xml version="1.0"?>
<PO pono="2">
 <PNAME>Po_2</PNAME>
 <CUSTNAME>Nance</CUSTNAME>
 <SHIPADDR>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
</PO>

Querying XML Data
You can query XMLType data and extract portions of it using the existsNode()
and extract() functions. Both these functions use a subset of the W3C XPath

recommendation to navigate the document.

Using XPath Expressions for Searching XML Documents
XPath is a W3C recommendation for navigating XML documents. XPath models the

XML document as a tree of nodes. It provides a rich set of operations to “walk” the

tree and to apply predicates and node test functions. Applying an XPath expression

to an XML document can result in a set of nodes. For instance, /PO/PONO selects

out all “PONO” child elements under the “PO” root element of the document.

Table 4–2 lists some common constructs used in XPath.
4-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
The XPath must identify a single or a set of element, text, or attribute nodes. The

result of the XPath cannot be a boolean expression.

Querying XML Data Using XMLType Member Functions
You can select XMLType data through PL/SQL, OCI, or Java. You can also use the

getClobVal() , getStringVal() , or getNumberVal() functions to retrieve the

XML as a CLOB, VARCHAR or a number, respectively.

Example 4–19 Retrieving an XML Document as a CLOB Using getClobVal() and
existsNode()

This example shows how to select an XMLType column using getClobVal() and

existsNode() :

set long 2000

SELECT e.poDoc.getClobval() AS poXML
 FROM po_xml_tab e
 WHERE e.poDoc.existsNode(’/PO[PNAME = "po_2"]’) = 1;

Table 4–2 Some Common XPath Constructs

XPath Construct Description

 “/” Denotes the root of the tree in an XPath expression. For example, /PO refers to the
child of the root node whose name is “PO”.

 “/” Also used as a path separator to identify the children node of any given node. For
example, /PO/PNAME identifies the purchase order name element, a child of the root
element.

“//” Used to identify all descendants of the current node. For example, PO//ZIP matches
any zip code element under the “PO” element.

"*” Used as a wildcard to match any child node. For example, /PO/*/STREET matches
any street element that is a grandchild of the “PO” element.

 [] Used to denote predicate expressions. XPath supports a rich list of binary operators
such as OR, AND, and NOT. For example, /PO[PONO=20 and PNAME=”PO_
2”]/SHIPADDR select out the shipping address element of all purchase orders whose
purchase order number is 20 and whose purchase order name is “PO_2”. [] is also
used for denoting an index into a list. For example, /PO/PONO[2] identifies the
second purchase order number element under the “PO” root element.

See Also: Appendix C, "XPath and Namespace Primer"
Using XMLType 4-19

Selecting and Querying XML Data
POXML

<?xml version="1.0"?>
<PO pono="2">
 <PNAME>Po_2</PNAME>
 <CUSTNAME>Nance</CUSTNAME>
 <SHIPADDR>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
</PO>

existsNode Function
The syntax for the existsNode() function is described in Figure 4–2 and also as

follows:

existsNode(XMLType_instance IN XMLType,
 XPath_string IN VARCHAR2, namespace_string IN varchar2 := null)
RETURN NUMBER

Figure 4–2 existsNode() Syntax

existsNode() function on XMLType checks if the given XPath evaluation results

in at least a single XML element or text node. If so, it returns the numeric value 1,

otherwise, it returns a 0. Namespace can be used to identify the mapping of

prefix(es) specified in the XPath_string to the corresponding namespace(s).

Example 4–20 Using existsNode() on XMLType

For example, consider an XML document such as:

<PO>
 <PONO>100</PONO>
 <PNAME>Po_1</PNAME>
 <CUSTOMER CUSTNAME="John"/>
 <SHIPADDR>
 <STREET>1033, Main Street</STREET>
 <CITY>Sunnyvalue</CITY>

EXISTSNODE (XMLType_instance , XPath_string
namespace

)

,

4-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
 <STATE>CA</STATE>
 </SHIPADDR>
</PO>

An XPath expression such as /PO/PNAME results in a single node. Therefore,

existsNode() will return 1 for that XPath. This is the same with

/PO/PNAME/text() , which results in a single text node.

An XPath expression such as /PO/POTYPE does not return any nodes. Therefore, an

existsNode() on this would return the value 0.

To summarize, existsNode() member function can be used in queries and to

create function-based indexes to speed up evaluation of queries.

Example 4–21 Using existsNode() to Find a node

The following example tests for the existence of the /Warehouse/Dock node in the

warehouse_spec column XML path of the sample table oe.warehouses :

SELECT warehouse_id, EXISTSNODE(warehouse_spec, ’/Warehouse/Docks’)
 "Loading Docks"
 FROM warehouses
 WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_ID Loading Docks
------------ -------------
 1 1
 2 1
 3 0
 4 1

Using Indexes to Evaluate existsNode()
You can create function-based indexes using existsNode() to speed up the

execution. You can also create a CTXXPATH index to help speed up arbitrary XPath

searching.

extract () Function
The extract() function is similar to the existsNode () function. It applies a

VARCHAR2 XPath string with an optional namespace parameter and returns an

See Also: "Creating XPath Indexes on XMLType Columns:

CTXXPATH Index" on page 4-41
Using XMLType 4-21

Selecting and Querying XML Data
XMLType instance containing an XML fragment. The syntax is described in

Figure 4–3 and as follows:

extract(XMLType_instance IN XMLType, XPath_string IN VARCHAR2,
 namespace_string In varchar2 := null) RETURN XMLType;

Figure 4–3 extract() Syntax

extract() on XMLType extracts the node or a set of nodes from the document

identified by the XPath expression. The extracted nodes can be elements, attributes,

or text nodes. When extracted out, all text nodes are collapsed into a single text

node value. Namespace can be used to supply namespace information for prefixes

in the XPath string.

The XMLType resulting from applying an XPath through extract() need not be a

well-formed XML document but can contain a set of nodes or simple scalar data in

some cases. You can use the getStringVal() or getNumberVal() methods on

XMLType to extract this scalar data.

For example, the XPath expression /PO/PNAME identifies the PNAME element inside

the XML document shown previously. The expression /PO/PNAME/text() , on the

other hand, refers to the text node of the PNAME element.

Use text() node test function to identify text nodes in elements before using the

getStringVal() or getNumberVal() to convert them to SQL data. Not having

the text() node would produce an XML fragment.

For example, XPath expressions:

■ /PO/PNAME identifies the fragment <PNAME>PO_1</PNAME>

■ /PO/PNAME/text() identifies the text value “PO_1”

Note: The latter is still considered an XMLType. In other words,

extract(poDoc,’/PO/PNAME/text()’) still returns an

XMLtype instance although the instance may actually contain only

text. You can use getStringVal() to get the text value out as a

VARCHAR2 result.

EXTRACT (XMLType_instance , XPath_string
namespace

)

,

4-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
You can use the index mechanism to identify individual elements in case of

repeated elements in an XML document. For example, if you have an XML

document such as:

<PO>
 <PONO>100</PONO>
 <PONO>200</PONO>
</PO>

you can use:

■ //PONO[1] to identify the first “PONO” element (with value 100).

■ //PONO[2] to identify the second “PONO” element (with value 200).

The result of extract() is always an XMLType. If applying the XPath produces an

empty set, then extract() returns a NULL value.

Hence, extract() member function can be used in a number of ways, including

the following:

■ Extracting numerical values on which function-based indexes can be created to

speed up processing

■ Extracting collection expressions to be used in the FROM clause of SQL

statements

■ Extracting fragments to be later aggregated to produce different documents

Example 4–22 Using extract() to Extract the Value of a Node

This example extracts the value of node, /Warehouse/Docks , of column,

warehouse_spec in table oe.warehouses :

SELECT warehouse_name,
 extract(warehouse_spec, ’/Warehouse/Docks’).getStringVal()
 "Number of Docks"
 FROM warehouses
 WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Number of Docks
-------------------- --------------------
Southlake, Texas <Docks>2</Docks>
San Francisco <Docks>1</Docks>
New Jersey <Docks/>
Seattle, Washington <Docks>3</Docks>
Using XMLType 4-23

Selecting and Querying XML Data
extractValue() Function
The extractValue() function takes as arguments an XMLType instance and an

XPath expression. It returns a scalar value corresponding to the result of the XPath

evaluation on the XMLType instance. extractValue() syntax is also described in

Figure 4–4.

■ XML schema-based documents. For documents based on XML schema, if

Oracle9i can infer the type of the return value, then a scalar value of the

appropriate type is returned. Otherwise, the result is of type VARCHAR2.

■ Non- schema-based documents. For documents not based on XML schemas,

the return type is always VARCHAR2.

extractValue() tries to infer the proper return type from the XML schema of the

document. If the XMLType is non- schema-based or the proper return type cannot

be determined, Oracle XML DB returns a VARCHAR2.

Figure 4–4 extractValue() Syntax

A Shortcut Function
extractValue() permits you to extract the desired value more easily than when

using the equivalent extract function. It is an ease-of-use and shortcut function. So

instead of using:

extract(x,'path/text()').get(string|num)val()

you can replace extract().getStringVal() or

extract().getnumberval() with extractValue() as follows:

extractValue(x, ’path/text()’)

With extractValue() you can leave off the text() , but ONLY if the node

pointed to by the 'path ' part has only one child and that child is a text node.

Otherwise, an error is thrown.

extractValue() syntax is the same as extract() .

EXTRACTVALUE (XMLType_instance , XPath_string
, value_expr

)

4-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
extractValue() Characteristics
extractValue() has the following characteristics:

■ It always returns only scalar content, such as NUMBER...VARCHAR2, and so

on.

■ It cannot return XML nodes or mixed content. It raises an error at compile or

run time if it gets XML nodes as the result.

■ It always returns VARCHAR2 by default. If the node’s value is bigger than 4K,

a runtime error would occur.

■ In the presence of XML schema information, at compile time,

extractValue() can automatically return the appropriate datatype based on

the XML schema information, if it can detect so at compile time of the query.

For instance, if the XML schema information for the path /PO/POID indicates

that this is a numerical value, then extractValue() returns a NUMBER.

■ If the XPath identifies a node, it automatically gets the scalar content from its

text child. The node must have exactly one text child. For example:

extractValue(xmlinstance, ’/PO/PNAME’)

extracts out the text child of PNAME. This is equivalent to:

extract(xmlinstance, ’/PO/PNAME/text()’).getstringval()

Example 4–23 Extracting the Scalar Value of an XML Fragment Using extractValue()

The following example takes as input the same arguments as the example for

extract () Function on page 4-21. Instead of returning an XML fragment, as

extract() does, it returns the scalar value of the XML fragment:

SELECT warehouse_name,
 extractValue(e.warehouse_spec, ’/Warehouse/Docks’)
 "Docks"
 FROM warehouses e
 WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Docks
-------------------- ------------
Southlake, Texas 2
San Francisco 1
New Jersey
Seattle, Washington 3
Using XMLType 4-25

Selecting and Querying XML Data
ExtractValue() automatically extracted out the text child of Docks element and

returned that value. You can also write this using extract() as follows:

extract(e.warehouse_spec, ’/Warehouse/Docks/text()’).getstringval()

More SQL Examples That Query XML
The following SQL examples illustrate ways you can query XML.

Example 4–24 Querying XMLType Using extract() and existsNode()

Assume the po_xml_tab table, which contains the purchase order identification

and the purchase order XML columns, and assume that the following values are

inserted into the table:

INSERT INTO po_xml_tab values (100,
 xmltype(’<?xml version="1.0"?>
 <PO>
 <PONO>221</PONO>
 <PNAME>PO_2</PNAME>
 </PO>’));

INSERT INTO po_xml_tab values (200,
 xmltype(’<?xml version="1.0"?>
 <PO>
 <PONAME>PO_1</PONAME>
 </PO>’));

Now you can extract the numerical values for the purchase order numbers using

extract() :

SELECT e.poDoc.extract(’//PONO/text()’).getNumberVal() as pono
 FROM po_xml_tab e
 WHERE e.podoc.existsnode(’/PO/PONO’) = 1 AND poid > 1;

Here extract() extracts the contents of tag, purchase order number, “PONO”.

existsNode() finds nodes where “PONO” exists as a child of “PO”.

Note: Here text() function is only used to return the text

nodes. getNumberVal() function can convert only text values

into numerical quantity
4-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
Example 4–25 Querying Transient XMLType Data

The following example shows how you can select out the XML data and query it

inside PL/SQL: create a transient instance from the purchase order table and then

perform some extraction on it. Assume po_xml_tab contains the data shown in

Example 4–16, "Inserting XML Data Using XMLType() with String", modified:

set serverout on
declare
 poxml XMLType;
 cust XMLType;
 val VARCHAR2(200);
begin

 -- select the adt instance
 select poDoc into poxml
 from po_xml_tab p where p.poid = 100;

 -- do some traversals and print the output
 cust := poxml.extract('//SHIPADDR');

 -- do something with the customer XML fragment
 val := cust.getStringVal();
 dbms_output.put_line(' The customer XML value is '|| val);

end;
/

Example 4–26 Extracting Data from an XML Document and Inserting It Into a Table
Using extract()

The following example shows how you can extract out data from an XML purchase

order and insert it into an SQL relational table. Consider the following relational

tables:

CREATE TABLE cust_tab
(
 custid number primary key,
 custname varchar2(20)
);

INSERT INTO cust_tab values (1001, 'John Nike');

See Also: "XMLType Member Functions" on page 4-7
Using XMLType 4-27

Selecting and Querying XML Data
CREATE TABLE po_rel_tab
(
 pono number,
 pname varchar2(100),
 custid number references cust_tab,
 shipstreet varchar2(100),
 shipcity varchar2(30),
 shipzip varchar2(20)
);

You can write a simple PL/SQL block to transform XML of the form:

<?xml version = '1.0'?>
 <PO>
 <PONO>2001</PONO>
 <PNAME>Po_1</PNAME>
 <CUSTOMER CUSTNAME="John Nike"/>
 <SHIPADDR>
 <STREET>323 College Drive</STREET>
 <CITY>Edison</CITY>
 <STATE>NJ</STATE>
 <ZIP>08820</ZIP>
 </SHIPADDR>
 </PO>

into the relational tables, using extract().

Here is an SQL example assuming that the XML described in the previous example

is present in the po_xml_tab :

INSERT INTO po_rel_tab
SELECT p.poDoc.extract('/PO/PONO/text()').getnumberval() as pono,
 p.poDoc.extract('/PO/PNAME/text()').getstringval() as pname,
 -- get the customer id corresponding to the customer name
 (SELECT c.custid
 FROM cust_tab c
 WHERE c.custname = p.poDoc.extract('/PO/CUSTOMER/@CUSTNAME').getstringval()
) as custid,
 p.poDoc.extract('/PO/SHIPADDR/STREET/text()').getstringval() as shipstreetr,
 p.poDoc.extract('//CITY/text()').getstringval() as shipcity,
 p.poDoc.extract('//ZIP/text()').getstringval() as shipzip
FROM po_xml_tab p;

Table po_tab should now have the following values:
4-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data
PONO PNAME CUSTID SHIPSTREET SHIPCITY SHIPZIP
--
2001 Po_1 1001 323 College Drive Edison 08820

Example 4–27 Extracting Data from an XML Document and Inserting It Into a Table
Using extract() In a PL/SQL Block

You can do the same in an equivalent fashion inside a PL/SQL block, as follows:

DECLARE
 poxml XMLType;
 cname varchar2(200);
 pono number;
 pname varchar2(100);
 shipstreet varchar2(100);
 shipcity varchar2(30);
 shipzip varchar2(20);

BEGIN

 -- select the adt instance
 SELECT poDoc INTO poxml FROM po_xml_tab p;

 cname := poxml.extract('//CUSTOMER/@CUSTNAME').getstringval();

 pono := poxml.extract('/PO/PONO/text()').getnumberval();
 pname := poxml.extract('/PO/PNAME/text()').getstringval();
 shipstreet := poxml.extract('/PO/SHIPADDR/STREET/text()').getstringval();
 shipcity := poxml.extract('//CITY/text()').getstringval();
 shipzip := poxml.extract('//ZIP/text()').getstringval();

 INSERT INTO po_rel_tab
 VALUES (pono, pname,
 (SELECT custid FROM cust_tab c WHERE custname = cname),
 shipstreet, shipcity, shipzip);
END;
/

Note: PNAME is null, since the input XML document did not have

the element called PNAME under PO. Also, the preceding example

used //CITY to search for the city element at any depth.
Using XMLType 4-29

Selecting and Querying XML Data
Example 4–28 Searching XML Data with extract() and existsNode()

Using extract() and existsNode() functions, you can perform a variety of

search operations on the column, as follows:

SELECT e.poDoc.extract('/PO/PNAME/text()').getStringVal() PNAME
 FROM po_xml_tab e
 WHERE e.poDoc.existsNode('/PO/SHIPADDR') = 1 AND
 e.poDoc.extract('//PONO/text()').getNumberVal() = 300 AND
 e.poDoc.extract('//@CUSTNAME').getStringVal() like '%John%';

This SQL statement extracts the purchase order name “PNAME” from purchase order

element PO, from all XML documents containing a shipping address with a

purchase order number of 300, and a customer name “CUSTNAME” containing the

string “John”.

Example 4–29 Searching XML Data with extractValue()

Using extractValue() , you can rewrite the preceding query as:

SELECT extractvalue(e.poDoc, '/PO/PNAME') PNAME
 FROM po_xml_tab e
 WHERE e.poDoc.existsNode('/PO/SHIPADDR') = 1 AND
 extractvalue(e.poDoc,'//PONO') = 300 AND
 extractvalue(e.poDoc,'//@CUSTNAME') like '%John%';

Example 4–30 Extracting Fragments from XMLType Using extract()

extract() member function extracts nodes identified by the XPath expression and

returns an XMLType containing the fragment. Here, the result of the traversal may

be a set of nodes, a singleton node, or a text value. You can check if the result is a

fragment by using the isFragment() function on the XMLType. For example:

SELECT e.poDoc.extract('/PO/SHIPADDR/STATE').isFragment()
 FROM po_xml_tab e;

The previous SQL statement returns 0, since the extraction /PO/SHIPADDR/STATE
returns a singleton well-formed node which is not a fragment.

Note: You cannot insert fragments into XMLType columns. You

can use SYS_XMLGEN() to convert a fragment into a

well-formed document by adding an enclosing tag. See "SYS_

XMLGEN() Function" on page 10-42. You can, however, query

further on the fragment using the various XMLType functions.
4-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns
On the other hand, an XPath such as /PO/SHIPADDR/STATE/text() is

considered a fragment, since it is not a well-formed XML document.

Updating XML Instances and Data in Tables and Columns
This section talks about updating transient XML instances and XML data stored in

tables.

With CLOB-based storage, in this release, an update effectively replaces the whole

document. Use the SQL UPDATE statement to update the whole XML document.

The right hand side of the UPDATE’s SET clause must be an XMLType instance.

This can be created using the SQL functions and XML constructors that return an

XML instance, or using the PL/SQL DOM APIs for XMLType or Java DOM API,

that change and bind existing XML instances.

updateXML() SQL Function
updateXML() function takes in a source XMLType instance, and a set of XPath

value pairs. It returns a new XML instance consisting of the original XMLType
instance with appropriate XML nodes updated with the given values. The optional

namespace parameter specifies the namespace mapping of prefix(es) in the XPath

parameters.

updateXML() can be used to update, replace elements, attributes and other nodes

with new values. They cannot be directly used to insert new nodes or delete

existing ones. The containing parent element should be updated with the new

values instead.

updateXML() updates only the transient XML instance in memory. Use an SQL

UPDATE statement to update data stored in tables. The updateXML() syntax is:

UPDATEXML(xmlinstance, xpath1, value_expr1
 [, xpath2, value_expr2]...[,namespace_string]);

Example 4–31 Updating XMLType Using the UPDATE Statement

This example updates the XMLType using the UPDATE statement. It updates only

those documents whose purchase order number is 2001.

UPDATEXML (XMLType_instance , XPath_string , value_expr

,
, namespace_string

)

Using XMLType 4-31

Updating XML Instances and Data in Tables and Columns
UPDATE po_xml_tab e
 SET e.poDoc = XMLType(
 '<?xml version="1.0"?>
 <PO pono="2">
 <PNAME>Po_2</PNAME>
 <CUSTNAME>Nance</CUSTNAME>
 <SHIPADDR>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 </PO>')
WHERE e.poDoc.EXTRACT('/PO/PONO/text()').getNumberVal() = 2001;

Example 4–32 Updating XMLType Using UPDATE and updateXML()

To update the XML document in the table instead of creating a new one, you can

use the updateXML() in the right hand side of an UPDATE statement to update

the document.

UPDATE po_xml_tab
SET poDoc = UPDATEXML(poDoc,
 ’/PO/CUSTNAME/text()’, ’John’);

1 row updated

SELECT e.poDoc.getstringval() AS newpo
 FROM po_xml_tab e;

NEWPO
--
<?xml version="1.0"?>
<PO pono="2">
 <PNAME>Po_2</PNAME>
 <CUSTNAME>John </CUSTNAME>
 <SHIPADDR>

Note: Updates for non- schema based XML documents always

update the whole XML document.

Note: This will also update the whole document, not just the part

updated.
4-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
</PO>

Example 4–33 Updating Multiple Elements in the Column Using updateXML()

You can update multiple elements within a single updateXML() expression. For

instance, you can use the same UPDATE statement as shown in the preceding

example and update purchase order, po :

UPDATE emp_tab e
 SET e.emp_col = UPDATEXML(e.emp_col,
 '/EMPLOYEES/EMP[EMPNAME="Joe"]/SALARY/text()',100000,
 '//EMP[EMPNAME="Jack"]/EMPNAME/text()','Jackson',
 '//EMP[EMPNO=217]',XMLTYPE.CREATEXML(
 '<EMP><EMPNO>217</EMPNO><EMPNAME>Jane</EMPNAME></EMP>'))
 WHERE EXISTSNODE(e.emp_col, '//EMP') = 1;

This updates all rows that have an employee element with the new values.

Example 4–34 Updating Customer Name in Purchase Order XML Document Using
updateXML()

The following example updates the customer name in the purchase order XML

document, po :

SELECT
 UPDATEXML(poDoc,
 ’/PO/CUSTNAME/text()’, ’John’).getstringval() AS updatedPO
 FROM po_xml_tab;

UPDATEDPO
--
<?xml version="1.0"?>
<PO pono="2">
 <PNAME>Po_2</PNAME>
 <CUSTNAME>John</CUSTNAME>

Note: This example only selects the document and the update

occurs on a transient XMLType instance. The original document is

not affected.
Using XMLType 4-33

Updating XML Instances and Data in Tables and Columns
 <SHIPADDR>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
</PO>

Example 4–35 Updating Multiple Transient XML Instances Using updateXML()

You can also use updateXML() to update multiple pieces of a transient instance.

For example, consider the following XML document stored in column emp_col of

table, emp_tab:

<EMPLOYEES>
 <EMP>
 <EMPNO>112</EMPNO>
 <EMPNAME>Joe</EMPNAME>
 <SALARY>50000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>217</EMPNO>
 <EMPNAME>Jane</EMPNAME>
 <SALARY>60000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>412</EMPNO>
 <EMPNAME>Jack</EMPNAME>
 <SALARY>40000</SALARY>
 </EMP>
</EMPLOYEES>

To generate a new document with Joe’s salary updated to 100,000, update the Name

of Jack to Jackson, and modify the Employee element for 217, to remove the salary

element. You can write a query such as:

SELECT UPDATEXML(emp_col, '/EMPLOYEES/EMP[EMPNAME="Joe"]/SALARY/text()', 100000,
 '//EMP[EMPNAME="Jack"]/EMPNAME/text()','Jackson',
 '//EMP[EMPNO=217]',
 XMLTYPE.CREATEXML('<EMP><EMPNO>217</EMPNO><EMPNAME>Jane</EMPNAME>'))
 FROM emp_tab e;

This generates the following updated XML:

<EMPLOYEES>
 <EMP>
 <EMPNO>112</EMPNO>
4-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns
 <EMPNAME>Joe</EMPNAME>
 <SALARY>100000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>217</EMPNO>
 <EMPNAME>Jane</EMPNAME>
 </EMP>
 <EMP>
 <EMPNO>412</EMPNO>
 <EMPNAME>Jackson</EMPNAME>
 <SALARY>40000</SALARY>
 </EMP>
</EMPLOYEES>

Creating Views of XML Data with updateXML()
You can use updateXML() to create new views of XML data. This can be useful

when you do not want a particular set of users to see sensitive data such as

SALARY.

Example 4–36 Creating Views Using updateXML()

A view such as:

CREATE VIEW new_emp_view
 AS SELECT
 UPDATEXML(emp_col, '/EMPLOYEES/EMP/SALARY/text()', 0) emp_view_col
 FROM emp_tab e;

ensures that users selecting from view, new_emp_view, do not see the SALARY

field for any employee.

Optimization of updateXML()
In most cases, updateXML() materializes the whole input XML document in

memory and updates the values. However, it is optimized for UPDATE statements

on XML schema-based object-relationally stored XMLType tables and columns so

that the function updates the value directly in the column.

The conditions for rewrite are explained in Chapter 5, "Structured Mapping of

XMLType", "Query Rewrite with XML Schema-Based Structured Storage" on

page 5-51, in detail. If all of the rewrite conditions are met, then the updateXML()
is rewritten to update the object-relational columns directly with the values. For

example, the following UPDATE statement:
Using XMLType 4-35

Updating XML Instances and Data in Tables and Columns
UPDATE po_xml_tab
SET poDoc = UPDATEXML(poDoc,
 ’/PO/CUSTNAME/text()’, ’John’);

could get rewritten (if the rewrite rules are satisfied) to an UPDATE of the

custname column directly:

UPDATE po_xml_tab p
SET p.xmldata.CUSTNAME = ’John’;

updateXML() and NULL Values
If you update an XML element to null, Oracle removes the attributes and children of

the element, and the element becomes empty. The type and namespace properties of

the element are retained. A NULL value for an element update is equivalent to

setting the element to empty.

If you update the text node of an element to null, Oracle removes the text value of

the element, and the element itself remains but is empty. For example, if you update

node, '/empno/text()' with a NULL value, the text values for the empno
element are removed and the empno element becomes empty.

Setting an attribute to NULL, similarly sets the value of the attribute to the empty

string.

You cannot use updateXML() to remove, add, or delete a particular element or an

attribute. You have to update the containing element with a new value.

Example 4–37 NULL Updates with updateXML()

Consider the XML document:

<PO>
 <pono>21</pono>
 <shipAddr gate="xxx">
 <street>333</street>
 <city>333</city>
 </shipAddr>
</PO>

The clause:

Note: Setting 'empno' to NULL has the same effect as setting

'empno/text() ' to NULL, if empno is a simple scalar element with

no attributes.
4-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns
updateXML(xmlcol,'/PO/shipAddr',null)

is equivalent to making it:

<PO>
 <pono>21</pono>
 <shipAddr/>
</PO>

If you update the text node to NULL, then this is equivalent to removing the text

value alone. For example:

UPDATEXML(xmlcol,'/PO/shipAddr/street/text()', null)
results in:

<PO>
 <pono>21</pono>
 <shipAddr>
 <street/>
 <city>333</city>
 </shipAddr>
</PO>

Updating the Same XML Node More Than Once
You can update the same XML node more than once in the updateXML()
statement. For example, you can update both /EMP[EMPNO=217] and

/EMP[EMPNAME=”Jane”]/EMPNO , where the first XPath identifies the EMPNOnode

containing it as well. The order of updates is determined by the order of the XPath

expressions in left-to-right order. Each successive XPath works on the result of the

previous XPath update.

XMLTransform() Function
The XMLTransform() function takes in an XMLType instance and an XSLT

stylesheet. It applies the stylesheet to the XML document and returns a transformed

XML instance. See Figure 4–5.

Figure 4–5 XMLTransform() Syntax

XMLTRANSFORM (XMLType_instance , XMLType_instance)
Using XMLType 4-37

Deleting XML Data
XMLTransform() is explained in detail in Chapter 6, "Transforming and

Validating XMLType Data".

Deleting XML Data
DELETEs on the row containing the XMLType column are handled in the same way

as any other datatype.

Example 4–38 Deleting Rows Using extract()

For example, to delete all purchase order rows with a purchase order name of “Po_

2”, execute a statement such as:

DELETE FROM po_xml_tab e
 WHERE e.poDoc.extract('/PO/PNAME/text()').getStringVal()='Po_2';

Using XMLType In Triggers
You can use the new and old binds inside triggers to read and modify the XMLType
column values. For INSERT and UPDATE statements, you can modify the new

value to change the value being inserted.

Example 4–39 Creating XMLType Triggers

For example, you can write a trigger to change the purchase order if it does not

contain a shipping address:

CREATE OR REPLACE TRIGGER po_trigger
 BEFORE INSERT OR UPDATE ON po_xml_tab FOR EACH ROW
declare
 pono Number;
begin

 if inserting then:

 if :NEW.poDoc.existsnode('//SHIPADDR') = 0 then
 :NEW.poDoc := xmltype('<PO>INVALID_PO</PO>'); end if;
 end if;

when updating, if the old poDoc has purchase order number different from the new

one then make it an invalid PO.

if updating then:

 if :OLD.poDoc.extract('//PONO/text()').getNumberVal() !=
4-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns
 :NEW.poDoc.extract('//PONO/text()').getNumberVal() then

 :NEW.poDoc := xmltype('<PO>INVALID_PO</PO>');
 end if;
 end if;
end;
/

This example is only an illustration. You can use the XMLType value to perform

useful operations inside the trigger, such as validation of business logic or rules that

the XML document should conform to, auditing, and so on.

Indexing XMLType Columns
You can create the following indexes when using XMLType. Indexing speeds up

query evaluation.

Creating Function-Based Indexes on XMLType Columns
You can speed up by queries by building function-based indexes on

existsNode() or those portions of the XML document that use extract() .

Example 4–40 Creating a Function-Based Index on an extract() Function

For example, to speed up the search on the query,

SELECT * FROM po_xml_tab e
 WHERE e.poDoc.extract(’//PONO/text()’).getNumberVal()= 100;

you can create a function-based index on the extract() function as follows:

CREATE INDEX city_index ON po_xml_tab
 (poDoc.extract('//PONO/text()').getNumberVal());

The SQL query uses this function-based index, to evaluate the predicate instead of

parsing the XML document row by row, and evaluating the XPath expression.

Example 4–41 Creating a Function-Based index on an existsNode() Function

You can also create bitmapped function-based indexes to speed up the evaluation of

the operators. existsNode() is suitable, since it returns a value of 1 or 0

depending on whether the XPath is satisfied in the XML document or not.
Using XMLType 4-39

Indexing XMLType Columns
For example, to speed up a query that searches whether the XML document

contains an element called Shipping address (SHIPADDR) at any level:

SELECT * FROM po_xml_tab e
 WHERE e.poDoc.existsNode(’//SHIPADDR’) = 1;

you can create a bitmapped function-based index on the existsNode() function

as follows:

CREATE BITMAP INDEX po_index ON po_xml_tab
 (poDoc.existsNode('//SHIPADDR'));

This speeds up the query processing.

Creating Oracle Text Indexes on XMLType Columns
Oracle Text index works on CLOB and VARCHAR columns. It has been extended

in Oracle9i to also work on XMLType columns. The default behavior of Oracle Text

index is to automatically create XML sections, when defined over XMLType
columns. Oracle Text also provides the CONTAINS operator which has been

extended to support XPath.

In general, Oracle Text indexes can be created using the CREATE INDEX SQL

statement with the INDEXTYPEspecified as for other CLOB or VARCHAR columns.

Oracle Text indexes on XMLType columns, however, are created as function-based

indexes.

Example 4–42 Creating an Oracle Text Index

CREATE INDEX po_text_index ON
 po_xml_tab(poDoc) indextype is ctxsys.context;

You can also perform Oracle Text operations such as CONTAINS and SCORE. on

XMLType columns. In Oracle9i Release (9.0.1), the CONTAINS operator was

enhanced to support XPath using two new operators, INPATH and HASPATH:

■ INPATH checks if the given word appears within the path specified.

■ HASPATH checks if the given XPath is present in the XML document.

Example 4–43 Searching XML Data Using HASPATH

For example:

SELECT * FROM po_xml_tab w
 WHERE CONTAINS(w.poDoc,
4-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns
 'haspath(/PO[./@CUSTNAME="John Nike"])') > 0;

QUERY_REWRITE PRIVILEGE Is No Longer Needed
In Oracle9i Release (9.0.1), to create and use Oracle Text index in queries, in

addition to having the privileges for creating indexes and for creating Oracle Text

indexes, you also needed privileges and settings for creating function-based

indexes:

■ QUERY_REWRITE privilege. You must have this privilege granted to create text

indexes on XMLType columns in your own schema.

■ GLOBAL_QUERY_REWRITE privilege. If you need to create Oracle Text indexes

on XMLType columns in other schemas or on tables residing in other schemas,

you must have this privilege granted.

Oracle Text index uses the PATH_SECTION_GROUP as the default section group

when indexing XMLType columns. This default can be overridden during Oracle

Text index creation.

With this release, you no longer need the additional QUERY_REWRITE privileges

when creating Oracle Text indexes.

Creating XPath Indexes on XMLType Columns: CTXXPATH Index
existsNode() SQL function, unlike the CONTAINS operator, cannot use Oracle

Text indexes to speed up its evaluation. To improve the performance of XPath

searches in existsNode() , this release introduces a new index type, CTXXPATH.

CTXXPATHindex is a new indextype provided by Oracle Text. It is designed to serve

as a primary filter for existsNode () processing, that is, it produces a superset of

See Also:

■ Chapter 7, "Searching XML Data with Oracle Text"

■ Chapter 10, "Generating XML Data from the Database"

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

Note: The QUERY_REWRITE_INTEGRITY and QUERY_REWRITE_
ENABLED session settings are no longer needed to create Oracle

Text or other function-based indexes on XMLType columns.
Using XMLType 4-41

Indexing XMLType Columns
the results that would be produced by the existNode() function. The

existsNode() functional implementation is then applied on the results to return

the correct set of rows.

CTXXPATH index can handle XPath path searching, wildcards, and string equality

predicates.

Example 4–44 Using CTXXPATH Index or existsNode() for XPath Searching

CREATE INDEX po_text_index ON
 po_xml_tab(poDoc) indextype is ctxsys.ctxxpath;

For example, a query such as:

SELECT *
 FROM po_xml_doc w
 WHERE existsNode(w.poDoc,’/PO[@CUSTNAME="John Nike"]’) = 1;

could potentially use CTXXPATH indexing to satisfy the existsNode() predicate.

Differences Between CONTAINS and existsNode()/extract()
The differences in XPath support when using CONTAINS compared to XPath

support with existsNode() and extract() functions are:

■ Since Oracle Text index ignores spaces, the XPath expression may not yield

accurate results when spaces are significant.

■ Oracle Text index also supports certain predicate expressions with string

equality, but cannot support numerical and range comparisons.

■ Oracle Text index may give wrong results if the XML document only has tag

names and attribute names without any text. For example, consider the

following XML document:

<A>

 <C>
 </C>

 <D>

See Also:

■ Chapter 7, "Searching XML Data with Oracle Text"

■ Chapter 10, "Generating XML Data from the Database"
4-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns
 <E>
 </E>
 </D>

the XPath expression - A/B/E falsely matches the preceding XML document.

■ Both the function-based indexes and Oracle Text indexes support navigation.

Thus you can use the Oracle Text index as a primary filter, to filter out all

documents that potentially match the criterion, efficiently, and then apply

secondary filters such as existsNode() or extract() operations on the

remainder of the XML documents.

See Also: Chapter 7, "Searching XML Data with Oracle Text",

Table 7–6, "Using CONTAINS() and existsNode() to Search

XMLType Data" on page 7-38
Using XMLType 4-43

Indexing XMLType Columns
4-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Mapping of XM
5

Structured Mapping of XMLType

This chapter introduces XML Schema and explains how XML schema are used in

Oracle XML DB applications. It describes how to register your XML schema and

create storage structures for storing schema-based XML. It explains in detail the

mapping from XML to SQL storage types, including techniques for maintaining the

DOM fidelity of XML data.This chapter also describes how queries over XMLType
tables and columns based on this mapping are optimized using query rewrite

techniques. It discusses the mechanism for generating XML schemas from existing

object types.

This chapter contains the following sections:

■ Introducing XML Schema

■ XML Schema and Oracle XML DB

■ Using Oracle XML DB and XML Schema

■ Introducing DBMS_XMLSCHEMA

■ Registering Your XML Schema Before Using Oracle XML DB

■ Deleting Your XML Schema Using DBMS_XMLSCHEMA

■ Guidelines for Using Registered XML Schemas

■ Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()

■ XML Schema-Related Methods of XMLType

■ Managing and Storing XML Schema

■ DOM Fidelity

■ Creating XMLType Tables and Columns Based on XML Schema

■ Specifying SQL Object Type Names with SQLName, SQLType Attributes
LType 5-1

■ Mapping of Types Using DBMS_XMLSCHEMA

■ XML Schema: Mapping SimpleTypes to SQL

■ XML Schema: Mapping complexTypes to SQL

■ Oracle XML DB complexType Extensions and Restrictions

■ Further Guidelines for Creating XML Schema-Based XML Tables

■ Query Rewrite with XML Schema-Based Structured Storage

■ Creating Default Tables During XML Schema Registration

■ Ordered Collections in Tables (OCTs)

■ Cyclical References Between XML Schemas

■ Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
5-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema and Oracle XML DB
Introducing XML Schema
The XML Schema Recommendation was created by the World Wide Web

Consortium (W3C) to describe the content and structure of XML documents in

XML. It includes the full capabilities of Document Type Definitions (DTDs) so that

existing DTDs can be converted to XML schema. XML schemas have additional

capabilities compared to DTDs.

XML Schema and Oracle XML DB
XML Schema is a schema definition language written in XML. It can be used to

describe the structure and various other semantics of conforming instance

documents. For example, the following XML schema definition, po.xsd, describes

the structure and other properties of purchase order XML documents.

This manual refers to an XML schema definition as an XML schema.

Example 5–1 XML Schema Definition, po.xsd

The following is an example of an XML schema definition, po.xsd :

<schema targetNamespace="http://www.oracle.com/PO.xsd"
xmlns:po="http://www.oracle.com/PO.xsd"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part">
 <simpleType>
 <restriction base="string">
 <maxLength value="1000"/>
 </restriction>
 </simpleType>

See Also: Appendix B, "XML Schema Primer"
Structured Mapping of XMLType 5-3

XML Schema and Oracle XML DB
 </element>
 <element name="Price" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <element name="PurchaseOrder" type="po:PurchaseOrderType"/>
</schema>

Example 5–2 XML Document, po.xml Conforming to XML Schema, po.xsd

The following is an example of an XML document that conforms to XML schema

po.xsd :

<PurchaseOrder xmlns="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
</PurchaseOrder>
5-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XML DB and XML Schema
Using Oracle XML DB and XML Schema
Oracle XML DB uses annotated XML schema as metadata, that is, the standard

XML Schema definitions along with several Oracle XML DB-defined attributes.

These attributes are in a different namespace and control how instance documents

get mapped into the database. Since these attributes are in a different namespace

from the XML schema namespace, such annotated XML schemas are still legal XML

schema documents:

When using Oracle XML DB, you must first register your XML schema. You can

then use the XML schema URLs while creating XMLType tables, columns, and

views.

Oracle XML DB provides XML Schema support for the following tasks:

■ Registering any W3C-compliant XML schemas.

Note:

The URL ’http://www.oracle.com/PO.xsd’ used here is

simply a name that uniquely identifies the registered XML schema

within the database and need not be the physical URL at the which

the XML schema document is located. Also, the target namespace

of the XML schema is another URL, different from the XML schema

location URL, that specifies an abstract namespace within which

elements and types get declared.

An XML schema can optionally specify the target namespace URL.

If this attribute is omitted, the XML schema has no target

namespace. Note: The targetnamespace is commonly the same

as XML schema’s URL.

An XML instance document must specify both the namespace of

the root element (same as the XML schema’s target namespace) and

the location (URL) of the XML schema that defines this root

element. The location is specified with attribute

xsi:schemaLocation . When the XML schema has no target

namespace, use attribute xsi:noNamespaceSchemaLocation to

specify the XML schema URL.

See Also: Namespace of XML Schema constructs:

http://www.w3.org/2001/XMLSchema
Structured Mapping of XMLType 5-5

Using Oracle XML DB and XML Schema
■ Validating your XML documents against a registered XML schema definitions.

■ Registering local and global XML schemas.

■ Generating XML schema from object types.

■ Referencing an XML schema owned by another user.

■ Explicitly referencing a global XML schema when a local XML schema exists

with the same name.

■ Generating a structured database mapping from your XML schemas during

XML schema registration. This includes generating SQL object types, collection

types, and default tables, and capturing the mapping information using XML

schema attributes.

■ Specifying a particular SQL type mapping when there are multiple legal

mappings.

■ Creating XMLType tables, views and columns based on registered XML

schemas.

■ Performing manipulation (DML) and queries on XML schema-based XMLType
tables.

■ Automatically inserting data into default tables when schema-based XML

instances are inserted into Oracle XML DB Repository using FTP,

HTTP/WebDav protocols and other languages.

Why Do We Need XML Schema?
As described in Chapter 4, "Using XMLType", XMLType is a datatype that facilitates

storing XML in columns and tables in the database. XML schemas further facilitate

storing XML columns and tables in the database, and they offer you more storage

and access options for XML data along with space- performance-saving options.

For example, you can use XML schema to declare which elements and attributes can

be used and what kinds of element nesting, and datatypes are allowed in the XML

documents being stored or processed.

XML Schema Provides Flexible XML-to-SQL Mapping Setup
Using XML schema with Oracle XML DB provides a flexible setup for XML storage

mapping. For example:

See Also: Chapter 26, "Oracle XML DB Basic Demo"
5-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XML DB and XML Schema
■ If your data is highly structured (mostly XML), each element in the XML

documents can be stored as a column in a table.

■ If your data is unstructured (all or mostly non-XML data), the data can be

stored in a Character Large Object (CLOB).

Which storage method you choose depends on how your data will be used and

depends on the queriability and your requirements for querying and updating your

data. In other words. Using XML schema gives you more flexibility for storing

highly structured or unstructured data.

XML Schema Allows XML Instance Validation
Another advantage of using XML schema with Oracle XML DB is that you can

perform XML instance validation according to the XML schema and with respect to

Oracle XML Repository requirements for optimal performance. For example, an

XML schema can check that all incoming XML documents comply with definitions

declared in the XML schema, such as allowed structure, type, number of allowed

item occurrences, or allowed length of items.

Also, by registering XML schema in Oracle XML DB, when inserting and storing

XML instances using Protocols, such as FTP or HTTP, the XML schema information

can influence how efficiently XML instances are inserted.

When XML instances must be handled without any prior information about them,

XML schema can be useful in predicting optimum storage, fidelity, and access.

DTD Support in Oracle XML DB
In addition to supporting XML schema that provide a structured mapping to object-

relational storage, Oracle XML DB also supports DTD specifications in XML

instance documents. Though DTDs are not used to derive the mapping, XML

processors can still access and interpret the DTDs.

Inline DTD Definitions
When an XML instance document has an inline DTD definition, it is used during

document parsing. Any DTD validations and entity declaration handling is done at

this point. However, once parsed, the entity references are replaced with actual

values and the original entity reference is lost.
Structured Mapping of XMLType 5-7

Introducing DBMS_XMLSCHEMA
External DTD Definitions
Oracle XML DB also supports external DTD definitions if they are stored in the

Repository. Applications needing to process an XML document containing an

external DTD definition such as “/public/flights.dtd”, must first ensure that the

DTD document is stored in Oracle XML DB at the path “/public/flights.xsd”.

Introducing DBMS_XMLSCHEMA
Oracle XML DB’s XML schema functionality is available through the PL/SQL

supplied package, DBMS_XMLSCHEMA, a server-side component that handles the

registration of XML schema definitions for use by Oracle XML DB applications.

Two of the main DBMS_XMLSCHEMA functions are:

■ registerSchema() . This registers an XML schema given:

■ XML schema source, which can be in a variety of formats, including string,

LOB, XMLType, and URIType

■ Its schema URL or XMLSchema name

■ deleteSchema() . This deletes a previously registered XML schema,

identified by its URL or XMLSchema name.

Registering Your XML Schema Before Using Oracle XML DB
An XML schema must be registered before it can be used or referenced in any

context by Oracle XML DB. XML schema are registered by using DBMS_
XMLSCHEMA.registerSchema() and specifying the following:

■ The XML schema source document as a VARCHAR, CLOB, XMLType, or

URIType.

■ The XML schema URL. This is a name for the XML schema that is used within

XML instance documents to specify the location of the XML schema to which

they conform.

After registration has completed:

■ XML documents conforming to this XML schema, and referencing it using the

XML schema’s URL within the XML document, can be processed by Oracle

XML DB.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
5-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Registering Your XML Schema Before Using Oracle XML DB
■ Tables and columns can be created for root XML elements defined by this XML

schema to store the conforming XML documents.

Registering Your XML Schema Using DBMS_XMLSCHEMA
Use DBMS_XMLSCHEMA to register your XML schema. This involves specifying the

XML schema document and its URL, also known as the XML schema location.

Example 5–3 Registering an XML Schema That Declares a complexType Using
DBMS_XMLSCHEMA

Consider the following XML schema. It declares a complexType called

PurchaseOrderType and an element PurchaseOrder of this type. The schema

is stored in the PL/SQL variable doc . The following registers the XML schema at

URL: http://www.oracle.com/PO.xsd :

declare
 doc varchar2(1000) := ’<schema
targetNamespace="http://www.oracle.com/PO.xsd"
xmlns:po="http://www.oracle.com/PO.xsd"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part">
 <simpleType>
 <restriction base="string">
 <maxLength value="1000"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Price" type="float"/>
 </sequence>
 </complexType>
Structured Mapping of XMLType 5-9

Registering Your XML Schema Before Using Oracle XML DB
 </element>
 </sequence>
 </complexType>
 <element name="PurchaseOrder" type="po:PurchaseOrderType"/>
</schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

The registered schema can be used to created XML schema-Based tables, or XML

schema-based columns. For example, the following statement creates an a table

with an XML schema-based column.

create table po_tab(
 id number,
 po sys.XMLType
)
 xmltype column po
 XMLSCHEMA "http://www.oracle.com/PO.xsd"
 element "PurchaseOrder";

The following shows an XMLType instance that conforms to the preceding XML

schema being inserted into the preceding table. The schemaLocation attribute

specifies the schema URL:

insert into po_tab values (1,
 xmltype('<po:PurchaseOrder xmlns:po="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/PO.xsd
 http://www.oracle.com/PO.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
 </po:PurchaseOrder>'));

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
5-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Registering Your XML Schema Before Using Oracle XML DB
Local and Global XML Schemas
XML schemas can be registered as local or global:

■ Local XML schema: An XML schema registered as a local schema is, by default,

visible only to the owner.

■ Global XML schema: An XML schema registered as a global schema is, by

default, visible and usable by all database users.

When you register an XML schema, DBMS_XMLSCHEMA adds an Oracle XML DB

resource corresponding to the XML schema into the Oracle XML DB Repository.

The XML schema URL determines the path name of the resource in Oracle XML DB

Repository according to the following rules:

Local XML Schema
In Oracle XML DB, local XML schema resources are created under the

/sys/schemas/<username> directory. The rest of the path name is derived from

the schema URL.

Example 5–4 A Local XML Schema

For example, a local XML schema with schema URL:

http://www.myco.com/PO.xsd

registered by SCOTT, is given the path name:

/sys/schemas/SCOTT/www.myco.com/PO.xsd.

Database users need appropriate permissions (ACLs) to create a resource with this

path name in order to register the XML schema as a local XML schema.

By default, an XML schema belongs to you after registering the XML schema with

Oracle XML DB. A reference to the XML schema document is stored in Oracle XML

DB Repository, in directory:

/sys/schemas/<username>/....

For example, if you, SCOTT, registered the preceding XML schema, it is mapped to

the file:

/sys/schemas/SCOTT/www.oracle.com/PO.xsd

See Also: Chapter 18, "Oracle XML DB Resource Security"
Structured Mapping of XMLType 5-11

Registering Your XML Schema Before Using Oracle XML DB
Such XML schemas are referred to as local. In general, they are usable only by you to

whom they belong.

Global XML Schema
In contrast to local schema, privileged users can register an XML schema as a global
XML schema by specifying an argument in the DBMS_XMLSCHEMA registration

function.

Global schemas are visible to all users and stored under the

/sys/schemas/PUBLIC/ directory in Oracle XML DB Repository.

You can register a local schema with the same URL as an existing global schema. A

local schema always hides any global schema with the same name (URL).

Example 5–5 A Global XML Schema

For example, a global schema registered by SCOTT with the URL:

www.myco.com/PO.xsd

is mapped to Oracle XML DB Repository at:

Note: Typically, only the owner of the XML schema can use it to

define XMLType tables, columns, or views, validate documents, and

so on. However, Oracle supports fully qualified XML schema URLs

which can be specified as:

http://xmlns.oracle.com/xdb/schemas/SCOTT/www.orac
le.com/PO.xsd

This extended URL can be used by privileged users to specify XML

schema belonging to other users.

Note: Access to this directory is controlled by Access Control Lists

(ACLs) and, by default, is writable only by a DBA. You need

WRITE privileges on this directory to register global schemas.

XDBAdmin role also provides WRITE access to this directory,

assuming that it is protected by the default “protected” ACL.

See also Chapter 18, "Oracle XML DB Resource Security" for further

information on privileges and for details on XDBAdmin role.
5-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Deleting Your XML Schema Using DBMS_XMLSCHEMA
/sys/schemas/PUBLIC/www.myco.com/PO.xsd

Database users need appropriate permissions (ACLs) to create this resource in order

to register the XML schema as global.

Registering Your XML Schema: Oracle XML DB Sets Up the Storage and Access
Infrastructure

As part of registering an XML schema, Oracle XML DB also performs several other

steps to facilitate storing, accessing, and manipulating XML instances that conform

to the XML schema. These steps include:

■ Creating types: When an XML schema is registered, Oracle creates the

appropriate SQL object types that enable the structured storage of XML

documents that conform to this XML schema. You can use Oracle XML

DB-defined attributes in XML schema documents to control how these object

types are generated.

■ Creating default tables: As part of XML schema registration, Oracle XML DB

generates default XMLType tables for all root elements. You can also specify any

column and table level constraints for use during table creation.

Deleting Your XML Schema Using DBMS_XMLSCHEMA
You can delete your registered XML schema by using the DBMS_
XMLSCHEMA.deleteSchema procedure. When you attempt to delete an XML

schema, DBMS_XMLSCHEMA checks:

■ That the current user has the appropriate privileges (ACLs) to delete the

resource corresponding to the XML schema within Oracle XML DB Repository.

You can thus control which users can delete which XML schemas by setting the

appropriate ACLs on the XML schema resources.

■ For dependents. If there are any dependents, it raises an error and the deletion

operation fails. This is referred to as the RESTRICT mode of deleting XML

schemas.

See Also:

■ "Specifying SQL Object Type Names with SQLName, SQLType

Attributes" on page 5-24

■ Chapter 3, "Using Oracle XML DB"
Structured Mapping of XMLType 5-13

Guidelines for Using Registered XML Schemas
FORCE Mode
A FORCE mode option is provided while deleting XML schemas. If you specify the

FORCE mode option, the XML schema deletion proceeds even if it fails the

dependency check. In this mode, XML schema deletion marks all its dependents as

invalid.

CASCADE Mode
The CASCADE mode option drops all generated types and default tables as part of a

previous call to register XML schema.

Example 5–6 Deleting the XML Schema Using DBMS_XMLSCHEMA

The following example deletes XML schema PO.xsd . First, the dependent table

po_tab is dropped. Then, the schema is deleted using the FORCE and CASCADE
modes with DBMS_XMLSCHEMA.DELETESCHEMA:

drop table po_tab;

EXEC dbms_xmlschema.deleteSchema(’http://www.oracle.com/PO.xsd’,
 dbms_xmlschema.DELETE_CASCADE_FORCE);

Guidelines for Using Registered XML Schemas
The following sections describe guidelines for registering XML schema with Oracle

XML DB.

Objects That Depend on Registered XML Schemas
The following objects depend on a registered XML schemas:

■ Tables or views that have an XMLType column that conforms to some element

in the XML schema.

■ XML schemas that include or import this schema as part of their definition.

■ Cursors that reference the XML schema name, for example, within DBMS_

XMLGEN operators. Note that these are purely transient objects.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
the chapter on DBMS_XMLSCHEMA.
5-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using Registered XML Schemas
Creating XMLType Tables, Views, or Columns
After an XML schema has been registered, it can be used to create XML

schema-based XMLType tables, views, and columns by referencing the following:

■ The XML schema URL of a registered XML schema

■ The name of the root element

Example 5–7 Post-Registration Creation of an XMLType Table

For example you can create an XML schema-based XMLType table as follows:

CREATE TABLE po_tab OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/PO.xsd" ELEMENT "PurchaseOrder";

The following statement inserts XML schema-conformant data:

insert into po_tab values (
 xmltype(’<PurchaseOrder xmlns="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
</PurchaseOrder>’));

Validating XML Instances Against the XML Schema: schemaValidate()
You can validate an XMLType instance against a registered XML schema by using

one of the validation methods.

See Also: Chapter 6, "Transforming and Validating XMLType

Data"
Structured Mapping of XMLType 5-15

Guidelines for Using Registered XML Schemas
Example 5–8 Validating XML Using schemaValidate()

The following PL/SQL example validates an XML instance against XML schema

PO.xsd :

declare
 xmldoc xmltype;
 begin

 -- populate xmldoc (by fetching from table)
 select value(p) into xmldoc from po_tab p;

 -- validate against XML schema
 xmldoc.schemavalidate();

 if xmldoc.isschemavalidated() = 1 then
 dbms_output.put_line(’Data is valid’);
 else
 dbms_output.put_line(’Data is invalid’);
 end if;
end;

Fully Qualified XML Schema URLs
By default, XML schema URL names are always referenced within the scope of the

current user. In other words, when database users specify XML Schema URLs, they

are first resolved as the names of local XML schemas owned by the current user.

■ If there are no such XML schemas, then they are resolved as names of global
XML schemas.

■ If there are no global XML schemas, then Oracle XML DB raises an error.

XML Schema That Users Cannot Reference
These rules imply that, by default, users cannot reference the following kinds of

XML schemas:

■ XML schemas owned by a different database user

■ Global XML schemas that have the same name as local XML schemas

Fully Qualified XML Schema URLs Permit Explicit Reference to XML Schema
URLs
To permit explicit reference to XML schemas in these cases, Oracle XML DB

supports a notion of fully qualified XML schema URLs. In this form, the name of the
5-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()
database user owning the XML schema is also specified as part of the XML schema

URL, except that such XML schema URLs belong to the Oracle XML DB namespace

as follows:

http://xmlns.oracle.com/xdb/schemas/<database-user-name>/<schemaURL-

minus-protocol>

Example 5–9 Using Fully Qualified XML Schema URL

For example, consider the global XML schema with the following URL:

http://www.example.com/po.xsd

Assume that database user SCOTT has a local XML schema with the same URL:

http://www.example.com/po.xsd

User JOE can reference the local XML schema owned by SCOTT as follows:

http://xmlns.oracle.com/xdb/schemas/SCOTT/www.example.com/po.xsd

Similarly, the fully qualified URL for the global XML schema is:

http://xmlns.oracle.com/xdb/schemas/PUBLIC/www.example.com/po.xsd

Transactional Behavior of XML Schema Registration
Registration of an XML schema is non transactional and auto committed as with

other SQL DDL operations, as follows:

■ If registration succeeds, the operation is auto committed.

■ If registration fails, the database is rolled back to the state before the registration

began.

Since XML schema registration potentially involves creating object types and tables,

error recovery involves dropping any such created types and tables. Thus, the entire

XML schema registration is guaranteed to be atomic. That is, either it succeeds or

the database is restored to the state before the start of registration.

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()
An XML schema can be generated from an object-relational type automatically

using a default mapping. The generateSchema() and generateSchemas()

functions in the DBMS_XMLSCHEMA package take in a string that has the object type

name and another that has the Oracle XML DB XML schema.
Structured Mapping of XMLType 5-17

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()
■ generateSchema() returns an XMLType containing an XML schema. It can

optionally generate XML schema for all types referenced by the given object

type or restricted only to the top-level types.

■ generateSchemas() is similar, except that it returns an XMLSequenceType
of XML schemas, each corresponding to a different namespace. It also takes an

additional optional argument, specifying the root URL of the preferred XML

schema location:

http://xmlns.oracle.com/xdb/schemas/<schema>.xsd

They can also optionally generate annotated XML schemas that can be used to

register the XML schema with Oracle XML DB.

Example 5–10 Generating XML Schema: Using generateSchema()

For example, given the object type:

connect t1/t1
CREATE TYPE employee_t AS OBJECT
(
 empno NUMBER(10),
 ename VARCHAR2(200),
 salary NUMBER(10,2)
);

You can generate the schema for this type as follows:

select dbms_xmlschema.generateschema(’T1’, ’EMPLOYEE_T’) from dual;

This returns a schema corresponding to the type EMPLOYEE_T. The schema declares

an element named EMPLOYEE_T and a complexType called EMPLOYEE_TType.
The schema includes other annotation from http://xmlns.oracle.com/xdb .

DBMS_XMLSCHEMA.GENERATESCHEMA(’T1’,’EMPLOYEE_T’)
--
<xsd:schema targetNamespace="http://ns.oracle.com/xdb/T1" xmlns="http://ns.oracl
e.com/xdb/T1" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xdb="http://xml
ns.oracle.com/xdb" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:sch
emaLocation="http://xmlns.oracle.com/xdb http://xmlns.oracle.com/xdb/XDBSchema.x
sd">
 <xsd:element name="EMPLOYEE_T" type="EMPLOYEE_TType" xdb:SQLType="EMPLOYEE_T"
xdb:SQLSchema="T1"/>
 <xsd:complexType name="EMPLOYEE_TType">
 <xsd:sequence>
 <xsd:element name="EMPNO" type="xsd:double" xdb:SQLName="EMPNO" xdb:SQLTyp
5-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing and Storing XML Schema
e="NUMBER"/>
 <xsd:element name="ENAME" type="xsd:string" xdb:SQLName="ENAME" xdb:SQLTyp
e="VARCHAR2"/>
 <xsd:element name="SALARY" type="xsd:double" xdb:SQLName="SALARY" xdb:SQLT
ype="NUMBER"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

XML Schema-Related Methods of XMLType
Table 5–1 lists the XMLType API’s XML schema-related methods.

Managing and Storing XML Schema
XML schema documents are themselves stored in Oracle XML DB as XMLType
instances. XML schema-related XMLType types and tables are created as part of the

Oracle XML DB installation script, catxdbs.sql .

Root XML Schema, XDBSchema.xsd
The XML schema for XML schemas is called the root XML schema,

XDBSchema.xsd . XDBSchema.xsd describes any valid XML schema document

that can be registered by Oracle XML DB. You can access XDBSchema.xsd through

Oracle XML DB Repository at:

Table 5–1 XMLType API XML Schema-Related Methods

XMLType API Method Description

isSchemaBased() Returns TRUE if the XMLType instance is based on an XML schema, FALSE
otherwise.

getSchemaURL()

getRootElement()

getNamespace()

Returns the XML schema URL, name of root element, and the namespace for an

XML schema-based XMLType instance.

schemaValidate()

isSchemaValid()

is SchemaValidated()

setSchemaValidated()

An XMLType instance can be validated against a registered XML schema using
the validation methods. See Chapter 6, "Transforming and Validating
XMLType Data".
Structured Mapping of XMLType 5-19

Managing and Storing XML Schema
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd

How Are XML Schema-Based XMLType Structures Stored?
XML Schema-based XMLType structures are stored in one of the following ways:

■ In underlying object type columns. This is the default storage mechanism.

– SQL object types can be created optionally during the XML schema

registration process. See "Creating XMLType Tables and Columns Based on

XML Schema" on page 5-22.

– See "Specifying SQL Object Type Names with SQLName, SQLType

Attributes" on page 5-24.

■ In a single underlying LOB column. Here the storage choice is specified in the

STORE AS clause of the CREATE TABLE statement:

CREATE TABLE po_tab OF xmltype
 STORE AS CLOB
 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder";

Design criteria for storing XML data are discussed inChapter 2, "Getting Started

with Oracle XML DB" and Chapter 3, "Using Oracle XML DB".

Specifying the Storage Mechanism
Instead of using the STORE ASclause, you can specify that the table and column be

stored according to a mapping based on a particular XML schema. You can specify

the URL for the XML schema used for the mapping.

Non-schema-based XML data can be stored in tables using CLOBs. However you

do not gain benefits such as indexing, query-rewrite, and so on.

See Also:

■ Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"

■ Appendix A, "Installing and Configuring Oracle XML DB"
5-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DOM Fidelity
DOM Fidelity
Document Object Model (DOM) fidelity is the concept of retaining the structure of a

retrieved XML document, compared to the original XML document, for DOM

traversals. DOM fidelity is needed to ensure the accuracy and integrity of XML

documents stored in Oracle XML DB.

How Oracle XML DB Ensures DOM Fidelity with XML Schema
All elements and attributes declared in the XML schema are mapped to separate

attributes in the corresponding SQL object type. However, some pieces of

information in XML instance documents are not represented directly by these

element or attributes, such as:

■ Comments

■ Namespace declarations

■ Prefix information

To ensure the integrity and accuracy of this data, for example, when regenerating

XML documents stored in the database, Oracle XML DB uses a data integrity

mechanism called DOM fidelity.

DOM fidelity refers to how identical the returned XML documents are compared to

the original XML documents, particularly for purposes of DOM traversals.

DOM Fidelity and SYS_XDBPD$
To guarantee that DOM fidelity is maintained and that the returned XML documents

are identical to the original XML document for DOM traversals, Oracle XML DB

adds a system binary attribute, SYS_XDBPD$, to each created object type.

This positional descriptor attribute stores all pieces of information that cannot be

stored in any of the other attributes, thereby ensuring the DOM fidelity of all XML

documents stored in Oracle XML DB. Examples of such pieces of information

include: ordering information, comments, processing instructions, namespace

prefixes, and so on. This is mapped to a Positional Descriptor (PD) column.

See Also: "Setting the SQLInLine Attribute to FALSE for

Out-of-Line Storage" on page 5-37
Structured Mapping of XMLType 5-21

Creating XMLType Tables and Columns Based on XML Schema
How to Suppress SYS_XDBPD$
If DOM fidelity is not required, you can suppress SYS_XDBPD$in the XML schema

definition by setting the attribute, maintainDOM=FALSE .

Creating XMLType Tables and Columns Based on XML Schema
Oracle XML DB creates XML schema-based XMLType tables and columns by

referencing:

■ The XML schema URL of a registered XML schema

■ The name of the root element

Figure 5–1 shows the syntax for creating an XMLType table:

CREATE TABLE [schema.] table OF XMLTYPE
 [XMLTYPE XMLType_storage] [XMLSchema_spec];

Figure 5–1 Creating an XMLType Table

Note: The PD attribute is mainly intended for Oracle internal use

only. You should never directly access or manipulate this column.

Note: The attribute SYS_XDBPD$ is omitted in many examples

here for clarity. However, the attribute is always present as a

Positional Descriptor (PD) column in all SQL object types generated

by the XML schema registration process.

In general however, it is not a good idea to suppress the PD

attribute because the extra pieces of information, such as,

comments, processing instructions, and so on, could be lost if there

is no PD column.

CREATE TABLE
schema .

table OF XMLTYPE

XMLTYPE XMLType_storage XMLSchema_spec
5-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XMLType Tables and Columns Based on XML Schema
A subset of the XPointer notation, shown in the following example, can also be used

to provide a single URL containing the XML schema location and element name.

Example 5–11 Creating XML Schema-Based XMLType Table

This example creates the XMLType table po_tab using the XML schema at the

given URL:

CREATE TABLE po_tab OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/PO.xsd" ELEMENT "PurchaseOrder";

An equivalent definition is:

CREATE TABLE po_tab OF XMLTYPE
 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder";

SQL Object-Relational Types Store XML Schema-Based XMLType Tables
When an XML schema is registered, Oracle XML DB creates the appropriate SQL

object types that enable structured storage of XML documents that conform to this

XML schema. All SQL object types are created based on the current registered XML

schema, by default.

Example 5–12 Creating SQL Object Types to Store XMLType Tables

or example, when PO.xsd is registered with Oracle XML DB, the following SQL

types are created.

 CREATE TYPE "Itemxxx_T" as object
(
 part varchar2(1000),
 price number
);

CREATE TYPE "Itemxxx_COLL" AS varray(1000) OF "Item_T";
CREATE TYPE "PurchaseOrderTypexxx_T" AS OBJECT
(
 ponum number,
 company varchar2(100),

Note: The names of the types are generated names, and will not

necessarily match Itemxxx_t , Itemxxx_COLL and

PurchaseOrderTypexxx_T , where xxx is a 3-digit integer.
Structured Mapping of XMLType 5-23

Specifying SQL Object Type Names with SQLName, SQLType Attributes
 item Item_varray_COLL
);

Specifying SQL Object Type Names with SQLName, SQLType Attributes
To specify specific names of SQL objects generated include the attributes SQLName
and SQLType in the XML schema definition prior to registering the XML schema.

■ If you specify the SQLName and SQLType values, Oracle XML DB creates the

SQL object types using these names.

■ If you do not specify these attributes, Oracle XML DB uses system-generated

names.

All annotations are in the form of attributes that can be specified within attribute

and element declarations. These attributes belong to the Oracle XML DB

namespace: http://xmlns.oracle.com/xdb

Table 5–2 lists Oracle XML DB attributes that you can specify in element and

attribute declarations.

Note: The names of the object types and attributes in the

preceding example can be system-generated.

■ If the XML schema already contains the SQLName, SQLType,
or SQLColType attribute filled in (see "Specifying SQL Object

Type Names with SQLName, SQLType Attributes" for details),

this name is used as the object attribute's name.

■ If the XML schema does not contain the SQLName attribute, the

name is derived from the XML name, unless it cannot be used

because of length or conflict reasons.

If the SQLSchema attribute is used, Oracle XML DB attempts to

create the object type using the specified database schema. The

current user must have the necessary privileges to perform this.

Note: You do not have to specify values for any of these

attributes. Oracle XML DB fills in appropriate values during the

XML schema registration process. However, it is recommended

that you specify the names of at least the top-level SQL types so

that you can reference them later.
5-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes
Table 5–2 Attributes You Can Specify in Elements

Attribute Values Default Description

SQLName Any SQL identifier Element name Specifies the name of the attribute within
the SQL object that maps to this XML
element.

SQLType Any SQL type name Name generated
from element name

Specifies the name of the SQL type
correspondingtothisXML
element declaration.

SQLCollType Any SQL collection
type name

Name generated
from element name

Specifies the name of the SQL collection
type corresponding to this XML element
that has maxOccurs > 1.

SQLSchema Any SQL username User registering
XML schema

Name of database user owning the type
specified by SQLType.

SQLCollSchema Any SQL username User registering
XML schema

Name of database user owning the type
specified by SQLCollType .

maintainOrder true | false true If true, the collection is mapped to a
VARRAY. If false, the collection is
mapped to a NESTED TABLE.

SQLInline true | false true If true this element is stored inline as an
embedded attribute (or a collection if
maxOccurs > 1). If false, a REF (or
collection of REFs if maxOccurs > 1) is
stored. This attribute will be forced to
false in certain situations (like cyclic
references) where SQL will not support
inlining.

maintainDOM true | false true If true, instances of this element are
stored such that they retain DOM fidelity
on output. This implies that all comments,
processing instructions, namespace
declarations, and so on are retained in
addition to the ordering of elements. If
false, the output need not be guaranteed
to have the same DOM behavior as the
input.
Structured Mapping of XMLType 5-25

Specifying SQL Object Type Names with SQLName, SQLType Attributes
columnProps Any valid column
storage clause

NULL Specifies the column storage clause that is
inserted into the default CREATE TABLE
statement. It is useful mainly for elements
that get mapped to tables, namely
top-level element declarations and
out-of-line element declarations.

tableProps Any valid table
storage clause

NULL Specifies the TABLE storage clause that is
appended to the default CREATE TABLE
statement. This is meaningful mainly for
global and out-of-line elements.

defaultTable Any table name Based on element
name.

Specifies the name of the table into which
XML instances of this schema should be
stored. This is most useful in cases when
the XML is being inserted from APIs
where table name is not specified, for
example, FTP and HTTP.

beanClassname Any Java class name Generated from
element name.

Can be used within element declarations.
If the element is based on a global
complexType , this name must be
identical to the beanClassname value
within the complexType declaration. If a
name is specified by the user, the bean
generation will generate a bean class with
this name instead of generating a name
from the element name.

JavaClassname Any Java class name None Used to specify the name of a Java class
that is derived from the corresponding
bean class to ensure that an object of this
class is instantiated during bean access. If
a JavaClassname is not specified,
Oracle XML DB will instantiate an object
of the bean class directly.

Table 5–2 Attributes You Can Specify in Elements(Cont.)

Attribute Values Default Description
5-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes
Table 5–3 Attributes You Can Specify in Elements Declaring Global complexTypes

Attribute Values Default Description

SQLType Any SQL type name Name generated from
element name

Specifies the name of the SQL type
correspondingtothisXML
element declaration.

SQLSchema Any SQL username User registering XML
schema

Name of database user owning the type
specified by SQLType.

beanClassname Any Java class name Generated from
element name.

Can be used within element declarations.
If the element is based on a global
complexType , this name must be
identical to the beanClassname value
within the complexType declaration. If a
name is specified by the user, the bean
generation will generate a bean class with
this name, instead of generating a name
from the element name.

maintainDOM true | false true If true, instances of this element are
stored such that they retain DOM fidelity
on output. This implies that all comments,
processing instructions, namespace
declarations,.and so on, are retained in
addition to the ordering of elements. If
false, the output need not be guaranteed
to have the same DOM behavior as the
input.

Table 5–4 Attributes You Can Specify in XML Schema Declarations

Attribute Values Default Description

mapUnboundedStringToLob true | false false If true, unbounded strings are mapped to
CLOB by default. Similarly, unbounded
binary data gets mapped to BLOB, by
default. If false, unbounded strings are
mapped to VARCHAR2(4000) and
unbounded binary components are
mapped to RAW(2000).

storeVarrayAsTable true | false false If true, the VARRAY is stored as a table
(OCT). If false, the VARRAY is stored in a
LOB.
Structured Mapping of XMLType 5-27

Specifying SQL Object Type Names with SQLName, SQLType Attributes
SQL Mapping Is Specified in the XML Schema During Registration
Information regarding the SQL mapping is stored in the XML schema document.

The registration process generates the SQL types, as described in "Mapping of

Types Using DBMS_XMLSCHEMA" on page 5-31 and adds annotations to the XML

schema document to store the mapping information. Annotations are in the form of

new attributes.

Example 5–13 Capturing SQL Mapping Using SQLType and SQLName Attributes

The following XML schema definition shows how SQL mapping information is

captured using SQLType and SQLName attributes:

declare
 doc varchar2(3000) := ’<schema
targetNamespace="http://www.oracle.com/PO.xsd"
xmlns:po="http://www.oracle.com/PO.xsd" xmlns:xdb="http://xmlns.oracle.com/xdb"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal" xdb:SQLName="PONUM"
xdb:SQLType="NUMBER"/>
 <element name="Company" xdb:SQLName="COMPANY" xdb:SQLType="VARCHAR2">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" xdb:SQLName="ITEM" xdb:SQLType="ITEM_T"
maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part" xdb:SQLName="PART" xdb:SQLType="VARCHAR2">
 <simpleType>
 <restriction base="string">
 <maxLength value="1000"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Price" type="float" xdb:SQLName="PRICE"
xdb:SQLType="NUMBER"/>
 </sequence>
 </complexType>
 </element>
5-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes
 </sequence>
 </complexType>
 <element name="PurchaseOrder" type="po:PurchaseOrderType"/>
</schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

Figure 5–2 shows how Oracle XML DB creates XML schema-based XMLType tables

using an XML document and mapping specified in an XML schema. An XMLType
table is first created and depending on how the storage is specified in the XML

schema, the XML document is mapped and stored either as a CLOB in one

XMLType column, or stored object-relationally and spread out across several

columns in the table.
Structured Mapping of XMLType 5-29

Specifying SQL Object Type Names with SQLName, SQLType Attributes
Figure 5–2 How Oracle XML DB Maps XML Schema-Based XMLType Tables

An XMLType table is first created and depending on how the storage is specified in

the XML schema, the XML document is mapped and stored either as a CLOB in one

XMLType column, or stored object-relationally and spread out across several

columns in the table.

XML data: employee_2002.xml
...
<employee>
 <first_name>Scott</first_name>
 <last_name>Tiger</last_name>
 <email>scott.itger@oracle.com</email>
 ...
 <hire_date>040402</hire_date>
 ...
 <department_id>1234</department_id>
</employee>
...

XML schema definition: employee.xsd
...
<sequence>
 <element name="first name" type="string"/>
 <element name="last name" type="string"/>
 <element name="email" type="string"/>
 ...
 <element name="hire_date" type="date"/>
 ...
 <element name="department_id" type="integer"/>
</sequence>
...

Create
XMLType

Table

employee_2002 tables

. . . XMLType Column

scott tiger CLOB
CLOB
CLOB
CLOB
CLOB

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

employee_2002 tables

first_name last_name email dept_id

...1234tigerscott

Store as CLOB
Structured
Storage

Here the XML elements are mapped
to columns in tables.

Here the whole XML document or parts
of it are stored in CLOBs in tables.
5-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Mapping of Types Using DBMS_XMLSCHEMA
Mapping of Types Using DBMS_XMLSCHEMA
Use DBMS_XMLSCHEMA to set the mapping of type information for attributes and

elements.

Setting Attribute Mapping Type Information
An attribute declaration can have its type specified in terms of one of the following:

■ Primitive type

■ Global simpleType , declared within this XML schema or in an external XML

schema

■ Reference to global attribute (ref=".."), declared within this XML schema or

in an external XML schema

■ Local simpleType

In all cases, the SQL type and associated information (length and precision) as well

as the memory mapping information, are derived from the simpleType on which

the attribute is based.

Overriding SQL Types
You can explicitly specify an SQLType value in the input XML schema document.

In this case, your specified type is validated. This allows for the following specific

forms of overrides:

■ If the default type is a STRING, you can override it with any of the following:

CHAR, VARCHAR, or CLOB.

■ If the default type is RAW, you can override it with RAW or BLOB.

Setting Element Mapping Type Information
An element declaration can specify its type in terms of one of the following:

■ Any of the ways for specifying type for an attribute declaration. See "Setting

Attribute Mapping Type Information" on page 5-31.

■ Global complexType , specified within this XML schema document or in an

external XML schema.

■ Reference to a global element (ref="..."), which could itself be within this

XML schema document or in an external XML schema.
Structured Mapping of XMLType 5-31

Mapping of Types Using DBMS_XMLSCHEMA
■ Local complexType .

Overriding SQL Type
An element based on a complexType is, by default, mapped to an object type

containing attributes corresponding to each of the sub-elements and attributes.

However, you can override this mapping by explicitly specifying a value for

SQLType attribute in the input XML schema. The following values for SQLType are

permitted in this case:

■ VARCHAR2

■ RAW

■ CLOB

■ BLOB

These represent storage of the XML in a text or unexploded form in the database.

The following special cases are handled:

■ If a cycle is detected, as part of processing the complexTypes used to declare

elements and elements declared within the complexType), the SQLInline
attribute is forced to be “false” and the correct SQL mapping is set to REF

XMLTYPE.

■ If maxOccurs > 1 , a VARRAY type may need to be created.

– If SQLInline ="true" , a varray type is created whose element type is the

SQL type previously determined.

* Cardinality of the VARRAY is determined based on the value of

maxOccurs attribute.

* The name of the VARRAY type is either explicitly specified by the user

using SQLCollType attribute or obtained by mangling the element

name.

– If SQLInline="false" , the SQL type is set to XDB.XDB$XMLTYPE_REF_
LIST_T , a predefined type representing an array of REFs to XMLType.

■ If the element is a global element, or if SQLInline="false” , a default table

needs to be created. It is added to the table creation context. The name of the

default table has either been specified by the user, or derived by mangling the

element name.
5-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping SimpleTypes to SQL
XML Schema: Mapping SimpleTypes to SQL
This section describes how XML schema definitions map XML schema

simpleType to SQL object types. Figure 5–3 shows an example of this.

Table 5–5 through Table 5–8 list the default mapping of XML schema simpleType
to SQL, as specified in the XML schema definition. For example:

■ An XML primitive type is mapped to the closest SQL datatype. For example,

DECIMAL, POSITIVEINTEGER, and FLOAT are all mapped to SQL NUMBER.

■ An XML enumeration type is mapped to an object type with a single RAW(n)

attribute. The value of n is determined by the number of possible values in the

enumeration declaration.

■ An XML list or a union datatype is mapped to a string (VARCHAR2/CLOB)

datatype in SQL.

Figure 5–3 Mapping simpleType: XML Strings to SQL VARCHAR2 or CLOBs

. . .
Employee_tab of type OBJ_T

. . . Resume

CLOB

. . .

.

Entire resume
value is stored
in the CLOB

<element name = "Resume" type = "string">

.

.

.

.

.

.

Structured Mapping of XMLType 5-33

XML Schema: Mapping SimpleTypes to SQL
Table 5–5 Mapping XML String Datatypes to SQL

XML Primitive
Type

Length or
MaxLength
Facet

Default Mapping Compatible Datatype

string n VARCHAR2(n) if n < 4000, else
VARCHAR2(4000)

CHAR,VARCHAR2,
CLOB

string -- VARCHAR2(4000) if
mapUnboundedStringToLob="false”,
CLOB

CHAR, VARCHAR2, CLOB

Table 5–6 Mapping XML Binary Datatypes (hexBinary/base64Binary) to SQL

XML Primitive
Type

Length or
MaxLength
Facet

Default Mapping Compatible Datatype

hexBinary,
base64Binary

n RAW(n) if n < 2000, else RAW(2000) RAW, BLOB

hexBinary,
base64Binary

- RAW(2000) if
mapUnboundedStringToLob=”false”,
BLOB

RAW, BLOB

Table 5–7 Default Mapping of Numeric XML Primitive Types to SQL

XML Simple Type Default
Oracle
DataType

totalDigits (m), fractionDigits(n)
Specified

Compatible Datatypes

float NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

double NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

decimal NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

integer NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

nonNegativeInteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

positiveInteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

nonPositiveInteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
5-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping SimpleTypes to SQL
negativeInteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

long NUMBER(20) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

unsignedLong NUMBER(20) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

int NUMBER(10) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

unsignedInt NUMBER(10) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

short NUMBER(5) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

unsignedShort NUMBER(5) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

byte NUMBER(3) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

unsignedByte NUMBER(3) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

Table 5–8 Mapping XML Date Datatypes to SQL

XML Primitive Type Default Mapping Compatible Datatypes

datetime TIMESTAMP DATE

time TIMESTAMP DATE

date DATE DATE

gDay DATE DATE

gMonth DATE DATE

gYear DATE DATE

gYearMonth DATE DATE

gMonthDay DATE DATE

duration VARCHAR2(4000) none

Table 5–7 Default Mapping of Numeric XML Primitive Types to SQL(Cont.)

XML Simple Type Default
Oracle
DataType

totalDigits (m), fractionDigits(n)
Specified

Compatible Datatypes
Structured Mapping of XMLType 5-35

XML Schema: Mapping SimpleTypes to SQL
simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBs
If the XML schema specifies the datatype to be string with a maxLength value of

less than 4000, it is mapped to a VARCHAR2 attribute of the specified length.

However, if maxLength is not specified in the XML schema, it can only be mapped

to a LOB. This is sub-optimal when most of the string values are small and only a

small fraction of them are large enough to need a LOB.

Table 5–9 Default Mapping of Other XML Primitive Datatypes to SQL

XML Simple Type Default Oracle DataType Compatible Datatypes

boolean RAW(1) VARCHAR2

Language(string) VARCHAR2(4000) CLOB, CHAR

NMTOKEN(string) VARCHAR2(4000) CLOB, CHAR

NMTOKENS(string) VARCHAR2(4000) CLOB, CHAR

Name(string) VARCHAR2(4000) CLOB, CHAR

NCName(string) VARCHAR2(4000) CLOB, CHAR

ID VARCHAR2(4000) CLOB, CHAR

IDREF VARCHAR2(4000) CLOB, CHAR

IDREFS VARCHAR2(4000) CLOB, CHAR

ENTITY VARCHAR2(4000) CLOB, CHAR

ENTITIES VARCHAR2(4000) CLOB, CHAR

NOTATION VARCHAR2(4000) CLOB, CHAR

anyURI VARCHAR2(4000) CLOB, CHAR

anyType VARCHAR2(4000) CLOB, CHAR

anySimpleType VARCHAR2(4000) CLOB, CHAR

QName XDB.XDB$QNAME --

See Also: Table 5–5, "Mapping XML String Datatypes to SQL"
5-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping complexTypes to SQL
XML Schema: Mapping complexTypes to SQL
Using XML schema, a complexType is mapped to an SQL object type as follows:

■ XML attributes declared within the complexType are mapped to object
attributes. The simpleType defining the XML attribute determines the SQL

datatype of the corresponding attribute.

■ XML elements declared within the complexType are also mapped to object
attributes. The datatype of the object attribute is determined by the

simpleType or complexType defining the XML element.

If the XML element is declared with attribute maxOccurs > 1, it is mapped to a

collection attribute in SQL. The collection could be a VARRAY (default) or

nested table if the maintainOrder attribute is set to false. Further, the default

storage of the VARRAY is in Ordered Collections in Tables (OCTs) instead of LOBs.

You can choose LOB storage by setting the storeAsLob attribute to true.

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage
By default, a sub-element is mapped to an embedded object attribute. However,

there may be scenarios where out-of-line storage offers better performance. In such

cases the SQLInline attribute can be set to false, and Oracle XML DB generates an

object type with an embedded REF attribute. REF points to another instance of

XMLType that corresponds to the XML fragment that gets stored out-of-line. Default

XMLType tables are also created to store the out-of-line fragments.

Figure 5–4 illustrates the mapping of a complexType to SQL for out-of-line

storage.

See Also: "Ordered Collections in Tables (OCTs)" on page 5-71
Structured Mapping of XMLType 5-37

XML Schema: Mapping complexTypes to SQL
Figure 5–4 Mapping complexType to SQL for Out-of-Line Storage

Example 5–14 Oracle XML DB XML Schema: complexType Mapping - Setting
SQLInLine Attribute to False for Out-of-Line Storage

In this example element Addr ’s attribute, xdb:SQLInLine , is set to false.The

resulting object type OBJ_T2 has a column of type XMLType with an embedded

REF attribute. The REF attribute points to another XMLType instance created of

object type OBJ_T1 in table Addr_tab . Addr_tab has columns Street and City .

The latter XMLType instance is stored out-of-line.

declare
doc varchar2(3000) := ’<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oracle.com/emp.xsd"
xmlns:emp="http://www.oracle.com/emp.xsd"
xmlns:xdb="http://xmlns.oracle.com/xdb">
 <complexType name = "Employee" xdb:SQLType="OBJ_T2">
 <sequence>
 <element name = "Name" type = "string"/>
 <element name = "Age" type = "decimal"/>
 <element name = "Addr" xdb:SQLInline = "false">
 <complexType xdb:SQLType="OBJ_T1">
 <sequence>
 <element name = "Street" type = "string"/>
 <element name = "City" type = "string"/>
 </sequence>
 </complexType>

This XML fragment is
stored out-of-lineName

Employee_tab of type OBJ_T2
Age Addr REF XMLType

Addr_tab of type OBJ_T1
Street City

XMLType table

REF points
to another
XMLType
instance

<element name = "Addr" xdb : SQLInLine = "false">

.

.

.

.

.

.

5-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping complexTypes to SQL
 </element>
 </sequence>
 </complexType>
 </schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

On registering this XML schema, Oracle XML DB generates the following types and

XMLType tables:

CREATE TYPE OBJ_T1 AS OBJECT
(
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
 Street VARCHAR2(4000),
 City VARCHAR2(4000)
);

CREATE TYPE OBJ_T2 AS OBJECT
(
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
 Name VARCHAR2(4000),
 Age NUMBER,
 Addr REF XMLType
);

Mapping XML Fragments to Large Objects (LOBs)
You can specify the SQLType for a complex element as a Character Large Object

(CLOB) or Binary Large Object (BLOB) as shown in Figure 5–5. Here the entire XML

fragment is stored in a LOB attribute. This is useful when parts of the XML

document are seldom queried but are mostly retrieved and stored as single pieces.

By storing XML fragments as LOBs, you can save on

parsing/decomposition/recomposition overheads.

Example 5–15 Oracle XML DB XML Schema: complexType Mapping XML Fragments
to LOBs

In the following example, the XML schema specifies that the XML fragment’s

element Addr is using the attribute SQLType="CLOB" :

declare
doc varchar2(3000) := ’<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oracle.com/emp.xsd"
xmlns:emp="http://www.oracle.com/emp.xsd"
Structured Mapping of XMLType 5-39

XML Schema: Mapping complexTypes to SQL
xmlns:xdb="http://xmlns.oracle.com/xdb">
 <complexType name = "Employee" xdb:SQLType="OBJ_T2">
 <sequence>
 <element name = "Name" type = "string"/>
 <element name = "Age" type = "decimal"/>
 <element name = "Addr" xdb:SQLType = "CLOB">
 <complexType >
 <sequence>
 <element name = "Street" type = "string"/>
 <element name = "City" type = "string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

On registering this XML schema, Oracle XML DB generates the following types and

XMLType tables:

CREATE TYPE OBJ_T AS OBJECT
(
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
 Name VARCHAR2(4000),
 Age NUMBER,
 Addr CLOB
);
5-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions
Figure 5–5 Mapping complexType XML Fragments to Character Large Objects
(CLOBs)

Oracle XML DB complexType Extensions and Restrictions
In XML schema, complexTypes are declared based on complexContent and

simpleContent .

■ simpleContent is declared as an extension of simpleType .

■ complexContent is declared as one of the following:

■ Base type

■ complexType extension

■ complexType restriction.

complexType Declarations in XML Schema: Handling Inheritance
For complexType , Oracle XML DB handles inheritance in the XML schema as

follows:

■ For complexTypes declared to extend other complexTypes, the SQL type

corresponding to the base type is specified as the supertype for the current SQL

type. Only the additional attributes and elements declared in the

sub-complextype are added as attributes to the sub-object-type.

Name
Employee_tab of type OBJ_T

Age Addr

CLOB

Street and
city are stored
in the CLOB

<element name = "Addr" xdb : SQLType = "CLOB">

.

.

.

.

.

.

Structured Mapping of XMLType 5-41

Oracle XML DB complexType Extensions and Restrictions
■ For complexTypes declared to restrict other complexTypes, the SQL type for the

sub-complex type is set to be the same as the SQL type for its base type. This is

because SQL does not support restriction of object types through the

inheritance mechanism. Any constraints are imposed by the restriction in XML

schema.

Example 5–16 Inheritance in XML Schema: complexContent as an Extension of
complexTypes

Consider an XML schema that defines a base complexType “Address ” and two

extensions “USAddress ” and “IntlAddress ”.

declare
 doc varchar2(3000) := ’<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:complexType name="Address" xdb:SQLType="ADDR_T">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="USAddress" xdb:SQLType="USADDR_T">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="zip" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="IntlAddress" final="#all" xdb:SQLType="INTLADDR_T">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
5-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions
end;

create type ADDR_T as object (
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
 "street" varchar2(4000),
 "city" varchar2(4000)
) not final;

create type USADDR_T under ADDR_T (
 "zip" varchar2(4000)
) not final;

create type INTLADDR_T under ADDR_T (
 "country" varchar2(4000)
) final;

Example 5–17 Inheritance in XML Schema: Restrictions in complexTypes

Consider an XML schema that defines a base complexType Address and a

restricted type LocalAddress that prohibits the specification of country
attribute.

declare
 doc varchar2(3000) := ’<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:complexType name="Address" xdb:SQLType="ADDR_T">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="zip" type="xs:string"/>
 <xs:element name="country" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="LocalAddress" xdb:SQLType="USADDR_T">
 <xs:complexContent>
 <xs:restriction base="Address">

Note: Type INTLADDR_T is created as a final type because the

corresponding complexType specifies the “final ” attribute. By

default, all complexTypes can be extended and restricted by other

types, and hence, all SQL object types are created as not final types.
Structured Mapping of XMLType 5-43

Oracle XML DB complexType Extensions and Restrictions
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="zip" type="xs:string"/>
 <xs:element name="country" type="xs:string"
 minOccurs="0" maxOccurs="0"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

Since inheritance support in SQL does not support a notion of restriction, the SQL

type corresponding to the restricted complexType is a empty subtype of the parent

object type.For the preceding XML schema, the following SQL types are generated:

create type ADDR_T as object (
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
 "street" varchar2(4000),
 "city" varchar2(4000),
 "zip" varchar2(4000),
 "country" varchar2(4000)
) not final;

create type USADDR_T under ADDR_T;

Mapping complexType: simpleContent to Object Types
A complexType based on a simpleContent declaration is mapped to an object

type with attributes corresponding to the XML attributes and an extra SYS_
XDBBODY attribute corresponding to the body value. The datatype of the body

attribute is based on simpleType which defines the body's type.

Example 5–18 XML Schema complexType: Mapping complexType to simpleContent

declare
 doc varchar2(3000) := ’<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.oracle.com/emp.xsd"
xmlns:emp="http://www.oracle.com/emp.xsd"
xmlns:xdb="http://xmlns.oracle.com/xdb">
<complexType name="name" xdb:SQLType="OBJ_T">
 <simpleContent>
5-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions
 <restriction base = "string">
 </restriction>
 </simpleContent>
</complexType>
</schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/emp.xsd’, doc);
end;

On registering this XML schema, Oracle XML DB generates the following types and

XMLType tables:

create type OBJ_T as object
(
 SYS_XDBPD$ xdb.xdb$raw_list_t,
 SYS_XDBBODY$ VARCHAR2(4000)
);

Mapping complexType: Any and AnyAttributes
Oracle XML DB maps the element declaration, any , and the attribute declaration,

anyAttribute , to VARCHAR2 attributes (or optionally to Large Objects (LOBs))

in the created object type. The object attribute stores the text of the XML fragment

that matches the any declaration.

■ The namespace attribute can be used to restrict the contents so that they

belong to a specified namespace.

■ The processContents attribute within the any element declaration, indicates

the level of validation required for the contents matching the any declaration.

Example 5–19 Oracle XML DB XML Schema: Mapping complexType to
Any/AnyAttributes

This XML schema example declares an any element and maps it to the column

SYS_XDBANY$, in object type OBJ_T. This element also declares that the attribute,

processContents , skips validating contents that match the any declaration.

declare
doc varchar2(3000) := ’<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.oracle.com/any.xsd"
xmlns:emp="http://www.oracle.com/any.xsd"
xmlns:xdb="http://xmlns.oracle.com/xdb">
 <complexType name = "Employee" xdb:SQLType="OBJ_T">
 <sequence>
Structured Mapping of XMLType 5-45

Oracle XML DB complexType Extensions and Restrictions
 <element name = "Name" type = "string" />
 <element name = "Age" type = "decimal"/>
 <any namespace = "http://www/w3.org/2001/xhtml" processContents = "skip"/>
 </sequence>
 </complexType>
</schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/emp.xsd’, doc);
end;

It results in the following statement:

CREATE TYPE OBJ_T AS OBJECT
(
 SYS_XDBPD$ xdb.xdb$raw_list_t,
 Name VARCHAR2(4000),
 Age NUMBER,
 SYS_XDBANY$ VARCHAR2(4000)
);

Handling Cycling Between complexTypes in XML Schema
Cycles in the XML schema are broken while generating the object types, because

object types do not allow cycles, by introducing a REF attribute at the point at

which the cycle gets completed. Thus part of the data is stored out-of-line yet still

belongs to the parent XML document when it is retrieved.

Example 5–20 XML Schema: Cycling Between complexTypes

XML schemas permit cycling between definitions of complexTypes . Figure 5–6

shows this example, where the definition of complexType CT1 can reference

another complexType CT2 , whereas the definition of CT2 references the first type

CT1.

XML schemas permit cycling between definitions of complexTypes . This is an

example of cycle of length 2:

declare
doc varchar2(3000) := ’<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:complexType name="CT1" xdb:SQLType="CT1">
 <xs:sequence>
 <xs:element name="e1" type="xs:string"/>
 <xs:element name="e2" type="CT2"/>
 </xs:sequence>
5-46 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions
 </xs:complexType>

 <xs:complexType name="CT2" xdb:SQLType="CT2">
 <xs:sequence>
 <xs:element name="e1" type="xs:string"/>
 <xs:element name="e2" type="CT1"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/emp.xsd’, doc);
end;

SQL types do not allow cycles in type definitions. However, they support weak

cycles, that is, cycles involving REF (references) attributes. Therefore, cyclic XML

schema definitions are mapped to SQL object types such that any cycles are avoided

by forcing SQLInline=”false” at the appropriate point. This creates a weak

cycle.

For the preceding XML schema, the following SQL types are generated:

create type CT1 as object
(
 SYS_XDBPD$ xdb.xdb$raw_list_t,
 "e1" varchar2(4000),
 "e2" ref xmltype;
) not final;

create type CT2 as object
(
 SYS_XDBPD$ xdb.xdb$raw_list_t,
 "e1" varchar2(4000),
 "e2" CT1
) not final;
Structured Mapping of XMLType 5-47

Oracle XML DB complexType Extensions and Restrictions
Figure 5–6 Cross Referencing Between Different complexTypes in the Same XML
Schema

Example 5–21 XML Schema: Cycling Between complexTypes, Self-Referencing

Another example of a cyclic complexType involves the declaration of the

complexType having a reference to itself. The following is an example of type

<SectionT> that references itself:

declare
 doc varchar2(3000) := ’<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:complexType name="SectionT" xdb:SQLType="SECTION_T">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="body" type="xs:string" xdb:SQLCollType="BODY_COLL"/>
 <xs:element name="section" type="SectionT"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/section.xsd’, doc);
end;

The following SQL types are generated.

<xs:element name=
"e2" type = "CT2"/>

<xs:complexType name=
"CT1"...>

.

.

.

.

.

.

<xs:element name=
"e2" type="CT1"/>

<xs:complexType name=
"CT2"...>

.

.

.

.

.

.

XML schema, emp. xsd
5-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Further Guidelines for Creating XML Schema-Based XML Tables
create type BODY_COLL as varray(32767) of VARCHAR2(4000);

create type SECTION_T as object
(
 SYS_XDBPD$ xdb.xdb$raw_list_t,
 "title" varchar2(4000),
 "body" BODY_COLL,
 "section" XDB.XDB$REF_LIST_T
) not final;

Further Guidelines for Creating XML Schema-Based XML Tables
Assume that your XML schema, identified by

“http://www.oracle.com/PO.xsd ”, has been registered. An XMLType table,

myPOs, can then be created to store instances conforming to element,

PurchaseOrder , of this XML schema, in an object-relational format as follows:

CREATE TABLE MyPOs OF XMLTYPE
 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder";

Figure 5–7 illustrates schematically how a complexTypes can reference or cycle

itself.

Note: The section attribute is declared as a varray of REFs to

XMLType instances. Since there can be more than one occurrence of

embedded sections, the attribute is a VARRAY. And it’s a VARRAY

of REFs to XMLTypes in order to avoid forming a cycle of SQL

objects.

See Also: "Cyclical References Between XML Schemas" on

page 5-71
Structured Mapping of XMLType 5-49

Further Guidelines for Creating XML Schema-Based XML Tables
Figure 5–7 complexType Self Referencing Within an XML Schema

Hidden columns are created. These correspond to the object type to which the

PurchaseOrder element has been mapped. In addition, an XMLExtra object

column is created to store the top-level instance data such as namespace

declarations.

Specifying Storage Clauses in XMLType CREATE TABLE Statements
To specify storage, the underlying columns can be referenced in the XMLType
storage clauses using either Object or XML notation:

■ Object notation: XMLDATA.<attr1>.<attr2>....

For example:

CREATE TABLE MyPOs OF XMLTYPE
 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder"
 lob (xmldata.lobattr) STORE AS (tablespace ...);

■ XML notation: extractValue(xmltypecol, '/attr1/attr2')

For example:

CREATE TABLE MyPOs OF XMLTYPE
 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder"
 lob (ExtractValue(MyPOs, '/lobattr')) STORE AS (tablespace ...);

Note: XMLDATA is a pseudo-attribute of XMLType that enables

direct access to the underlying object column. See Chapter 4, "Using

XMLType", under “Changing the Storage Options on an XMLType
Column Using XMLData”.

<xs:element name="section" type =
"SectionT"/>

<xs:complexType name=
"SectionT"...>

.

.

.

.

.

.

XML schema, emp. xsd
5-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Referencing XMLType Columns Using CREATE INDEX
As shown in the preceding examples, columns underlying an XMLType column can

be referenced using either an object or XML notation in the CREATE TABLE

statements. The same is true in CREATE INDEX statements:

CREATE INDEX ponum_idx ON MyPOs (xmldata.ponum);
CREATE INDEX ponum_idx ON MyPOs p (ExtractValue(p, '/ponum');

Specifying Constraints on XMLType Columns
Constraints can also be specified for underlying XMLType columns, using either the

object or XML notation:

■ Object notation

CREATE TABLE MyPOs OF XMLTYPE
ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder"
(unique(xmldata.ponum));

■ XML notation

CREATE TABLE MyPOs P OF XMLTYPE
ELEMENT
"http://www.oracle.com/PO.xsd#PurchaseOrder"(unique(ExtractValue(p,'/ponum')
);

Inserting New Instances into XMLType Columns
New instances can be inserted into an XMLType columns as follows:

INSERT INTO MyPOs VALUES
 (xmltype.createxml('<PurchaseOrder>.....</PurchaseOrder>'));

Query Rewrite with XML Schema-Based Structured Storage

What Is Query Rewrite?
When the XMLType is stored in structured storage (object-relationally) using an

XML schema and queries using XPath are used, they are rewritten to go directly to

the underlying object-relational columns. This enables the use of B*Tree or other

indexes, if present on the column, to be used in query evaluation by the Optimizer.

This query rewrite mechanism is used for XPaths in SQL functions such as

existsNode() , extract() , extractValue() , and updateXML() . This enables
Structured Mapping of XMLType 5-51

Query Rewrite with XML Schema-Based Structured Storage
the XPath to be evaluated against the XML document without having to ever

construct the XML document in memory.

Example 5–22 Query Rewrite

For example a query such as:

SELECT VALUE(p) FROM MyPOs p
 WHERE extractValue(value(p),'/PurchaseOrder/Company’) = 'Oracle';

is trying to get the value of the Company element and compare it with the literal

’Oracle ’. Since the MyPOs table has been created with XML schema-based

structured storage, the extractValue operator gets rewritten to the underlying

relational column that stores the company information for the purchaseorder .

Thus the preceding query is rewritten to the following:

SELECT VALUE(p) FROM MyPOs p
 WHERE p.xmldata.company = 'Oracle';

If there was a regular index created on the Company column, such as:

CREATE INDEX company_index ON MyPos e
 (extractvalue(value(e),’/PurchaseOrder/Company’));

then the preceding query would use the index for its evaluation.

When Does Query Rewrite Occur?
Query rewrite happens for the following SQL functions:

■ extract()

■ existsNode()

■ extractValue

■ updateXML

The rewrite happens when these SQL functions are present in any expression in a

query, DML, or DDL statement. For example, you can use extractValue() to

create indexes on the underlying relational columns.

See Also: Chapter 4, "Using XMLType"
5-52 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Example 5–23 SELECT Statement and Query Rewrites

This example gets the existing purchase orders:

SELECT EXTRACTVALUE(value(x),’/PurchaseOrder/Company’)
 FROM MYPOs x
 WHERE EXISTSNODE(value(x),’/PurchaseOrder/Item[1]/Part’) = 1;

Here are some examples of statements that get rewritten to use underlying columns:

Example 5–24 DML Statement and Query Rewrites

This example deletes all purchaseorders where the Company is not Oracle :

DELETE FROM MYPOs x
 WHERE EXTRACTVALUE(value(x),’/PurchaseOrder/Company’) = ’Oracle Corp’;

Example 5–25 CREATE INDEX Statement and Query Rewrites

This example creates an index on the Company column, since this is stored object

relationally and the query rewrite happens, a regular index on the underlying

relational column will be created:

CREATE INDEX company_index ON MyPos e
 (extractvalue(value(e),’/PurchaseOrder/Company’));

In this case, if the rewrite of the SQL functions results in a simple relational column,

then the index is turned into a B*Tree or a domain index on the column, rather than

a function-based index.

What XPath Expressions Are Rewritten?
XPath involving simple expressions with no wild cards or descendant axes get

rewritten. The XPath may select an element or an attribute node. Predicates are

supported and get rewritten into SQL predicates.

Table 5–10 lists the kinds of XPath expressions that can be translated into

underlying SQL queries in this release.
Structured Mapping of XMLType 5-53

Query Rewrite with XML Schema-Based Structured Storage
Unsupported XPath Constructs The following XPath constructs do not get rewritten:

■ XPath Functions

■ XPath Variable references

■ All axis other than child and attribute axis

■ Wild card and descendant expressions

■ UNION operations

Unsupported XML Schema Constructs The following XML schema constructs are not

supported. This means that if the XPath expression includes nodes with the

following XML schema construct then the entire expression will not get rewritten:

■ XPath expressions accessing children of elements containing open content,

namely any content. When nodes contain any content, then the expression

cannot be rewritten, except when the any targets a namespace other than the

namespace specified in the XPath. any attributes are handled in a similar way.

■ CLOB storage. If the XML schema maps part of the element definitions to an

SQL CLOB, then XPath expressions traversing such elements are not supported.

■ Enumeration types.

■ Substitutable elements.

Table 5–10 Supported XPath Expressions for Translation to Underlying SQL Queries

XPath Expression for Translation Description

Simple XPath expressions:

/PurchaseOrder/@PurchaseDate

/PurchaseOrder/Company

Involves traversals over object type attributes only, where the attributes
are simple scalar or object types themselves. The only axes supported
are the child and the attribute axes.

Collection traversal expressions:

/PurchaseOrder/Item/Part

Involves traversal of collection expressions. The only axes supported are
child and attribute axes. Collection traversal is not supported if the SQL
operator is used during CREATE INDEX or updateXML() .

Predicates:

[Company="Oracle"]

Predicates in the XPath are rewritten into SQL predicates. Predicates are
not rewritten for updateXML()

List indexe:

lineitem[1]

Indexes are rewritten to access the n’th item in a collection. These are
not rewritten for updateXML() .
5-54 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
■ Non-default mapping of scalar types. For example, number types mapped to

native storage, such as native integers, and so on.

■ Child access for inherited complexTypes where the child is not a member of

the declared complexType .

For example, consider the case where we have a address complexType
which has a street element. We can have a derived type called shipAddr
which contains shipmentNumber element. If the PurchaseOrder had an

address element of type address, then an XPath like

"/PurchaseOrder/address/street" would get rewritten whereas

"/PurchaseOrder/address/shipmentNumber" would not.

■ Non-coercible datatype operations, such as a boolean added with a number.

How are the XPaths Rewritten?
The following sections use the same purchaseorder XML schema explained

earlier in the chapter to explain how the functions get rewritten.

Example 5–26 Rewriting XPaths During Object Type Generation

Consider the following purchaseorder XML schema:

declare
 doc varchar2(1000) := ’<schema
targetNamespace="http://www.oracle.com/PO.xsd"
xmlns:po="http://www.oracle.com/PO.xsd"xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part">
 <simpleType>
 <restriction base="string">
Structured Mapping of XMLType 5-55

Query Rewrite with XML Schema-Based Structured Storage
 <maxLength value="1000"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Price" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <element name="PurchaseOrder" type="po:PurchaseOrderType"/>
</schema>’;
begin
 dbms_xmlschema.registerSchema(’http://www.oracle.com/PO.xsd’, doc);
end;

-- A table is created conforming to this schema
CREATE TABLE MyPOs OF XMLTYPE

 ELEMENT "http://www.oracle.com/PO.xsd#PurchaseOrder";

-- The inserted XML document is partially validated against the schema before
-- it is inserted.
insert into MyPos values (xmltype(’<PurchaseOrder
xmlns="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
</PurchaseOrder>’));

Since the XML schema did not specify anything about maintaining the ordering, the

default is to maintain the ordering and DOM fidelity. Hence the types have SYS_
XDBPD$ attribute to store the extra information needed to maintain the ordering of

nodes and to capture extra items such as comments, processing instructions and so

on.
5-56 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
The SYS_XDBPD$ attribute also maintains the existential information for the

elements (that is, whether the element was present or not in the input document).

This is needed for elements with scalar content, since they map to simple relational

columns. In this case, both empty and missing scalar elements map to NULL values

in the column and only the SYS_XDBPD$ attribute can help distinguish the two

cases. The query rewrite mechanism takes into account the presence or absence of

the SYS_XDBPD$ attribute and rewrites queries appropriately.

Assuming that this XML schema is registered with the schema URL:

http://www.oracle.com/PO.xsd

you can create the po_tab table with this schema as follows:

CREATE TABLE po_tab OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/PO.xsd" ELEMENT "PurchaseOrder";

Now this table has a hidden XMLData column of type "PurchaseOrder_T " that

stores the actual data.

Rewriting XPath Expressions: Mapping Types and Issues
XPath expression mapping of types and topics are described in the following

sections:

■ "Mapping for a Simple XPath"

■ "Mapping for Scalar Nodes"

■ "Mapping of Predicates"

■ "Mapping of Collection Predicates"

■ "Document Ordering with Collection Traversals"

■ "Collection Index"

■ "Non-Satisfiable XPath Expressions"

■ "Namespace Handling"

■ "Date Format Conversions"

Mapping for a Simple XPath A rewrite for a simple XPath involves accessing the

attribute corresponding to the XPath expression. Table 5–11 lists the XPath map:
Structured Mapping of XMLType 5-57

Query Rewrite with XML Schema-Based Structured Storage
Mapping for Scalar Nodes An XPath expression can contain a text() operator which

maps to the scalar content in the XML document. When rewriting, this maps

directly to the underlying relational columns.

For example, the XPath expression “/PurchaseOrder/PONum/text() ” maps to

the SQL column XMLData."PONum" directly.

A NULL value in the PONum column implies that the text value is not available,

either because the text node was not present in the input document or the element

itself was missing. This is more efficient than accessing the scalar element, since we

do not need to check for the existence of the element in the SYS_XBDPD$ attribute.

For example, the XPath “/PurchaseOrder/PONum ” also maps to the SQL

attribute XMLData.”PONum” ,

However, in this case, query rewrite also has to check for the existence of the

element itself, using the SYS_XDBPD$ in the XMLData column.

Mapping of Predicates Predicates are mapped to SQL predicate expressions.

Example 5–27 Mapping Predicates

For example the predicate in the XPath expression:

/PurchaseOrder[PONum=1001 and Company = "Oracle Corp"]

maps to the SQL predicate:

(XMLData."PONum" = 20 and XMLData."Company" = "Oracle Corp")

For example, the following query is rewritten to the structured (object-relational)

equivalent, and will not require Functional evaluation of the XPath.

select extract(value(p),’/PurchaseOrder/Item’).getClobval()

Table 5–11 Simple XPath Mapping for purchaseOrder XML Schema

XPath Expression Maps to

/PurchaseOrder column XMLData

/PurchaseOrder/@PurchaseDate column XMLData."PurchaseDate"

/PurchaseOrder/PONum column XMLData."PONum"

/PurchaseOrder/Item elements of the collection XMLData."Item"

/PurchaseOrder/Item/Part attirbute "Part" in the collection XMLData."Item"
5-58 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
 from mypos p
 where existsNode(value(p),’/PurchaseOrder[PONum=1001 and Company = "Oracle
Corp"]’) =1;

Mapping of Collection Predicates XPath expressions may involve relational operators

with collection expressions. In Xpath 1.0, conditions involving collections are

existential checks. In other words, even if one member of the collection satisfies the

condition, the expression is true.

Example 5–28 Mapping Collection Predicates

For example the collection predicate in the XPath:

/PurchaseOrder[Items/Price > 200]
-- maps to a SQL collection expression:
EXISTS (SELECT null
 FROM TABLE (XMLDATA."Item") x
 WHERE x."Price" > 200)

For example, the following query is rewritten to the structured equivalent.

select extract(value(p),’/PurchaseOrder/Item’).getClobval()
 from mypos p
 where existsNode(value(p),’/PurchaseOrder[Item/Price > 400]’) = 1;

More complicated rewrites occur when you have a collection <condition>
collection. In this case, if at least one combination of nodes from these two collection

arguments satisfy the condition, then the predicate is deemed to be satisfied.

Example 5–29 Mapping Collection Predicates, Using existsNode()

For example, consider a fictitious XPath which checks to see if a Purchaseorder
has Items such that the price of an item is the same as some part number:

/PurchaseOrder[Items/Price = Items/Part]
-- maps to a SQL collection expression:
 EXISTS (SELECT null
 FROM TABLE (XMLDATA."Item") x
 WHERE EXISTS (SELECT null
 FROM TABLE(XMLDATA."Item") y
 WHERE y."Part" = x."Price"))

For example, the following query is rewritten to the structured equivalent:

select extract(value(p),’/PurchaseOrder/Item’).getClobval()
 from mypos p
Structured Mapping of XMLType 5-59

Query Rewrite with XML Schema-Based Structured Storage
 where existsNode(value(p),’/PurchaseOrder[Item/Price = Item/Part]’) = 1;

Document Ordering with Collection Traversals Most of the rewrite preserves the original

document ordering. However, since the SQL system does not guarantee ordering on

the results of subqueries, when selecting elements from a collection using the

extract() function, the resultant nodes may not be in document order.

Example 5–30 Document Ordering with Collection Traversals

For example:

SELECT extract(value(p),’/PurchaseOrder/Item[Price>2100]/Part’)
FROM mypos p;

is rewritten to use subqueries as shown in the following:

SELECT (SELECT XMLAgg(XMLForest(x."Part" AS "Part"))
 FROM TABLE (XMLData."Item") x
 WHERE x."Price" > 2100)
 FROM po_tab p;

Though in most cases, the result of the aggregation would be in the same order as

the collection elements, this is not guaranteed and hence the results may not be in

document order. This is a limitation that may be fixed in future releases.

Collection Index An XPath expression can also access a particular index of a

collection For example, “/PurchaseOrder/Item[1]/Part” is rewritten to

extract out the first Item of the collection and then access the Part attribute within

that.

If the collection has been stored as a VARRAY, then this operation retrieves the

nodes in the same order as present in the original document. If the mapping of the

collection is to a nested table, then the order is undetermined. If the VARRAY is

stored as an Ordered Collection Table (OCT), (the default for the tables created by

the schema compiler, if storeVarrayAsTable=”true” is set), then this collection

index access is optimized to use the IOT index present on the VARRAY.

Non-Satisfiable XPath Expressions An XPath expression can contain references to

nodes that cannot be present in the input document. Such parts of the expression

map to SQL NULLs during rewrite. For example the XPath expression:

“/PurchaseOrder/ShipAddress” cannot be satisfied by any instance document

conforming to the PO.xsd XML schema, since the XML schema does not allow for

ShipAddress elements under PurchaseOrder . Hence this expression would

map to a SQL NULL literal.
5-60 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Namespace Handling Namespaces are handled in the same way as the function-based

evaluation. For schema based documents, if the function (like existsNode() or

extract()) does not specify any namespace parameter, then the target namespace

of the schema is used as the default namespace for the XPath expression.

Example 5–31 Handling Namespaces

For example, the XPath expression /PurchaseOrder/PONum is treated as

/a:PurchaseOrder/a:PONum with

xmlns:a="http://www.oracle.com/PO.xsd ” if the SQL function does not

explicitly specify the namespace prefix and mapping. In other words:

SELECT * FROM po_tab p
 WHERE EXISTSNODE(value(p), ’/PurchaseOrder/PONum’) = 1;

is equivalent to the query:

SELECT * FROM po_tab p
 WHERE EXISTSNODE(value(p),’/PurchaseOrder/PONum’,
 ’xmlns="http://www.oracle.com/PO.xsd’) = 1;

When performing query rewrite, the namespace for a particular element is matched

with that of the XML schema definition. If the XML schema contains

elementFormDefault=”qualified” then each node in the XPath expression

must target a namespace (this can be done using a default namespace specification

or by prefixing each node with a namespace prefix).

If the elementFormDefault is unqualified (which is the default), then only the

node that defines the namespace should contain a prefix. For instance if the PO.xsd
had the element form to be unqualified, then the existsNode() function should

be rewritten as:

EXISTSNODE(value(p),’/a:PurchaseOrder/PONum’,
 ’xmlns:a="http://www.oracle.com/PO.xsd") = 1;

Note: For the case where elementFormDefault is unqualified,

omitting the namespace parameter in the SQL function

existsNode() in the preceding example, would cause each node

to default to the target namespace. This would not match the XML

schema definition and consequently would not return any result.

This is true whether the function is rewritten or not.
Structured Mapping of XMLType 5-61

Query Rewrite with XML Schema-Based Structured Storage
Date Format Conversions The default date formats are different for XML schema and

SQL. Consequently, when rewriting XPath expressions involving comparisons with

dates, you need to use XML formats.

Example 5–32 Date Format Conversions

For example, the expression:

[@PurchaseDate="2002-02-01"]

cannot be simply rewritten as:

XMLData."PurchaseDate" = "2002-02-01"

since the default date format for SQL is not YYYY-MM-DD. Hence during query

rewrite, the XML format string is added to convert text values into date datatypes

correctly. Thus the preceding predicate would be rewritten as:

XMLData."PurchaseDate" = TO_DATE("2002-02-01","SYYYY-MM-DD");

Similarly when converting these columns to text values (needed for extract() ,

and so on), XML format strings are added to convert them to the same date format

as XML.

XPath Expression Rewrites for existsNode()
existsNode() returns a numerical value 0 or 1 indicating if the XPath returns any

nodes (text() or element nodes). Based on the mapping discussed in the earlier

section, an existsNode() simply checks if a scalar element is non-NULL in the

case where the XPath targets a text() node or a non-scalar node and checks for

the existence of the element using the SYS_XDBPD$ otherwise. If the SYS_XDBPD$
attribute is absent, then the existence of a scalar node is determined by the NULL

information for the scalar column.

existsNode Mapping with Document Order Maintained Table 5–12 shows the mapping of

various XPaths in the case of existsNode() when document ordering is

preserved, that is, when SYS_XDBPD$ exists and maintainDOM="true ” in the

schema document.
5-62 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Example 5–33 existsNode Mapping with Document Order Maintained

Using the preceding mapping, a query which checks whether the purchaseorder
with number 2100 contains a part with price greater than 2000:

SELECT count(*)
FROM mypos p
WHERE EXISTSNODE(value(p),’/PurchaseOrder[PONum=1001 and Item/Price > 2000]’)=
1;

would become:

SELECT count(*)

Table 5–12 XPath Mapping for existsNode() with Document Ordering Preserved

XPath Expression Maps to

/PurchaseOrder CASE WHEN XMLData IS NOT NULL THEN 1 ELSE 0 END

/PurchaseOrder/@PurchaseDate CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, ’PurchaseDate’) = 1

 THEN 1 ELSE 0 END

/PurchaseOrder/PONum CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, ’PONum’) = 1

 THEN 1 ELSE 0 END

/PurchaseOrder[PONum = 2100] CASE WHEN XMLData."PONum" = 2100 THEN 1 ELSE 0

/PurchaseOrder[PONum =
2100]/@PurchaseDate

CASE WHEN XML Data."PONum" = 2100 AND Check_Node_Exists(XMLData.SYS_XDBPD$,
’PurchaseDate’) = 1

 THEN 1 ELSE 0 END

/PurchaseOrder/PONum/text() CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0

/PurchaseOrder/Item CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE value(x) IS NOT NULL) THEN 1 ELSE 0 END

/PurchaseOrder/Item/Part CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE Check_Node_Exists(x.SYS_XDBPD$, ’Part’) = 1)

 THEN 1 ELSE 0 END

/PurchaseOrder/Item/Part/text() CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END
Structured Mapping of XMLType 5-63

Query Rewrite with XML Schema-Based Structured Storage
FROM mypos p
WHERE CASE WHEN
 p.XMLData."PONum" = 1001 AND
 EXISTS (SELECT NULL
 FROM TABLE (XMLData."Item") p
 WHERE p."Price" > 2000)) THEN 1 ELSE 0 END = 1;

The CASE expression gets further optimized due to the constant relational equality

expressions and this query becomes:

SELECT count(*)
FROM mypos p
WHERE p.XMLData."PONum" = 1001 AND
 EXISTS (SELECT NULL
 FROM TABLE (p.XMLData."Item") x
 WHERE x."Price" > 2000);

which would use relational indexes for its evaluation, if present on the Part and

PONum columns.

existsNode Mapping Without Maintaining Document Order If the SYS_XDBPD$ does not

exist (that is, if the XML schema specifies maintainDOM="false") then NULL

scalar columns map to non-existent scalar elements. Hence you do not need to

check for the node existence using the SYS_XDBPD$ attribute. Table 5–13 shows the

mapping of existsNode() in the absence of the SYS_XDBPD$ attribute.

Table 5–13 XPath Mapping for existsNode Without Document Ordering

XPath Expression Maps to

/PurchaseOrder CASE WHEN XMLData IS NOT NULL THEN 1 ELSE 0 END

/PurchaseOrder/@PurchaseDate CASE WHEN XMLData.’PurchaseDate’ IS NOT NULL THEN 1 ELSE 0 END

/PurchaseOrder/PONum CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0 END

/PurchaseOrder[PONum = 2100] CASE WHEN XMLData."PONum" = 2100 THEN 1 ELSE 0 END

/PurchaseOrder[PONum =
2100]/@PurchaseOrderDate

CASE WHEN XMLData."PONum" = 2100 AND

 XMLData."PurchaseDate" NOT NULL THEN 1 ELSE 0 END

/PurchaseOrder/PONum/text() CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0 END
5-64 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Rewrite for extractValue()
extractValue() is a shortcut for extracting text nodes and attributes using

extract() and then using a getStringVal() or getNumberVal() to get the

scalar content. extractValue returns the text nodes for scalar elements or the

values of attribute nodes. extractValue() cannot handle returning multiple

values or non-scalar elements.

Table 5–14 shows the mapping of various XPath expressions in the case of

extractValue(). If an XPath expression targets an element, extractValue retrieves

the text node child of the element. Thus the two XPath expressions,

/PurchaseOrder/PONum and /PurchaseOrder/PONum/text() are handled

identically by extractValue and both of them retrieve the scalar content of

PONum.

/PurchaseOrder/Item CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE value(x) IS NOT NULL) THEN 1 ELSE 0 END

/PurchaseOrder/Item/Part CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

/PurchaseOrder/Item/Part/text() CASE WHEN EXISTS (

 SELECT NULL FROM TABLE (XMLData."Item") x

 WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

Table 5–14 XPath Mapping for extractValue()

XPath Expression Maps to

/PurchaseOrder Not supported - ExtractValue can only retrieve values for scalar
elements and attributes

/PurchaseOrder/@PurchaseDate XMLData."PurchaseDate"

/PurchaseOrder/PONum XMLData."PONum"

/PurchaseOrder[PONum = 2100] (SELECT TO_XML(x.XMLData) FROM Dual WHERE x."PONum" =
2100)

Table 5–13 XPath Mapping for existsNode Without Document Ordering (Cont.)

XPath Expression Maps to
Structured Mapping of XMLType 5-65

Query Rewrite with XML Schema-Based Structured Storage
Example 5–34 Rewriting extractValue()

For example, an SQL query such as:

SELECT ExtractValue(value(p),’/PurchaseOrder/PONum’)
 FROM mypos p
 WHERE ExtractValue(value(p),’/PurchaseOrder/PONum’) = 1001;

would become:

SELECT p.XMLData."PONum"
 FROM mypos p
 WHERE p.XMLData."PONum" = 1001;

Since it gets rewritten to simple scalar columns, indexes if any, on the PONum
attribute may be used to satisfy the query.

Creating Indexes ExtractValue can be used in index expressions. If the expression

gets rewritten into scalar columns, then the index is turned into a B*Tree index

instead of a function-based index.

Example 5–35 Creating Indexes with extract

For example:

create index my_po_index on mypos x
 (Extract(value(x),’/PurchaseOrder/PONum/text()’).getnumberval());

would get rewritten into:

create index my_po_index on mypos x (x.XMLData."PONum");

/PurchaseOrder[PONum =
2100]/@PurchaseDate

(SELECT x.XMLData."PurchaseDate")

 FROM Dual

WHERE x."PONum" = 2100)

/PurchaseOrder/PONum/text() XMLData."PONum"

/PurchaseOrder/Item Not supported - ExtractValue can only retrieve values for scalar
elements and attributes

/PurchaseOrder/Item/Part Not supported - ExtractValue cannot retrieve multiple scalar values

/PurchaseOrder/Item/Part/text() Not supported - ExtractValue cannot retrieve multiple scalar values

Table 5–14 XPath Mapping for extractValue() (Cont.)

XPath Expression Maps to
5-66 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
and thus becomes a regular B*Tree index. This is useful, since unlike a

function-based index, the same index can now satisfy queries which target the

column such as:

EXISTSNODE(value(x),’/PurchaseOrder[PONum=1001]’) = 1;

Rewrite for extract()
extract() retrieves the results of XPath as XML. The rewrite for extract() is

similar to that of extractValue() for those Xpath expressions involving text
nodes.

Extract Mapping with Document Order Maintained Table 5–15 shows the mapping of

various XPath in the case of extract() when document order is preserved (that is,

when SYS_XDBPD$ exists and maintainDOM="true" in the schema document).

Note: The examples show XMLElement() and XMLForest()
with an empty alias string "" to indicate that you create a XML

instance with only text values. This is shown for illustration only.

Table 5–15 XPath Mapping for extract() with Document Ordering Preserved

XPath Maps to

/PurchaseOrder XMLForest(XMLData as "PurchaseOrder")

/PurchaseOrder/@PurchaseDate CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, ’PurchaseDate’) = 1

 THEN XMLElement("" , XMLData."PurchaseDate") ELSE NULL END

/PurchaseOrder/PONum CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, ’PONum’) = 1

 THEN XMLElement("PONum" , XMLData."PONum") ELSE NULL END

/PurchaseOrder[PONum = 2100] (SELECT XMLForest(XMLData as "PurchaseOrder") from Dual

 where x."PONum" = 2100)

/PurchaseOrder[PONum = 2100]/@PurchaseDate (SELECT CASE WHEN

 Check_Node_Exists(x.XMLData.SYS_XDBPD$,’PurchaseDate") = 1

 THEN XMLElement("", XMLData."PurchaseDate")

 ELSE NULL END

from Dual where x."PONum" = 2100)
Structured Mapping of XMLType 5-67

Query Rewrite with XML Schema-Based Structured Storage
Example 5–36 XPath Mapping for extract() with Document Ordering Preserved

Using the mapping in Table 5–15, a query that extracts the PONum element where

the purchaseorder contains a part with price greater than 2000:

SELECT Extract(value(p),’/PurchaseOrder[Item/Part > 2000]/PONum’)
FROM po_tab p;

would become:

SELECT (SELECT CASE WHEN Check_Node_Exists(p.XMLData.SYS_XDBPD$, ’PONum’) = 1
 THEN XMLElement("PONum", p.XMLData."PONum")
 ELSE NULL END)
 FROM DUAL
 WHERE EXISTS(SELECT NULL
 FROM TABLE (XMLData."Item") p
 WHERE p."Part" > 2000)
)
FROM po_tab p;

Check_Node_Exists is an internal function that is for illustration purposes only.

Extract Mapping Without Maintaining Document Order If the SYS_XDBPD$ does not exist,

that is, if the XML schema specifies maintainDOM="false" , then NULL scalar

columns map to non-existent scalar elements. Hence you do not need to check for

the node existence using the SYS_XDBPD$attribute. Table 5–16 shows the mapping

of existsNode() in the absence of the SYS_XDBPD$ attribute.

/PurchaseOrder/PONum/text() XMLElement("", XMLData.PONum)

/PurchaseOrder/Item (SELECT XMLAgg(XMLForest(value(p) as "Item"))

 from TABLE (x.XMLData."Item") p

 where value(p) IS NOT NULL)

/PurchaseOrder/Item/Part (SELECT XMLAgg(

 CASE WHEN Check_Node_Exists(p.SYS_XDBPD$,’Part") = 1

 THEN XMLForest(p."Part" as "Part") ELSE NULL END)

 from TABLE (x.XMLData."Item") p)

/PurchaseOrder/Item/Part/text() (SELECT XMLAgg(XMLElement(" ", p."Part"))

 from TABLE (x.XMLData."Item") x)

Table 5–15 XPath Mapping for extract() with Document Ordering Preserved (Cont.)

XPath Maps to
5-68 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage
Optimizing Updates Using updateXML()
A regular update using updateXML() involves updating a value of the XML

document and then replacing the whole document with the newly updated

document.

When XMLType is stored object relationally, using XML schema mapping, updates

are optimized to directly update pieces of the document. For example, updating the

PONum element value can be rewritten to directly update the XMLData.PONum
column instead of materializing the whole document in memory and then

performing the update.

updateXML() must satisfy the following conditions for it to use the optimization:

■ The XMLType column supplied to updateXML() must be the same column

being updated in the SET clause. For example:

UPDATE po_tab p SET value(p) = updatexml(value(p),...);

Table 5–16 XPath Mapping for extract() Without Document Ordering Preserved

XPath Equivalent to

/PurchaseOrder XMLForest(XMLData AS "PurchaseOrder")

/PurchaseOrder/@PurchaseDate XMLForest(XMLData."PurchaseDate" AS "")

/PurchaseOrder/PONum XMLForest(XMLData."PONum" AS "PONum")

/PurchaseOrder[PONum = 2100] (SELECT XMLForest(XMLData AS "PurchaseOrder")

 from Dual where x."PONum" = 2100)

/PurchaseOrder[PONum =
2100]/@PurchaseDate

(SELECT XMLForest(XMLData."PurchaseDate" AS "")

 from Dual where x."PONum" = 2100)

/PurchaseOrder/PONum/text() XMLForest(XMLData.PONum AS "")

/PurchaseOrder/Item (SELECT XMLAgg(XMLForest(value(p) as "Item")

 from TABLE (x.XMLData."Item") p

 where value(p) IS NOT NULL)

/PurchaseOrder/Item/Part (SELECT XMLAgg(XMLForest(p."Part" AS "Part")

 from TABLE (x.XMLData."Item") p)

/PurchaseOrder/Item/Part/text() (SELECT XMLAgg(XMLForest(p. "Part" AS "Part"))

 from TABLE (x.XMLData."Item") p)
Structured Mapping of XMLType 5-69

Creating Default Tables During XML Schema Registration
■ The XMLType column must have been stored object relationally using Oracle

XML DB’s XML schema mapping.

■ The XPath expressions must not involve any predicates or collection traversals.

■ There must be no duplicate scalar expressions.

■ All XPath arguments in the updateXML() function must target only scalar

content, that is, text nodes or attributes. For example:

UPDATE po_tab p SET value(p) =
 updatexml(value(p),’/PurchaseOrder/@PurchaseDate’,’2002-01-02’,
 ’/PurchaseOrder/PONum/text()’, 2200);

If all the preceding conditions are satisfied, then the updateXML is rewritten into a

simple relational update. For example:

UPDATE po_tab p SET value(p) =
 updatexml(value(p),’/PurchaseOrder/@PurchaseDate’,’2002-01-02’,
 ’/PurchaseOrder/PONum/text()’, 2200);

becomes:

UPDATE po_tab p
 SET p.XMLData."PurchaseDate" = TO_DATE(’2002-01-02’,’SYYYY-MM-DD’),
 p.XMLData."PONum" = 2100;

DATE Conversions Date datatypes such as DATE, gMONTH, gDATE, and so on, have

different format in XML schema and SQL. In such cases, if the updateXML() has a

string value for these columns, the rewrite automatically puts the XML format

string to convert the string value correctly. Thus string value specified for DATE

columns, must match the XML date format and not the SQL DATE format.

Creating Default Tables During XML Schema Registration
As part of XML schema registration, you can also create default tables. Default

tables are most useful when XML instance documents conforming to this XML

schema are inserted through APIs that do not have any table specification, such as

with FTP or HTTP. In such cases, the XML instance is inserted into the default table.

If you have given a value for attribute defaultTable , the XMLType table is

created with that name. Otherwise it gets created with an internally generated

name.

Further, any text specified using the tableProps and columnProps attribute are

appended to the generated CREATE TABLE statement.
5-70 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Cyclical References Between XML Schemas
Ordered Collections in Tables (OCTs)
Arrays in XML schemas (elements with maxOccurs > 1) are usually stored in

VARRAYs, which can be stored either in a Large Object (LOB) or in a separate store

table, similar to a nested table.

This allows the elements of a VARRAY to reside in a separate table based on an IOT.

The primary key of the table is (NESTED_TABLE_ID, ARRAY_INDEX). NESTED_
TABLE_ID is used to link the element with their containing parents while the

ARRAY_INDEX column keeps track of the position of the element within the

collection.

Using OCT for VARRAY Storage
There are two ways to specify an OCT storage:

■ By means of the schema attribute “storeVarrayAsTable” . By default this is

“false” and VARRAYs are stored in a LOB. If this is set to “true” , all

VARRAYs, all elements that have maxOccurs > 1 , will be stored as OCTs.

■ By explicitly specifying the storage using the “tableProps ” attribute. The

exact SQL needed to create an OCT can be used as part of the tableProps
attribute:

“VARRAY xmldata.<array> STORE AS TABLE <myTable> ((PRIMARY KEY (NESTED_
TABLE_ID, ARRAY_INDEX)) ORGANIZATION INDEX)”

The advantages of using OCTs for VARRAY storage include faster access to

elements and better queryability. Indexes can be created on attributes of the element

and these can aid in better execution for query rewrite.

Cyclical References Between XML Schemas
XML schema documents can have cyclic dependencies that can prevent them from

being registered one after the other in the usual manner. Examples of such XML

schemas follow:

Note: When elements of a VARRAY are stored in a separate table,

the VARRAY is referred to as an Ordered Collection in Tables

(OCT). In the following paragraphs, references to OCT also assume

that you are using Index Organized Table (IOT) storage for the

“store” table.
Structured Mapping of XMLType 5-71

Cyclical References Between XML Schemas
Example 5–37 Cyclic Dependencies

An XML schema that includes another xml schema cannot be created if the included

xml schema does not exist.

begin dbms_xmlschema.registerSchema(’xm40.xsd’,
’<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:my="xm40"
targetNamespace="xm40">
 <include schemaLocation="xm40a.xsd"/>
 <!-- Define a global complextype here -->
 <complexType name="Company">
 <sequence>
 <element name="Name" type="string"/>
 <element name="Address" type="string"/>
 </sequence>
 </complexType>
 <!-- Define a global element depending on included schema -->
 <element name="Emp" type="my:Employee"/>
</schema>’,
true, true, false, true); end;
/

It can however be created with the FORCE option:

begin dbms_xmlschema.registerSchema(’xm40.xsd’,

’<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:my="xm40"
targetNamespace="xm40">
 <include schemaLocation="xm40a.xsd"/>
 <!-- Define a global complextype here -->
 <complexType name="Company">
 <sequence>
 <element name="Name" type="string"/>
 <element name="Address" type="string"/>
 </sequence>
 </complexType>
 <!-- Define a global element depending on included schema -->
 <element name="Emp" type="my:Employee"/>
</schema>’,
true, true, false, true, true); end;
/

Attempts to use this schema and recompile will fail:

create table foo of sys.xmltype xmlschema "xm40.xsd" element "Emp";
5-72 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Cyclical References Between XML Schemas
Now create the second XML schema with FORCE option. This should also make the

first XML schema valid:

begin dbms_xmlschema.registerSchema(’xm40a.xsd’,
’<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:my="xm40"
targetNamespace="xm40">
 <include schemaLocation="xm40.xsd"/>
 <!-- Define a global complextype here -->
 <complexType name="Employee">
 <sequence>
 <element name="Name" type="string"/>
 <element name="Age" type="positiveInteger"/>
 <element name="Phone" type="string"/>
 </sequence>
 </complexType>
 <!-- Define a global element depending on included schema -->
 <element name="Comp" type="my:Company"/>
</schema>’,
true, true, false, true, true); end;
/
Both XML schemas can be used to create tables, and so on:

create table foo of sys.xmltype xmlschema "xm40.xsd" element "Emp";
create table foo2 of sys.xmltype xmlschema "xm40a.xsd" element "Comp";

To register both these XML schemas which have a cyclic dependency on each other,

you must use the FORCE parameter in DBMS_XMLSCHEMA.registerSchema as

follows:

1. Step 1: Register “s1.xsd” in FORCE mode:

dbms_xmlschema.registerSchema("s1.xsd", "<schema ...", ..., force => true)

At this point, s1.xsd is invalid and cannot be used.

2. Step 2: Register “s2.xsd” in FORCE mode:

dbms_xmlschema.registerSchema("s2.xsd", "<schema ..", ..., force => true)

The second operation automatically compiles s1.xsd and makes both XML

schemas valid.

See Figure 5–8. The preceding example is illustrated in the lower half of the figure.
Structured Mapping of XMLType 5-73

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
Figure 5–8 Cyclical References Between XML Schemas

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based
Issues

Why Do I Appear to get Memory Leaks When Using Bind Variables for XPath
Expressions?

Consider the following simple XML document that is blown up to 3.6 Megabytes:

<?xml version="1.0"?>
<PurchaseOrder xmlns="http://www.vector.com/po.xsd"
xmlns:xdb="http://xmlns.oracle.com/xdb"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.vector.com/po.xsd
http://www.vector.com/po.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>

XML schema 1, S1

S3

XML schema 2, S2

S1

XML schema 3, S3

S2

References

References References

XML schema 1, S1

S2

XML schema 2, S2

S1

References

References

OR
5-74 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
 <Item>
 <Part>7i Doc Set</Part>
 <Price>50</Price>
 </Item>
 </PurchaseOrder>

This document is stored in an XMLTYPE table object-relationally. The XML schema

was not annotated.

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="PONum" type="xsd:decimal"/>
 <xsd:element name="Company">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Item" maxOccurs="2147483647">
 <xsd:complexType>
 <xsd:sequence>
...

Name Null? Type
--- -------- -------------------
FILENAME NOT NULL VARCHAR2(20)
CONTENT NOT NULL
XMLTYPE(XMLSchema "http://www.vector.com/po.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE
 "PurchaseOrderType1627_T"

The statement:

SQL> select existsnode(srp.content,'/PurchaseOrder/Item[Part="7i Doc Set"]')
 into :i from xmltable srp where filename='po6.xml';
Structured Mapping of XMLType 5-75

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
takes about 6 seconds on my laptop. When I use a bind variable such as:

SQL> var xpath varchar2(50)
SQL> exec :xpath:='/PurchaseOrder/Item[Part="7i Doc Set"]'

PL/SQL procedure successfully completed.
SQL> select existsnode(srp.content,:xpath) into :i from xmltable srp
 where filename='po6.xml';

I wait ...The statement hangs; the CPU is busy by 100% and the memory

consumption is high:

Answer: If you use bind variables, Oracle does not rewrite the query, hence you are

seeing a full function-based XPath versus a relational rewrite.

Question 2: We need bind variables for SQL sharing. What happens if you set the

CURSOR_SHARING to FORCE?

Answer 2: Basically, query rewrite means that Oracle is changing the input XPath

expression into some underlying columns. This means that for a given XPath, there

is a particular set of columns/tables,... that will be referenced underneath. This has

to be a compile time operation, since the shared cursor has to know exactly which

tables and columns, it references. This cannot change with each row or

instantiation of the cursor.

So if the XPath expression itself is a bind variable, Oracle cannot do any rewrite,

since each instantiation of the cursor can have totally different XPath. This is akin to

the user binding the name of the table/column in a SQL query. For example,

SELECT * FROM table(:1).

When CURSOR_SHARING is set to FORCE, by default all string constants including

XPath become a bind variable. At that time when Oracle encounters

extractvalue(),existsnode(), ..., Oracle look at the XPath bind variables to

check if they are really constants. If so Oracle uses them and rewriteS the query.

Hence there the big difference inwhere the bind variable is used.

Note: You can specify bind variables in the right-hand side of the query
and that would work fine. For example:

SELECT * FROM purchaseorder p WHERE
extractvalue(value(p),'/PurchaseOrder/LineItems/LineIte
m/ItemNumber') = :1;

would use Oracle’s usual bind variable sharing. ...
5-76 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
How Do I Check that Query Rewrite is Working Correctly?
I have a question about query rewrite with XML schema-Based object-relational

storage. How can I check that query rewrite is working correctly? Should I use an

SQL trace, events, and so on?

Answer: You can check query rewrites in two ways:

■ Use an EXPLAIN plan. This shows you the use of indexes,... that prove the use

of query rewrites.

■ Use EVENTS. For example:

Event 19027 - turns off query rewrite - no level information needed
Event19021-XMLoperations -generalevent.Use thiswithdifferent levels
to get different behavior..
Level 0x1 - Turn off all functional evaluation..
Level 0x2 - Turn off functional evaluation of EXTRACT
Level 0x4 - Turn off functional evaluation of EXISTSNODE
Level 0x8 - Turn off functional evaluation of TRANSFORM
Level 0x10 - Turn off functional evaluation of EXTRACTVALUE
Level 0x20 - Turn off functional evaluation of UPDATEXML

Using the second event 19021, you can selectively, raise errors, if the functional

evaluation of these operators are chosen. For example:

ALTER SESSION SET EVENTS ’19021 trace name context forever, level 1’;

would turn off the functional evaluation of ALL XML operators listed above.

Hence when you fire a query such as:

SELECT extract(value(x),’/purchaseorder/reference’)
FROM purchaseorder_xml_tab

 if the query rewrite does not happen, then the extract() raises an

ORA-19022 XPath functions are disabled error;

Question 2: According to your suggestions,I used event 19021. Here is the test case

I used:

1--set event
SQL> alter session set events ’19021 trace name context forever, level 2’;
Session altered.
2--extract function used

I tried this with both XML schema-based and non-schema-based.

For XML schema-based object-relational storage:
Structured Mapping of XMLType 5-77

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
SQL> SELECT value(x).extract(’/a:PO/Company’,
 2 ’xmlns:a="http://www.oracle.com/PO"’)
 3 FROM po_tab x;

But I get the following error:

ERROR:
ORA-19022: XML XPath functions are disabled
ORA-06512: at "SYS.XMLTYPE", line 0
ORA-06512: at line 1

For non-schema-based CLOB storage:

SQL> SELECT extract(value(p),’/PO/PODATE’)
 2 FROM po_tab p;

results in the following error:

ERROR:
ORA-19022: XML XPath functions are disabled

This result indicates that query rewrite does not occur. Are there other ways to

check query rewrite?

Answer 2: You are doing the right thing. Setting event 19021 turns off functional

evaluation, so that all XMLType functions will be turned off, and if query rewrite

does not happen, you will get error ORA-19022 (XML XPath functions are

disabled).

The reason the second example (non-schema based) is not working is that query

rewrite can happen only for non-schema-based (NSB) XMLType views (XVs),

defined over objects. It does not happen for non-schema-based XMLType tables,

since the storage is CLOB-based.

The reason the first example (schema-based) is not working is probably the

namespace parameter.

Query rewrite does not currently function for extract() or existsNode()
XMLType methods. You can however use the operator equivalents instead of the

XMLType methods. For example, use extract() operator instead of

xmltype.extract() method.

Why Does the XML DB Query Not Use My Index?
I ran the demo script that orchestrates running all the other scripts. It creates an

index like this:
5-78 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
create index director_name on movies(
extractValue(movieDoc,’/Movie/Director/Last’));

But when I try an Explain Plan on this query:

SELECT extractValue(movieDoc,’/Movie/@Title’)
FROM movies
 WHERE extractValue(movieDoc,’/Movie/Director/Last’) = ’Minghella’

It does not appear to use my index. Here is the EXPLAIN plan from the

JDeveloper9i Explain Plan GUI:

SELECT STATEMENT
 - Filter
 - Table Access (FULL) SCOTT.MOVIES
 - Collection Iterator (PICKLER FETCH)

Is this because I do not have enough movies in my table, so the Optimizer decides

that a full table scan is fastest? I also tried:

SELECT /*+ INDEX(movies director_name) */
extractValue(movieDoc,’/Movie/@Title’)
 FROMmovies
 WHERE extractValue(movieDoc,’/Movie/Director/Last’) = ’Minghella’

but it still does a full table scan of MOVIES.

Answer: When you create a non-schema-based index on XMLType, the indexes end

up as function-based indexes. You can check user_functional_indexes. For a

function-based index, the string must match exactly and you need to use ALTER
SESSION as follows:

ALTER SESSION SET query_rewrite_enabled=true
ALTER SESSION SET query_Rewrite_integrity=trusted

for it to detect the indexes.

How Do I Specify Attributes in a complexType XML Schema Declaration?
Answer: If you have an element based on a global complexType , the SQLType
(and SQLSchema) attributes should be specified for the complexType declaration.

In addition you can (optionally) include the same SQLType and SQLSchema
attributes within the element declaration.

The reason is that if you do not specify the SQLType for the global complexType ,

XML DB creates an SQLType with an internally generated name. The elements that
Structured Mapping of XMLType 5-79

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
reference this global type cannot then have a different value for SQLType. In other

words, this is fine:

<xsd:complexType name="PURCHASEORDERLINEITEM_TYPEType">
 <xsd:sequence>
 <xsd:element name="@LineNo" type="xsd:double" xdb:SQLName="@LineNo"
 xdb:SQLType="NUMBER"/>
 <xsd:element name="Decription" type="xsd:string"xdb:SQLName="Decription"
 xdb:SQLType="VARCHAR2"/>
 <xsd:element name="Part" type="PURCHASEORDERPART_TYPEType"xdb:SQLName="Part"
/>
</xsd:sequence>
</xsd:complexType>
 <xsd:complexType name="PURCHASEORDERPART_TYPEType" xdb:SQLSchema="XMLUSER"
 xdb:SQLType="PURCHASEORDERPART_TYPE">
 <xsd:sequence>
 <xsd:element name="@Id" type="xsd:string"
 xdb:SQLName="@Id"xdb:SQLType="VARCHAR2"/>
 <xsd:element name="@Quantity" type="xsd:double"xdb:SQLName="@Quantity"
 xdb:SQLType="NUMBER"/>
 <xsd:element name="@cost" type="xsd:double"
 xdb:SQLName="@cost"xdb:SQLType="NUMBER"/>
</xsd:sequence>
</xsd:complexType>

The following is also okay:

<xsd:complexType name="PURCHASEORDERLINEITEM_TYPEType">
 <xsd:sequence>
 <xsd:element name="@LineNo" type="xsd:double" xdb:SQLName="@LineNo"
xdb:SQLType="NUMBER"/>
 <xsd:element name="Decription" type="xsd:string"xdb:SQLName="Decription"
xdb:SQLType="VARCHAR2"/>

<xsd:element name="Part" type="PURCHASEORDERPART_TYPEType"xdb:SQLName="Part"
xdb:SQLSchema="XMLUSER"
xdb:SQLType="PURCHASEORDERPART_TYPE" />
 </xsd:sequence>
</xsd:complexType>
5-80 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
Why Do the XML Schema and Element Not Match?
Given this table definition

SQL> describe "rechnung";

Name Null? Type
------------------------ ----- ---------------
ID NOT NULL NUMBER(10)
rechnung

SYS.XMLTYPE(XMLSchema "http://cczarski.de.oracle.com/Rec
hnung/Test001.xsd"
Element "rechnung") STORAGE Object-relational TYPE "RECHNUNG_T"
DATUM DATE

And this schema

<?xml version="1.0" encoding="iso-8859-1"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://cczarski.de.oracle.com/Rechnung/Test001.xsd"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
xmlns:rechn="http://cczarski.de.oracle.com/Rechnung/Test001.xsd"
 elementFormDefault="qualified"
 version="1.0">
<!-- Zundchst wird der Kunde definiert --

Why does inserting this document:

<rechnung xmlns="http://.../Test001.xsd" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://cczarski.d
e.oracle.com/Rechnung/Test001.xsd">
 <kunde>
...
Report

ERROR at line 2:
ORA-19007: Schema and element do not match

Answer: xsi:schemaLocation takes two parameters: "NS SchemaURL"

try:

xsi:schemaLocation="http://cczarski.de.oracle.com/Rechnung/Test001.xsd
http://cczarski.de.oracle.com/Rechnung/Test001.xsd">
Structured Mapping of XMLType 5-81

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
How Do I Pull a Stylesheet From RESOURCE_VIEW [S/MIME]?
I am having trouble pulling out the saved stylesheet from RESOURCE_VIEW with

the following statement:

SELECT EXTRACT
 (rtab.res,
 'r:Resource/r:Contents/node()/xsl:stylesheet',
 'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd" '||
 'xmlns:xdb="http://xmlns.oracle.com/xdb" ' ||
 'xmlns:xsl="http://www.w3.org/1999/XSL/Transform"'
).getclobval()
 FROM resource_view rtab
 WHERE rtab.any_path =
 '/public/spec_proto/XDB_Stylesheet_Render_XML.xsl'
/
Did I err in terms of the namespace?

Answer: Do you have the XSL schema registered? At this time, extracting from

resource contents will not work unless the contents are from a registered XML

schema.

Why for Our XML Parser Does selectSingleNode return NULL When the xmlns
Attribute is Added?

Our code parses an XML file that is an instance of our own XML schema

ApplicationStructure . It works fine, until we add

xmlns="http://www.oracle.com/JHeadstart/ApplicationStructure"
in the top-level tag. Then the call to selectSingleNode suddenly returns NULL.

If we remove the xmlns attribute, selectSingleNode again returns the node we

want. Our code:

import oracle.xml.parser.v2.*;
...
private XMLDocument mXmldoc;
mXmldoc = XMLLoader.getXMLDocument(mSource);
// Select Service node
XMLNode serviceNode = (XMLNode)mXmldoc.selectSingleNode("Service");

What are we doing wrong?

It seems that there is another constructor of selectSingleNode , which accepts a

second parameter NSResolver . How must we use this and can we make it work

with XML files with the xmlns attribute and without it?
5-82 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
We would like to be able to use the xmlns attribute, so that we can benefit from the

JDeveloper9i Code Insight for our own registered XML Schema.

Answer: XPath has no syntax for searching on elements that are qualified with the

default namespace. The XPath pattern "foo" always searches for the element <foo>

with a null namespace. So that even though the default namespace

SYNTACTICALLY allows you the convenience of writing:

<foo xmlns="urn:mynamespace"/>

To the XML Parser internally, this is an Element named: <{urn:mynamespace}:foo>

and not just:

<foo>

So, moral of the story, is that to search for anything with a namespace URI,

including default namespace, use the following:

■ A namespace prefix in the <foo xmlns="urn:mynamespace"/>

■ An XPath pattern like "someprefix:foo" where you have mapped the

"someprefix" prefix to the "urn:mynamespace" namespace URI.

Here's an example:

package test;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;
import java.io.*;
public class Demo {
 private static final String URI =
"http://www.oracle.com/JHeadstart/ApplicationStructure";
 private static final String TESTDOC =
 "<foo xmlns='"+URI+"'/>";
 private static final NSResolver nsr = new MyNSResolver();
 public static void main(String[] args) throws Throwable {
 System.out.println("Document to parse is");
 System.out.println(TESTDOC);
 DOMParser dp = new DOMParser();
 dp.parse(new StringReader(TESTDOC));
 XMLDocument doc = dp.getDocument();
 Node n = doc.selectSingleNode("xxx:foo", nsr); // Provide NSResolver!
 System.out.println("Found " + ((n!=null) ? " it! " : " nothing"));
 }

 static class MyNSResolver implements NSResolver {
 public String resolveNamespacePrefix(String pref) {
Structured Mapping of XMLType 5-83

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
 if (pref.equals("xxx")) return URI;
 else return null;
 }
 }
}

Why Do I Get Error ORA-19007: Schema and Element Do Not Match?
This script runs successfully until I insert sample data into the table. It then fails

with ORA-19007: Schema and element do not match . It should work:

---- testPo.sql
set serverout on

drop table po_tab1;

declare
 urlvar varchar2(100);
 xsdfile varchar2(2000);
begin
 urlvar := 'http://www.oracle.com/PO.xsd';

 -- xmlns:po="http://www.oracle.com/PO.xsd">
 xsdfile :=
 '<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/PO.xsd"
 xmlns:po="http://www.oracle.com/PO.xsd">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company" type="string"/>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part" type="string"/>
 <element name="Price" type="decimal"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name = "PurchaseDate" type = "date"/>
 </complexType>
 <element name="PurchaseOrder" type = "po:PurchaseOrderType"/>
 </schema>';
5-84 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
 begin

dbms_xmlschema.deleteschema(urlvar,dbms_xmlschema.delete_cascade_force);
 exception
 when others then null;
 end;

 dbms_xmlschema.registerschema(urlvar,xsdfile);
end;
/

set heading off
set pagesize 0
set long 10000
set maxdata 12000
set arraysize 1

select a.schema.getstringval() from user_xml_schemas a
where a.schema_url = 'http://www.oracle.com/PO.xsd';

CREATE TABLE po_tab1 OF XMLTYPE ELEMENT
"http://www.oracle.com/PO.xsd#PurchaseOrder";

insert into po_tab1 values (xmltype('
 <PurchaseOrder xmlns="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/PO.xsd"
 PurchaseDate="1967-08-13">
 <PONum>1</PONum>
 <Company>The Business</Company>
 <Item>
 <Part>Part 1</Part>
 <Price>1000</Price>
 </Item>
</PurchaseOrder>'));

select * from po_tab1;

Answer: The schemaLocation attribute should be a pair of <namespace> and

<schemaloc> values as follows:

xsi:schemaLocation="http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd"
Structured Mapping of XMLType 5-85

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
Is it Possible to Register XML Schema for Schemas?
I am trying to register the XML schema for schemas with something like. I have

downloaded XMLSchema.xsd , XMLSchema.dtd , datatypes.dtd and made

them available at my local webserver after checking that XMLSchema.xsd can be

validated:

begin
 dbms_xmlschema.registeruri(schemaURL =>
'http://www.denmark.dk/MD/XMLSchema'
 , schemaDocUri => 'http://144.21.226.78/XMLSchema.xsd'
 , local => false
);
end;
 /
declare
*
ERROR at line 1:
ORA-31011: XML parsing failed
ORA-19202: Error occurred in XML processing
LPX-00233: namespace prefixes starting with "xml" are reserved
Error at line 70
ORA-06512: at "XDB.DBMS_XMLSCHEMA_INT", line 0
ORA-06512: at "XDB.DBMS_XMLSCHEMA", line 160
ORA-06512: at line 34

I need a table for storing all the XML schemas. The content of this table I want to be

validated against schema for schemas as well as the built-in capability of searching

through the object-relational structures afterwards in order to do analyses that are

more complex. Is it possible to Register XML schema for schemas?

In the original XMLSchema.xsd no XML namespace is declared; hence I could not

validate it in XMLSpy. The I added the xmlns:xml namespace declaration to

validate success in XMLSpy, but I get an error.

Answer: It's illegal to have namespaces that start with “xml”. Pick another

namespace prefix such as, “foo” or "xsd" or “xs” or “x”.
5-86 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Transforming and Validating XMLType
6

Transforming and Validating XMLType Data

This chapter describes the SQL functions and XMLType APIs for transforming

XMLType data using XSLT stylesheets. It also explains the various functions and

APIs available for validating the XMLType instance against an XML schema. It

contains the following sections:

■ Transforming XMLType Instances

■ XMLTransform() Examples

■ Validating XMLType Instances

■ Validating XML Data Stored as XMLType: Examples
 Data 6-1

Transforming XMLType Instances
Transforming XMLType Instances
XML documents have structure but no format. To add format to the XML

documents you can use Extensible Stylesheet Language (XSL). XSL provides a way

of displaying XML semantics. It can map XML elements into other formatting or

mark-up languages such as HTML.

In Oracle XML DB, XMLType instances or XML data stored in XMLType tables,

columns, or views in Oracle9i database, can be (formatted) transformed into HTML,

XML, and other mark-up languages, using XSL stylesheets and XMLType’s
function, transform(). This process conforms to W3C’s XSLT 1.0 recommendation.

XMLType instance can be transformed in the following ways:

■ Using the XMLTransform() SQL function (or the transform() member

function of XMLType) in the database

■ Using XDK transformation options in the middle tier, such as XSLT Processor

for Java.

XMLTransform() and XMLType.transform()
Figure 6–1 shows the XMLTransform() syntax. The XMLTransform() function

takes as arguments an XMLType instance and an XSL stylesheet (which is itself an

XMLType instance). It applies the stylesheet to the instance and returns an XMLType
instance.

Figure 6–2 shows how XMLTransform() transforms the XML document by using

the XSL stylesheet passed in. It returns the processed output as XML, HTML, and so

on, as specified by the XSL stylesheet. You typically need to use XMLTransform()

See Also:

■ Chapter 26, "Oracle XML DB Basic Demo", the section, "8.3

Transforming PurchaseOrder Using XSLT"

■ Appendix D, "XSLT Primer"

■ Oracle9i XML Developer’s Kits Guide - XDK, the chapter on XSQL

Pages Publishing Framework

Note: You can also use the syntax, XMLTYPE.transform() . This

is the same as XMLtransform() .
6-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples
when retrieving or generating XML documents stored as XMLType in Oracle9i
database.

Figure 6–1 XMLTransform() Syntax

Figure 6–2 Using XMLTransform()

XMLTransform() Examples
Use the following code to set up the XML schema and tables needed to run the

examples in this chapter:

--register schema
begin
dbms_xmlschema.deleteSchema(’http://www.example.com/schemas/ipo.xsd’,4);
end;
/
begin
dbms_xmlschema.registerSchema(’http://www.example.com/schemas/ipo.xsd’,
’<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">
 <!-- annotation>
 <documentation xml:lang="en">
 International Purchase order schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation -->
 <element name="purchaseOrder" type="ipo:PurchaseOrderType"/>

See Also: Figure 1–1, "Oracle XML DB Architecture: XMLType

Storage and Repository" in Chapter 1, "Introducing Oracle XML

DB"

XMLTRANSFORM (XMLType_instance , XMLType_instance)

XMLtransform()
XSL stylesheet

XMLType function

XMLType instance
(table, cloumn, view)

transformed XMLType
(HTML, XML, ...)
Transforming and Validating XMLType Data 6-3

XMLTransform() Examples
 <element name="comment" type="string"/>
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="ipo:Address"/>
 <element name="billTo" type="ipo:Address"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="items" type="ipo:Items"/>
 </sequence>
 <attribute name="orderDate" type="date"/>
 </complexType>
 <complexType name="Items">
 <sequence>
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="productName" type="string"/>
 <element name="quantity">
 <simpleType>
 <restriction base="positiveInteger">
 <maxExclusive value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="USPrice" type="decimal"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="shipDate" type="date" minOccurs="0"/>
 </sequence>
 <attribute name="partNum" type="ipo:SKU" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="country" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>
 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="†{3}-[A-Z]{2}"/>
6-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples
 </restriction>
 </simpleType>
</schema>’,
 TRUE, TRUE, FALSE);
end;
/

-- create table to hold XML instance documents
DROP TABLE po_tab;
CREATE TABLE po_tab (id number, xmlcol xmltype)
 XMLTYPE COLUMN xmlcol
 XMLSCHEMA "http://www.example.com/schemas/ipo.xsd"
 ELEMENT "purchaseOrder";

INSERT INTO po_tab VALUES(1, xmltype(
’<?xml version="1.0"?>
<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 xsi:schemaLocation="http://www.example.com/IPO
 http://www.example.com/schemas/ipo.xsd"
 orderDate="1999-12-01">
 <shipTo xsi:type="ipo:Address">
 <name>Helen Zoe</name>
 <street>121 Broadway</street>
 <city>Cardiff</city>
 <state>Wales</state>
 <country>UK</country>
 <zip>CF2 1QJ</zip>
 </shipTo>
 <billTo xsi:type="ipo:Address">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>CA</state>
 <country>US</country>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-05</shipDate>
Transforming and Validating XMLType Data 6-5

XMLTransform() Examples
 </item>
 </items>
</ipo:purchaseOrder>’));

The following examples illustrate how to use XMLTransform() to transform XML

data stored as XMLType to HTML, XML, or other languages.

Example 6–1 Transforming an XMLType Instance Using XMLTransform() and
DBUriType to Get the XSL Stylesheet

DROP TABLE stylesheet_tab;
CREATE TABLE stylesheet_tab(id NUMBER, stylesheet xmltype);
INSERT INTO stylesheet_tab VALUES (1, xmltype(
’<?xml version="1.0" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*">
 <td>
 <xsl:choose>
 <xsl:when test="count(child::*) > 1">
 <xsl:call-template name="nested"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="name(.)"/>:<xsl:value-of select="text()"/>
 </xsl:otherwise>
 </xsl:choose>
 </td>
</xsl:template>
<xsl:template match="*" name="nested" priority="-1" mode="nested2">

 <!-- xsl:value-of select="count(child::*)"/ -->
 <xsl:choose>
 <xsl:when test="count(child::*) > 1">
 <xsl:value-of select="name(.)"/>:<xsl:apply-templates mode="nested2"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="name(.)"/>:<xsl:value-of select="text()"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>
</xsl:stylesheet>’
));

SELECT XMLTransform(x.xmlcol,
 dburiType(’/SCOTT/STYLESHEET_TAB/ROW[ID =
6-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples
1]/STYLESHEET/text()’).getXML()).getStringVal()
 AS result
 FROM po_tab x;

-- The preceding statement produces the following output:
-- RESULT
-- ---
-- <td>
-- ipo:purchaseOrder:
-- shipTo:
-- name:Helen Zoe
-- street:100 Broadway
-- city:Cardiff
-- state:Wales
-- country:UK
-- zip:CF2 1QJ
--
-- billTo:
-- name:Robert Smith
-- street:8 Oak Avenue
-- city:Old Town
-- state:CA
-- country:US
-- zip:95819
--
-- items:
--
-- </td>

Example 6–2 Transforming an XMLType Instance Using XMLTransform() and a
Subquery SELECT to Retrieve the XSL Stylesheet

This example illustrates the use of a stored stylesheet to transformXMLType instances.
Unlike the previous example, this example uses a scalar subquery to retrieve the stored
stylesheet:

SELECT XMLTransform(x.xmlcol,
 (select stylesheet from stylesheet_tab where id = 1)).getStringVal()
 AS result
 FROM po_tab x;

Example 6–3 Transforming XMLType Instances Using Transient Stylesheets and
XMLTransform()

This example describes how you can transformXMLType instances using a transient
Transforming and Validating XMLType Data 6-7

Validating XMLType Instances
stylesheet:

SELECT x.xmlcol.transform(xmltype(
’<?xml version="1.0" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*">
 <td>
 <xsl:choose>
 <xsl:when test="count(child::*) > 1">
 <xsl:call-template name="nested"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="name(.)"/>:<xsl:value-of select="text()"/>
 </xsl:otherwise>
 </xsl:choose>
 </td>
</xsl:template>
<xsl:template match="*" name="nested" priority="-1" mode="nested2">

 <!-- xsl:value-of select="count(child::*)"/ -->
 <xsl:choose>
 <xsl:when test="count(child::*) > 1">
 <xsl:value-of select="name(.)"/>:<xsl:apply-templates mode="nested2"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="name(.)"/>:<xsl:value-of select="text()"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>
</xsl:stylesheet>’
)).getStringVal()
FROM po_tab x;

Validating XMLType Instances
Often, besides knowing that a particular XML document is well-formed, it is

necessary to know if a particular document conforms to a specific XML schema, that

is, is VALID with respect to a specific XML schema.

By default, Oracle9i does check to make sure that XMLType instances are

well-formed. In addition, for schema-based XMLType instances, Oracle9i performs

few basic validation checks. Since full XML schema validation (as specified by the
6-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating XMLType Instances
W3C) is an expensive operation, when XMLType instances are constructed, stored,

or retrieved, they are not also fully validated.

To validate and manipulate the “validated” status of XML documents, the

following functions and SQL operator are provided:

XMLIsValid()
XMLIsValid() is an SQL Operator. It checks if the input instance conforms to a

specified XML schema. It does not change the validation status of the XML instance.

If an XML schema URL is not specified and the XML document is schema-based,

the conformance is checked against the XMLType instance’s own schema. If any of

the arguments are specified to be NULL, then the result is NULL. If validation fails,

0 is returned and no errors are reported explaining why the validation has failed.

Syntax
XMLIsValid (XMLType_inst [, schemaurl [, elem]])

Parameters:

■ XMLType_inst - The XMLType instance to be validated against the specified

XML Schema.

■ schurl - The URL of the XML Schema against which to check conformance.

■ elem - Element of a specified schema, against which to validate. This is useful

when we have a XML Schema which defines more than one top level element,

and we want to check conformance against a specific one of these elements.

schemaValidate
schemaValidate is a member procedure. It validates the XML instance against its

XML schema if it has not already been done. For non-schema-based documents an

error is raised. If validation fails an error is raised otherwise, the document’s status

is changed to VALIDATED.

Syntax
MEMBER PROCEDURE schemaValidate

isSchemaValidated()
isSchemaValidated() is a member function. It returns the validation status of

the XMLType instance and tells if a schema-based instance has been actually

validated against its schema.It returns 1 if the instance has been validated against

the schema, 0 otherwise.
Transforming and Validating XMLType Data 6-9

Validating XML Data Stored as XMLType: Examples
Syntax
MEMBER FUNCTION isSchemaValidated return NUMBER deterministic

setSchemaValidated()
setSchemaValidated() is a member function. It sets the VALIDATION state of the

input XML instance.

Syntax
MEMBER PROCEDURE setSchemaValidated(flag IN BINARY_INTEGER := 1)

Parameters:

flag , 0 - NOT VALIDATED; 1 - VALIDATED; The default value for this parameter

is 1.

isSchemaValid()
isSchemaValid() is a member function. It checks if the input instance conforms

to a specified XML schema. It does not change the validation status of the XML

instance. If an XML Schema URL is not specified and the XML document is

schema-based, the conformance is checked against the XMLType instance’s own

schema. If the validation fails, exceptions are thrown with the reason why the

validation has failed.

Syntax
member function isSchemaValid(schurl IN VARCHAR2 := NULL, elem IN VARCHAR2 :=
 NULL) return NUMBER deterministic

Parameters:

schurl - The URL of the XML Schema against which to check conformance.

elem - Element of a specified schema, against which to validate. This is useful when

we have a XML Schema which defines more than one top level element, and we

want to check conformance against a specific one of these elements.

Validating XML Data Stored as XMLType: Examples
The following examples illustrate how to use isSchemaValid(),
setSchemaValidated() , and isSchemaValidated() to validate XML data

being stored as XMLType in Oracle XML DB.
6-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating XML Data Stored as XMLType: Examples
Example 6–4 Using isSchemaValid()

SELECT x.xmlcol.isSchemaValid(’http://www.example.com/schemas/ipo.xsd’,
 ’purchaseOrder’)
 FROM po_tab x;

Example 6–5 Validating XML Using isSchemaValid()

The following PL/SQL example validates an XML instance against XML schema

PO.xsd :

declare
 xmldoc xmltype;
 begin
 -- populate xmldoc (for example, by fetching from table)
 -- validate against XML schema
 xmldoc.isSchemaValid('http://www.oracle.com/PO.xsd');
 if xmldoc.isSchemaValid = 1 then --
 else --
 end if;
end;

Example 6–6 Using schemaValidate() Within Triggers

The schemaValidate() method of XMLType can be used within INSERT and

UPDATE TRIGGERS to ensure that all instances stored in the table are validated

against the XML schema:

DROP TABLE po_tab;
CREATE TABLE po_tab OF xmltype
 XMLSchema "http://www.example.com/schemas/ipo.xsd" element "purchaseOrder";

CREATE TRIGGER emp_trig BEFORE INSERT OR UPDATE ON po_tab FOR EACH ROW
DECLARE
 newxml xmltype;
BEGIn
 newxml := :new.sys_nc_rowinfo$;
 xmltype.schemavalidate(newxml);
END;
/

Example 6–7 Using XMLIsSchemaValid() Within CHECK Constraints

This example uses XMLIsValid() to:

■ Verify that the XMLType instance conforms to the specified XML schema
Transforming and Validating XMLType Data 6-11

Validating XML Data Stored as XMLType: Examples
■ Ensure that the incoming XML documents are valid by using CHECK

constraints

DROP TABLE po_tab;
CREATE TABLE po_tab OF XMLTYPe
 (CHECK (XMLIsValid(sys_nc_rowinfo$) = 1))
 XMLSchema "http://www.example.com/schemas/ipo.xsd" element "purchaseOrder";

Note: The validation functions and operators described in the

preceding section, facilitate validation checking. Of these,

isSchemaValid() is the only one that throws errors that include

why the validation has failed.
6-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Searching XML Data with Oracl
7

Searching XML Data with Oracle Text

This chapter explains the use of Oracle Text functionality in indexing and querying

XML data. It contains the following sections:

■ Searching XML Data with Oracle Text

■ Introducing Oracle Text

■ Assumptions Made in This Chapter’s Examples

■ Oracle Text Users and Roles

■ Querying with the CONTAINS Operator

■ Using the WITHIN Operator to Narrow Query Down to Document Sections

■ Introducing SECTION_GROUPS

■ INPATH or HASPATH Operators Search Using XPath-Like Expressions

■ Building a Query Application with Oracle Text

■ Step 1. Create a Section Group Preference

■ Step 2. Set the Preference’s Attributes

■ Step 3. Create an Index Using the Section Preference Created in Step 2

■ Step 4. Create Your Query Syntax

■ Presenting the Results of Your Query

■ XMLType Indexing

■ Using Oracle Text with Oracle XML DB

■ Full-Text Search Functions in XPath Using ora:contains

■ Oracle XML DB: Creating a Policy for ora:contains()
e Text 7-1

■ Oracle XML DB: Using CTXXPATH Indexes for existsNode()

■ Using Oracle Text: Advanced Techniques

■ Case Study: Searching XML-Based Conference Proceedings

■ Frequently Asked Questions About Oracle Text

Note: In Oracle9i, you can use the WITHIN or INPATH operators.

INPATH was introduced in Oracle9i Release 1 (9.0.1) to handle

XPath searching in XML documents. Everything you can do with

the WITHIN operator, you can also do using INPATH. INPATH is the

recommended syntax in Oracle9i Release 1 (9.0.1) and higher when

searching XML data.
7-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing Oracle Text
Searching XML Data with Oracle Text
This chapter describes the following aspects of Oracle Text:

■ How to create a section group and index your XML document(s)

■ How to build an XML query application with Oracle Text, to search and retrieve

data from your XML document(s)

■ Using Oracle Text to search XMLType data

Introducing Oracle Text

Oracle Text (aka interMedia Text) can be used to search XML documents. It extends

Oracle9i by indexing any text or document stored in Oracle. It can also search

documents in the file system and URLs.

Oracle Text enables the following:

■ Content-based queries, such as, finding text and documents which contain

particular words, using familiar, standard SQL.

■ File-based text applications to use Oracle9i to manage text and documents in an

integrated fashion with traditional relational information.

■ Concept searching of English language documents.

■ Theme analysis of English language documents using the theme/gist package.

■ Highlighting hit words. With Oracle Text, you can render a document in different

ways. For example, you can present documents with query terms highlighted,

either the “words” of a word query or the “themes” of an ABOUT query in

English. Use the CTX_DOC.MARKUP or HIGHLIGHT procedures for this.

■ Highlighting hit words. With Oracle Text, you can render a document in

different ways. For example, you can present documents with query terms

highlighted, either the "words" of a word query or the "themes" of an ABOUT

query in English. Also, you can present XML documents with the
INPATH/HASPATH query element(s) highlighted. Use CTX_DOC.MARKUP or
HIGHLIGHT procedures for this.

Note: Oracle Text is a strictly server-based implementation.

See Also: http://otn.oracle.com/products/text
Searching XML Data with Oracle Text 7-3

Assumptions Made in This Chapter’s Examples
■ With Oracle Text you can use PL/SQL packages for document presentation and
thesaurus maintenance.

You can query XML data stored in the database directly, without using Oracle Text.

However, Oracle Text is useful for boosting query performance.

Accessing Oracle Text
Oracle Text is a standard feature that comes with every Oracle9i Standard,

Enterprise, and Personal edition license. It needs to be selected during installation.

No special installation instructions are required.

Oracle Text is essentially a set of schema objects owned by CTXSYS. These objects

are linked to the Oracle kernel. The schema objects are present when you perform

an Oracle9i installation.

Oracle Text Now Supports XMLType
You can now perform Oracle Text searches on tables containing XMLType columns.

Further Oracle Text Examples
You can find more examples for Oracle Text and for creating section group indexes

at the following site: http://otn.oracle.com/products/text

Assumptions Made in This Chapter’s Examples
XML text is aVARCHAR2 or CLOB type in an Oracle9i database table with

character semantics. Oracle Text can also deal with documents in a file system or in

URLs, but we are not considering these document types in this chapter.

To simplify the examples included in this chapter they use a subset of the Oracle

Text options and make the following assumptions:

■ All XML data here is represented using US-ASCII, a 7 bit character set.

■ Issues about whether a character such as "*" is treated as white space or as part

of a word are not included.

See Also :

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ http://otn.oracle.com/products/text
7-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle Text Users and Roles
■ Storage characteristics of the Oracle schema object that implement the Oracle

Text index are not considered.

■ They focus on the SECTION GROUP parameter in the CREATE INDEX or

ALTER INDEX statement. Other parameter types available for CREATE I NDEX
and ALTER INDEX, are DATASTORE, FILTER , LEXER, STOPLIST, and

WORDLIST.

Here is an example of using SECTION GROUP in CREATE INDEX:

CREATE INDEX my_index
 ON my_table (my_column)
 INDEXTYPE IS ctxsys.context
 PARAMETERS ('SECTION GROUP my_section_group') ;

■ Specifically, the examples focus on using AUTO_SECTION_GROUPand

XML_SECTION_GROUP, and PATH_SECTION_GROUP.

■ Tagged or marked up data. In this chapter, the examples focus on how to

handle XML data. Oracle Text handles many other kinds of data besides XML

data.

Oracle Text Users and Roles
With Oracle Text you can use the following users/roles:

■ user CTXSYS to administer users

■ role CTXAPP to create and delete Oracle Text preferences and use Oracle Text

PL/SQL packages

User CTXSYS
User CTXSYS is created at install time. Administer Oracle Text users as this user.

User CTXSYS has the following privileges:

■ Modify system-defined preferences

■ Drop and modify other user preferences

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference, for more information on these parameter

types.
Searching XML Data with Oracle Text 7-5

Querying with the CONTAINS Operator
■ Call procedures in the CTX_ADM PL/SQL package to start servers and set

system-parameters

■ Start a ctxsrv server

■ Query all system-defined views

■ Perform all the tasks of a user with the CTXAPP role

Role CTXAPP
Any user can create an Oracle Text index and issue a Text query. For additional

tasks, use the CTXAPP role. This is a system-defined role that enables you to

perform the following tasks:

■ Create and delete Oracle Text preferences

■ Use Oracle Text PL/SQL packages, such as the CTX_DDL package

Querying with the CONTAINS Operator
Oracle Text’s main purpose is to provide an implementation for the CONTAINS
operator. The CONTAINS operator can be used in the WHERE clause of a SELECT

statement to specify the query expression for a Text query.

CONTAINS Syntax
Here is the CONTAINS syntax:

...WHERE CONTAINS([schema.]column,text_query VARCHAR2,[label NUMBER])

where:

Table 7–1 CONTAINS Operator: Syntax Description

Syntax Description

[schema.] column Specifies the text column to be searched on. This column must
have a Text index associated with it.

text_query Specifies the query expression that defines your search in
column.

label Optionally specifies the label that identifies the score generated

by the CONTAINS operator.
7-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Querying with the CONTAINS Operator
For each row selected, CONTAINS returns a number between 0 and 100 that

indicates how relevant the document row is to the query. The number 0 means that

Oracle found no matches in the row. You can obtain this score with the SCORE

operator.

Example 7–1 Using a Simple SELECT Statement with CONTAINS

The following example illustrates how the CONTAINS operator is used in a SELECT

statement:

SELECT id FROM my_table
 WHERE
 CONTAINS (my_column, ’receipts’) > 0

The’receipts’ parameter of the CONTAINS operator is called the “Text Query

Expression”.

Example 7–2 Using the Score Operator with a Label to Obtain the Relevance

The following example searches for all documents in the text column that contain

the word Oracle. The score for each row is selected with the SCOREoperator using a

label of 1:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

The CONTAINS operator must always be followed by the > 0 syntax. This specifies

that the score value calculated by the CONTAINS operator must be greater than zero

for the row selected.

When the SCORE operator is called, such as in a SELECT clause, the operator must

reference the label value as shown in the example.

Note: You must use the SCORE operator with a label to obtain

this number.

Note: The SQL statement with the CONTAINSoperator requires an

Oracle Text index in order to run.
Searching XML Data with Oracle Text 7-7

Using the WITHIN Operator to Narrow Query Down to Document Sections
Using the WITHIN Operator to Narrow Query Down to Document
Sections

When documents have internal structure such as in HTML and XML, you can

define document sections using embedded tags before you index. This enables you

to query within the sections using the WITHIN operator.

Introducing SECTION_GROUPS
You can query within attribute sections when you index with either

XML_SECTION_GROUP, AUTO_SECTION_GROUP, or PATH_SECTION_GROUP your

section group type. Consider the following XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

XML_SECTION_GROUP
If you use XML_SECTION_GROUP, you can specify any of the following sections:

■ Zone sections

■ Field sections

■ Attribute section

■ Special sections

This chapter only focuses on Zone, Field, and Attribute sections. For more

information on Special sections see Oracle Text Reference and Oracle Text Application
Developer’s Guide.

Zone Sections: CTX_DLL.ADD_ZONE_SECTION Procedure
The syntax for this is:

CTX_DDL.ADD_ZONE_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2);

Note: This is only true for XML_SECTION_GROUP, but not true for

AUTO_ or PATH_SECTION_GROUP.
7-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing SECTION_GROUPS
To define a chapter as a Zone section, create an XML_SECTION_GROUP and define

the Zone section as follows:

EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
EXEC ctx_ddl.add_zone_section('myxmlgroup', 'chapter', 'chapter');

When you define Zone section as such and index the document set, you can query

the XML chapter Zone section as follows:

'Cities within chapter'

Field Sections: CTX_DLL.ADD_FIELD_SECTION Procedure
The syntax for this is:

CTX_DDL.ADD_FIELD_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2);

To define a abstract as a Field section, create an XML_SECTION_GROUP and

define the Field section as follows:

EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
EXEC ctx_ddl.add_ field_section('myxmlgroup', 'abstract', 'abstract');

When you define Field section as such and index the document set, you can query

the XML abstract Field section as follows:

'Cities within abstract'

Attribute Section: CTX_DLL.ADD_ATTR_SECTION Procedure
The syntax for this is:

CTX_DDL.ADD_ATTR_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2);

To define the booktitle attribute as an Attribute section, create an

XML_SECTION_GROUP and define the Attribute section as follows:

EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
EXEC ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
Searching XML Data with Oracle Text 7-9

Introducing SECTION_GROUPS
When you define the Attribute section as such and index the document set, you can

query the XML booktitle attribute text as follows:

'Cities within booktitle'

Constraints for Querying Attribute or Field Sections
The following constraints apply to querying within Attribute or Field sections:

■ Regular queries on attribute text will not work unless qualified in a WITHIN
clause. Using the following XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

querying on Tale will not work unless qualified with ’WITHIN title@book’.

■ You cannot use Attribute or Field sections in a nested WITHIN query.

■ Phrases ignore attribute text. For example, if the original document looked like:

....Now is the time for all good <word type="noun"> men </word> to come to
the aid......

The search would result in a regular query’s, “good men”, and ignore the

intervening attribute text.

AUTO_ SECTION_GROUP/ PATH_SECTION_GROUP for INPATH and HASPATH
When you use the AUTO_SECTION_GROUP or PATH_SECTION_GROUP to index

XML documents, Oracle9i automatically creates sections.

To search on Tale within the Attribute section booktitle , include the following

WITHIN clause in your SELECT statement:

■ If you are using XML_SECTION_GROUP:

... WHERE CONTAINS ('Tale INPATH booktitle')>0;

■ If you are using PATH_SECTION_GROUP

... WHERE CONTAINS (’Tale INPATH title@book’)>0;

Dynamically Adding Sections or Stop Section Using ALTER INDEX
The syntax for ALTER INDEX is:

See Also: "Distinguishing Tags Across DocTypes" on page 7-51.
7-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing SECTION_GROUPS
ALTER INDEX [schema.]index REBUILD [ONLINE] [PARAMETERS (paramstring)];

where

paramstring = 'replace [datastore datastore_pref]
 [filter filter_pref]
 [lexer lexer_pref]
 [wordlist wordlist_pref]
 [storage storage_pref]
 [stoplist stoplist]
 [section group section_group]
 [memory memsize]
| ...
| add zone section section_name tag tag
| add field section section_name tag tag [(VISIBLE | INVISIBLE)]
| add attr section section_name tag tag@attr
| add stop section tag’

The added section applies only to documents indexed after this operation. Thus

for the change to take effect, you must manually re-index any existing

documents that contain the tag. The index is not rebuilt by this statement.

WITHIN Syntax for Section Querying
Here is the WITHIN syntax for querying sections:

...WHERE CONTAINS(text,’XML WITHIN title’) >0;...

This searches for expression text within a section. If you are using

XML_SECTION_GROUP the following restrictions apply to the pre-defined zone,

field, or attribute section:

■ If section is a zone, expression can contain one or more WITHIN operators

(nested WITHIN) whose section is a zone or special section.

■ If section is a field or attribute section, expression cannot contain another

WITHIN operator.

You can combine and nest WITHIN clauses. For finer grained searches of XML

sections, you can use WITHIN clauses inside CONTAINS select statements.

WITHIN Operator Limitations
The WITHIN operator has the following limitations:
Searching XML Data with Oracle Text 7-11

INPATH or HASPATH Operators Search Using XPath-Like Expressions
■ You cannot embed the WITHIN clause in a phrase. For example, you cannot

write: term1 WITHIN section term2

■ You cannot combine WITHIN with expansion operators, such as $! and *.

■ Since WITHIN is a reserved word, you must escape the word with braces to

search on it.

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Path Indexing and Path Querying with Oracle Text
In Oracle9i Oracle Text introduced a new section type and new query operators

which support an XPath-like query language. Indexes of type context with XML

path searching are able to perform very complex section searches on XML

documents. Here are the basic concepts of path indexing and path querying.

Path Indexing
Section searching is enabled by defining section groups. To use XML path searching,

the Oracle Text index must be created with the new section group,

PATH_SECTION_GROUP as follows:

begin
 ctx_ddl.create_section_group('mypathgroup','PATH_SECTION_GROUP');
end;

To create the Oracle Text index use this command:

create index order_idx on library_catalog(text)
 indextype is ctxsys.context
 parameters ('SECTION GROUP mypathgroup');

Path Querying
The Oracle Text path query language is based on W3C XPath. For Oracle9i Release 1

(9.0.1) and higher, you can use the INPATH and HASPATH operators to express path

queries.

See Also: Oracle Text Reference
7-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Using INPATH Operator for Path Searching in XML Documents
You can use INPATH operator to perform path searching in XML documents.

Table 7–2 summarizes the ways you can use the INPATH operator for path

searching.

Table 7–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description

Simple Tag Searching virginia INPATH (//STATE) Finds all documents where the word “virginia”
appears between <STATE> and </STATE>. The
STATE element can appear at any level of the
document structure.

Case-sensitivity virginia INPATH (STATE)

virginia INPATH (State)

Tags and attribute names in path searching are
case-sensitive. virginia INPATH STATE -- finds
<STATE>virginia</STATE> but NOT
<State>virginia</State> . To find the latter

you must do virginia INPATH State.

Top-Level Tag
Searching

virginia INPATH (Legal)

virginia INPATH (/Legal)

For example, the following
query finds Quijote where it
occurs between <order> and
</order>:

select id from library_catalog where
contains(text,'Quijote INPATH(order)') >
0;

Here <order> must be the top
level tag.

Finds all documents where “virginia” appears in a
Legal element which is the top-level tag.'Legal'
MUST be the top-level tag of the document.’virginia'
may appear anywhere in this tag regardless of other
intervening tags. For example:

<?xml version=”1.0” standalone=”yes”?>

<!-- <?xml-stylesheet type=”text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

 <Filing ID="f001" FilingType="Civil">

 <LeadDocument>

 <CaseCaption>

 <CourtInformation>

 <Location>

 <Address>

 <AddressState>VIRGINIA</AddressState>

 </Address> ... </Legal>
Searching XML Data with Oracle Text 7-13

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Any Level Tag
Searching

virginia INPATH (//Address)

For example, a double slash
indicates "any number of levels"
down. The following query finds
Quijote inside a <title> tag that
occurs at the top level or any
lower level:

select id from library_catalog

 where contains(text,'Quijote
INPATH(//title)') > 0;

'Virginia' can appear anywhere within an 'Address'
tag, which may appear within any other tags. for
example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

 <Filing ID="f001" FilingType="Civil">

 <LeadDocument>

 <CaseCaption>

 <CourtInformation>

 <Location>

 <Address>

 <AddressState> VIRGINIA </AddressState>...
</Legal>

Direct Parentage Path
Searching

virginia INPATH
(//CourtInformation/Location)

for example:

select id from library_catalog where
contains(text,'virginia
INPATH(order/item)') > 0;

Finds all documents where “virginia” appears in a
Location element which is a direct child of a
CourtInformation element. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

 <Filing ID="f001" FilingType="Civil">

 <LeadDocument>

 <CaseCaption>

 <CourtInformation>

 <Location>

 <Address>

 <AddressState> VIRGINIA </AddressState>

 </Address>... </CourtInformation>

Table 7–2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
7-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Single-Level Wildcard
Searching

virginia INPATH(A/*/B)

'virginia INPATH
(//CaseCaption/*/Location)'

Finds all documents where “virginia” appears in a B
element which is a grandchild of an A element. For
instance, <A><D>virginia</D> .
The intermediate element does not need to be an
indexed XML tag. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

 <Filing ID="f001" FilingType="Civil">

 <LeadDocument>

 <CaseCaption>

 <CourtInformation>

 <Location>

 <Address>

 <AddressState>VIRGINIA</AddressState>...

</Legal>

Table 7–2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
Searching XML Data with Oracle Text 7-15

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Multi-level Wildcard
Searching

'virginia INPATH
(Legal/*/Filing/*/*/CourtInformation)'

'Legal' must be a top-level tag, and there must be
exactly one tag-level between 'Legal' and 'Filing',
and two between 'Filing' and 'CourtInformation'.
'Virginia' may then appear anywhere within
'CourtInformation'. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

 <Filing ID="f001" FilingType="Civil">

 <LeadDocument>

 <CaseCaption>

 <CourtInformation>

 <Location>

 <Address>

 <AddressState>VIRGINIA</AddressState>

 </Address>

 </Location>

 <CourtName>

 IN THE CIRCUIT COURT OF LOUDOUN COUNTY

 </CourtName>

 </CourtInformation>....

Descendant Searching virginia INPATH(A//B) Finds all documents where “virginia” appears in a B
element which is some descendant (any level) of an
A element.

Attribute Searching virginia INPATH(A/@B) Finds all documents where “virginia” appears in the
B attribute of an A element. You can search within
an attribute value using the syntax
<tag>/@<attribute>:

select id from library_catalog where contains(text,'dvd
INPATH(//item/@type)') > 0; AND and OR

You can use boolean AND and OR to combine
existence or equality predicates in a test.

select id from library_catalog where contains(text,'Levy or
Cervantes INPATH(//title)') >0;

Table 7–2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
7-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Descendant/Attribute
Existence Testing

virginia INPATH (A[B])

You can search for documents
using the any-level tag
searching:

select id from library_catalog where
contains (text,'Quijote
INPATH(/order/title)') > 0;

You can also use the "*" as a
single level wildcard. The *
matches exactly one level.:

select id from library_catalog where
contains (text,'Cervantes
INPATH(/order/*/author)') > 0;

Finds all documents where “virginia” appears in an
A element which has a B element as a direct child.

■ virginia INPATH A[.//B] -- Finds all
documents where “virginia” appears in an A
element which has a B element as a descendant
(any level).

■ virginia INPATH A[@B] -- Finds all documents
where “virginia” appears in an A element
which has a B attribute

Table 7–2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
Searching XML Data with Oracle Text 7-17

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Attribute Value
Testing

Within Equality

virginia INPATH A[@B = “foo”]

That means that:

virginia INPATH (A[@B = "pot of
gold”]), would, with the default
lexer and stoplist, match any of
the following:

virginia

By default, lexing is
case-independent, so “pot”
matches “POT”, <A B="POT
BLACK GOLD”>virginia

By default, “of” is a stopword,
and, in a query, would match
any word in that position, <A
B=" Pot OF Gold
“>virginia

Finds all documents where “virginia” appears in an
A element which has a B attribute whose value is
“foo”.

■ Only equality is supported as a test. Range
operators and functions are not supported.

■ The left-hand-side of the equality MUST be an
attribute or tag. Literals here are not allowed.

■ The right-hand-side must be a literal. Tags and
attributes here are not allowed.

Within equality (See "Using INPATH Operator for
Path Searching in XML Documents" on page 7-13) is
used to evaluate the test.

Whitespace is mainly ignored in text indexing.
Again, lexing is case-independent:

virginia

Underscore is a non-alphabetic character, and is not
a join character by default. As a result, it is treated
more or less as whitespace and breaks up that string
into three words.

Example:

select id from library_catalog where contains(text,'(Bob the
Builder) INPATH(//item[@type="dvd"])') > 0;

The following will not return rows:

select id from library_catalog where contains(text,'(Bob the
Builder) INPATH(//item[@type="book"])') > 0;

Numeric Equality virginia INPATH (A[@B = 5]) Numeric literals are allowed. But they are treated as
text. The within equality is used to evaluate. This
means that the query does NOT match. That is, virginia does not match A[@B=5]
where "5.0", a decimal is not considered the same as
5, an integer.

Conjunctive Testing virginia INPATH (A[B AND C])

virginia INPATH (A[B AND @C =
“foo”])...

Predicates can be conjunctively combined.

Combining Path and
Node Tests

virginia INPATH (A[@B = “foo”]/C/D)

virginia INPATH(A//B[@C]/D[E])...

Node tests can be applied to any node in the path.

Table 7–2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
7-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Using HASPATH Operator for Path Searching in XML Documents
Use the HASPATH operator to find all XML documents that contain a specified

section path. HASPATH is used when you want to test for path existence. It is also

very useful for section equality testing. To find all XML documents where an order

has an item within it:

select id from library_catalog
 where contains(text,'HASPATH(order/item)') > 0;

will return all documents where the top-level tag is a order element which has a

item element as a direct child.

In Oracle9i, Oracle Text introduces a new section type and new query operators

which support an XPath-like query language. Indexes of type context with XML

path searching are able to perform very complex section searches on XML

documents. Here are more examples of path querying using INPATH and HASPATH.
Assuming the following XML document:

<?xml version="1.0"?>
 <order>
 <item type="book">
 <title>Crypto</title>
 <author>Levi</author>
 </item>
 <item type="dvd">
 <title> Bob the Builder</title>
 <author>Auerbach</author>
 </item>
 <item type="book">
 <title>Don Quijote</title>
 <author>Cervantes</author>
 </item>
 </order>

In general, use INPATH and HASPATH operators only when your index has been

created with PATH_SECTION_GROUP. Use of PATH_SECTION_GROUP enables path

searching. Path searching extends the syntax of the WITHIN operator so that the

section name operand (right-hand-side) is a path instead of a section name.
Searching XML Data with Oracle Text 7-19

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Using HASPATH Operator for Path Existence Searching

Only use the HASPATH operator when your index has been created with the

PATH_SECTION_GROUP. The syntax for the HASPATH operator is:

■ WHERE CONTAINS(column, ’HASPATH(path)’...): Here HASPATH searches an

XML document set and returns a score of 100 for all documents where path

exists. Parent and child paths are separated with the / character, for example,

A/B/C. For example, the query:

...WHERE CONTAINS (col,’HASPATH(A/B/C)’)>0;

finds and returns a score of 100 for the document:

<A><C>Virginia</C>

without having to reference Virginia at all.

■ WHERE CONTAINS(column, ’HASPATH(A=”value”)’...): Here the HASPATH
clause searches an XML document set and returns a score of 100 for all

documents that have element A with content value and only that value.

HASPATHis used to test equality. This is the "Section Equality Testing" feature of

the HASPATH operator. The query:

...WHERE CONTAINS virginia INPATH A

finds <A>virginia, but it also finds <A>virginia state. To limit the

query to the term virginia and nothing else, you can use a section equality test

with the HASPATH operator. For example:

... WHERE CONTAINS (col,’HASPATH(A="virginia")’

finds and returns a score of 100 only for the first document, and not the second.

Tag Value Equality Testing
You can do tag value equality test with HASPATH:

select id from library_catalog
 where CONTAINS(text,'HASPATH (//author="Auerbach")') >0;

Note: The HASPATH operator functions in a similar fashion to the
existsNode() in XMLType.
7-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 1. Create a Section Group Preference
Building a Query Application with Oracle Text
To build a Oracle Text query application carry out the following steps:

1. Create a section preference group. Before you create a section group and

Oracle text index you must first determine the role you will need and grant the

appropriate privilege. See "Oracle Text Users and Roles" on page 7-5, and grant

the appropriate privilege.

After creating and preparing your data, you are ready to perform the next step.

See "Step 1. Create a Section Group Preference" on page 7-21.

2. Add sections or stop_sections

3. Create an Oracle Text index based on the section group you created. Using the

section preference created, you then create an Oracle Text index. See Building a

Query Application with Oracle Text.

4. Build your query application using the CONTAINS operator. Now you can

finish building your query application. See "Building a Query Application with

Oracle Text".

What Role Do You Need?
First determine the role you need. See Oracle Text Reference and "Oracle Text Users

and Roles" on page 7-5, and grant the appropriate privilege as follows:

CONNECT system/manager
GRANT ctxapp to scott;
CONNECT scott/tiger

Step 1. Create a Section Group Preference
The first thing you must do is create a preference. This section describes how to

create section preferences using PATH_SECTION_GROUP, XML_SECTION_GROUP,

and AUTO_SECTION_GROUP. Table 7–3 describes the groups and summarizes their

features.
Searching XML Data with Oracle Text 7-21

Step 1. Create a Section Group Preference
Table 7–3 Comparing Oracle Text Section Groups

Section Group Description

XML_SECTION_GROUP Use this group type for indexing XML documents and for defining sections in
XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. The section names derived from XML
tags are case-sensitive as in XML. Attribute sections are created automatically for
XML tags that have attributes. Attribute sections are named in the form
attribute@tag. Stop sections, empty tags, processing instructions, and comments
are not indexed. The following limitations apply to automatic section groups:

■ You cannot add zone, field or special sections to an automatic section group.

■ Automatic sectioning does not index XML document types (root elements.)
However, you can define stop-sections with document type.

■ The length of the indexed tags including prefix and namespace cannot exceed
64 characters. Tags longer than this are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUP. With this section group you can do path searching with
the INPATH and HASPATH operators. Queries are case-sensitive for tag and
attribute names.

How is PATH_SECTION_GROUP Similar to AUTO_SECTION_GROUP?

Documents are assumed to be XML, Every tag and every attribute is indexed by
default, Stop sections can be added to prevent certain tags from being indexed,
Only stop sections can be added -- ZONE, FIELD , and SPECIAL sections cannot
be added, When indexing XML document collections, you do not need to
explicitly define sections as Oracle automatically does this for you.

How Does PATH_SECTION_GROUP Differ From AUTO_SECTION_GROUP?

Path Searching is allowed at query time (see "Case Study: Searching XML-Based
Conference Proceedings" and "You can use INPATH operator to perform path
searching in XML documents. Table 7–2 summarizes the ways you can use the
INPATH operator for path searching." on page 7-13) with the new INPATH and
HASPATH operators, Tag and attribute names are case-sensitive in queries.

Note: If you are using the AUTO_SECTION_GROUP or

PATH_SECTION_GROUPto index an XML document collection, you

need not explicitly define sections since the system does this for

you during indexing.
7-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 1. Create a Section Group Preference
Deciding Which Section Group to Use
How do you determine which section groups is best for your application? This

depends on your application. Table 7–4 lists some general guidelines to help you

decide which of the XML_, AUTO_, or PATH_ section groups to use when indexing

your XML documents, and why.

Creating a Section Preference with XML_SECTION_GROUP
The following command creates a section group called, xmlgroup, with the

XML_SECTION_GROUP group type:

EXEC ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');

Creating a Section Preference with AUTO_SECTION_GROUP
You can set up your indexing operation to automatically create sections from XML

documents using the section group AUTO_SECTION_GROUP. Here, Oracle creates

Table 7–4 Guidelines for Choosing XML_, AUTO_, or PATH_ Section Groups

Application Criteria XML_section_... AUTO_section_... PATH_section_...

You are using XPATH search features -- -- Yes

You know the layout and structure of
your XML documents, and you can
predefine the sections on which users
are most likely to search.

Yes -- --

You do not know which tags users
are most likely to search.

-- Yes --

Query performance, in general Fastest Little slower than
XML_section_...

Little slower than
AUTO_section_...

Indexing performance, in general Fastest Little slower than
XML_section_...

Little slower than
AUTO_section_...

Index size Smallest Little larger than
XML_section_...

Little larger than
AUTO_section_...

Other features Mappings can be
defined so that tags in
one or different DTDs
can be mapped to one
section. Good for DTD
evolution and data
aggregation.

Simplest. No need to
define mapping,
add_stop_section can
be used to ignore
some sections.

Designed for more
sophisticated XPATH-
like queries
Searching XML Data with Oracle Text 7-23

Step 2. Set the Preference’s Attributes
zone sections for XML tags. Attribute sections are created for those tags that have

attributes, and these attribute sections are named in the form “tag@attribute.”

The following command creates a section group called autogroup with the

AUTO_SECTION_GROUP group type. This section group automatically creates

sections from tags in XML documents.

EXEC ctx_ddl.create_section_group('autogroup', 'AUTO_SECTION_GROUP');

Creating a Section Preference with PATH_SECTION_GROUP
To enable path section searching, index your XML document with

PATH_SECTION_GROUP. For example:

EXEC ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');

Step 2. Set the Preference’s Attributes
To set the preference’s attributes for XML_SECTION_GROUP, use the following

procedures:

■ Add_Zone_Section

■ Add_Attr_Section

■ Add_Field_Section

■ Add_Special_Section

To set the preference’s attributes for AUTO_SECTION_GROUP and

PATH_SECTION_GROUP, use the following procedures:

■ Add_Stop_Section

There are corresponding CTX_DDL.DROP sections and CTX_DDL.REMOVE section

commands.

Note: You can add attribute sections only to XML section groups.

When you use AUTO_SECTION_GROUP, attribute sections are

created automatically. Attribute sections created automatically are

named in the form tag@attribute.
7-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 2. Set the Preference’s Attributes
2.1 XML_SECTION_GROUP: Using CTX_DDL.add_zone_section
The syntax for CTX_DDL.add_zone_section follows:

CTX_DDL.Add_Zone_Section (
 group_name => 'my_section_group' /* whatever you called it in the
preceding section */
 section_name => 'author' /* what you want to call this section */
 tag => 'my_tag' /* what represents it in XML */);

where ’my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_zone_section Guidelines
add_zone_section guidelines are listed here:

■ Call CTX_DDL.Add_Zone_Section for each tag in your XML document that

you need to search on.

2.2 XML_SECTION_GROUP: Using CTX_DDL.Add_Attr_Section
The syntax for CTX_DDL.ADD_ATTR_SECTION follows:

CTX_DDL.Add_Attr_Section (/* call this as many times as you need to describe
 the attribute sections */
 group_name => 'my_section_group' /* whatever you called it in the
preceding section */
 section_name => 'author' /* what you want to call this section */
 tag => 'my_tag' /* what represents it in XML */);

where ’my_tag’ implies opening with <my_tag> and closing with </my_tag>.

Add_Attr_Section Guidelines
Add_Attr_Section guidelines are listed here:

■ Consider meta_data attribute author:

<meta_data author = “John Smith” title=”How to get to Mars”>

ADD_ATTR_SECTION adds an attribute section to an XML section group. This

procedure is useful for defining attributes in XML documents as sections. This

enables searching XML attribute text with the WITHIN operator.

The section_name:

■ Is the name used for WITHIN queries on the attribute text.
Searching XML Data with Oracle Text 7-25

Step 2. Set the Preference’s Attributes
■ Cannot contain the colon (:) or dot (.) characters.

■ Must be unique within group_name.

■ Is case-insensitive.

■ Can be no more than 64 bytes.

The tag specifies the name of the attribute in tag@attr format. This is case-sensitive.

2.3 XML_SECTION_GROUP: Using CTX_DDL.Add_Field_Section
The syntax for CTX_DDL.Add_Field_Section follows:

CTX_DDL.Add_Field_Section (
group_name => 'my_section_group' /* whatever you called it in the preceding

section */
 section_name => 'qq' /* what you want to call this section */
 tag => 'my_tag' /* what represents it in XML */);
 visible => TRUE or FALSE);

Add_Field_Section Guidelines
Add_Field_Section guidelines are listed here:

■ Searches using Field_Sections are faster than those using Zone_Section.

■ Visible attribute: This is available in Add_Field_Section but not available in the

Add_Zone_section. If VISIBLE is set to TRUE then the text within the Field

section will be indexed as part of the enclosing document. For example:

<state> Virginia </state>
CTX_DDL.Add_Field_Section (

 group_name => 'my_section_group'
 section_name => 'state'
 tag => 'state'
 visible => TRUE or FALSE);

Note: In the ADD_ATTR_SECTION procedure, you can have many

tags all represented by the same section name at query time.

Explained in another way, the names used as the arguments of the

keyword WITHIN can be different from the actual XML tag names.

That is many tags can be mapped to the same name at query time.

This feature enhances query usability.
7-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 2. Set the Preference’s Attributes
If visible is set to TRUE, then searching on Virginia without specifying the

state Field section produces a hit.

If visible is set to FALSE, then searching on Virginia without specifying the

state Field section does not produce a hit.

How Attr_Section Differs from Field_Section
Attribute section differs from Field section in the following ways:

■ Attribute text is considered invisible, hence the following clause:

WHERE CONTAINS (..., ’... jeeves’,...)...

does NOT find the document. This is similar to when Field sections have

visible set to FALSE. Unlike Field sections, however, Attribute section within

searches can distinguish between occurrences. Consider the document:

<comment author="jeeves">
 I really like Oracle Text
</comment>
<comment author="bertram">
 Me too
</comment>

the query:

WHERE CONTAINS (...,’(cryil and bertram) WITHIN author’, ...)...

will NOT find the document, because "jeeves" and "bertram" do not occur

within the SAME attribute text.

■ Attribute section names cannot overlap with zone or field section names
although you can map more than one tag@attr to a single section name.

Attribute sections do not support default values. Given the document:

<!DOCTYPE foo [
 <!ELEMENT foo (bar)>
 <!ELEMENT bar (#PCDATA)>

 <!ATTLIST bar
 rev CDATA "8i">

]>
<foo>
 <bar>whatever</bar>
</foo>

and attribute section:
Searching XML Data with Oracle Text 7-27

Step 3. Create an Index Using the Section Preference Created in Step 2
ctx_ddl.add_attr_section('mysg','barrev','bar@rev');

the query:

8i within barrev does not hit the document, although in XML semantics, the

“bar” element has a default value for its “rev” attribute.

2.5 AUTO_SECTION_GROUP: Using CtX_DDL.Add_Stop_Section
CtX_DDL.Add_Stop_Section (
group_name => 'my_section_group' /* whatever you called it in the preceding
section */
section_name => 'qq' /* what you want to call this section */);

Step 3. Create an Index Using the Section Preference Created in Step 2
Create an index depending on which section group you used to create a preference:

Creating an Index Using XML_SECTION_GROUP
To index your XML document when you have used XML_SECTION_GROUP, you can

use the following statement:

CREATE INDEX myindex ON docs(htmlfile) INDEXTYPE IS ctxsys.context
 parameters('section group xmlgroup');

Creating an Index Using AUTO_SECTION_GROUP
The following statement creates the index, myindex, on a column containing XML

files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
('section group autogroup');

Creating an Index Using PATH_SECTION_GROUP
To index your XML document when you have used PATH_SECTION_GROUP, you

can use the following statement:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
('section group xmlpathgroup');

See Also: "Creating an Index Using XML_SECTION_GROUP" on

page 7-29.
7-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 3. Create an Index Using the Section Preference Created in Step 2
Example 7–3 Creating an Index Using XML_SECTION_GROUP

EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');

/* ADDING A FIELD SECTION */
EXEC ctx_ddl.Add_Field_Section /* THIS IS KEY */
 (group_name =>'my_section_group',
 section_name =>'author',/* do this for EVERY tag used after "WITHIN" */
 tag =>'author'
);

EXEC ctx_ddl.Add_Field_Section /* THIS IS KEY */
 (group_name =>'my_section_group',
 section_name =>'document',/*do this for EVERY tag after "WITHIN" */
 tag =>'document'
);

 ...
/
/* ADDING AN ATTRIBUTE SECTION */
EXEC ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');

/* The more sections you add to your index, the longer your search will take.*/
/* Useful for defining attributes in XML documents as sections. This allows*/
/* you to search XML attribute text using the WITHIN operator.*/
/* The section name:
/* ** Is used for WITHIN queries on the attribute text.
 ** Cannot contain the colon (:) or dot (.) characters.
 ** Must be unique within group_name.
 ** Is case-insensitive.
 ** Can be no more than 64 bytes.
 ** The tag specifies the name of the attribute in tag@attr format. This is
 case-sensitive. */
/* Names used as arguments of the keyword WITHIN can be different from the
 actual XML tag names. Many tags can be mapped to the same name at query
 time.*/
/* Call CTX_DDL.Add_Zone_Section for each tag in your XML document that you need
to search on. */

EXEC ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', 'mydocname(book)');

CREATE INDEX my_index ON my_table (my_column)
 INDEXTYPE IS ctxsys.context

See Also: Oracle Text Reference for detailed notes on CTX_DDL.
Searching XML Data with Oracle Text 7-29

Step 4. Create Your Query Syntax
 PARAMETERS ('SECTION GROUP my_section_group');

SELECT my_column FROM my_table
 WHERE CONTAINS(my_column, 'smith WITHIN author') > 0;

Step 4. Create Your Query Syntax
See the section, "Querying with the CONTAINS Operator" for information about

how to use the CONTAINS operator in query statements.

Querying Within Attribute Sections
You can query within attribute sections when you index with either

XML_SECTION_GROUP or AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

You can define the section title@book as the attribute section title. You can do so

with the CTX_DLL.Add_Attr_Section procedure or dynamically after indexing

with ALTER INDEX.

If you use the XML_SECTION_GROUP, you can name attribute sections anything

with CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, issue the following query:

WHERE CONTAINS (...,'Tale WITHIN title', ...)

When you define the TITLE attribute section as such and index the document set,

you can query the XML attribute text as follows:

... WHERE CONTAINS (...,'Cities WITHIN booktitle',)...

When you define the AUTHOR attribute section as such and index the document

set, you can query the XML attribute text as follows:

... WHERE 'England WITHIN authors'

Note: When you use the AUTO_SECTION_GROUP to index XML

documents, the system automatically creates attribute sections and

names them in the form attribute@tag .
7-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 4. Create Your Query Syntax
Example 7–4 Querying an XML Document

This example does the following:

1. Creates and populates table res_xml

2. Creates an index, section_group, and preferences

3. Paramaterizes the preferences

4. Runs a test query against res_xml

drop table res_xml;

CREATE TABLE res_xml (
 pk NUMBER PRIMARY KEY ,
 text CLOB
) ;

insert into res_xml values(111,
'ENTITY chap8 "Chapter 8, <q>Keeping it Tidy: the XML Rule Book </q>"> this is

the document section');
commit;

--- script to create index on res_xml

--- cleanup, in case we have run this before
DROP INDEX res_index ;
EXEC CTX_DDL.DROP_SECTION_GROUP ('res_sections') ;

--- create a section group
BEGIN
 CTX_DDL.CREATE_SECTION_GROUP ('res_sections', 'XML_SECTION_GROUP') ;
 CTX_DDL.ADD_FIELD_SECTION ('res_sections', 'chap8', '<q>') ;
END ;
/

begin
 ctx_ddl.create_preference
 (
 preference_name => 'my_basic_lexer',
 object_name => 'basic_lexer'
);
 ctx_ddl.set_attribute
 (
Searching XML Data with Oracle Text 7-31

Step 4. Create Your Query Syntax
 preference_name => 'my_basic_lexer',
 attribute_name => 'index_text',
 attribute_value => 'true'
);
 ctx_ddl.set_attribute
 (
 preference_name => 'my_basic_lexer',
 attribute_name => 'index_themes',
 attribute_value => 'false');
end;
/

CREATE INDEX res_index
 ON res_xml(text)
 INDEXTYPE IS ctxsys.context
 PARAMETERS ('lexer my_basic_lexer SECTION GROUP res_sections') ;

Test the preceding index with a test query, such as:

SELECT pk FROM res_xml WHERE CONTAINS(text, 'keeping WITHIN chap8')>0 ;

Example 7–5 Creating an Index and Performing a Text Query

drop table explain_ex;

create table explain_ex
 (
 id number primary key,
 text varchar(2000)
);

insert into explain_ex (id, text)
 values (1, 'thinks thinking thought go going goes gone went' || chr(10) ||
 'oracle orackle oricle dog cat bird' || chr(10) ||
 'President Clinton');
insert into explain_ex (id, text)
 values (2, 'Last summer I went to New England' || chr(10) ||
 'I hiked a lot.' || chr(10) ||
 'I camped a bit.');
commit;

Example 7–6 Text Query Using "ABOUT" in the Text Query Expression

Set Define Off
select text
 from explain_ex
7-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 4. Create Your Query Syntax
 WHERE CONTAINS (text,
 '($(think & go) , ?oracle) & (dog , (cat & bird)) & about(mammal
 during Bill Clinton)') > 0;
select text
 from explain_ex
 WHERE CONTAINS (text, 'about (camping and hiking in new england)') > 0;

Example 7–7 Creating an Index Using AUTO_SECTION_GROUP

ctx_ddl_create_section_group('auto', 'AUTO_SECTION_GROUP');

CREATE INDEX myindex ON docs(xmlfile_column)
 INDEXTYPE IS ctxsys.context
 PARAMETERS ('filter ctxsys.null_filter SECTION GROUP auto');

SELECT xmlfile_column FROM docs
 WHERE CONTAINS (xmlfile_column, ’virginia WITHIN title’)>0;

Example 7–8 Creating an Index Using PATH_SECTION_GROUP

EXEC ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');

CREATE INDEX myindex ON xmldocs(xmlfile_column)
 INDEXTYPE IS ctxsys.context
 PARAMETERS ('section group xmlpathgroup');

SELECT xmlfile_column FROM xmldocs
... WHERE CONTAINS (column, ’Tale WITHIN title@book’)>0;

Example 7–9 Using XML_SECTION_GROUP and add_attr_section to Aid Querying

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
It was the best of times. </BOOK>
<Author="Charles Dickens">
Born in England in the town, Stratford_Upon_Avon </Author>

Recall the CTX_DDL.ADD_ATTR_SECTION syntax is:

CTX_DDL.Add_Attr_Section (group_name, section_name, tag);

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:

ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
Searching XML Data with Oracle Text 7-33

Presenting the Results of Your Query
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
ctx_ddl.add_attr_section('myxmlgroup', 'authors', 'author');
end;

Presenting the Results of Your Query
An Oracle Text query application enables viewing documents returned by a query.

You typically select a document from the hit list and then your application presents

the document in some form.

With Oracle Text, you can render a document in different ways. For example, with

the query terms highlighted. Highlighted query terms can be either the words of a

word query or the themes of an ABOUT query in English. This rendering uses the

CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP procedures.

You can also obtain theme information from documents with the CTX_DOC.THEMES
PL/SQL package. Besides these there are several other CTX_DOC procedures for

presenting your query results.

INPATH does not support working with highlighting or themes.

Note:

■ Oracle knows what the end tags look like from the group_type

parameter you specify when you create the section group. The

start tag you specify must be unique within a section group.

■ Section names need not be unique across tags. You can assign

the same section name to more than one tag, making details

transparent to searches.

See Also: Oracle Text Reference for more information on the

CTX_DOC package.
7-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Indexing
XMLType Indexing
The Oracle9i datatype for storing XML, XMLType, is a core database feature.

You Need Query Rewrite Privileges

You can create an Oracle Text index on this type, but you need a few database

privileges first:

1. The user creating the index must have Query Rewrite privileges:

GRANT QUERY REWRITE TO <user>

Without this privilege, the create index will fail with:

ORA-01031: insufficient privileges

<user> should be the user creating the index. The database schema that owns

the index, if different, does not need the grant.

2. query_rewrite_enabled should be true, and query_rewrite_integrity should be

trusted. You can add them to the init.ora file:

query_rewrite_enabled=true
query_rewrite_integrity=trusted

or turn it on for the session as follows:

ALTER SESSION SET query_rewrite_enabled=true;
ALTER SESSION SET query_rewrite_integrity=trusted;

Without these, queries will fail with:

DRG-10599: column is not indexed

These privileges are needed because XMLType is really an object, and you access it

through a function, hence an Oracle Text index on an XMLType column is actually a

function-based index on the getclobval() method of the type. These are the

standard grants you need to use function-based indexes, however, unlike

function-based B-Tree indexes, you do not need to calculate statistics.

Note: These privileges are only required for Oracle9i Release 1

(9.0.1).
Searching XML Data with Oracle Text 7-35

XMLType Indexing
System Parameter is Set to the Default, CTXSYS.PATH_SECTION_GROUP
When an XMLType column is detected, and no section group is specified in the

parameters string, the default system examines the new system parameter

DEFAULT_XML_SECTION, and uses the section group specified there. At install time

this system parameter is set to CTXSYS.PATH_SECTION_GROUP, which is the

default path sectioner.

The default filter system parameter for XMLType is DEFAULT_FILTER_TEXT,
which means that the INSO filter is not engaged by default.

XMLType Indexes Work Like Other Oracle Text Indexes
Other than the database privileges and the special default section group system

parameter, indexes on XMLType columns work like any other Oracle Text index.

Example 7–10 Creating a Text Index on XMLType Columns

Here is a simple example:

connect ctxsys/ctxsys
GRANT QUERY REWRITE TO xtest;
connect xtest/xtest

CREATE TABLE xtest(doc sys.xmltype);
INSERT INTO xtest VALUES (sys.xmltype.createxml('<A>simple'));

CREATE INDEX xtestx ON xtest(doc)

Note: Oracle9i SQL Reference under CREATE INDEX, states:

To create a function-based index in your own schema on your own

table, in addition to the prerequisites for creating a conventional

index, you must have the QUERY REWRITE system privilege.

To create the index in another schema or on another schema's table,

you must have the GLOBAL QUERY REWRITE privilege. In both

cases, the table owner must also have the EXECUTE object

privilege on the function(s) used in the function-based index.

In addition, in order for Oracle to use function-based indexes in

queries, the QUERY_REWRITE_ENABLED parameter must be set

to TRUE, and the QUERY_REWRITE_INTEGRITY parameter must

be set to TRUSTED.
7-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text with Oracle XML DB
 INDEXTYPE IS ctxsys.context;
ALTER SESSION SET query_rewrite_enabled = true;
ALTER SESSION SET query_rewrite_integrity = trusted;

SELECT a.doc.getclobval() FROM xtest a
 WHERE CONTAINS (doc, 'simple INPATH(A)')>0;

Using Oracle Text with Oracle XML DB

Creating an Oracle Text Index on an UriType Column
UriType columns can be indexed natively in Oracle9i database using Oracle Text.

No special datastore is needed.

Example 7–11 Creating an Oracle Text Index on a UriType Column

For example:

CREATE TABLE table uri_tab (url sys.httpuritype);

INSERT INTO uri_tab VALUES
 (sys.httpuritype.createUri('http://www.oracle.com'));

CREATE INDEX urlx ON uri_tab(url) INDEXTYPE IS ctxsys.context;

SELECT url FROM uri_tab WHERE CONTAINS(url, ’Oracle’)>0;

Table 7–5 lists system parameters used for default preference names for Oracle Text

indexing, when the column type is UriType :

Table 7–5 rUriType Column Default Preference Names for Oracle Text Indexing

URIType Column Default Preference Names

DATASTORE DEFAULT_DATASTORE

FILTER DEFAULT_FILTER_TEXT

SECTION GROUP DEFAULT_SECTION_HTML

LEXER DEFAULT_LEXER

STOPLIST DEFAULT_STOPLIST

WORDLIST DEFAULT_WORDLIST

STORAGE DEFAULT_STORAGE
Searching XML Data with Oracle Text 7-37

Using Oracle Text with Oracle XML DB
Querying XML Data: Use CONTAINS or existsNode()?
Oracle9i Release 1(9.0.1) introduced the Oracle Text PATH_SECTION_GROUP,
INPATH() , and HASPATH() query operators. These allow you to do XPath-like text

query searches on XML documents using the CONTAINS operator. CONTAINS,
however, supports only a subset of XPath functionality. Also, there are important

semantic differences between the CONTAINS operator and the existsNode()
function.

The existsNode , extract() and extractValue() SQL functions (and the

corresponding member functions of XMLType) provide full XPath support. This

release of Oracle9i also introduces new extension functions to XPath to support full

text searches.

Table 7–6 lists and compares CONTAINS() and existsNode() features for

searching XMLType data.

Note: This release does not support theme querying for Oracle

Text CONTAINS() and existsNode() searching.

Table 7–6 Using CONTAINS() and existsNode() to Search XMLType Data

Feature CONTAINS() existsNode()

XPath Conformance -- --

Predicate Support -- --

■ String equality Y Y

■ Numerical equality N Y

■ Range Predicates N Y

■ XPath functions N Y

■ Spaces N Y

■ Namespaces N Y

■ Value case sensitivity N Y

■ Entity handling N Y

■ Parent-ancestor and
sibling axes

N Y
7-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text with Oracle XML DB
■ Attribute searching
under wild cards. For
example, */@A or ../

Y Y

■ Uses XML schema or
DTD information

N Y

■ Empty elements may
lead to false matches

Y N

Synchronous -- --

■ DML N CTXXPath = N

Other indexes = Y

■ Query N Y

Linguistic search capability In INPATH() -> Y Using ora:contains() -> Y

Index type ctxsys.context ctxsys.ctxxpath

Query rewrites N Y, if XML schema-based
and stored

object-relationally

Functional indexes N Y. Can create Functional
Index on existsNode() and
extractValue() expressions.

Features supported if context
index is already built

-- --

■ About Y N

■ Highlighting Y N

Text searching in general Supports full text
searching.

Supports limited text
searching with
ora:contains.

XPath searching in general Limited XPath
searching.

Non-synchronous.

Full XPath searching.
Synchronous.

Table 7–6 Using CONTAINS() and existsNode() to Search XMLType Data (Cont.)

Feature CONTAINS() existsNode()
Searching XML Data with Oracle Text 7-39

Full-Text Search Functions in XPath Using ora:contains
Full-Text Search Functions in XPath Using ora:contains
Though XPath specifies a set of builtin text functions such as substring() and

CONTAINS() , these are considerably less powerful than Oracle's full text search

capabilities. New XPath extension functions are defined by Oracle to enable a richer

set of text search capabilities. These extension functions are defined within the

Oracle XML DB namespace : http://xmlns.oracle.com/xdb .

They can be used within XPath queries appearing in the context of existsNode() ,

extract() and extractValue() functions operating on XMLType instances.

ora:contains Features
The following lists the ora:contains features:

■ The text search extension functions support most of text query operators such

as stemming, fuzzy matching, and proximity search.

■ These functions do not require a ConText index for their evaluation.

■ The score values computed by these functions may differ from the regular

index based query processing (through Contains SQL operator). Due to absence

of document statistics, the weight for each term is fixed to 10. This means that a

score for a word search is the number of occurrence multiplied by 10. If it

exceeds 100, it is truncated to 100. This is also true for fuzzy matched terms.

ora:contains Syntax
The following is the syntax for the ora:contains function:

number contains(string, string, string?, string?)

where:

■ string , the first argument is input text value

■ string , the second argument is the text query string

■ string? , the optional third argument is the policy name

■ string? , the optional fourth argument is the policy owner

Note: Like other procedures in CTX_DDL package, you must have

CTXAPP privilege in order to execute the

CTX_DDL.CREATE_POLICY() procedure.
7-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Full-Text Search Functions in XPath Using ora:contains
The contains extension function in the Oracle XML DB namespace, takes the

input text value as the first argument and the text query string as the second

argument. It returns the score value - a number between 0 and 100.

The optional third and fourth arguments can be used to specify the name and

owner of the CTX policy which is to be used for processing the text query. If the

third argument is not specified, it defaults to the CTX policy named

DEFAULT_POLICY_ORACONTAINS owned by CTXSYS. If the fourth argument is not

specified, the policy owner is assumed to be the current user.

ora:contains Examples
Assume the table xmltab contains XML documents corresponding to books with

embedded chapters, each chapter containing a title and a body .

<book>
 <chapter>
 <title>...</title>
 <body>...</body>
 </chapter>
 <chapter>
 <title>...</title>
 <body>...</body>
 </chapter>
 ...
</book>

Example 7–12 Using ora:contains to Find a Text Query String

Find books containing a chapter whose body contains the specified text query

string:

select * from xmltab x where
 existsNode(value(x), '/book/chapter[ora:contains(body,"dog OR cat")>0]',
 'xmlns:ora="http://xmlns.oracle.com/xdb"') = 1;

Example 7–13 Using ora:contains and extract() to Find a Text Query String

Extract chapters whose body contains the specified text query string.

select extract(value(x),
 '/book/chapter[ora:contains(body,"dog OR cat")>0]',
 'xmlns:ora="http://xmlns.oracle.com/xdb"')
from xmltab x;
Searching XML Data with Oracle Text 7-41

Oracle XML DB: Creating a Policy for ora:contains()
Oracle XML DB: Creating a Policy for ora:contains()
This section includes syntax and examples for creating, updating, and dropping a

policy for ora:contains() :

The following CTX_DDL procedures creates/updates/drops a policy used by

ora:contains() :

A policy is a set of preferences used for processing ora:contains() .

Table 7–7 describes the CTX_DDL functions for creating, updating, and dropping

policies for use in your XPath searches.

See Also: Oracle XML DB: Creating a Policy for ora:contains() on

page 7-42.

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

for a description of the Oracle Text preferences.
7-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB: Creating a Policy for ora:contains()
Example 7–14 Creating a Policy for ora:contains

Create lexer preference named mylex:

begin
 ctx_ddl.create_preference(’mylex’, ’BASIC_LEXER’);
 ctx_ddl.set_attribute(’mylex’, ’printjoins’, ’_-’);
 ctx_ddl.set_attribute (’mylex’, ’index_themes’, ’NO’);
 ctx_ddl.set_attribute (’mylex’, ’index_text’, ’YES’);
end;

Table 7–7 CTX_DDL Syntax for Creating, Updating, and Dropping Policies

CTX_DDL Function Description

CREATE_POLICY

CTX_DDL.create_policy(policy_name in varchar2, filter
in varchar2 default NULL, section_group in varchar2 default
NULL, lexer n varchar2 default NULL, stoplist in varchar2
default NULL, wordlist in varchar2 default NULL);

Defines a policy.

Arguments:

policy_name - the name for the new policy

filter - the filter preference to use (reserved for future use)

section_group - the section group to use (currently only
NULL_SECTION_GROUP is supported)

lexer - the lexer preference to use. This should not have
theme indexing turned on.

stoplist - the stoplist preference to use

wordlist - the wordlist preference to use

UPDATE_POLICY

CTX_DDL.update_policy(policy_name in varchar2, filter
in varchar2 default NULL, section_group in varchar2 default
NULL, lexer in varchar2 default NULL, stoplist in varchar2
default NULL, wordlist in varchar2 default NULL);

Updates a policy by replacing specified preferences.

Arguments:

policy_name - the name for the policy

filter - the new filter preference to use (reserved for future
use)

section_group - the new section group to use (currently only
NULL_SECTION_GROUP is supported)

lexer - the new lexer preference. This should not have theme
indexing turned on.

stoplist - the new stoplist preference to use

wordlist - the new wordlist preference to use

DROP_POLICY

CTX_DDL.drop_policy(policy_name in varchar2);

Deletes a policy.

Arguments:

policy_name - the name of the policy
Searching XML Data with Oracle Text 7-43

Oracle XML DB: Creating a Policy for ora:contains()
Create a stoplist preference named mystop.

begin
 ctx_ddl.create_stoplist(’mystop’, ’BASIC_STOPLIST’);
 ctx_ddl.add_stopword(’mystop’, ’because’);
 ctx_ddl.add_stopword(’mystop’, ’nonetheless’);
 ctx_ddl.add_stopword(’mystop’, ’therefore’);
end;

Create a wordlist preference named ’mywordlist’.

begin
 ctx_ddl.create_preference(’mywordlist’, ’BASIC_WORDLIST’);
 ctx_ddl.set_attribute(’mywordlist’,’FUZZY_MATCH’,’ENGLISH’);
 ctx_ddl.set_attribute(’mywordlist’,’FUZZY_SCORE’,’0’);
 ctx_ddl.set_attribute(’mywordlist’,’FUZZY_NUMRESULTS’,’5000’);
 ctx_ddl.set_attribute(’mywordlist’,’SUBSTRING_INDEX’,’TRUE’);
 ctx_ddl.set
_attribute(’mywordlist’,’STEMMER’,’ENGLISH’);
end;

exec ctx_ddl.create_policy(’my_policy’, NULL, NULL, ’mylex’, ’mystop’,
’mywordlist’);

or

exec ctx_ddl.create_policy(policy_name => ’my_policy’,
 lexer => ’mylex’,
 stoplist => ’mystop’,
 wordlist => ’mywordlist’);

Then you can issue the following existsNode() query with your own defined

policy:

select * from xmltab x where
 existsNode(value(x),
 ’/book/chapter[ora:contains(body,"dog OR cat", "my_policy")>0]’,
 ’xmlns:ora="http://xmlns.oracle.com/xdb"’) = 1;

You can also update your policy by using the following:

exec ctx_ddl.update_policy(policy_name => ’my_policy’,
 lexer => ’my_new_lex’);

You can drop your policy by using:
7-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB: Using CTXXPATH Indexes for existsNode()
exec ctx_ddl.drop_policy(policy_name => ’my_policy’);

Querying Using Other User’s Policy
You can also issue the existsNode() query using another user’s policy, in this

case, using Scott’s policy:

Example 7–15 Querying Another User’s Policy

select * from xmltab x where
 existsNode(value(x),

’/book/chapter[ora:contains(body,"dog OR cat", "Scotts_policy","Scott")>0]’,
 ’xmlns:ora="http://xmlns.oracle.com/xdb"’) = 1;

Oracle XML DB: Using CTXXPATH Indexes for existsNode()
The existsNode() SQL function, unlike the CONTAINS operator, cannot use

ConText indexes to speed up its evaluation. To improve the performance of XPath

searches in existsNode() , this release introduces a new index type, CTXXPATH.

The CTXXPATH index is a new indextype provided by Oracle Text. It is designed to

serve as a primary filter for existsNode() processing, that is, it produces a

superset of the results that would be produced by the existNode() function.

Why do We Need CTXXPATH When ConText Indexes Can Perform XPath Searches?
The existing ConText index type already has some XPath searching capabilities,

but the ConText index type has some limitations:

■ For the ConText index to be usable as a primary filter for existsNode() ,

■ You must create the index using PATH_SECTION_GROUP.

■ You cannot create the index with USER_LEXER or MULTI_LEXER
preference.

■ You must create the index with DIRECT DATASTORE.

■ You must create the index with NULL FILTER.

This limits the linguistic searching capabilities that ConText index type

provides.

■ The ConText index is asynchronous and does not follow the same

transactional semantics as existsNode() .
Searching XML Data with Oracle Text 7-45

Oracle XML DB: Using CTXXPATH Indexes for existsNode()
■ The ConText index does not handle namespaces nor user-defined entities.

With all these limitations in mind, CTXXPATH index type was designed specifically

to serve the purpose of existsNode() primary filter processing. You can still

create ConText indexes with whichever preferences you need on XMLType
columns, and this will be used to speed up CONTAINS operators. At the same time,

you can create a CTXXPATH index to speedup the processing of existsNode() .

CTXXPATH Index Type
CTXXPATH index type has the following characteristics:

■ This index can only be used to speed up existsNode() processing. It acts as

a primary filter for the existsNode() function. In other words, it provides a

superset of the results that existsNode() would provide

■ The index can only handle a limited set of XPath expressions. See the Section ,

"Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing"

for the list of XPath expressions not supported by the index.

■ The only supported parameter is the TABLESPACE parameter. See "Creating

CTXXPATH Storage Preferences with CTX_DDL. Statements" on page 7-47.

■ DMLs are asynchronous. Users are required to issue a special DDL command to

synchronize the DMLs, similar to that of ConText index.

■ Despite the asynchronous nature of DML, it still follows transactional semantics

of existsNode() by also returning unindexed rows as part of its result set in

order to guarantee its requirement of returning a superset of the valid results.

Creating CTXXPATH Indexes
You create CTXXPATH indexes the same way you create ConText indexes. The

syntax is the same as that of ConText index:

CREATE INDEX [schema.]index ON [schema.]table(XMLType column)
 INDEXTYPE IS ctxsys.CTXXPATH [PARAMETERS(paramstring)];

where

paramstring = ’[storage storage_pref] [memory memsize] [populate | nopopulate]’

Example 7–16 Creating CTXXPATH Indexes

For example:

CREATE INDEX xml_idx ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH;
7-46 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB: Using CTXXPATH Indexes for existsNode()
or

CREATE INDEX xml_idx ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH
 PARAMETERS(’storage my_storage memory 40M’);

The index can only be used to speed up queries using existsNode() :

SELECT xml_id FROM xml_tab x WHERE
 x.col_xml.existsnode(’/book/chapter[@title="XML"]’)>1;

Creating CTXXPATH Storage Preferences with CTX_DDL. Statements
The only preference allowed for CTXXPATH index type is the STORAGE preference.

You create the STORAGE preference the same way you would for a ConText index

type.

Example 7–17 Creating Storage Preferences for CTXXPATH Indexes

For example:

begin
ctx_ddl.create_preference(’mystore’, ’BASIC_STORAGE’);
ctx_ddl.set_attribute(’mystore’, ’I_TABLE_CLAUSE’,
 ’tablespace foo storage (initial 1K)’);
ctx_ddl.set_attribute(’mystore’, ’K_TABLE_CLAUSE’,
 ’tablespace foo storage (initial 1K)’);
ctx_ddl.set_attribute(’mystore’, ’R_TABLE_CLAUSE’,
 ’tablespace foo storage (initial 1K)’);
ctx_ddl.set_attribute(’mystore’, ’N_TABLE_CLAUSE’,
 ’tablespace foo storage (initial 1K)’);
ctx_ddl.set_attribute(’mystore’, ’I_INDEX_CLAUSE’,
 ’tablespace foo storage (initial 1K)’);
end;

Performance Tuning CTXXPATH Index: Synchronizing and Optimizing the Index
To synchronize DMLs, you can use the SYNC_INDEX procedure provided in the

CTX_DDL package.

See Also: Chapter 4, "Using XMLType" for more information on

using existsNode() .
Searching XML Data with Oracle Text 7-47

Oracle XML DB: Using CTXXPATH Indexes for existsNode()
Example 7–18 Optimizing the CTXXPATH Index

For example:

exec ctx_ddl.sync_index(’xml_idx’);

To optimize the CTXXPATH index, you can use the OPTIMIZE_INDEX() procedure

provided in the CTX_DDL package. For example:

exec ctx_ddl.optimize_index(’xml_idx’, ’FAST’);

or

exec ctx_ddl.optmize_index(’xml_idx’, ’FULL’);

Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing
It is not guaranteed that a CTXXPATH index will always be used to speed up

existsNode() processing . The following is a list of reasons why Oracle Text

index may not be used under existsNode():

■ The Cost Based Optimizer decides it is too expensive to use CTXXPATHindex as

primary filter.

■ The XPath expression cannot be handled by CTXXPATH index. Here are a list of

XPath constructs CTXXPATH index cannot handle:

■ XPATH functions.

■ Numerical Range operators.

■ Numerical equality.

■ Arithmetic operators.

■ Union operator “|”

■ Existence of attribute

■ Positional/Index predicate, that is, /A/B[5].

■ Parent and sibling axes

■ attribute following a *, //,.., in other words,’/A/*/@attr’, ’/A//@attr’,

’/A//../@attr’

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference
7-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques
■ ’.’ or ’*’ at the end of the path expression.

■ predicate following ’.’ or ’*’.

■ String literal equality is supported with the following restrictions:

* The left hand side must be a path (’.’ self by itself is not

allowed,.="dog”).

* The right hand side must be a literal.

For the Optimizer to better estimate the costs and selectivities for the

existsNode() function, you must gather statistics on CTXXPATH index by using

ANALYZE command or DBMS_STATS package. You can analyze the index and

compute the statistics using the ANALYZE command as follows:

ANALYZE INDEX myPathIndex COMPUTE STATISTICS;

or you can simply analyze the whole table:

ANALYZE TABLE XMLTAB COMPUTE STATISTICS;

Using Oracle Text: Advanced Techniques
The following sections describe several Oracle Text advanced techniques for

fine-tuning your XML data search.

Highlight Support for INPATH/HASPATH Text Operators
Oracle Text provides the CTX_DOC.HIGHLIGHT() procedure to generate highlight

offsets and lengths for a Text query on a document. These offsets and lengths are

generated for the terms in the document that satisfy a word query, phrase query, or

about query. In Oracle9i Release 2 (9.2.0.2), Oracle Text extends highlight support

for INPATH and HASPATH operators.

Highlighting XML Documents with INPATH
For INPATH, CTX_DOC.HIGHTLIGHT() calculates the offset and length for the left

hand child of the INPATH operator just as with the WITHIN operator. This only

applies to cases where the path child points to an element. For example, if the Text

query expression is:

'txt INPATH(/A/B)' or
'txt INPATH(/A/B[@attr="atxt" and .="Btxt"])'
Searching XML Data with Oracle Text 7-49

Using Oracle Text: Advanced Techniques
then CTX_DOC.HIGHTLIGHT() generates offsets and lengths for all occurrences of

'txt' in the document satisfying the INPATH query.

If the path child points to an attribute, then nothing is highlighted. For example, if

the Text query expression is:

'atxt INPATH(/A/B/@attr)'

then no highlight information is generated.

Highlighting XML Documents with HASPATH
For HASPATH, if its path operand points to an element, CTX_DOC.HIGHTLIGHT()
calculates the offset and length for the bodies of the element pointed to by the

XPath expression. For example, if the Text query expression is:

'HASPATH(/A/B)' or
'HASPATH(/A/B[@att="atxt"])'

then offsets and lengths are calculated for the bodies of elements pointed to by

/A/B.

If the path operand points to an attribute, such as, 'HASPATH(/A/B/@Battr)' ,

then no highlight information is generated.

If the operand does WITHIN-EQUAL/SECTION-EQUAL testing, then

CTX_DOC.HIGHTLIGHT() outputs offsets and lengths of the elements pointed to

by the path child of '='. If the path child of '=' points to an attribute, then no

highlight information is generated. For example, if the Text query expression is:

’HASPATH(/A/B = "ABtxt")' or
'HASPATH(/A/B[@att="atxt"]= "ABtxt")'

then offsets and lengths are generated for the bodies of elements pointed to by

/A/B. On the other hand, if the Text query expression is:

'HASPATH(/A/B/@att = "atxt")'

then no highlight information is generated because the path child '/A/B/@att'
points to an attribute, not an element.
7-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques
Distinguishing Tags Across DocTypes
In previous releases, XML_SECTION_GROUP was unable to distinguish between

tags in different DTDs. For example, suppose you use the following DTD for storing

contact information:

<!DOCTYPE contact>
<contact>
 <address>506 Blue Pool Road</address>
 <email>dudeman@radical.com</email>
</contact>

Appropriate sections might look like:

ctx_ddl.add_field_section('mysg','email', 'email');
ctx_ddl.add_field_section('mysg','address','address');

This is fine until you have a different kind of document in the same table:

<!DOCTYPE mail>
 <mail>
 <address>dudeman@radical.com</address>
</mail>

Now your address section, originally intended for street addresses, starts picking

up email addresses, because of tag collision.

Specifying Doctype Limiters to Distinguish Between Tags
Oracle8i release 8.1.5 and higher allow you to specify doctype limiters to distinguish

between these tags across doctypes. Simply specify the doctype in parentheses

before the tag as follows:

ctx_ddl.add_field_section('mysg','email','email');
ctx_ddl.add_field_section('mysg','address',' (contact) address');
ctx_ddl.add_field_section('mysg','email',' (mail) address');

Note: While CTX_DOC.HIGHTLIGHT() calculates and outputs

the offsets and lengths, CTX_DOC.MARKUP() goes one step further

by returning a version of the document with query terms or

element bodies marked up using specified tags.

Note that mark-ups can make the target XML document invalid.
Searching XML Data with Oracle Text 7-51

Using Oracle Text: Advanced Techniques
Now when the XML section group sees an address tag, it will index it as the address

section when the document type is contact , or as the email section when the

document type is mail .

Doctype-Limited and Unlimited Tags in a Section Group
If you have both doctype-limited and unlimited tags in a section group:

ctx_ddl.add_field_section('mysg','sec1','(type1)tag1');
ctx_ddl.add_field_section('mysg','sec2','tag1');

Then the limited tag applies when in the doctype, and the unlimited tag applies in

all other doctypes.

Querying is unaffected by this. The query is done on the section name, not the tag,

so querying for an email address would be done like:

radical WITHIN email

which, since we have mapped two different kinds of tags to the same section name,

finds documents independent of which tags are used to express the email address.

XML_SECTION_GROUP Attribute Sections
In Oracle8i Release 1(8.1.5) and higher, XML_SECTION_GROUP offers the ability to

index and search within attribute values. Consider a document with the following

lines:

<comment author="jeeves">
 I really like Oracle Text
</comment>

Now XML_SECTION_GROUP offers an attribute section. This allows the inclusion of

attribute values to index. For example:

ctx_ddl.add_attr_section('mysg','author','comment@author');

The syntax is similar to other add_section calls. The first argument is the name of

the section group, the second is the name of the section, and the third is the tag, in

the form <tag_name>@<attribute_name>. This tells Oracle Text to index the

contents of the author attribute of the comment tag as the section “author”.

Query syntax is just like for any other section:

WHERE CONTAINS (... ,’jeeves WITHIN author...’,...)...
7-52 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques
and finds the document.

Attribute Value Sensitive Section Search
Attribute sections allow you to search the contents of attributes. They do not allow

you to use attribute values to specify sections to search. For instance, given the

document:

<comment author="jeeves">
 I really like Oracle Text
</comment>

You can find this document by asking:

jeeves within comment@author

which is equivalent to “find me all documents which have a comment element

whose author attribute's value includes the word jeeves”.

However, there you cannot currently request the following:

interMedia within comment where (@author = "jeeves")

in other words, “find me all documents where interMedia appears in a comment

element whose author is jeeves”. This feature -- attribute value sensitive section

searching -- is planned for future versions of the product.

Dynamic Add Section
Because the section group is defined before creating the index, Oracle8i Release 1

(8.1.5) is limited in its ability to cope with changing structured document sets; if

your documents start coming with new tags, or you start getting new doctypes, you

have to re-create the index to start making use of those tags.

With Oracle8i Release 2 (8.1.6) and higher you can add new sections to an existing

index without rebuilding the index, using alter index and the new add section

parameters string syntax:

add zone section <section_name> tag <tag>
add field section <section_name> tag <tag> [visible | invisible]

For instance, to add a new zone section named tsec using the tag title:

alter index <indexname> rebuild
parameters ('add zone section tsec tag title')

To add a new field section named asec using the tag author:
Searching XML Data with Oracle Text 7-53

Using Oracle Text: Advanced Techniques
alter index <indexname> rebuild
parameters ('add field section asec tag author')

This field section would be invisible by default, just like when using

ADD_FIELD_SECTION. To add it as visible field section:

alter index <indexname> rebuild
parameters ('add field section asec tag author visible')

Dynamic add section only modifies the index metadata, and does not rebuild the

index in any way. This means that these sections take effect for any document

indexed after the operation, and do not affect any existing documents -- if the index

already has documents with these sections, they must be manually marked for

re-indexing (usually with an update of the indexed column to itself).

This operation does not support addition of special sections. Those would require

all documents to be re-indexed, anyway. This operation cannot be done using

rebuild online, but it should be a fairly quick operation.

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

■ Regular queries on attribute text do not hit the document unless qualified in a

within clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

A query on Tale by itself does not produce a hit on the document unless

qualified with WITHIN title@book. This behavior is like field sections when you

set the visible flag set to false.

■ You cannot use attribute sections in a nested WITHIN query.

■ Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the
aid.
Then this document would hit on the regular query good men, ignoring the

intervening attribute text.

WITHIN queries can distinguish repeated attribute sections. This behavior is like

zone sections but unlike field sections. For example, for the following document:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="Of Human Bondage">The sky broke dull and gray.</book>
7-54 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques
Assume the book is a zone section and book@author is an attribute section.

Consider the query:

'(Tale and Bondage) WITHIN book@author'

This query does not hit the document, because tale and bondage are in different

occurrences of the attribute section book@author.

Repeated Zone Sections
Zone sections can repeat. Each occurrence is treated as a separate section. For

example, if <H1> denotes a heading section, they can repeat in the same documents

as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading.

The query:

WHERE CONTAINS (..., ’Brown WITHIN Heading’, ...)...

returns this document.

But the query:

WHERE CONTAINS (...,’ (Brown and Gray) WITHIN Heading’,...)...

does not.

Overlapping Zone Sections
Zone sections can overlap each other. For example, if and <I> denote two

different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD>
 <TABLE>
 <TD>nested cell</TD>
 </TABLE>
Searching XML Data with Oracle Text 7-55

Using Oracle Text: Advanced Techniques
</TD>

Using the WITHIN operator, you can write queries to search for text in sections

within sections.

Nested Section Query Example
For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as

follows in documents doc1 and doc2:

doc1:

<book1><author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'Scott WITHIN author WITHIN book1'

This query returns only doc1.

Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View
The CTX_OBJECT_ATTRIBUTES view displays attributes that can be assigned to

preferences of each object. It can be queried by all users.

Check out the structure of CTX_OBJECTS and CTX_OBJECT_ATTRIBUTE view,

with the following DESCRIBE commands. Because we are only interested in

querying XML documents in this chapter, we focus on XML_SECTION_GROUP and

AUTO_SECTION_GROUP.

Describe ctx_objects
 SELECT obj_class, obj_name FROM ctx_objects
 ORDRR BY obj_class, obj_name;

The result is:

...
SECTION_GROUP AUTO_SECTION_GROUP <<==
SECTION_GROUP BASIC_SECTION_GROUP
SECTION_GROUP HTML_SECTION_GROUP
SECTION_GROUP NEWS_SECTION_GROUP
SECTION_GROUP NULL_SECTION_GROUP
SECTION_GROUP XML_SECTION_GROUP <<==
7-56 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings
...

Describe ctx_object_attributes
SELECT oat_attribute FROM ctx_object_attributes
 WHERE oat_object = 'XML_SECTION_GROUP';

The result is:

OAT_ATTRIBUTE

ATTR
FIELD
SPECIAL
ZONE

SELECT oat_attribute FROM ctx_object_attributes
 WHERE oat_object = 'AUTO_SECTION_GROUP';

The result is:

OAT_ATTRIBUTE

STOP

Example 7–19 Case Study: See the following section.

Case Study: Searching XML-Based Conference Proceedings
This case study uses INPATH, HASPATH, and extract() to search a XML-based

conference proceedings.

Searching for Content and Structure in XML Documents
Documents are structured presentations of information. You can define a document

as an asset that contains structure, content, and presentation. This case study

describes how to search for content and structure at the same time. All features

described here are available in Oracle9i Release 1 (9.0.1) and higher.

Note: You can download this sample application from

http://otn.oracle.com/products/text
Searching XML Data with Oracle Text 7-57

Case Study: Searching XML-Based Conference Proceedings
Consider an online conference proceedings search where the conference attendees

can perform full text searches on the structure of the papers, for example search on

title, author, abstract, and so on.

Searching XML-Based Conference Proceedings Using Oracle Text
Follow these tasks to build this conference proceedings search case study:

Task 1. Grant System Privileges. Set Initialization Parameters
You must be granted with QUERY REWRITE system privileges to create a

Functional Index. You must also have the following initialization parameters

defined to create a Functional Index:

■ QUERY_REWRITE_INTEGRITY set to TRUSTED

■ QUERY_REWRITE_ENABLED set to TRUE

■ COMPATIBLE set to 8.1.0.0.0 or a greater value

Task 2. Create Table Proceedings
For example, create a table, Proceedings with two columns: tk , the paper’s id, and

papers , the content. Store the paper’s content as an XMLType.

CREATE TABLE Proceedings (tk number, papers XMLTYPE);

Task 3. Populate Table with Data
Now populate table Proceedings with some conference papers:

INSERT INTO Proceedings(tk,papers) VALUES (1, XMLType.createXML(
'<?xml version="1.0"?>
 <paper>
 <title>Accelerating Dynamic Web Sites using Edge Side Includes</title>
 <authors>Soo Yun and Scott Davies</authors>
 <company> Oracle Corporation </company>
 <abstract> The main focus of this presentation is on Edge Side Includes
(ESI). ESI is a simple markup language which is used to mark cacheable and
non-cacheable fragments of a web page. An "ESI aware server", such as Oracle Web
Cache and Akamai EdgeSuite, can take in ESI marked content and cache and
assemble pages closer to the users, at the edge of the network, rather than at
the application server level. This session will discuss the challenge many
dynamic websites face today, discuss what ESI is, explain how ESI can be used to
alleviate these issues. The session will also describe how to build pages with
ESI, and detail the ESI and JESI (Edge Side Includes for Java) libraries.
</abstract>
7-58 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings
 <track> Fast Track to Oracle9i </track>
</paper>'));

Task 4. Create an Oracle Text Index on the XMLType Column
Create an Oracle Text index on the XMLType column, papers , using the usual

CREATE INDEX statement:

CREATE INDEX proc_idx ON Proceedings(papers)
INDEXTYPE IS ctxsys.context
parameters(’FILTER ctxsys.null_filter SECTION GROUP ctxsys.path_section_group’);

Task 5. Querying the Conference Proceedings with XPath and Contains()
Oracle9i Release 1 (9.0.1) introduced two new SQL functions existsNode() and

extract() that operate on XMLType values as follows:

■ existsNode() : given an XPath expression, checks if the XPath applied over

the XML document can return any valid nodes.

■ extract() : given an XPath expression, applies the XPath to the XML

document and returns the fragment as an XMLType.

For example, select the authors only from the XML document:

SELECT p.papers.extract('/paper/authors/text()').getStringVal()
 FROM Proceedings p;

You can use the Oracle Text CONTAINS() operator to search for content in a text or

XML document. For example, to search for papers that contain “Dynamic” in the

title you can use:

SELECT tk FROM Proceedings
WHERE CONTAINS(papers,'Dynamic INPATH(paper/title)')>0

Using the CONTAINS() operator Oracle9i returns the columns selected. For an XML

document it returns the entire document. To extract fragments of XML, you can

combine the extract() function to manipulate the XML. For example, select the

authors of papers that contain “Dynamic” in the title:

SELECT p.papers.extract('/paper/authors/text()').getStringVal()
FROM Proceedings p
WHERE CONTAINS(papers,'Dynamic INPATH(paper/title)')>0

You can use all the functionality of an Oracle Text query for the content search. The

following example selects the authors of papers containing “Dynamic” or “Edge” or

“Libraries” in the title:
Searching XML Data with Oracle Text 7-59

Case Study: Searching XML-Based Conference Proceedings
SELECT p.papers.extract('/paper/authors/text()').getStringVal()
FROM Proceedings p
WHERE CONTAINS(papers,'Dynamic or Edge or Libraries INPATH(paper/title)')>0

Traditional databases allow searching of XML content or structure, but not both at

the same time. Oracle provides unique features that enable querying of both XML

content and structure at the same time.

Figure 7–1 illustrates entering the search for “Libraries” in the structure of the

Conference Proceedings documents. You can search for “Libraries” within Authors,

abstract, title, company, or track. In this example, you are searching for the term

“Libraries” in the abstracts only. Since it is an XML document your are searching,

you can even select which fragment of the XML document you want to display. This

example only displays the title of the paper.

Figure 7–2 shows the search results.

For the .jsp code to build this look-up application, see "Searching Conference

Proceedings Example: jsp" on page 7-62.

See Also:

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ http://otn.oracle.com/products/text
7-60 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings
Figure 7–1 Using Oracle Text to Search for “Libraries” in the Conference Proceedings Abstracts

Figure 7–2 Oracle Text Search Results
Searching XML Data with Oracle Text 7-61

Case Study: Searching XML-Based Conference Proceedings
Searching Conference Proceedings Example: jsp
Here is the full jsp example illustrating how you can use Oracle Text to create an

online XML-based Conference Proceedings look-up application.

<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@oalonso-sun:1521:betadev";
java.util.Properties info = new java.util.Properties();
Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) { %>
<html>
 <title>OOW Paper Search</title>
 <body>
 <center>
 <h3>OOW Proceedings Search </h3>
 <form method=post>
 Search for
 <input type=text size=15 maxlength=25 name=query>
 in
 <select name="tagvalue">
 <option value="authors">Author(s)
 <option value="abstract">Abstract
 <option value="title">Title
 <option value="company">Company
 <option value="track">Track
 </select>
 <input type=submit value="Search">
 <p>Display

 <table>
 <tr>
 <td>
 Author(s)<input type="radio" name="section" value="authors">
 </td>
 <td>
 Abstract <input type="radio" name="section" value="abstract">
 </td>
 <td>
 Title <input type="radio" name="section" value="title" checked>
7-62 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings
 </td>
 <td>
 Company <input type="radio" name="section" value="company">
 </td>
 <td>
 Track <input type="radio" name="section" value="track">
 </td>
 </tr>
 </table>
 </form>
 </center>
 <hr>
 </body>
 </html>

 <%
 }
 else {
 %>

 <html>
 <title>OOW Paper Search</title>
 <body>
 <center>
 <h3>OOW Proceedings Search </h3>
 <form method=post action="oowpapersearch.jsp">
 Search for
 <input type=text size=15 maxlength=25 name="query" value=<%=
name.getValue() %>>
 in
 <select name="tagvalue">
 <option value="authors">Author(s)
 <option value="abstract">Abstract
 <option value="title">Title
 <option value="company">Company
 <option value="track">Track
 </select>
 <input type=submit value="Search">
 <p>Display

 Author(s)<input type="radio" name="section" value="authors">
 Abstract <input type="radio" name="section" value="abstract">
 Title <input type="radio" name="section" value="title" checked>
 Company <input type="radio" name="section" value="company">
 Track <input type="radio" name="section" value="track">
 </form>
Searching XML Data with Oracle Text 7-63

Case Study: Searching XML-Based Conference Proceedings
 </center>

 <%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("query")+"
INPATH(paper/"+request.getParameter("tagvalue")+")";

 String tagValue = request.getParameter("tagvalue");
 String sectionValue = request.getParameter("section");

 // select p.papers.extract('/paper/authors').getStringVal()
 // from oowpapers p
 // where contains(papers,'language inpath(paper/abstract)')>0

 String myQuery = "select
p.papers.extract('/paper/"+request.getParameter("section")+"/text()').getStringV
al() from oowpapers p where contains(papers,'"+theQuery+"')>0";

 rset = stmt.executeQuery(myQuery);
String color = "ffffff";
 String myDesc = null;

 int items = 0;
 while (rset.next()) {
 myDesc = (String)rset.getString(1);
 items++;
 if (items == 1) {
 %>

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th><%= sectionValue %></th>
 </tr>
 <% } %>

 <tr bgcolor="#<%= color %>">
 <td> <%= myDesc %></td>
7-64 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }
 } catch (SQLException e) {
 %>
 Error: <%= e %><p>
 <%
 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }
 %>
 </table>
 </center>
 </body></html>
 <%
 }
%>

Frequently Asked Questions About Oracle Text
This Frequently Asked Questions (FAQs) section is divided into the following

categories:

■ FAQs: General Questions About Oracle Text

■ FAQs: Searching Attribute Values with Oracle Text

■ FAQs: Searching XML Documents in CLOBs Using Oracle Text

FAQs: General Questions About Oracle Text

Can I Use a CONTAINS() Query with an XML Function to Extract an XML
Fragment?
Answer: Yes you can. See "Querying XML Data: Use CONTAINS or existsNode()?"

on page 7-38.
Searching XML Data with Oracle Text 7-65

Frequently Asked Questions About Oracle Text
Can XML Documents Be Queried Like Table Data?
I know that an intact XML document can be stored in a CLOB in Oracle’s XML

solution.

Can XML documents stored in a CLOB or a BLOB be queried like table schema? For

example:

[XML document stored in BLOB]...<name id="1111"><first>lee</first>
<sencond>jumee</second></name>...

Can value (lee, jumee) be queried by elements, attributes, and the structure of

XML document?

Answer: Using Oracle Text, you can find this document with a queries such as:

lee within first
jumee within second
1111 within name@id

You can combine these like this:

lee within first and jumee within second, or
(lee within first) within name.

For more information, please read the Oracle Text Technical Overview available on

OTN at http://otn.oracle.com/products/text

Can I Edit Individual XML Elements?
If some element or attribute is inserted, updated, or deleted, must the whole

document be updated? Or can insert, update, and delete function as in table

schema?

Answer: Oracle Text indexes CLOB and BLOB, and this has no knowledge about

XML specifically, so you cannot really change individual elements. You have to edit

the document as a whole.

How Are XML Files Locked in CLOBs and BLOBs?
About locking, if we manage an XML document stored in a CLOB or a BLOB, can

anyone access the same XML document?

Answer: Just like any other CLOB, if someone is writing to the CLOB, they have it

locked and nobody else can write to the CLOB. Other users can read it, but not write

to it. This is basic LOB behavior.
7-66 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
An alternative is to decompose the XML document and store the information in

relational fields. Then you can modify individual elements, have element-level

simultaneous access, and so on. In this case, using something called the

USER_DATASTOREand PL/SQL, you can reconstitute the document to XML for text

indexing. Then, you can search the text as if it were XML, but manage the data as if

it were relational data. Again, see the Oracle Text Technical Overview for more

information at: http://otn.oracle.com/products/text .

How Can I Search XML Documents and Return a Zone?
I need to store a large XML file, search it, and return a specific tagged area. Using

Oracle Text some of this is possible:

■ I can store an XML file in a CLOB field

■ I can index it with ctxsys.context

■ I can create <Zones> and <Fields> to represent the tags in my XML file Ex.
ctx_ddl.add_zone_section(xmlgroup,”dublincore”, dc);

■ I can search for text within a zone or fieldEx . Select title from mytable where

CONTAINS(textField,”some words WITHIN doubleness”)

How do I return a zone or a field based on a text search?

Answer: Oracle Text will only return the “hits”. You can use Oracle Text doc service

to highlight or mark up the section, or you can store the CLOB in an XMLType

column and use the extract() function.

How Do I Load XML Documents into the Database?
How do I insert XML documents into a database? I need to insert the XML

document as-is in column of datatype CLOB into a table.

Answer: Oracle's XML SQL Utility for Java offers a command-line utility that can be

used for loading XML data. More information can be found on the XML SQL Utility

at the following Web site:

http://otn.oracle.com/tech/xml

as well as in Chapter 7, "XML SQL Utility (XSU)".

You can insert the XML documents as you would any text file. There is nothing

special about an XML-formatted file from a CLOB perspective.
Searching XML Data with Oracle Text 7-67

Frequently Asked Questions About Oracle Text
How Do I Search XML Documents with Oracle Text?
Can Oracle Text be used to index and search XML stored in CLOBs? How can we get

started?

Answer: Versions of Oracle Text before Oracle8i Release 2 (8.1.6) only allowed

tag-based searching. The current version allows for XML structure and attribute

based searching. There is documentation on how to have the index built and the

SQL usage in the Oracle Text documentation.

How Do I Search XML Using the WITHIN Operator?
I have this XML code:

<person>
 <name>efrat</name>
 <childrens>
 <child>
 <id>1</id>
 <name>keren</name>
 </child>
 </childrens>
</person>

How do I find the person who has a child name keren but not the person's name

keren ? This assumes I defined every tag with the add_zone_section that can be

nested and can include themselves.

Answer: Use ’(keren within name) within child ’.

Where Can I Find Examples of Using Oracle Text to Search XML?
Answer: See the following manuals:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

Does Oracle Text Automatically Recognize XML Tags?
Can Oracle Text recognize the tags in my XML document or do I have to use the

add_field_section command for each tag in the XML document? My XML

documents have hundreds of tags. Is there an easy way to do this?

See Also: Oracle Text Reference.
7-68 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
Answer: Which version of the database are you using? I believe you need to use

that command for Oracle8 release 8.1.5 but not in Oracle8i release 2 (8.1.6). You can

use AUTO_SECTION_GROUP in Oracle8i release 2 (8.1.6).

XSQL Servlet ships with a complete (albeit simple from the Oracle Text standpoint)

example of a SQL script that creates a complex XML datagram out of object types,

and then creates an Oracle Text index on the XML document fragment stored in the

Insurance Claim type.

If you download the XSQL Servlet, and look at the file

./xsql/demo/insclaim.sql you'll be able to see the Oracle Text stuff at the

bottom of the file. One of the key new features in Oracle Text in Oracle8i release 2

(8.1.6) was the AUTO Section for XML.

Can I Do Range Searching with Oracle Text?
I have an XML document that I have stored in CLOB. I have also created the indexes

on the tags using section_group , and so on. One of the tags is <SALARY>
</SALARY>. I want to write a SQL statement to select all the records that have

salary of greater than 5000 . How do I do this? I cannot use the WITHIN operator.

I want to interpret the value present in this tag as a number. This could be a floating

point number also since this is salary.

Answer: You cannot do this in Oracle Text. Range search is not really a text

operation. The best solution is to use the other Oracle XML parsing utilities to

extract the salary into a NUMBER field. Then, you can use Oracle Text for text

searching, and normal SQL operators for the more structured fields, and achieve the

same results.

Can Oracle Text Do Section Extraction?
We are storing all our documents in XML format in a CLOB. Are there utilities

available in Oracle, perhaps Oracle Text, to retrieve the contents a field at a time?

That is, given a field name, can I get the text between tags, as opposed to retrieving

the whole document and traversing the structure?

Answer: Oracle Text does not do section extraction. See the XML SQL Utility for

this.

Can I Create a Text Index on Three Columns?
I have created a view based on seven to eight tables and it has columns like

custordnumber , product_dsc , qty , prdid , shipdate , ship_status , and so

on. I need to create an Oracle Text index on the three columns:
Searching XML Data with Oracle Text 7-69

Frequently Asked Questions About Oracle Text
■ custordnumber

■ product_dsc

■ ship_status

Is there a way to create a Text index on these columns?

Answer: The short answer is yes. You have two options:

1. Use the USER_DATASTORE object to create a concatenated field on the fly

during indexing; or

2. Concatenate your fields and store them in an extra CLOB field in one of your

tables. Then, create the index on the CLOB field. If you're using Oracle8i release

2 (8.1.6) or higher, then you also have the option of placing XML tags around

each field prior to concatenation. This gives you the capability of searching

within each field.

How Fast Is Oracle9i at Indexing Text? Can I Just Enable Boolean Searches?
We are using mySQL to do partial indexing of 9 million Web pages a day. We are

running on a 4-processor Sparc 420 and are unable to do full text indexing. Can

Oracle8i or Oracle9i do this?

We are not interested in transactional integrity, applying any special filters to the

text pages, or in doing any other searching other than straight boolean word

searches (no scoring, no stemming, no fuzzy searches, no proximity searches, and so

on).

I have are the following questions:

■ Will Oracle8i or Oracle9i be any faster at indexing text than mySQL?

■ If so, is there a way to disable all the features of text indexing except for boolean

word searches?

Answer: Yes. Oracle Text can create a full-text index on 9 million Web pages - and

pretty quickly. In a benchmark on a large Sun box, we indexed 100 GB of Web pages

(about 15 million) in 7 hours. We can also do partial indexing through regular DML

or (in Oracle9i) through partitioning.

You can do “indexing lite” to some extent by disabling theme indexing. You do not

need to filter documents if they are already in ASCII, HTML, or XML, and most

common expansions, like fuzzy, stemming, and proximity, are done at query time.
7-70 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
FAQs: Searching Attribute Values with Oracle Text

Can I Build Text Indexes on Attribute Values?
Currently Oracle Text has the option to create indexes based on the content of a

section group. But most XML elements are of the type Element . So, the only option

for searching would be attribute values. Can I build indexes on attribute values?

Answer: Oracle8 release 8.1.6 and higher allow attribute indexing. See the following

site:

http://otn.oracle.com/products/intermedia/htdocs/text_trainin
g_816/Samples/imt_816_techover.html#SCN

FAQs: Searching XML Documents in CLOBs Using Oracle Text

How Can I Search Different XML Documents Stored in CLOBs?
I store XML in CLOBs and use the DOM or SAX parsers to reparse the XML later as

needed. How can I search this document repository? Oracle Text seems ideal. Do

you have an example of setting this up using interMedia in Oracle8i, demonstrating

how to define the XML_SECTION_GROUP and where to use a ZONE as opposed to a

FIELD , and so on? For example:

How would I define interMedia parameters so that I would be able to search my

CLOB column for records that had the values aorta and damage using the

following XML (the DTD of which is implied)

WellKnownFileName.gif <keyword>echo</keyword>
<keyword>cardiogram aorta</keyword>

This is an image of the vessel damage.

Answer: Oracle8i release 2 (8.1.6) and higher allow searching within attribute text.

That's something like: state within book@author . Oracle now offers attribute

value sensitive search, more like the following:

state within book[@author = “Eric”]:

begin ctx_ddl.create_section_group('mygrp','basic_section_group');
 ctx_ddl.add_field_section('mygrp','keyword','keyword');
 ctx_ddl.add_field_section('mygrp','caption','caption');
end;
create index myidx on mytab(mytxtcolumn)indextype is ctxsys.contextparameters
Searching XML Data with Oracle Text 7-71

Frequently Asked Questions About Oracle Text
('section group mygrp');
select * from mytab where contains(mytxtcolumn, 'aorta within keyword')>0;
options:

■ Use XML section group instead of basic section group if your tags have

attributes or you need case-sensitive tag detection.

■ Use zone sections instead of field sections if your sections overlap, or if you

need to distinguish between instances. For instance, if keywords is a field

section, then (aorta and echo cardiogram) within keywords finds

the document. If it is a zone section, then it does not, because they are not in the

SAME instance of keywords .

How Do I Store an XML Document in a CLOB Using Oracle Text?
I need to store XML files, which are currently on the file system, in the database. I

want to store them as whole documents; that is, I do not want to break the

document down by tags and then store the info in separate tables or fields. Rather, I

want to have a universal table, that I can use to store different XML documents. I

think internally it will be stored in a CLOB type of field. My XML files will always

contain ASCII data.

Can this be done using Oracle Text? Should we be using Oracle Text or Oracle Text

Annotator for this? I downloaded Annotator from OTN, but I could not store XML

documents in the database.

I am trying to store XML documents in a CLOB column. Basically I have one table

with the following definition:

CREATE TABLE xml_store_testing
(
 xml_doc_id NUMBER,
 xml_doc CLOB)

I want to store my XML document in an xml_doc field.

I have written the following PL/SQL procedure, to read the contents of the XML

document. The XML document is available on the file system and contains just

ASCII data, no binary data.

CREATE OR REPLACE PROCEDURE FileExec
(
 p_Directory IN VARCHAR2,
 p_FileName IN VARCHAR2)
 AS v_CLOBLocator CLOB;
 v_FileLocator BFILE;
7-72 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
BEGIN
 SELECT xml_doc
 INTO v_CLOBLocator
 FROM xml_store_testing
 WHERE xml_doc_id = 1
 FOR UPDATE;
 v_FileLocator := BFILENAME(p_Directory, p_FileName);
 DBMS_LOB.FILEOPEN(v_FileLocator, DBMS_LOB.FILE_READONLY);
 dbms_output.put_line(to_char(DBMS_LOB.GETLENGTH(v_FileLocator)));
 DBMS_LOB.LOADFROMFILE(v_CLOBLocator, v_FileLocator,
 DBMS_LOB.GETLENGTH(v_FileLocator));
 DBMS_LOB.FILECLOSE(v_FileLocator);
END FileExec;

Answer: Put the XML documents into your CLOB column, then add an Oracle Text

index on it using the XML_SECTION_GROUP. See the documentation and overview

material at this Web site: http://otn.oracle.com/products/intermedia.

Is Storing XML in CLOBs Affected by Character Set?
When I put my XML documents in a CLOB column, then add an Oracle Text index

using the XML section-group, it executes successfully. But when I select from the

table I see unknown characters in the table in CLOB field. Could this be because of

the character set difference between operating system, where XML file resides, and

database, where CLOB data resides?

Answer: Yes. If the character sets are different then you probably have to pass the

data through UTL_RAW.CONVERT to do a character set conversion before writing to

the CLOB.

Can I Only Insert Structured Data When the Table is Created?
I need to insert data in the database from an XML file. Currently I can only insert

structured data with the table already created. Is this correct?

I am working in a law project where we need to store laws containing structured

data and unstructured data, and then search the data using Oracle Text. Can I insert

unstructured data too? Or do I need to develop a custom application to do it? Then,

if I have the data stored with some structured parts and some unstructured parts,

can I use Oracle Text to search it? If I stored the unstructured part in a CLOB, and the

CLOB has tags, how can I search only data in a specific tag?

Answer: Consider usingOracle9iFS, which enables you to break up a document and

store it across tables and in a LOB. Oracle Text can perform data searches with tags

and is knowledgeable about the hierarchical XML structure. From Oracle8i release 2
Searching XML Data with Oracle Text 7-73

http://technet.oracle.com/products/intermedia
http://technet.oracle.com/products/intermedia

Frequently Asked Questions About Oracle Text
(8.1.6), Oracle Text has had this capability, along with name/value pair attribute

searches.

Can I Break an XML Document Without Creating a Custom Development?
Is document breaking possible if I don't create a custom development? Although

Oracle Text does not understand hierarchical XML structure, can I do something

like this?

<report>
 <day>yesterday</day> there was a disaster <cause>hurricane</cause>
</report>

Indexing with Oracle Text, I would like to search LOBs where cause was hurricane.

Is this possible?

Answer: You can perform that level of searching with the current release of Oracle

Text. Currently, to break a document up you have to use the XML Parser with XSLT

to create a style sheet that transforms the XML into DDL. Oracle9iFS gives you a

higher level interface.

Another technique is to use a JDBC program to insert the text of the document or

document fragment into a CLOB or LONG column, then do the searching using the

CONTAINS() operator after setting up the indexes.

What Is the Syntax for Creating a Substring Index with XML_SECTION_GROUP?
I have a CLOB column that has an existing XML_SECTION_GROUP index on certain

tags within the XML content of the CLOB, as follows:

begin
 ctx_ddl.create_section_group('XMLDOC','XML_SECTION_GROUP');
 end;
 /
 begin
 ctx_ddl.add_zone_section ('XMLDOC','title','title');
 ctx_ddl.add_zone_section('XMLDOC','keywords','keywords');
 ctx_ddl.add_zone_section('XMLDOC','author','author');
 end;
 /
 create index xmldoc_idx on xml_documents(xmldoc)
 indextype is ctxsys.context
 parameters ('section group xmldoc') ;

I need to search on the 'author' zone section by the first letter only. I believe I should

use a substring index but I am unsure of the syntax to create a substring index.
7-74 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
Especially when I have already declared a SECTION_GROUP preference on this

column and I would also need to create a WORDLIST preference.

Answer. The main problem here is that you cannot apply that fancy substring

processing just to the author section. It will apply to everything, which will

probably blow up the index size. Anything you do will require reindexing the

documents, so you cannot really get around having to rebuild the index entirely.

Here are various ways to solve your problem:

1. Do nothing. Query just like: Z% WITHIN AUTHOR

Pro: You do not have to rebuild the index.

Con: The query is slow. Some queries cannot be executed due to wildcard

maxterms limits.

2. Create a wordlist preference with PREFIX_INDEX set to TRUE,

PREFIX_MIN_LENGTH set to 1, and PREFIX_MAX_LENGTH set to 1. The

query looks like: Z% WITHIN AUTHOR

Pro: This is a moderately fast query.

Con: You must use Oracle8i Release 3 (8.1.7) or higher or you will get ’junk’

from words from other sections.

3. As in the preceding, plus make AUTHOR, KEYWORDS, TITLE field sections.

Pro: This faster query than 2.

Con: The field sections are less flexible with regards to. nesting and repeating

occurrences.

4. Use a user_datastore or procedure_filter to transform the data so that:

<AUTHOR>Steven King</AUTHOR>

becomes

<AUTHORINIT>AIK</AUTHORINIT><AUTHOR>Steven King<AUTHOR>

Use field section for AUTHORINIT and query becomes:

AIK within AUTHORINIT

I used AIK instead of just K so that you do not have to make I and A

non-stopwords.

Pro: This is the fastest query and the smallest index.
Searching XML Data with Oracle Text 7-75

Frequently Asked Questions About Oracle Text
Con: It involves the most work as you have to massage the data so it slows

down indexing.

Why Does the XML Search for Topic X with Relevance Y Give Wrong Results?
We are using Sun SPARC Solaris 5.8, Oracle8i Enterprise Edition Release 3

(8.1.7.2.0), Oracle Text. We are indexing XML documents that contain attributes

within the XML tags. One of the sections in the XML is a list of subjects associated

with the document. Each subject has a relevance associated with it. We want to

search for topic x with relevance y but we get the wrong results. For example: The

data in some of the rows look like this, considering subject PA:

DOC 1 --> Story_seq_num = 561106
<ne-metadata.subjectlist>
 <ne-subject code="PA" source="NEWZ" relevance="50" confidence="100"/>
 <ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>
 <ne-subject code="LENF" source="NEWZ" relevance="100" confidence="100"/>
 <ne-subject code="TRAN" source="NEWZ" relevance="100" confidence="100"/>
</ne-metadata.subjectlist>
DOC 2 --> Story_seq_num =561107
<ne-metadata.subjectlist>
 <ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>
...
If users wants subject PA with relevance = 100, only DOC 2 should be returned.

Here is a test case showing the results:

Are these the expected results?

TABLE

drop table t_stories1 ;
create table t_stories1 as select * from t_Stories_bck
where story_Seq_num in (561114,562571,562572,561106,561107);

INDEX SECTIONS

BEGIN
-- Drop the preference if it already exists
CTX_DDL.DROP_SECTION_GROUP('sg_nitf_story_body2');
END;
/
BEGIN
--Define a section group
ctx_ddl.create_section_group ('sg_nitf_story_body2','xml_section_group');
-- Create field sections for headline and body
ctx_ddl.add_field_section('sg_nitf_story_body2','HL','hedline',true);
7-76 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

, 'PA
ctx_ddl.add_field_section('sg_nitf_story_body2','ST','body.content', true);
--Define attribute sections for the source fields
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'P', 'ne-provider@id');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'C', 'ne-publication@id');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'S', 'ne-publication@section');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'D', 'date.issue@norm');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'SJ', 'ne-subject@code');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'SJR', 'ne-subject@relevance');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'CO', 'ne-company@code');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'TO', 'ne-topic@code');
ctx_ddl.add_attr_section('sg_nitf_story_body2', 'TK', 'ne-orgid@value');

 ENd;
 /

creating the index

drop index ix_stories ;
CREATE INDEX ix_stories on T_STORIES1(STORY_BODY)
 INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('SECTION GROUP sg_nitf_story_body2 STORAGE ixst_story_body ');
-- testing the index

--We are looking for the subject PA with relevance = 100

--query that gives us the correct results

SELECT STORY_SEQ_NUM, STORY_BODY FROM T_STORIES1 WHERE CONTAINS(STORY_BODY, 'PA
WITHIN SJ')>0;

--Query that gives us the wrong results

SELECT STORY_SEQ_NUM, STORY_BODY FROM T_STORIES1 WHERE CONTAINS(STORY_BODY
WITHIN SJ AND 100 within SJR')>0;

The data in some of the rows look like this:

Story_seq_num = 561106
<ne-metadata.subjectlist>
 <ne-subject code="PA" source="NEWZ" relevance="50" confidence="100"/>
 <ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>
 <ne-subject code="LENF" source="NEWZ" relevance="100" confidence="100"/>
 <ne-subject code="TRAN” source=”NEWZ” relevance=”100”

confidence=”100”/>

</ne-metadata.subjectlist>
Searching XML Data with Oracle Text 7-77

Frequently Asked Questions About Oracle Text
Story_seq_num =561107
<ne-metadata.subjectlist>
 <ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>
...

We are looking for the subject PA with relevance = 100

Only Story_seq_num = 561107 should be returned

The results are wrong because we wanted the subjects PA that have relevance =100.

We get back story_seq_num=561106 that has relevance = 50 <ne-subject code="PA”

source=”NEWZ” relevance=”50” confidence=”100”/>

SQL> connect sosa/sosa
Connected.
SQL> select object_name, object_type from user_objects;

OBJECT_NAME
--
OBJECT_TYPE

IX_STORIES
INDEX
SYS_LOB0000025364C00005$$
LOB
SYS_LOB0000025364C00009$$
LOB

OBJECT_NAME
--
OBJECT_TYPE

SYS_LOB0000025364C00014$$
LOB
SYS_LOB0000025364C00016$$
LOB
T_STORIES1
TABLE

6 rows selected.

SQL> drop index ix_stories force;

Index dropped....
7-78 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text
Answer. Oracle8i Release 3(8.1.7) is not able to this kind of search. You need the

PATH section group in Oracle9i Release 1 (9.0.1), which has a much more

sophisticated understanding of such relationships. To do this in 8.1.7 you would

have to re-format the documents (possibly through a procedure filter or user

datastore), use zone sections, and nested withins, so that:

...

became

<A>C<D>E</D>...

and queries are like:

(C within B and E within D) within A in 9.0.1, you should be able to use

PATH_SECTION_GROUP on the unmodified data, with a query like:

haspath(//ne-subject[@code = "PA" and @relevance = "100"])
Searching XML Data with Oracle Text 7-79

Frequently Asked Questions About Oracle Text
7-80 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part III

 Using XMLType APIs to Manipulate XML

Data

Part III of this manual introduces you to ways you can use Oracle XML DB

XMLType Pl/SQL and Java APIs to access and manipulate XML data. Part III

contains the following chapters:

■ Chapter 8, "PL/SQL API for XMLType"

■ Chapter 9, "Java API for XMLType"

PL/SQL API for XM
8

PL/SQL API for XMLType

This chapter describes the use of the APIs for XMLType in PL/SQL. It contains the

following sections:

■ Introducing PL/SQL APIs for XMLType

■ PL/SQL DOM API for XMLType (DBMS_XMLDOM)

■ PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

■ PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
LType 8-1

Introducing PL/SQL APIs for XMLType
Introducing PL/SQL APIs for XMLType
This chapter describes the PL/SQL Application Program Interfaces (APIs) for

XMLType. These include the following:

■ PL/SQL DOM API for XMLType (package DBMS_XMLDOM): For accessing

XMLType objects. You can access both XML schema-based and

non-schema-based documents. Before database startup, you must specify the

read-from and write-to directories in the initialization.ORA file for example:

UTL_FILE_DIR=/mypath/insidemypath

The read-from and write-to files must be on the server file system.

■ PL/SQL XML Parser API for XMLType (package DBMS_XMLPARSER): For

accessing the contents and structure of XML documents.

■ PL/SQL XSLT Processor for XMLType (package DBMS_XSLPROCESSOR): For

transforming XML documents to other formats using XSLT.

Backward Compatibility with XDK for PL/SQL, Oracle9 i Release 1 (9.0.1)
This release maintains support for the XDK for PL/SQL:

■ XML Parser for PL/SQL

■ XSLT Processor for PL/SQL

to ensure backward compatibility. Therefore, most applications written for Oracle9i
Release 1 (9.0.1) XML Parser for PL/SQL and XSLT Processor for PL/SQL instances

will need no changes. In this release, new applications built with the updated

PL/SQL DOM and the extensions to XMLType API do not need the XDK’s XML

Parser for PL/SQL and XSLT Processor for PL/SQL.

If Your Application Uses Character-Set Conversions and File Systems
Applications that extensively use character-set conversions and file system

interaction require some changes. The changes needed are due to the UTL_FILE
package limitations, such as read/write to files in the UTL_FILE_DIR specified at

database start-up.

See Also: Oracle9i XML Developer’s Kits Guide - XDK
8-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing PL/SQL APIs for XMLType
Differences Between PL/SQL API for XMLType and XDK for PL/SQL
This section explains differences between PL/SQL APIs native to Oracle XML DB

and PL/SQL APIs available in XML Developer’s Kits (XDK).

■ PL/SQL APIs for XMLType. Use PL/SQL APIs for XMLType for developing

applications that run on the server. PL/SQL APIs for XMLTYpe in Oracle XML

DB provide native XML support within the database.

■ Oracle XML XDK for PL/SQL. Use Oracle XDK for PL/SQL for middle-tier and

client-side XML support.

PL/SQL APIs For XMLType Features
The PL/SQL APIs for XMLType allow you to perform the following tasks:

■ Create XMLType tables, columns, and views

■ Access XMLType data

■ Manipulate XMLType data

Note: In this release, the PL/SQL packages DBMS_XMLDOM,

DBMS_XMLPARSER, and DBMS_XSLPROCESSOR, replace the

previous XDK packages XMLDOM, XMLPARSER, and

XSLPROCESSOR.

Note: Oracle XML DB APIs are natively integrated in Oracle9i
Release 2 (9.2) and not available separately. Oracle XML DB APIs

cannot be downloaded from Oracle Technology Network (OTN).

However, Oracle XDKs are available separately for download from

OTN: http://otn.oracle.com/tech/xml/content.html.

See Also: "PL/SQL DOM API for XMLType (DBMS_XMLDOM)"

on page 8-5
PL/SQL API for XMLType 8-3

Introducing PL/SQL APIs for XMLType
Lazy XML Loading (Lazy Manifestation)
Because XMLType provides an in-memory or virtual Document Object Model

(DOM), it can use a memory conserving process called lazy XML loading, also

sometimes referred to as lazy manifestation. This process optimizes memory usage by

only loading rows of data as they are requested. It throws away

previously-referenced sections of the document if memory usage grows too large.

Lazy XML loading supports highly scalable applications that have many concurrent

users needing to access large XML documents.

XMLType Datatype Now Supports XML Schema
The XMLType datatype has been enhanced in this release to include support for

XML schemas. You can create an XML schema and annotate it with XML to object-

relational mappings. To take advantage of the PL/SQL DOM API, first create an

XML schema and register it. Then when you create XMLType tables and columns,

you can specify that these conform to the XML schema you defined and registered

with Oracle XML DB.

With PL/SQL APIs for XMLType You Can Modify and Store XML Elements
While typical XML parsers give read access to XML data in a standard way, they do

not provide a way to modify and store individual XML elements.

What are Elements? An element is the basic logical unit of an XML document and

acts as a container for other elements such as children, data, attributes, and their

values. Elements are identified by start-tags, as in <name> , and end-tags, as in

</name> , or in the case of empty elements, <name/> .

What is a DOM Parser? An embedded DOM parser accepts an XML-formatted

document and constructs an in-memory DOM tree based on the document’s

structure. It then checks whether or not the document is well-formed and optionally

whether it complies with a specific Document Type Definition (DTD). A DOM

parser also provides methods for traversing the DOM tree and return data from it.

See Also:

■ "Key Features of Oracle XML DB" on page 8-2 in Chapter 1,

"Introducing Oracle XML DB", for an overview of the Oracle

XML DB architecture and new features.

■ Chapter 4, "Using XMLType"

■ Oracle9i XML API Reference - XDK and Oracle XML DB
8-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
If you use the PL/SQL DOM API, you can use the NamedNodeMap methods to

retrieve elements from an XML file.

Server-Side Support PL/SQL APIs for XMLType support processing on the server

side only. Support for client-side processing is not provided in this release.

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

Introducing W3C Document Object Model (DOM) Recommendation
Skip this section if you are already familiar with the generic DOM specifications

recommended by the World Wide Web Consortium (W3C).

The Document Object Model (DOM) recommended by the W3C is a universal API

to the structure of XML documents. It was originally developed to formalize

Dynamic HTML, which allows animation, interaction and dynamic updating of

Web pages. DOM provides a language and platform-neutral object model for Web

pages and XML document structures in general. The DOM describes language and

platform-independent interfaces to access and to operate on XML components and

elements. It expresses the structure of an XML document in a universal,

content-neutral way. Applications can be written to dynamically delete, add, and

edit the content, attributes, and style of XML documents. Additionally, the DOM

makes it possible to write applications that work properly on all browsers and

servers and on all platforms.

A brief summary of the state of the DOM Recommendations is provided in this

section for your convenience.

W3C DOM Extensions Not Supported in This Release
The only extensions to the W3C DOM API not supported in this release are those

relating to client-side file system input and output, and character set conversions.

This type of procedural processing is available through the SAX interface.

Supported W3C DOM Recommendations
All Oracle XML DB APIs for accessing and manipulating XML comply with

standard XML processing requirements as approved by the W3C. PL/SQL DOM

supports Levels 1 and 2 from the W3C DOM specifications.

■ In Oracle9i Release 1 (9.0.1), the XDK for PL/SQL implemented DOM Level 1.0

and parts of DOM Level 2.0.
PL/SQL API for XMLType 8-5

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ In Oracle9i Release 2 (9.2), the PL/SQL API for XMLType implements DOM

Levels 1.0 and Level 2.0 Core, and is fully integrated in Oracle9i database

through extensions to the XMLType API.

The following briefly describe each level:

■ DOM Level 1.0. The first formal Level of the DOM specifications, completed in

October 1998. Level 1.0 defines support for XML 1.0 and HTML.

■ DOM Level 2.0. Completed in November 2000, Level 2.0 extends Level 1.0 with

support for XML 1.0 with namespaces and adds support for Cascading Style

Sheets (CSS) and events (user-interface events and tree manipulation events),

and enhances tree manipulations (tree ranges and traversal mechanisms).

■ DOM Level 3.0. Currently under development, Level 3.0 will extend Level 2.0

by finishing support for XML 1.0 with namespaces (alignment with the XML

Infoset and support for XML Base) and will extend the user interface events

(keyboard). It will also add support for abstract schemas (for DTDs and XML

schema), and the ability to load and save a document or an abstract schema. It

is exploring further mixed markup vocabularies and the implications on the

DOM API (Embedded DOM), and it will support XPath.

Difference Between DOM and SAX
The generic APIs for XML can be classified in two main categories:

■ Tree-based. The DOM is the primary generic tree-based API for XML.

■ Event-based. SAX (Simple API for XML) is the primary generic event-based

programming interface between an XML parser and an XML application.

The DOM works by creating objects. These objects have child objects and

properties, and the child objects have child objects and properties, and so on.

Objects are referenced either by moving down the object hierarchy or by explicitly

giving an HTML element an ID attribute. For example:

Examples of structural manipulations are:

■ Reordering elements

■ Adding or deleting elements

■ Adding or deleting attributes

■ Renaming elements
8-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
The default behavior for the PL/SQL DOM API for XMLType (DBMS_XMLDOM) is

as follows:

■ Produces a parse tree that can be accessed by DOM APIs.

■ The parser is validating if a DTD is found; otherwise, it is non-validating.

■ An application error is raised if parsing fails.

■ The types and methods described in this document are made available by the

PL/SQL package DBMS_XMLPARSER.

DTD validation follows the same rules that are exposed for the XML Parser

available through the XDK in Oracle9i Release 1(9.0.1) with the only difference

being that the validation occurs when the object document is manifested. For

example, if lazy manifestation is used, the document will be validated when it is

used.

Oracle XML DB extends the Oracle XML development platform beyond SQL

support for XML text and storage and retrieval of XML data. In this release, you can

operate on XMLType instances using the DOM in PL/SQL and Java. Thus, you can

directly manipulate individual XML elements and data using the language best

suited for your application or plug-in.

This release has updated the PL/SQL DOM API to exploit a C-based representation

of XML in the server and to operate on XML schema-based XML instances. Oracle

XML DB PL/SQL DOM API for XMLType and Java DOM API for XMLType comply

with the W3C DOM Recommendations to define and implement structured storage

of XML in relational or object-relational columns and as in-memory instances of

XMLType. See "Using PL/SQL DOM API for XMLType: Preparing XML Data" on

page 8-9, for a description of W3C DOM Recommendations.

XML Schema Support
PL/SQL DOM API for XMLType introduces XML schema support. Oracle XML DB

uses annotations within an XML schema as metadata to determine both an XML

document’s structure and its mapping to a database schema.

Note: For backward compatibility and for flexibility, the PL/SQL

DOM supports both XML schema-based documents and non-

schema-based documents.
PL/SQL API for XMLType 8-7

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
When an XML schema is registered with Oracle XML DB, the PL/SQL DOM API

for XMLType builds an in-memory tree representation of the XML document as a

hierarchy of node objects, each with its own specialized interfaces. Most node object

types can have child node types, which in turn implement additional, more

specialized interfaces. Some node types can have child nodes of various types,

while some node types can only be leaf nodes and cannot have children nodes

under them in the document structure.

Enhanced Performance
Additionally, Oracle XML DB uses the DOM to provide a standard way to translate

data from multiple back-end data sources into XML and vice versa. This eliminates

the need to use separate XML translation techniques for the different data sources in

your environment. Applications needing to exchange XML data can use one native

XML database to cache XML documents. Thus, Oracle XML DB can speed up

application performance by acting as an intermediate cache between your Web

applications and your back-end data sources, whether in relational databases or in

disparate file systems.

Designing End-to-End Applications Using XDK and Oracle XML DB
When you build applications based on Oracle XML DB, you do not need the

additional components in the XDKs. However, you can mix and match XDK

components with Oracle XML DB to deploy a full suite of XML-enabled

applications that run end-to-end. For example, you can use features in XDK for:

■ Simple API for XML (SAX) interface processing. SAX is an XML standard

interface provided by XML parsers and used by procedural and event-based

applications.

■ DOM interface processing for structural and recursive object-based processing.

Oracle XDKs contain the basic building blocks for creating applications that run on

the client, in a browser or plug-in, for example, for reading, manipulating,

transforming and viewing XML documents. To provide a broad variety of

deployment options, Oracle XDKs are also available for Java, Java beans, C, C++,

and PL/SQL. Unlike many shareware and trial XML components, Oracle XDKs are

fully supported and come with a commercial redistribution license.

Oracle XDK for Java consists of these components:

■ XML Parsers: Supports Java, C, C++ and PL/SQL, the components create and

parse XML using industry standard DOM and SAX interfaces.

See Also: Chapter 9, "Java API for XMLType"
8-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ XSLT Processor: Transforms or renders XML into other text-based formats such

as HTML.

■ XML Schema Processor: Supports Java, C, and C++, allows use of XML simple

and complex datatypes.

■ XML Class Generator: Automatically generates Java and C++ classes from

DTDs and Schemas to send XML data from Web forms or applications.

■ XML Transviewer Java Beans: Displays and transforms XML documents and

data using Java components.

■ XML SQL Utility: Supports Java, generates XML documents, DTDs and

Schemas from SQL queries.

■ TransXUtility. Loads data encapsulated in XML into the database with

additional functionality useful for installations.

■ XSQL Servlet: Combines XML, SQL, and XSLT in the server to deliver dynamic

web content.

Using PL/SQL DOM API for XMLType: Preparing XML Data
To take advantage of the Oracle XML DB DOM APIs, you must follow a few

processes to allow Oracle XML DB to develop a data model from your XML data.

This is true for any language, although PL/SQL is the focus of this chapter. The

process you use depends on the state of your data and your application

requirements.

To prepare data for using PL/SQL DOM APIs in Oracle XML DB, you must:

1. Create a standard XML schema if you do not already use one. Annotate the

XML schema with definitions for the SQL objects defined in your relational or

object-relational database.

2. Register your XML schema to generate the necessary database mappings.

You can then:

■ Use XMLType views to wrap existing relational or object-relational data in XML

formats. This enables an XML structure to be created that can be accessed by

your application. See also "Wrapping Existing Data into XML with XMLType

Views" on page 8-11.

■ Insert XML documents (and fragments) into XMLType columns.

See Also: Oracle9i XML Developer’s Kits Guide - XDK
PL/SQL API for XMLType 8-9

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ Use Oracle XML DB DOM PL/SQL and Java APIs to access and manipulate

XML data stored in XMLType columns and tables.

Creating and registering a standard XML schema allows your compliant XML

documents to be inserted into the database where they can be decomposed, parsed,

and stored in object-relational columns that can be accessed by your application.

Generating an XML Schema Mapping to SQL Object Types
An XML schema must be registered before it can be used or referenced in any

context. When you register an XML schema, elements and attributes declared

within it get mapped to separate attributes within the corresponding SQL object

types within the database schema.

After the registration process is completed, XML documents conforming to this

XML schema, and referencing it with its URL within the document, can be handled

by Oracle XML DB. Tables and columns for storing the conforming documents can

be created for root XML elements defined by this schema.

An XML schema is registered by using the DBMS_XMLSCHEMA package and by

specifying the schema document and its URL (also known as schema location). The

URL used here is a name that uniquely identifies the registered schema within the

database and need not be the physical URL where the schema document is located.

Additionally, the target namespace of the schema is another URL (different from the

schema location URL) that specifies an abstract namespace within which the

elements and types get declared. An instance of an XML document should specify

both the namespace of the root element and the location (URL) of the schema that

defines this element.

When instances of documents are inserted into Oracle XML DB using path-based

protocols like HTTP or FTP, the XML schema to which the document conforms is

registered implicitly, if its name and location are specified and if it has not been

previously registered.

See Also: Chapter 5, "Structured Mapping of XMLType" for more

information and examples.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ Oracle9i XML API Reference - XDK and Oracle XML DB
8-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
DOM Fidelity for XML Schema Mapping
While elements and attributes declared within the XML schema get mapped to

separate attributes within the corresponding SQL object type, some encoded

information in an XML document is not represented directly. In order to guarantee

that the returned XML document is identical to the original document for purposes

of DOM traversals (referred to as DOM fidelity), a binary attribute called

SYS_XDBPD$is added to all generated SQL object types. This attribute stores all

pieces of information that cannot be stored in any of the other attributes, thereby

ensuring DOM fidelity for XML documents stored in Oracle XML DB.

Data handled by SYS_XDBPD$ that is not represented in the XML schema mapping

include:

■ Comments

■ Namespace declaration

■ Prefix information

Wrapping Existing Data into XML with XMLType Views
To make existing relational and object-relational data available to your XML

applications, you create XMLType views, which provide a mechanism for wrapping

the existing data into XML formats. This exposes elements and entities, that can

then be accessed using the PL/SQL DOM APIs.

You register an XML schema containing annotations that represent the

bi-directional mapping from XML to SQL object types. Oracle XML DB can then

create an XMLType view conforming to this XML schema.

PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods
Table 8–1 lists the PL/SQL DOM API for XMLType (DBMS_XMLDOM) methods

supported in Release 2 (9.2.0.1).

Note: In this document, the SYS_XDBPD$attribute has been

omitted in many examples for simplicity. However, the attribute is

always present in all SQL object types generated by the

schema-registration process.

See Also: Chapter 11, "XMLType Views"
PL/SQL API for XMLType 8-11

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
Non-Supported DBMS_XMLDOM Methods in Release 2 (9.2.0.2)
The following DBMS_XMLDOM methods are not supported in Release 2 (9.2.0.2):

■ hasFeature

■ getVersion

■ setVersion

■ getCharset

■ setCharset

■ getStandalone

■ setStandalone

■ writeExternalDTDToFile

■ writeExternalDTDToBuffer

■ writeExternalDTDToClob

Table 8–2 lists additional methods supported in Release 2 (9.2.0.2).

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods

Group/Method Description

Node methods --

isNull() Tests if the node is NULL.

makeAttr() Casts the node to an Attribute.

makeCDataSection() Casts the node to a CDataSection.

makeCharacterData() Casts the node to CharacterData.

makeComment() Casts the node to a Comment.

makeDocumentFragment() Casts the node to a DocumentFragment.

makeDocumentType() Casts the node to a Document Type.

makeElement() Casts the node to an Element.

makeEntity() Casts the node to an Entity.

makeEntityReference() Casts the node to an EntityReference.

makeNotation() Casts the node to a Notation.

makeProcessingInstruction() Casts the node to a DOMProcessingInstruction.
8-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
makeText() Casts the node to a DOMText.

makeDocument() Casts the node to a DOMDocument.

writeToFile() Writes the contents of the node to a file.

writeToBuffer() Writes the contents of the node to a buffer.

writeToClob() Writes the contents of the node to a clob.

getNodeName() Retrieves the Name of the Node.

getNodeValue() Retrieves the Value of the Node.

setNodeValue() Sets the Value of the Node.

getNodeType() Retrieves the Type of the node.

getParentNode() Retrieves the parent of the node.

getChildNodes() Retrieves the children of the node.

getFirstChild() Retrieves the first child of the node.

getLastChild() Retrieves the last child of the node.

getPreviousSibling() Retrieves the previous sibling of the node.

getNextSibling() Retrieves the next sibling of the node.

getAttributes() Retrieves the attributes of the node.

getOwnerDocument() Retrieves the owner document of the node.

insertBefore() Inserts a child before the reference child.

replaceChild() Replaces the old child with a new child.

removeChild() Removes a specified child from a node.

appendChild() Appends a new child to the node.

hasChildNodes() Tests if the node has child nodes.

cloneNode() Clones the node.

Named node map methods --

isNull() Tests if the NodeMap is NULL.

getNamedItem() Retrieves the item specified by the name.

setNamedItem() Sets the item in the map specified by the name.

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
PL/SQL API for XMLType 8-13

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
removeNamedItem() Removes the item specified by name.

item() Retrieves the item given the index in the map.

getLength() Retrieves the number of items in the map.

Node list methods --

isNull() Tests if the Nodelist is NULL.

item() Retrieves the item given the index in the nodelist.

getLength() Retrieves the number of items in the list.

Attr methods --

isNull() Tests if the Attribute Node is NULL.

makeNode() Casts the Attribute to a node.

getQualifiedName() Retrieves the Qualified Name of the attribute.

getNamespace() Retrieves the NS URI of the attribute.

getLocalName() Retrieves the local name of the attribute.

getExpandedName() Retrieves the expanded name of the attribute.

getName() Retrieves the name of the attribute.

getSpecifiied() Tests if attribute was specified in the owning
element.

getValue() Retrieves the value of the attribute.

setValue() Sets the value of the attribute.

C data section methods --

isNull()isNull() Tests if the CDataSection is NULL.

makeNode()makeNode() Casts the CDatasection to a node.

Character data methods --

isNull() Tests if the CharacterData is NULL.

makeNode() Casts the CharacterData to a node.

getData() Retrieves the data of the node.

setData() Sets the data to the node.

getLength() Retrieves the length of the data.

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
8-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
substringData() Retrieves the substring of the data.

appendData() Appends the given data to the node data.

insertData() Inserts the data in the node at the given offSets.

deleteData() Deletes the data from the given offSets.

replaceData() Replaces the data from the given offSets.

Comment methods --

isNull() Tests if the comment is NULL.

makeNode() Casts the Comment to a node.

DOM implementation methods --

isNull() Tests if the DOMImplementation node is NULL.

hasFeature() Tests if the DOM implements a given feature. [Not
supported in this release]

Document fragment methods --

isNull() Tests if the DocumentFragment is NULL.

makeNode() Casts the Document Fragment to a node.

Document type methods --

isNull() Tests if the Document Type is NULL.

makeNode() Casts the document type to a node.

findEntity() Finds the specified entity in the document type.

findNotation() Finds the specified notation in the document type.

getPublicId() Retrieves the public ID of the document type.

getSystemId() Retrieves the system ID of the document type.

writeExternalDTDToFile() Writes the document type definition to a file.

writeExternalDTDToBuffer() Writes the document type definition to a buffer.

writeExternalDTDToClob() Writes the document type definition to a clob.

getName() Retrieves the name of the Document type.

getEntities() Retrieves the nodemap of entities in the Document
type.

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
PL/SQL API for XMLType 8-15

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
getNotations() Retrieves the nodemap of the notations in the
Document type.

Element methods --

isNull() Tests if the Element is NULL.

makeNode() Casts the Element to a node.

getQualifiedName() Retrieves the qualified name of the element.

getNamespace() Retrieves the NS URI of the element.

getLocalName() Retrieves the local name of the element.

getExpandedName() Retrieves the expanded name of the element.

getChildrenByTagName() Retrieves the children of the element by tag name.

getElementsByTagName() Retrieves the elements in the subtree by element.

resolveNamespacePrefix() Resolve the prefix to a namespace uri.

getTagName() Retrieves the Tag name of the element.

getAttribute() Retrieves the attribute node specified by the name.

setAttribute() Sets the attribute specified by the name.

removeAttribute() Removes the attribute specified by the name.

getAttributeNode() Retrieves the attribute node specified by the name.

setAttributeNode() Sets the attribute node in the element.

removeAttributeNode() Removes the attribute node in the element.

normalize() Normalizes the text children of the element. [Not
supported in this release]

Entity methods --

isNull() Tests if the Entity is NULL.

makeNode() Casts the Entity to a node.

getPublicId() Retrieves the public Id of the entity.

getSystemId() Retrieves the system Id of the entity.

getNotationName() Retrieves the notation name of the entity.

Entity reference methods --

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
8-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
isNull() Tests if the entity reference is NULL.

makeNode() Casts the Entity reference to NULL.

Notation methods --

isNull() Tests if the notation is NULL.

makeNode() Casts the notation to a node.

getPublicId() Retrieves the public Id of the notation.

getSystemId() Retrieves the system Id of the notation.

Processing instruction methods --

isNull() Tests if the processing instruction is NULL.

makeNode() Casts the Processing instruction to a node.

getData() Retrieves the data of the processing instruction.

getTarget() Retrieves the target of the processing instruction.

setData() Sets the data of the processing instruction.

Text methods --

isNull() Tests if the text is NULL.

makeNode() Casts the text to a node.

splitText() Splits the contents of the text node into 2 text nodes.

Document methods --

isNull() Tests if the document is NULL.

makeNode() Casts the document to a node.

newDOMDocument() Creates a new document.

freeDocument() Frees the document.

getVersion() Retrieves the version of the document. [Not
supported in this release]

setVersion() Sets the version of the document. [Not supported in
this release]

getCharset() Retrieves the Character set of the document. [Not
supported in this release]

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
PL/SQL API for XMLType 8-17

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
setCharset() Sets the Character set of the document. [Not
supported in this release]

getStandalone() Retrieves if the document is specified as standalone.
[Not supported in this release]

setStandalone() Sets the document standalone. [Not supported in
this release]

writeToFile() Writes the document to a file.

writeToBuffer() Writes the document to a buffer.

writeToClob() Writes the document to a clob.

writeExternalDTDToFile() Writes the DTD of the document to a file. [Not
supported in this release]

writeExternalDTDToBuffer() Writes the DTD of the document to a buffer. [Not
supported in this release]

writeExternalDTDToClob() Writes the DTD of the document to a clob. [Not
supported in this release]

getDoctype() Retrieves the DTD of the document.

getImplementation() Retrieves the DOM implementation.

getDocumentElement() Retrieves the root element of the document.

createElement() Creates a new element.

createDocumentFragment() Creates a new document fragment.

createTextNode() Creates a Text node.

createComment() Creates a comment node.

createCDATASection() Creates a CDatasection node.

createProcessingInstruction() Creates a processing instruction.

createAttribute() Creates an attribute.

createEntityReference() Creates an Entity reference.

getElementsByTagName() Retrieves the elements in the by tag name.

Table 8–1 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
8-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
Table 8–2 DBMS_XMLDOM Methods Added in Release 2 (9.2.0.2)

Method Syntax

createDocument FUNCTION createDocument (namspaceURI IN VARCHAR2, qualifiedName
IN VARCHAR2, doctype IN DOMType :=NULL) REURN DocDocument;

getPrefix FUNCTION getPrefix(n DOMNode) RETURN VARCHAR2;

setPrefix PROCEDURE setPrefix (n DOMNode) RETURN VARCHAR2;

hasAttributes FUNCTION hasAttributes (n DOMNode) RETURN BOOLEAN;

getNamedItem FUNCTION getNamedItem (nnm DOMNamedNodeMap, name IN
VARCHAR2, ns IN VARCHAR2) RETURN DOMNode;

setNamedItem FUNCTION getNamedItem (nnm DOMNamedNodeMap, arg IN DOMNode,
ns IN VARCHAR2) RETURN DOMNode;

removeNamedItem FUNCTION removeNamedItem (nnm DOMNamesNodeMap, name in
VARCHAR2, ns IN VARCHAR2) RETURN DOMNode;

getOwnerElement FUNCTION getOwnerElement (a DOMAttr) RETURN DOMElement;

getAttribute FUNCTION getAttribute (elem DOMElement, name IN VARCHAR2, ns IN
VARCHAR2) RETURN VARCHAR2;

hasAttribute FUNCTION hasAttribute (elem DOMElement, name IN VARCHAR2)
RETURN BOOLEAN;

hasAttribute FUNCTION hasAttribute (elem DOMElement, name IN VARCHAR2, ns IN
VARCHAR2) RETURN BOOLEAN;

setAttribute PROCEDURE setAttribute (elem DOMElement, name IN VARCHAR2,
newvalue IN VARCHAR2, ns IN VARCHAR2);

removeAttribute PROCEDURE removeAttribute (elem DOMElement, name IN VARCHAR2,
ns IN VARCHAR2);

getAttributeNode FUNCTION getAttributeNode(elem DOMElement, name IN VARCHAR2, ns
IN VARCHAR2) RETURN DOMAttr;

setAttributeNode FUNCTION setAttributeNode(elem DOMElement, newAttr IN DOMAttr, ns IN
VARCHAR2) RETURN DOMAttr;

createElement FUNCTION createElement (doc DOMDocument, tagname IN VARCHAR2,
ns IN VARCHAR2) RETURN DOMElement;

createAttribute FUNCTION createAttribute (doc DOMDocument, name IN VARCHAR2, ns
IN VARCHAR2) RETURN DOMAttr;
PL/SQL API for XMLType 8-19

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Exceptions
The following lists the PL/SQL DOM API for XMLType (DBMS_XMLDOM)

exceptions. For further information, see Oracle9i XML Developer’s Kits Guide - XDK.

The exceptions have not changed since the prior release:

■ INDEX_SIZE_ERR

■ DOMSTRING_SIZE_ERR

■ HIERARCHY_REQUEST_ERR

■ WRONG_DOCUMENT_ERR

■ INVALID_CHARACTER_ERR

■ NO_DATA_ALLOWED_ERR

■ NO_MODIFICATION_ALLOWED_ERR

■ NOT_FOUND_ERR

■ NOT_SUPPORTED_ERR

■ INUSE_ATTRIBUTE_ERR

PL/SQL DOM API for XMLType: Node Types
In the DOM specification, the term “document” is used to describe a container for

many different kinds of information or data, which the DOM objectifies. The DOM

specifies the way elements within an XML document container are used to create an

object-based tree structure and to define and expose interfaces to manage and use

the objects stored in XML documents. Additionally, the DOM supports storage of

documents in diverse systems.

When a request such as getNodeType(myNode) is given, it returns myNodeType,

which is the node type supported by the parent node. These constants represent the

different types that a node can adopt:

■ ELEMENT_NODE

■ ATTRIBUTE_NODE

■ TEXT_NODE

■ CDATA_SECTION_NODE

■ ENTITY_REFERENCE_NODE

■ ENTITY_NODE
8-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ PROCESSING_INSTRUCTION_NODE

■ COMMENT_NODE

■ DOCUMENT_NODE

■ DOCUMENT_TYPE_NODE

■ DOCUMENT_FRAGMENT_NODE

■ NOTATION_NODE

Table 8–3 shows the node types for XML and HTML and the allowed corresponding

children node types.

Oracle XML DB DOM API for XMLType also specifies these interfaces:

■ A NodeList interface to handle ordered lists of Nodes, for example:

– The children of a Node

– Elements returned by the getElementsByTagName method of the

element interface

Table 8–3 XML and HTML DOM Node Types and Corresponding Children Node Types

Node Type Children Node Types

Document Element (maximum of one), ProcessingInstruction, Comment, DocumentType
(maximum of one)

DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

DocumentType No children

EntityReference Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Element Element, Text, Comment, ProcessingInstruction, CDATASection, EntityReference

Attr Text, EntityReference

ProcessingInstruction No children

Comment No children

Text No children

CDATASection No children

Entity Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Notation No children
PL/SQL API for XMLType 8-21

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ A NamedNodeMap interface to handle unordered sets of nodes, referenced by

their name attribute, such as the attributes of an element.

Working with XML Schema-Based XML Instances
This release introduces several extensions for character-set conversion and input

and output to and from a file system. As stated earlier in this chapter, applications

written against the PL/SQL Parser APIs in the previous release continue to work,

but require some modifications that are described in the following sections.

PL/SQL API for XMLType is optimized to operate on XML schema-based XML

instances.

A new function is provided, newDOMDocument that constructs a DOM Document

handle given an XMLType value.

A typical usage scenario would be for a PL/SQL application to:

1. Fetch or construct an XMLType instance

2. Construct a DOMDocument node over the XMLType instance

3. Use the DOM API to access and manipulate the XML data

DOM NodeList and NamesNodeMap Objects
NodeList and NamedNodeMap objects in the DOM are live; that is, changes to the

underlying document structure are reflected in all relevant NodeList and

NamedNodeMap objects.

For example, if a DOM user gets a NodeList object containing the children of an

element, and then subsequently adds more children to that element (or removes

children, or modifies them), those changes are automatically propagated in the

NodeList , without further action from the user. Likewise, changes to a node in the

Note: For DOMDocument, node types represent handles to XML

fragments but do not represent the data itself.

For example, if you copy a node value, DOMDocument simply

clones the handle to the same underlying data. Any data modified

by one of the handles is visible when accessed by the other handle.

The XMLType value from which the DOMDocument handle is

constructed is the actual data and reflects the results of all DOM

operations on it.
8-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
tree are propagated throughout all references to that node in NodeList and

NamedNodeMap objects.

The interfaces: Text , Comment, and CDATASection, all inherit from the

CharacterData interface.

PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequence
Figure 8–1 illustrates the PL/SQL DOM API for XMLType (DBMS_XMLDOM) calling

sequence.

You can create a DOM document (DOMDocument) from an existing XMLType or as

an empty document.

1. The newDOMDocument procedure processes the XMLTYpe or empty document.

This creates a DOMDocument.

2. You can use the DOM API methods such as, createElement , createText ,

createAttribute , and createComment, and so on, to traverse and extend

the DOM tree. See Table 8–1 for a full list of available methods.

3. The results of these methods (DOMElement, DOMText, and so on) can also be

passed to makeNode to obtain the DOMNode interface.
PL/SQL API for XMLType 8-23

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
Figure 8–1 PL/SQL DOM API for XMLType: Calling Sequence

PL/SQL DOM API for XMLType Examples

Example 8–1 Creating and Manipulating a DOM Document

This example illustrates how to create a DOMDocument handle for an example

element PERSON:

-- This example illustrates how to create a DOMDocument handle for an example
element PERSON:
declare
 var XMLType;
 doc dbms_xmldom.DOMDocument;
 ndoc dbms_xmldom.DOMNode;
 docelem dbms_xmldom.DOMElement;
 node dbms_xmldom.DOMNode;
 childnode dbms_xmldom.DOMNode;

Select StatementCreatexml

CreateAttribute CreateComment . . .

XMLType

newDOMDocumentnewDOMDocument

DOMDocument

DOMNode Interface

(Empty
document)

makeNode

DOMElement
Interface

DOMText
Interface

DOMAttibute
Interface

DOMComment
Interface

CreateTextNodeCreateElement
8-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
 nodelist dbms_xmldom.DOMNodelist;
 buf varchar2(2000);
begin
 var := xmltype(’<PERSON> <NAME> ramesh </NAME> </PERSON>’);

 -- Create DOMDocument handle:
 doc := dbms_xmldom.newDOMDocument(var);
 ndoc := dbms_xmldom.makeNode(doc);

 dbms_xmldom.writetobuffer(ndoc, buf);
 dbms_output.put_line(’Before:’||buf);

 docelem := dbms_xmldom.getDocumentElement(doc);

 -- Access element:
 nodelist := dbms_xmldom.getElementsByTagName(docelem, ’NAME’);
 node := dbms_xmldom.item(nodelist, 0);
 childnode := dbms_xmldom.getFirstChild(node);

 -- Manipulate:
 dbms_xmldom.setNodeValue(childnode, ’raj’);

 dbms_xmldom.writetobuffer(ndoc, buf);
 dbms_output.put_line(’After:’||buf);
end;
/

Example 8–2 Creating a DOM Document Using sys.xmltype

This example creates a DOM document from an XMLType:

declare
 doc dbms_xmldom.DOMDocument;

 buf varchar2(32767);

begin
 -- new document
 doc := dbms_xmldom.newDOMDocument(sys.xmltype(’<person> <name>Scott</name>
 </person>’));
 dbms_xmldom.writeToBuffer(doc, buf);
 dbms_output.put_line(buf);
end;
/

PL/SQL API for XMLType 8-25

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
Example 8–3 Creating an Element Node

-- This example creates an element node starting from an empty DOM document:
declare
 doc dbms_xmldom.DOMDocument;
 elem dbms_xmldom.DOMElement;
 nelem dbms_xmldom.DOMNode;
begin
 -- new document
 doc := dbms_xmldom.newDOMDocument;

 -- create a element node
 elem := dbms_xmldom.createElement(doc, ’ELEM’);

 -- make node
 nelem := dbms_xmldom.makeNode(elem);
 dbms_output.put_line(dbms_xmldom.getNodeName(nelem));
 dbms_output.put_line(dbms_xmldom.getNodeValue(nelem));
 dbms_output.put_line(dbms_xmldom.getNodeType(nelem));
end;
/

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
XML documents are made up of storage units, called entities, that contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data and some of which form markup. Markup encodes a description of

the document's storage layout and logical structure. XML provides a mechanism for

imposing constraints on the storage layout and logical structure.

A software module called an XML parser or processor reads XML documents and

provides access to their content and structure. An XML parser usually does its work

on behalf of another module, typically the application.

PL/SQL Parser API for XMLType: Features
In general, PL/SQL Parser API for XMLType (DBMS_XMLPARSER) performs the

following tasks:

■ Builds a result tree that can be accessed by PL/SQL APIs

■ Raises an error if the parsing fails

Table 8–4 lists the PL/SQL Parser API for XMLType (DBMS_XMLPARSER) methods.
8-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
Table 8–4 DBMS_XMLPARSER Methods

Method Arguments, Return Values, and Results

parse Argument: (url VARCHAR2)

Result: Parses XML stored in the given URL or file and
returns the built DOM Document

newParser Returns: A new parser instance

parse Argument: (p Parser, url VARCHAR2)

Result: Parses XML stored in the given URL or file

parseBuffer Argument: (p Parser, doc VARCHAR2)

Result: Parses XML stored in the given buffer

parseClob Argument: (p Parser, doc CLOB)

Result: Parses XML stored in the given CLOB

parseDTD Argument: (p Parser, url VARCHAR2, root
VARCHAR2)

Result: Parses XML stored in the given URL or file

parseDTDBuffer Argument: (p Parser, dtd VARCHAR2, root
VARCHAR2)

Result: Parses XML stored in the given buffer

parseDTDClob Argument: (p Parser, dtd CLOB, root
VARCHAR2)

Result: Parses XML stored in the given clob

setBaseDir Argument: (p Parser, dir VARCHAR2)

Result: Sets base directory used to resolve relative
URLs

showWarnings Argument: (p Parser, yes BOOLEAN)

Result: Turns warnings on or off

setErrorLog Argument: (p Parser, fileName VARCHAR2)

Result: Sets errors to be sent to the specified file

setPreserveWhitespace Argument: (p Parser, yes BOOLEAN)

Result: Sets white space preserve mode

setValidationMode Argument: (p Parser, yes BOOLEAN)

Result: Sets validation mode
PL/SQL API for XMLType 8-27

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence
Figure 8–2 illustrates the PL/SQL Parser for XMLType (DBMS_XMLPARSER) calling

sequence:

1. newParser method can be used to construct a Parser instance.

2. XML documents can then be parsed using the Parser with methods such as,

parseBuffer , parseClob , parse(URI) , and so on. See Table 8–4 for a full

list of Parser methods.

3. An error is raised if the input is not a valid XML document.

4. To use the PL/SQL DOM API for XMLType on the parsed XML document

instance, you need to call getDocument on the Parser to obtain a

DOMDocument interface.

getValidationMode Argument: (p Parser)

Result: Gets validation mode

setDoctype Argument: (p Parser, dtd DOMDocumentType)

Result: Sets DTD

getDoctype Argument: (p Parser)

Result: Gets DTD

getDocument Argument: (p Parser)

Result: Gets DOM document

freeParser Argument: (p Parser)

Result: Frees a Parser object

Table 8–4 DBMS_XMLPARSER Methods (Cont.) (Cont.)

Method Arguments, Return Values, and Results
8-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
Figure 8–2 PL/SQL Parser API for XMLType: Calling Sequence

PL/SQL Parser API for XMLType Example

Example 8–4 Parsing an XML Document

This example parses a simple XML document and enables DOM APIs to be used.

declare
 indoc VARCHAR2(2000);
 indomdoc dbms_xmldom.domdocument;
 innode dbms_xmldom.domnode;
 myParser dbms_xmlparser.Parser;
begin
 indoc := ’<emp><name> Scott </name></emp>’;
 myParser := dbms_xmlparser.newParser;
 dbms_xmlparser.parseBuffer(myParser, indoc);
 indomdoc := dbms_xmlparser.getDocument(myParser);
 innode := dbms_xmldom.makeNode(indomdoc);
-- DOM APIs can be used here
end;
/

newParser

getDocument

parse (URI)parseBuffer

Parser

DOMDocument

. . .
PL/SQL API for XMLType 8-29

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
W3C XSL Recommendation describes rules for transforming a source tree into a

result tree. A transformation expressed in eXtensible Stylesheet Language

Transformation (XSLT) is called an XSL stylesheet. The transformation specified is

achieved by associating patterns with templates defined in the XSL stylesheet. A

template is instantiated to create part of the result tree.

Enabling Transformations and Conversions with XSLT
The Oracle XML DB PL/SQL DOM API for XMLType also supports eXtensible

Stylesheet Language Transformation (XSLT). This enables transformation from one

XML document to another, or conversion into HTML, PDF, or other formats. XSLT

is also widely used to convert XML to HTML for browser display.

The embedded XSLT processor follows eXtensible Stylesheet Language (XSL)

statements and traverses the DOM tree structure for XML data residing in

XMLType. Oracle XML DB applications do not require a separate parser as did the

prior release’s XML Parser for PL/SQL. However, applications requiring external

processing can still use the XML Parser for PL/SQL first to expose the document

structure.

PL/SQL XSLT Processor for XMLType: Features
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) is Oracle XML DB’s

implementation of the XSL processor. This follows the W3C XSLT final

recommendation (REC-xslt-19991116). It includes the required behavior of an XSL

processor in terms of how it must read XSL stylesheets and the transformations it

must achieve.

Note: The XML Parser for PL/SQL in Oracle XDK parses an XML

document (or a standalone DTD) so that the XML document can be

processed by an application, typically running on the client.

PL/SQL APIs for XMLType are used for applications that run on

the server and are natively integrated in the database. Benefits

include performance improvements and enhanced access and

manipulation options.

See Also: Appendix D, "XSLT Primer"
8-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
The types and methods of PL/SQL XSLT Processor are made available by the

PL/SQL package, DBMS_XSLPROCESSOR.

PL/SQL XSLT Processor API (DBMS_XSLPROCESSOR): Methods
The methods in PL/SQL XSLT Processor API (DBMS_XSLPROCESSOR) use two

PL/SQL types specific to the XSL Processor implementation. These are the

Processor type and the Stylesheet type.

Table 8–5 lists PL/SQL XSLT Processor (DBMS_XSLPROCESSOR) methods.

Note: There is no space between the method declaration and the

arguments, for example: processXSL(p Processor, ss
Stylesheet, xmldoc DOMDocument)

Table 8–5 DBMS_XSLPROCESSOR Methods

Method Argument or Return Values or Result

newProcessor Returns: a new processor instance

processXSL Argument: (p Processor, ss Stylesheet, xmldoc DOMDocument)

Result: Transforms input XML document using given DOMDocument and
stylesheet

processXSL Argument: (p Processor, ss Stylesheet, xmldoc DOMDocumentFragment)

Result: Transforms input XML document using given DOMDocumentFragment
and stylesheet

showWarnings Argument: (p Processor, yes BOOLEAN)

Result: Turn warnings on or off

setErrorLog Argument: (p Processor, Filename VARCHAR2)

Result: Sets errors to be sent to the specified file

NewStylesheet Argument: (Input VARCHAR2, Reference VARCHAR2)

Result: Sets errors to be sent to the specified file

transformNode Argument: (n DOMNode, ss Stylesheet)

Result: Transforms a node in a DOM tree using the given stylesheet

selectNodes Argument: (n DOMNode, pattern VARCHAR2)

Result: Selects nodes from a DOM tree which match the given pattern
PL/SQL API for XMLType 8-31

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence
Figure 8–2 illustrates the XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

calling sequence:

1. An XSLT Processor can be constructed using the method newProcessor .

2. To build a Stylesheet from a DOM document use method newStylesheet .

3. Optionally, you can set parameters to the Stylesheet using the call

setParams .

4. The XSLT processing can then be executed with the call processXSL using the

processor and Stylesheet created in Steps 1 - 3.

5. Pass the XML document to be transformed to the call processXSL .

6. The resulting DOMDocumentFragment interface can be operated on using the

PL/SQL DOM API for XMLType.

selectSingleNodes Argument: (n DOMNode, pattern VARCHAR2)

Result: Selects the first node from the tree that matches the given pattern

valueOf Argument: (n DOMNode, pattern VARCHAR2)

Result: Retrieves the value of the first node from the tree that matches the given
pattern

setParam Argument: (ss Stylesheet, name VARCHAR2, value VARCHAR2)

Result: Sets a top level paramter in the stylesheet

removeParam Argument: (ss Stylesheet, name VARCHAR2)

Result: Removes a top level stylesheet parameter

ResetParams Argument: (ss Stylesheet)

Result: Resets the top-level stylesheet parameters

freeStylesheet Argument: (ss Stylesheet)

Result: Frees a Stylesheet object

freeProcessor Argument: (p Processor)

Result: Frees a Processor object

Table 8–5 DBMS_XSLPROCESSOR Methods (Cont.)

Method Argument or Return Values or Result
8-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
Figure 8–3 PL/SQL XSLT Processor for XMLType: Calling Sequence

PL/SQL XSLT Processor for XMLType Example

Example 8–5 Transforming an XML Document Using an XSL Stylesheet

This example transforms an XML document by using the processXSL call.Expect

the following output (XML with tags ordered based on tag name):

<emp>
 <empno>1</empno>
 <fname>robert</fname>
 <job>engineer</job>
 <lname>smith</lname>
 <sal>1000</sal>
</emp>

declare
 indoc VARCHAR2(2000);
 xsldoc VARCHAR2(2000);

newStylesheetnewProcessor

Stylesheet xmldocProcessor

DOMNode Interface

makeNode

XSL Document
(DOMDocument)

ProcessXSL

(DOMDocument)

setParams

DOMDocumentFragment Interface
PL/SQL API for XMLType 8-33

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
 myParser dbms_xmlparser.Parser;
 indomdoc dbms_xmldom.domdocument;
 xsltdomdoc dbms_xmldom.domdocument;
 xsl dbms_xslprocessor.stylesheet;
 outdomdocf dbms_xmldom.domdocumentfragment;
 outnode dbms_xmldom.domnode;
 proc dbms_xslprocessor.processor;
 buf varchar2(2000);
begin
 indoc := ’<emp><empno> 1</empno> <fname> robert </fname> <lname>
smith</lname> <sal>1000</sal> <job> engineer </job> </emp>’;
 xsldoc :=
 ’<?xml version="1.0"?>
 <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output encoding="utf-8"/>
 <!-- alphabetizes an xml tree -->
 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="*|text()">
 <xsl:sort select="name(.)" data-type="text" order="ascending"/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space(.)"/>
 </xsl:template>
 </xsl:stylesheet>’;

 myParser := dbms_xmlparser.newParser;
 dbms_xmlparser.parseBuffer(myParser, indoc);
 indomdoc := dbms_xmlparser.getDocument(myParser);
 dbms_xmlparser.parseBuffer(myParser, xsldoc);
 xsltdomdoc := dbms_xmlparser.getDocument(myParser);
 xsl := dbms_xslprocessor.newstylesheet(xsltdomdoc, ’’);
 proc := dbms_xslprocessor.newProcessor;

 --apply stylesheet to DOM document
 outdomdocf := dbms_xslprocessor.processxsl(proc, xsl, indomdoc);
 outnode := dbms_xmldom.makenode(outdomdocf);
-- PL/SQL DOM API for XMLType can be used here
 dbms_xmldom.writetobuffer(outnode, buf);
 dbms_output.put_line(buf);
end;
/

8-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java API for X
9

Java API for XMLType

This chapter describes how to use XMLType in Java, including fetching XMLType
data through JDBC.

■ Introducing Java DOM API for XMLType

■ Java DOM API for XMLType

■ Java DOM API for XMLType Features

■ Java DOM API for XMLType Classes
MLType 9-1

Introducing Java DOM API for XMLType
Introducing Java DOM API for XMLType
Oracle XML DB supports the Java Document Object Model (DOM) API for

XMLType. This is a generic API for client and server, for both XML schema-based

and non- schema-based documents. It is implemented using the Java package

oracle.xdb.dom.

To access XMLType data using JDBC use the class oracle.xdb.XMLType .

For XML documents that do not conform to any XML schema, you can use the Java

DOM API for XMLType as it can handle any valid XML document.

Java DOM API for XMLType
Java DOM API for XMLType handles all kinds of valid XML documents irrespective

of how they are stored in Oracle XML DB. It presents to the application a uniform

view of the XML document irrespective of whether it is XML schema-based or non-

schema-based, whatever the underlying storage. Java DOM API works on client

and server.

As discussed in Chapter 8, "PL/SQL API for XMLType", the Oracle XML DB DOM

APIs are compliant with W3C DOM Level 1.0 and Level 2.0 Core Recommendation.

Accessing XML Documents in Repository
Oracle XML DB Resource API for Java API allows Java applications to access XML

documents stored in the Oracle XML DB Repository. Naming conforms to the Java

binding for DOM as specified by the W3C DOM Recommendation. Oracle XML DB

Repository hierarchy can store both XML schema-based and non- schema-based

documents.

Accessing XML Documents Stored in Oracle9i Database (Java)
Oracle XML DB provides the following way (part of the Java Resource APIs) for

Java applications to access XML data stored in a database:

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

See: Chapter 17, "Oracle XML DB Resource API for Java"
9-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
Using JDBC
This is an SQL-based approach for Java applications for accessing any data in

Oracle9i database, including XML documents in Oracle XML DB. Use the

oracle.xdb.dom.XMLType class, createXML() method.

How Java Applications Use JDBC to Access XML Documents in Oracle XML DB
JDBC users can query an XMLType table to obtain a JDBC XMLType interface that

supports all methods supported by the SQL XMLType data type. The Java (JDBC)

API for XMLType interface can implement the DOM document interface.

Example 9–1 XMLType Java : Using JDBC to Query an XMLType Table

The following is an example that illustrates using JDBC to query an XMLType table:

import oracle.xdb.XMLType;
 ...
 OraclePreparedStatement stmt = (OraclePreparedStatement)
conn.prepareStatement("select e.poDoc from po_xml_tab e");
 ResultSet rset = stmt.executeQuery();
 OracleResultSet orset = (OracleResultSet) rset;

while(orset.next())
 {
 // get the XMLType
 XMLType poxml = XMLType.createXML(orset.getOPAQUE(1));
 // get the XMLDocument as a string...
Document podoc = (Document)poxml.getDOM();
 }

Example 9–2 XMLType Java: Selecting XMLType Data

You can select the XMLType data in JDBC in one of two ways:

■ Use the getClobVal() or getStringVal() in SQL and get the result as a

oracle.sql.CLOB or java.lang.String in Java. The following Java code

snippet shows how to do this:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@", "scott", "tiger");

 OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
Java API for XMLType 9-3

Java DOM API for XMLType
 "select e.poDoc.getClobVal() poDoc, "+
 "e.poDoc.getStringVal() poString "+
 " from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet orset = (OracleResultSet) rset;

while(orset.next())
 {
// the first argument is a CLOB
oracle.sql.CLOB clb = orset.getCLOB(1);

// the second argument is a string..
String poString = orset.getString(2);

// now use the CLOB inside the program
 }

■ Use the getOPAQUE() call in the PreparedStatement to get the whole

XMLType instance, and use the XMLType constructor to construct an

oracle.xdb.XMLType class out of it. Then you can use the Java functions on

the XMLType class to access the data.

import oracle.xdb.XMLType;
...

 OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "select e.poDoc from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet orset = (OracleResultSet) rset;

// get the XMLType
XMLType poxml = XMLType(orset.getOPAQUE(1));

// get the XML as a string...
String poString = poxml.getStringVal();

Example 9–3 XMLType Java: Directly Returning XMLType Data

This example shows the use of getObject to directly get the XMLType from the

ResultSet . This is the easiest way to get the XMLType from the ResultSet .

import oracle.xdb.XMLType;
9-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
...

 OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "select e.poDoc from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet orset = (OracleResultSet) rset;
while(orset.next())
 {

// get the XMLType
XMLType poxml = (XMLType)orset.getObject(1);

// get the XML as a string...
String poString = poxml.getStringVal();
 }

Using JDBC to Manipulate XML Documents Stored in a Database
You can also update, insert, and delete XMLType data using JDBC.

Example 9–4 XMLType Java: Updating/Inserting/Deleting XMLType Data

You can insert an XMLType in java in one of two ways:

■ Bind a CLOB or a string to an INSERT/UPDATE/DELETE statement, and use

the XMLType constructor inside SQL to construct the XML instance:

OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "update po_xml_tab set poDoc = XMLType(?) ");

// the second argument is a string..
String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";

// now bind the string..
stmt.setString(1,poString);
stmt.execute();

■ Use the setObject() (or setOPAQUE()) call in the PreparedStatement to

set the whole XMLType instance:

import oracle.xdb.XMLType;
...
OraclePreparedStatement stmt =
Java API for XMLType 9-5

Java DOM API for XMLType
 (OraclePreparedStatement) conn.prepareStatement(
 "update po_xml_tab set poDoc = ? ");

// the second argument is a string
String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
XMLType poXML = XMLType.createXML(conn, poString);

// now bind the string..
stmt.setObject(1,poXML);
stmt.execute();

Example 9–5 XMLType Java: Getting Metadata on XMLType

When selecting out XMLType values, JDBC describes the column as an OPAQUE

type. You can select the column type name out and compare it with “XMLTYPE” to

check if you are dealing with an XMLType:

import oracle.sql.*;
import oracle.jdbc.*;
...
OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "select poDoc from po_xml_tab");

OracleResultSet rset = (OracleResultSet)stmt.exuecuteQuery();

// Now, we can get the resultset metadata
OracleResultSetMetaData mdata =
 (OracleResultSetMetaData)rset.getMetaData();

// Describe the column = the column type comes out as OPAQUE
// and column type name comes out as XMLTYPE
if (mdata.getColumnType(1) == OracleTypes.OPAQUE &&
 mdata.getColumnTypeName(1).compareTo("SYS.XMLTYPE") == 0)
{
 // we know it is an XMLtype
}

Example 9–6 XMLType Java: Updating an Element in an XMLType Column

This example updates the discount element inside PurchaseOrder stored in an

XMLType column. It uses Java (JDBC) and the oracle.xdb.XMLType class. This

example also shows you how to insert/update/delete XMLTypes using Java (JDBC).

It uses the parser to update an in-memory DOM tree and write the updated XML

value to the column.
9-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
-- create po_xml_hist table to store old PurchaseOrders
create table po_xml_hist (
 xpo xmltype
);

/*
 DESCRIPTION
 Example for oracle.xdb.XMLType

 NOTES
 Have classes12.zip, xmlparserv2.jar, and oraxdb.jar in CLASSPATH

*/

import java.sql.*;
import java.io.*;

import oracle.xml.parser.v2.*;
import org.xml.sax.*;
import org.w3c.dom.*;

import oracle.jdbc.driver.*;
import oracle.sql.*;

import oracle.xdb.XMLType;

public class tkxmtpje
{

 static String conStr = "jdbc:oracle:oci8:@";
 static String user = "scott";
 static String pass = "tiger";
 static String qryStr =
 "SELECT x.poDoc from po_xml_tab x "+
 "WHERE x.poDoc.extract('/PO/PONO/text()').getNumberVal()=200";

 static String updateXML(String xmlTypeStr)
 {
 System.out.println("\n===============================");
 System.out.println("xmlType.getStringVal():");
 System.out.println(xmlTypeStr);
 System.out.println("===============================");
 String outXML = null;
 try{
 DOMParser parser = new DOMParser();
Java API for XMLType 9-7

Java DOM API for XMLType
 parser.setValidationMode(false);
 parser.setPreserveWhitespace (true);

 parser.parse(new StringReader(xmlTypeStr));
 System.out.println("xmlType.getStringVal(): xml String is well-formed");

 XMLDocument doc = parser.getDocument();

 NodeList nl = doc.getElementsByTagName("DISCOUNT");

 for(int i=0;i<nl.getLength();i++){
 XMLElement discount = (XMLElement)nl.item(i);
 XMLNode textNode = (XMLNode)discount.getFirstChild();
 textNode.setNodeValue("10");
 }

 StringWriter sw = new StringWriter();
 doc.print(new PrintWriter(sw));

 outXML = sw.toString();

 //print modified xml
 System.out.println("\n===============================");
 System.out.println("Updated PurchaseOrder:");
 System.out.println(outXML);
 System.out.println("===============================");
 }
 catch (Exception e)
 {
 e.printStackTrace(System.out);
 }
 return outXML;
 }

 public static void main(String args[]) throws Exception
 {
 try{

 System.out.println("qryStr="+ qryStr);

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@", user, pass);
9-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
 Statement s = conn.createStatement();
 OraclePreparedStatement stmt;

 ResultSet rset = s.executeQuery(qryStr);
 OracleResultSet orset = (OracleResultSet) rset;

 while(orset.next()){

 //retrieve PurchaseOrder xml document from database
 XMLType xt = XMLType.createXML(orset.getOPAQUE(1));

 //store this PurchaseOrder in po_xml_hist table
 stmt = (OraclePreparedStatement)conn.prepareStatement(
 "insert into po_xml_hist values(?)");

 stmt.setObject(1,xt); // bind the XMLType instance
 stmt.execute();

//update "DISCOUNT" element
 String newXML = updateXML(xt.getStringVal());

 // create a new instance of an XMLtype from the updated value
 xt = XMLType.createXML(conn,newXML);

 // update PurchaseOrder xml document in database
 stmt = (OraclePreparedStatement)conn.prepareStatement(
 "update po_xml_tab x set x.poDoc =? where "+
 "x.poDoc.extract('/PO/PONO/text()').getNumberVal()=200");

 stmt.setObject(1,xt); // bind the XMLType instance
 stmt.execute();

 conn.commit();
 System.out.println("PurchaseOrder 200 Updated!");

 }

 //delete PurchaseOrder 1001
 s.execute("delete from po_xml x"+
 "where x.xpo.extract"+
 "('/PurchaseOrder/PONO/text()').getNumberVal()=1001");
 System.out.println("PurchaseOrder 1001 deleted!");
 }
 catch(Exception e)
 {
Java API for XMLType 9-9

Java DOM API for XMLType
 e.printStackTrace(System.out);
 }
 }
}

-- list PurchaseOrders

set long 20000
set pages 100
select x.xpo.getClobVal()
from po_xml x;

Here is the resulting updated purchase order in XML:

<?xml version = '1.0'?>
<PurchaseOrder>
 <PONO>200</PONO>
 <CUSTOMER>
 <CUSTNO>2</CUSTNO>
 <CUSTNAME>John Nike</CUSTNAME>
 <ADDRESS>
 <STREET>323 College Drive</STREET>
 <CITY>Edison</CITY>
 <STATE>NJ</STATE>
 <ZIP>08820</ZIP>
 </ADDRESS>
 <PHONELIST>
 <VARCHAR2>609-555-1212</VARCHAR2>
 <VARCHAR2>201-555-1212</VARCHAR2>
 </PHONELIST>
 </CUSTOMER>
 <ORDERDATE>20-APR-97</ORDERDATE>
 <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
 <LINEITEMS>
 <LINEITEM_TYP LineItemNo="1">
 <ITEM StockNo="1004">
 <PRICE>6750</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>1</QUANTITY>
 <DISCOUNT>10</DISCOUNT>
 </LINEITEM_TYP>
 <LINEITEM_TYP LineItemNo="2">
9-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
 <ITEM StockNo="1011">
 <PRICE>4500.23</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>2</QUANTITY>
 <DISCOUNT>10</DISCOUNT>
 </LINEITEM_TYP>
 </LINEITEMS>
 <SHIPTOADDR>
 <STREET>55 Madison Ave</STREET>
 <CITY>Madison</CITY>
 <STATE>WI</STATE>
 <ZIP>53715</ZIP>
 </SHIPTOADDR>
</PurchaseOrder>

Example 9–7 Manipulating an XMLType Column

This example performs the following:

■ Selects an XMLType from an XMLType table

■ Extracts portions of the XMLType based on an XPath expression

■ Checks for the existence of elements

■ Transforms the XMLType to another XML format based on XSL

■ Checks the validity of the XMLType document against an XML schema

import java.sql.*;
import java.io.*;
import java.net.*;
import java.util.*;

import oracle.xml.parser.v2.*;
import oracle.xml.parser.schema.*;
import org.xml.sax.*;
import org.w3c.dom.*;

import oracle.xml.sql.dataset.*;
import oracle.xml.sql.query.*;
import oracle.xml.sql.docgen.*;
import oracle.xml.sql.*;

import oracle.jdbc.driver.*;
import oracle.sql.*;
Java API for XMLType 9-11

Java DOM API for XMLType
import oracle.xdb.XMLType;

public class tkxmtpk1
{

 static String conStr = "jdbc:oracle:oci8:@";
 static String user = "tpjc";
 static String pass = "tpjc";
 static String qryStr = "select x.resume from t1 x where id<3";
 static String xslStr =
 "<?xml version='1.0' ?> " +
 "<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1
999/XSL/Transform'> " +
 "<xsl:template match='ROOT'> " +
 "<xsl:apply-templates/> " +
 "</xsl:template> " +
 "<xsl:template match='NAME'> " +
 "<html> " +
 " <body> " +
 " This is Test " +
 " </body> " +
 "</html> " +
 "</xsl:template> " +
 "</xsl:stylesheet>";

 static void parseArg(String args[])
 {
 conStr = (args.length >= 1 ? args[0]:conStr);
 user = (args.length >= 2 ? args[1].substring(0, args[1].indexOf("/")):user);
 pass = (args.length >= 2 ? args[1].substring(args[1].indexOf("/")+1):pass);
 qryStr = (args.length >= 3 ? args[2]:qryStr);
 }
 /**
 * Print the byte array contents
 */
 static void showValue(byte[] bytes) throws SQLException
 {
 if (bytes == null)
 System.out.println("null");
 else if (bytes.length == 0)
 System.out.println("empty");
 else
 {
 for(int i=0; i<bytes.length; i++)
9-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType
 System.out.print((bytes[i]&0xff)+" ");
 System.out.println();
 }
 }

public static void main(String args[]) throws Exception
{
 tkxmjnd1 util = new tkxmjnd1();

 try{

 if(args != null)
 parseArg(args);

 // System.out.println("conStr=" + conStr);
 System.out.println("user/pass=" + user + "/" +pass);
 System.out.println("qryStr="+ qryStr);

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn = DriverManager.getConnection(conStr, user, pass);
 Statement s = conn.createStatement();

 ResultSet rset = s.executeQuery(qryStr);
 OracleResultSet orset = (OracleResultSet) rset;
 OPAQUE xml;

 while(orset.next()){
 xml = orset.getOPAQUE(1);
 oracle.xdb.XMLType xt = oracle.xdb.XMLType.createXML(xml);

 System.out.println("Testing getDOM() ...");
 Document doc = xt.getDOM();
 util.printDocument(doc);

 System.out.println("Testing getBytesValue() ...");
 showValue(xt.getBytesValue());

 System.out.println("Testing existsNode() ...");
 try {
 System.out.println("existsNode(/)" + xt.existsNode("/", null));
 }
 catch (SQLException e) {
 System.out.println("Thin driver Expected exception: " + e);
 }
Java API for XMLType 9-13

Java DOM API for XMLType
 System.out.println("Testing extract() ...");
 try {
 XMLType xt1 = xt.extract("/RESUME", null);
 System.out.println("extract RESUME: " + xt1.getStringVal());
 System.out.println("should be Fragment: " + xt1.isFragment());
 }
 catch (SQLException e) {
 System.out.println("Thin driver Expected exception: " + e);
 }

 System.out.println("Testing isFragment() ...");
 try {
 System.out.println("isFragment = " + xt.isFragment()); }
 catch (SQLException e)
 {
 System.out.println("Thin driver Expected exception: " + e);
 }

 System.out.println("Testing isSchemaValid() ...");
 try {
 System.out.println("isSchemaValid(): " + xt.isSchemaValid(null,"RES UME"));
 }
 catch (SQLException e) {
 System.out.println("Thin driver Expected exception: " + e);
 }

 System.out.println("Testing transform() ...");
 System.out.println("XSLDOC: \n" + xslStr + "\n");
 try {
 /* XMLType xslDoc = XMLType.createXML(conn, xslStr);
 System.out.println("XSLDOC Generated");
 System.out.println("After transformation:\n" + (xt.transform(xslDoc,
 null)).getStringVal()); */
 System.out.println("After transformation:\n" + (xt.transform(null,
 null)).getStringVal());
 }
 catch (SQLException e) {
 System.out.println("Thin driver Expected exception: " + e);
 }

 System.out.println("Testing createXML(conn, doc) ...");
 try {
 XMLType xt1 = XMLType.createXML(conn, doc);
 System.out.println(xt1.getStringVal());
9-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType Features
 }
 catch (SQLException e) {
 System.out.println("Got exception: " + e);
 }

 }
}
catch(Exception e)
{
 e.printStackTrace(System.out);
}
}
}

Java DOM API for XMLType Features
When you use the Java DOM API to get XML data from Oracle XML DB, you get an

XMLDocument object that represents the XML data or file you retrieve. From this

document interface you can get the elements of the document and perform all the

operations specified in the W3C DOM specification. The DOM works on:

■ Any type of XML document:

■ XML schema-based

■ Non-XML schema-based

■ Any type of underlying storage used by the document:

■ CLOB

■ BLOB

■ Object-relational.

The Java DOM API for XMLType supports deep or shallow searching in the

document to retrieve children and properties of XML objects such as name,

namespace, and so on. Conforming to the DOM 2.0 recommendation, Java DOM

API for XMLType is namespace aware.

Creating XML Documents Programmatically
Java API for XMLType also allows applications to create XML documents

programmatically. This way applications can create XML documents on the fly (or

dynamically) that either conform to a preregistered XML schema or are non-XML

schema-based documents.
Java API for XMLType 9-15

Java DOM API for XMLType Features
Creating XML Schema-Based Documents
To create XML schema-based documents, Java DOM API for XMLType uses an

extension to specify which XML schema URL to use. For XML schema-based

documents, it also verifies that the DOM being created conforms to the specified

XML schema, that is, that the appropriate children are being inserted under the

appropriate documents.

Once the DOM object has been created, it can be saved to Oracle XML DB

Repository using the Oracle XML DB Resource API for Java. The XML document is

stored in the appropriate format:

■ As a CLOB or BLOB for non-XML schema-based documents

■ In the format specified by the XML schema for XML schema-based documents

Example 9–8 Java DOM API for XMLType: Creating a DOM Object and Storing It in the
Format Specified by the XML Schema

The following example shows how you can use Java DOM API for XMLType to

create a DOM object and store it in the format specified by the XML schema. Note

that the validation against the XML schema is not shown here.

import oracle.xdb.XMLType;
...
OraclePreparedStatement stmt =
 (OraclePreparedStatement) conn.prepareStatement(
 "update po_xml_tab set poDoc = ? ");

// the second argument is a string
String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
XMLType poXML = XMLType.createXML(conn, poString);
Document poDOM = (Document)poXML.getDOM();

Element rootElem = poDOM.createElement("PO");
poDOM.insertBefore(poDOM, rootElem, null);

// now bind the string..
stmt.setObject(1,poXML);
stmt.execute();

Note: In this release, Java DOM API for XMLType does not

perform type and constraint checks.
9-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType Classes
JDBC/SQLJ
An XMLType instance is represented in Java by oracle.xdb.XMLType . When an

instance of XMLType is fetched using JDBC, it is automatically manifested as an

object of the provided XMLType class. Similarly, objects of this class can be bound as

values to Data Manipulation Language (DML) statements where an XMLType is

expected. The same behavior is supported in SQLJ clients.

Java DOM API for XMLType Classes
Oracle XML DB supports the W3C DOM Level 2 Recommendation. In addition to

the W3C Recommendation, Oracle XML DB DOM API also provides Oracle-specific

extensions, mainly to facilitate your application interfacing with Oracle XDK for

Java. A list of the Oracle extensions is found at:

http://otn.oracle.com/docs/tech/xml/xdk_java/content.html

XMLDocument() is a class that represents the DOM for the instantiated XML

document. You can retrieve the XMLType from the XML document using the

function getXMLType() on XMLDocument() class.

Table 9–1 lists the Java DOM API for XMLType classes and the W3C DOM interfaces

they implement.

Table 9–1 Java DOM API for XMLType: Classes

Java DOM API for XMLType Class
W3C DOM Interface Recommendation
Class

oracle.xdb.dom.XMLDocument org.w3c.dom.Document

oracle.xdb.dom.XMLCData org.w3c.dom.CDataSection

oracle.xdb.dom.XMLComment org.w3c.dom.Comment

oracle.xdb.dom.XMLPI org.w3c.dom.ProcessingInstruction

oracle.xdb.dom.XMLText org.w3c.dom.Text

oracle.xdb.dom.XMLEntity org.w3c.dom.Entity

oracle.xdb.dom.DTD org.w3c.dom.DocumentType

oracle.xdb.dom.XMLNotation org.w3c.dom.Notation

oracle.xdb.dom.XMLNodeList org.w3c.dom.NodeList

oracle.xdb.dom.XMLAttribute org.w3c.dom.Attribute
Java API for XMLType 9-17

Java DOM API for XMLType Classes
Non-Supported Java Methods
The following are methods documented in Release 2 (9.2.0.1) but not currently

supported:

■ XDBDocument.getElementByID

■ XDBDocument.importNode

■ XDBNode.normalize

■ XDBNode.isSupported

■ XDBDomImplementation.hasFeature

Java DOM API for XMLType: Calling Sequence
The following Java DOM API for XMLType calling sequence description assumes

that your XML data is pre-registered with an XML schema and that it is stored in an

XMLType datatype column. To use the Java DOM API for XMLType, follow these

steps:

1. Retrieve the XML data from the XMLType table or XMLType column in the

table. When you fetch XML data, Oracle XML DB creates a DOMDocument
instance of XMLType, parsing the document into a DOM tree. You can then

manipulate elements in the DOM tree using Java DOM API for XMLType.

2. Use the Java DOM API for XMLType to perform operations and manipulations

on elements of the DOM tree.

3. The Java DOM API for XMLType sends the changed XML data back to Oracle

XML DB.

Figure 9–1 illustrates the Java DOM API for XMLType calling sequence.

oracle.xdb.dom.XMLDOMImplementation org.w3c.dom.DOMImplementation

oracle.xdb.dom.XMLElement org.w3c.dom.Element

oracle.xdb.dom.XMLNamedNodeMap org.w3c.dom.NamedNodeMap

oracle.xdb.dom.XMLNode org.w3c.dom.Node

Table 9–1 Java DOM API for XMLType: Classes (Cont.)

Java DOM API for XMLType Class
W3C DOM Interface Recommendation
Class
9-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType Classes
Figure 9–1 Java DOM API for XMLType: Calling Sequence

XMLType
Tables,
Columns,
Views

Oracle9 i
Database

Oracle
XML DB

Oracle
XML DB

XMLType
Instance

XML DOM
Tree

Java DOM
API

Changed XML Data

Saved
back

in the
Database

getDOM()
Method

JDBC

JDBC
Java API for XMLType 9-19

Java DOM API for XMLType Classes
9-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part IV

 Viewing Existing Data as XML

Part IV of this manual introduces you to ways you can view your existing data as

XML. It contains the following chapters:

■ Chapter 10, "Generating XML Data from the Database"

■ Chapter 11, "XMLType Views"

■ Chapter 12, "Creating and Accessing Data Through URLs"

Generating XML Data from the D
10

Generating XML Data from the Database

This chapter describes Oracle XML DB options for generating XML from the

database. It explains in detail, the SQLX standard functions and Oracle-provided

functions and packages for generating XML data from relational content.

It contains these sections:

■ Oracle XML DB Options for Generating XML Data From Oracle9i Database

■ Generating XML from the Database Using SQLX Functions

■ XMLElement() Function

■ XMLForest() Function

■ XMLSEQUENCE() Function

■ XMLConcat() Function

■ XMLAgg() Function

■ Generating XML from the Database Using SQLX Functions

■ XMLColAttVal() Function

■ Generating XML from Oracle9i Database Using DBMS_XMLGEN

■ Generating XML Using Oracle-Provided SQL Functions

■ SYS_XMLGEN() Function

■ SYS_XMLAGG() Function

■ Generating XML Using XSQL Pages Publishing Framework

■ Generating XML Using XML SQL Utility (XSU)
atabase 10-1

Oracle XML DB Options for Generating XML Data From Oracle9i Database
Oracle XML DB Options for Generating XML Data From Oracle9 i
Database

Oracle9i supports native XML generation. In this release, Oracle provides you with

several new options for generating or regenerating XML data when stored in:

■ Oracle9i database, in general

■ Oracle9i database in XMLTypes columns and tables

Figure 10–1 illustrates the Oracle XML DB options you can use to generate XML

from Oracle9i database.

Generating XML Using SQLX Functions
The following SQLX functions are supported in Oracle XML DB:

■ "XMLElement() Function" on page 10-5

■ "XMLForest() Function" on page 10-9

■ "XMLConcat() Function" on page 10-15

■ "XMLAgg() Function" on page 10-17

Generating XML Using Oracle Extensions to SQLX
The following are Oracle extension functions to SQLX:

■ "XMLColAttVal() Function" on page 10-20

Generating XML Using DBMS_XMLGEN
Oracle XML DB supports DBMS_XMLGEN, a PL/SQL supplied package. DBMS_
XMLGEN generates XML from SQL queries. See "Generating XML from Oracle9i

Database Using DBMS_XMLGEN" on page 10-21.

Generating XML Using SQL Functions
Oracle XML DB also supports the following Oracle-provided SQL functions that

generate XML from SQL queries:

■ "SYS_XMLGEN() Function" on page 10-42. This operates on rows, generating

XML documents.
10-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Options for Generating XML Data From Oracle9i Database
■ "SYS_XMLAGG() Function" on page 10-51. This operates on groups of rows,

aggregating several XML documents into one.

■ "XMLSEQUENCE() Function" on page 10-11. Note that only the cursor

version of this function generates XML. This function is also classified as an

SQLX function.

Generating XML with XSQL Pages Publishing Framework
"Generating XML Using XSQL Pages Publishing Framework" on page 10-52 can

also be used to generate XML from Oracle9i database.

XSQL Pages Publishing Framework, also known as XSQL Servlet, is part of the

XDK for Java.

Generating XML Using XML SQL Utility (XSU)
XML SQL Utility (XSU) enables you to perform the following tasks on data in

XMLType tables and columns:

■ Transform data retrieved from object-relational database tables or views into

XML.

■ Extract data from an XML document, and using a canonical mapping, insert the

data into appropriate columns or attributes of a table or a view.

■ Extract data from an XML document and apply this data to updating or

deleting values of the appropriate columns or attributes.

See Also: "Generating XML Using XML SQL Utility (XSU)" on

page 10-54
Generating XML Data from the Database 10-3

Oracle XML DB Options for Generating XML Data From Oracle9i Database
Figure 10–1 Oracle XML DB Options for Generating XML from Oracle9i Database

See Also:

■ Chapter 6, "Transforming and Validating XMLType Data"

■ Chapter 8, "PL/SQL API for XMLType"

■ Chapter 9, "Java API for XMLType"

■ Oracle9i XML API Reference - XDK and Oracle XML DB

XDK for Java

Oracle9i Database

XSQL Pages
Publishing
Framework

XML SQL
Utility
(XSU)

SQLX Functions
• XMLElement
• XMLForest
• XMLColAttVal
• XMLConcat
• XMLAgg

SQL Functions
• SYS_XMLGEN
• SYS_XMLAGG
• XMLSequence

PL/SQL Package

DBMS_XMLGEN

Generated XML:
• XMLType instances
• XML as DOM
• XML as String
• XML Document
• Varray of XMLType

Sequences
• Forest of XML

Elements

Oracle XML DB

XMLType
Columns or
Tables
10-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLElement() Function
Generating XML from the Database Using SQLX Functions
XMLElement() , XMLForest() , XMLConcat() , and XMLAgg() belong to the

SQLX standard, an emerging SQL standard for XML. Because these are emerging

standards the syntax and semantics of these functions are subject to change in the

future in order to conform to the standard.

All of the generation functions convert user-defined types (UDTs) to their canonical

XML format. In the canonical mapping the user-defined type’s attributes are

mapped to XML elements.

XMLElement() Function
XMLElement() function is based on the emerging SQL XML standard. It takes an

element name, an optional collection of attributes for the element, and zero or more

arguments that make up the element’s content and returns an instance of type

XMLType. See Figure 10–2. The XML_attributes_clause is described in the following

section.

Figure 10–2 XMLElement() Syntax

It is similar to SYS_XMLGEN(), but unlike SYS_XMLGEN(), XMLElement() does

not create an XML document with the prolog (the XML version information). It

allows multiple arguments and can include attributes in the XML returned.

XMLElement() is primarily used to construct XML instances from relational data.

It takes an identifier that is partially escaped to give the name of the root XML

element to be created. The identifier does not have to be a column name, or column

reference, and cannot be an expression. If the identifier specified is NULL, then no

element is returned.

As part of generating a valid XML element name from an SQL identifier, characters

that are disallowed in an XML element name are escaped. Partial escaping implies

that SQL identifiers other than the “:” sign which are not representable in XML, are

escaped using the # sign followed by the character’s unicode representation in

hexadecimal format. This can be used to specify namespace prefixes for the

XMLELEMENT (
NAME

identifier
, XML_attributes_clause , value_expr

,

)

Generating XML Data from the Database 10-5

XMLElement() Function
elements being generated. The fully escaped mapping escapes all non-XML

characters in the SQL identifier name, including the “:” character.

XML_Attributes_Clause
XMLElement() also takes an optional XMLAttributes() clause, which specifies

the attributes of that element. This can be followed by a list of values that make up

the children of the newly created element. See Figure 10–3.

Figure 10–3 XML_attributes_clause Syntax

In the XMLAttributes() clause, the value expressions are evaluated to get the

values for the attributes. For a given value expression, if the AS clause is omitted,

the fully escaped form of the column name is used as the name of the attribute. If

the AS clause is specified, then the partially escaped form of the alias is used as the

name of the attribute. If the expression evaluates to NULL, then no attribute is

created for that expression. The type of the expression cannot be an object type or

collection.

The list of values that follow the XMLAttributes() clause are converted to XML

format, and are made as children of the top-level element. If the expression

evaluates to NULL, then no element is created for that expression.

Example 10–1 XMLElement(): Generating an Element for Each Employee

The following example produces an Emp XML element for each employee, with the

employee’s name as its content:

SELECT e.employee_id, XMLELEMENT ("Emp", e.fname ||' ' || e.lname) AS "result"
 FROM employees e
 WHERE employee_id > 200;

-- This query produces the following typical result:
-- ID result
-- --------------------
-- 1001 <Emp>John Smith</Emp>
-- 1206 <Emp>Mary Martin</Emp>

XMLATTRIBUTES (value_expr
AS c_alias

,

)

10-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLElement() Function
XMLElement() can also be nested to produce XML data with a nested structure.

Example 10–2 XMLElement(): Generating Nested XML

To produce an Emp element for each employee, with elements that provide the

employee’s name and start date:

SELECT XMLELEMENT("Emp", XMLELEMENT("name", e.fname ||' '|| e.lname),
 XMLELEMENT ("hiredate", e.hire)) AS "result"
FROM employees e
WHERE employee_id > 200 ;

This query produces the following typical XML result:

result

<Emp>
 <name>John Smith</name>
 <hiredate>2000-05-24</hiredate>
</Emp>
<Emp>
 <name>Mary Martin</name>
 <hiredate>1996-02-01</hiredate>
</Emp>

Example 10–3 XMLElement(): Generating an Element for Each Employee with ID and
Name Attribute

This example produces an Emp element for each employee, with an id and name
attribute:

SELECT XMLELEMENT ("Emp",
 XMLATTRIBUTES (e.id,e.fname ||' ' || e.lname AS "name")) AS "result"
 FROM employees e
 WHERE employee_id > 200;

This query produces the following typical XML result fragment:

result

Note: Attributes, if they are specified, appear in the second

argument of XMLElement() as:

 “XMLATTRIBUTES (attribute , …)”.
Generating XML Data from the Database 10-7

XMLElement() Function
<Emp ID="1001" name="John Smith"/>
<Emp ID="1206" name="Mary Martin"/>

If the name of the element or attribute is being created from the ALIAS specified in

the AS clause, then partially escaped mapping is used. If the name of the element or

attribute is being created from a column reference, then fully escaped mapping is

used. The following example illustrates these mappings:

SELECT XMLELEMENT ("Emp:Exempt",
 XMLATTRIBUTES (e.fname, e.lname AS "name:last", e."name:middle")) AS "result"
 FROM employees e
 WHERE ... ;

This query could produce the following XML result:

<Emp:Exempt FNAME="John" name:last="Smith" name_x003A_middle="Quincy" /> ...

Example 10–4 XMLElement(): Using Namespaces to Create a Schema-Based XML
Document

The following example illustrates the use of namespaces to create an XML

schema-based document. Assuming that an XML schema

“http://www.oracle.com/Employee.xsd ” exists and has no target

namespace, then the following query creates an XMLType instance conforming to

that schema:

SELECT XMLELEMENT ("Employee",
 XMLATTRIBUTES (’http://www.w3.org/2001/XMLSchema’ AS "xmlns:xsi",
 ’http://www.oracle.com/Employee.xsd’ AS
 "xsi:nonamespaceSchemaLocation"),
 XMLForest(empno, ename, sal)) AS "result"
 FROM scott.emp
 WHERE deptno = 100;

This creates an XML document that conforms to the Employee.xsd XMLSchema,

result:

Note: XMLElement() does not validate the document produced

with these namespace prefixes and it is the responsibility of the

user to ensure that the appropriate namespace declarations are

included as well. A full description of partial and full escaping has

been specified as part of the emerging SQL XML standard.
10-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLForest() Function
<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:nonamespaceSchemaLocation="http://www.oracle.com/Employee.xsd">
 <EMPNO>1769</EMPNO>
 <ENAME>John</ENAME>
 <SAL>200000</SAL>
</Employee>

Example 10–5 XMLElement(): Generating an Element from a UDT

Using the same example as given in the following DBMS_XMLGEN section

(Example 10–18, "DBMS_XMLGEN: Generating Complex XML" on page 10-30), you

can generate a hierarchical XML for the employee, department example as follows:

SELECT XMLElement("Department",
 dept_t(deptno,dname,
 CAST(MULTISET(
 select empno, ename
 from emp e
 where e.deptno = d.deptno) AS emplist_t)))
 AS deptxml
FROM dept d;

This produces an XML document which contains the Department element and the

canonical mapping of the dept_t type.

<Department>
 <DEPT_T DEPTNO="100">
 <DNAME>Sports</DNAME>
 <EMPLIST>
 <EMP_T EMPNO="200">
 <ENAME>John</ENAME>
 <EMP_T>
 <EMP_T>
 <ENAME>Jack</ENAME>
 </EMP_T>
 </EMPLIST>
</DEPT_T>
 </Department>

XMLForest() Function
XMLForest() function produces a forest of XML elements from the given list of

arguments. The arguments may be value expressions with optional aliases.

Figure 10–4 describes the XMLForest() syntax.
Generating XML Data from the Database 10-9

XMLForest() Function
Figure 10–4 XMLForest() Syntax

The list of value expressions are converted to XML format. For a given expression, if

the AS clause is omitted, the fully escaped form of the column name is used as the

name of the enclosing tag of the element.

For an object type or collection, the AS clause is mandatory, and for other types, it

can still be optionally specified. If the AS clause is specified, then the partially

escaped form of the alias is used as the name of the enclosing tag. If the expression

evaluates to NULL, then no element is created for that expression.

Example 10–6 XMLForest(): Generating Elements for Each Employee with Name
Attribute, Start Date, and Dept as Content

This example generates an Emp element for each employee, with a name attribute

and elements with the employee’s start date and department as the content.

SELECT XMLELEMENT("Emp", XMLATTRIBUTES (e.fname ||' '|| e.lname AS "name"),
XMLForest (e.hire, e.dept AS "department")) AS "result"
FROM employees e;

This query might produce the following XML result:

<Emp name="John Smith">
 <HIRE>2000-05-24</HIRE>
 <department>Accounting</department>
</Emp>
<Emp name="Mary Martin">
 <HIRE>1996-02-01</HIRE>
 <department>Shipping</department>
</Emp>

Example 10–7 XMLForest(): Generating an Element from an UDT

You can also use XMLForest() to generate XML from user-defined types (UDTs).

Using the same example as given in the following DBMS_XMLGEN section

(Example 10–18, "DBMS_XMLGEN: Generating Complex XML" on page 10-30), you

can generate a hierarchical XML for the employee, department example as follows:

SELECT XMLForest(

XMLFOREST (value_expr
AS c_alias

,

)

10-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLSEQUENCE() Function
 dept_t(deptno,dname,
 CAST(MULTISET(
 select empno, ename
 from emp e
 where e.deptno = d.deptno) AS emplist_t)) AS "Department")
 AS deptxml
FROM dept d;

This produces an XML document which contains the Department element and the

canonical mapping of the dept_t type.

 <Department DEPTNO="100">
<DNAME>Sports</DNAME>
 <EMPLIST>
 <EMP_T EMPNO="200">
 <ENAME>John</ENAME>
 </EMP_T>
 <EMP_T>
 <ENAME>Jack</ENAME>
 </EMP_T>
 </EMPLIST>

</Department>

XMLSEQUENCE() Function
XMLSequence() function returns a sequence of XMLType. The function returns an

XMLSequenceType which is a VARRAY of XMLType instances. Since this function

returns a collection, it can be used in the FROM clause of SQL queries. See

Figure 10–5.

Figure 10–5 XMLSequence() Syntax

Note: Unlike in the XMLElement() case, the DEPT_T element is

missing.

XMLSEQUENCE (

XMLType_instance

sys_refcursor_instance
, fmt)
Generating XML Data from the Database 10-11

XMLSEQUENCE() Function
The XMLSequence() function has two forms

■ The first form inputs an XMLType instance and returns a VARRAY of top-level

nodes. This form can be used to shred XML fragments into multiple rows.

■ The second form takes as input a REFCURSOR argument, with an optional

instance of the XMLFormat object and returns the VARRAY of XMLTypes
corresponding to each row of the cursor. This form can be used to construct

XMLType instances from arbitrary SQL queries. Note that in this release, this

use of XMLFormat does not support XML schemas.

XMLSequence() is essential for effective SQL queries involving XMLTypes.

Example 10–8 XMLSequence(): Generating One XML Document from Another

Suppose you had the following XML document containing employee information:

<EMPLOYEES>
 <EMP>
 <EMPNO>112</EMPNO>
 <EMPNAME>Joe</EMPNAME>
 <SALARY>50000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>217</EMPNO>
 <EMPNAME>Jane</EMPNAME>
 <SALARY>60000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>412</EMPNO>7
 <EMPNAME>Jack</EMPNAME>
 <SALARY>40000</SALARY>
 </EMP>
</EMPLOYEES>

To create a new XML document containing only those employees who make $50,000

or more for each year, you can use the following syntax:

SELECT SYS_XMLAGG(value(e), xmlformat('EMPLOYEES'))
 FROM TABLE(XMLSequence(Extract(doc, '/EMPLOYEES/EMP'))) e
 WHERE EXTRACTVALUE(value(e), '/EMP/SALARY') >= 50000;

This returns the following XML document:

<EMPLOYEES>
 <EMP>
 <EMPNO>112</EMPNO>
10-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLSEQUENCE() Function
 <EMPNAME>Joe</EMPNAME>
 <SALARY>50000</SALARY>
 </EMP>
 <EMP>
 <EMPNO>217</EMPNO>
 <EMPNAME>Jane</EMPNAME>
 <SALARY>60000</SALARY>
 </EMP>
 </EMPLOYEES>

Notice how XMLExtract() was used to extract out all the employees:

1. XMLExtract() returns a fragment of EMP elements.

2. XMLSequence() creates a collection of these top level elements into XMLType
instances and returns that.

3. The TABLE function was then used to makes the collection into a table value

which can be used in the FROM clause of queries.

Example 10–9 XMLSequence(): Generating An XML Document for Each Row of a
Cursor Expression, Using SYS_REFCURSOR Argument

Here XMLSequence() creates an XML document for each row of the cursor

expression and returns the value as an XMLSequenceType . The XMLFormat object

can be used to influence the structure of the resulting XML documents. For

example, a call such as:

SELECT value(e).getClobVal()
FROM TABLE(XMLSequence(Cursor(SELECT * FROM emp))) e;

might return the following XML:

XMLType

 <ROW>
 <EMPNO>300</EMPNO>
 <ENAME>John</ENAME>
 </ROW>

 <ROW>
 <EMPNO>413</EMPNO>
 <ENAME>Jane</ENAME>
 </ROW>

 <ROW>
Generating XML Data from the Database 10-13

XMLSEQUENCE() Function
 <EMPNO>968</EMPNO>
 <ENAME>Jack</ENAME>
 </ROW>
...

The row tag used for each row can be changed using the XMLFormat object.

Example 10–10 XMLSequence(): Unnesting Collections inside XML Documents into
SQL Rows

XMLSequence() being a TABLE function, can be used to unnest the elements

inside an XML document. If you have a XML documents such as:

<Department deptno="100">
 <DeptName>Sports</DeptName>
 <EmployeeList>
 <Employee empno="200">
 <Ename>John</Ename>
 <Salary>33333</Salary>
 </Employee>
 <Employee empno="300">
 <Ename>Jack</Ename>
 <Salary>333444</Salary>
 </Employee>
 </EmployeeList>
</Department>

<Department deptno="200">
 <DeptName>Garment</DeptName>
 <EmployeeList>
 <Employee empno="400">
 <Ename>Marlin</Ename>
 <Salary>20000</Salary>
 </Employee>
 </EmployeeList>
</Department>

stored in an XMLType table dept_xml_tab, you can use the XMLSequence()
function to unnest the Employee list items as top level SQL rows:

CREATE TABLE dept_xml_tab OF XMLTYPE;

INSERT INTO dept_xml_tab VALUES(
 xmltype(’<Department deptno="100">

<DeptName>Sports</DeptName><EmployeeList>
<Employee empno="200"><Ename>John</Ename><Salary>33333</Salary></Employee>
10-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLConcat() Function
<Employee empno="300"><Ename>Jack</Ename><Salary>333444</Salary></Employee>
</EmployeeList></Department>’));

INSERT INTO dept_xml_tab VALUES (
 xmltype(’<Department deptno="200">

<DeptName>Sports</DeptName><EmployeeList>
<Employee empno="400"><Ename>Marlin</Ename><Salary>20000</Salary></Employee>
</EmployeeList></Department>’));

SELECT extractvalue(value(d),’/Department/@deptno’) as deptno,
 extractvalue(value(e),’/Employee/@empno’) as empno,
 extractvalue(value(e),’/Employee/Ename’) as ename
 FROM dept_xml_tab d,
 TABLE(XMLSequence(extract(value(d),’/Department/EmployeeList/Employee’))) e;

This returns the following:

DEPTNO EMPNO ENAME

100 200 John
100 300 Jack
200 400 Marlin

3 rows selected

For each row in table dept_xml_tab , the TABLE function is evaluated. Here, the

extract() function creates a new XMLType instance that contains a fragment of

all employee elements. This is fed to the XMLSequence() which creates a collection

of all employees.

The TABLEfunction then explodes the collection elements into multiple rows which

are correlated with the parent table dept_xml_tab . Thus you get a list of all the

parent dept_xml_tab rows with the associated employees.

The extractValue() functions extract out the scalar values for the department

number, employee number, and name.

XMLConcat() Function
XMLConcat() function concatenates all the arguments passed in to create a XML

fragment. Figure 10–6 shows the XMLConcat() syntax. XMLConcat() has two

forms:

■ The first form takes an XMLSequenceType , which is a VARRAY of XMLType
and returns a single XMLType instance that is the concatenation of all of the
Generating XML Data from the Database 10-15

XMLConcat() Function
elements of the varray. This form is useful to collapse lists of XMLTypes into a

single instance.

■ The second form takes an arbitrary number of XMLType values and

concatenates them together. If one of the value is null, it is ignored in the result.

If all the values are NULL, the result is NULL. This form is used to concatenate

arbitrary number of XMLType instances in the same row. XMLAgg() can be

used to concatenate XMLType instances across rows.

Figure 10–6 XMLConcat() Syntax

Example 10–11 XMLConcat(): Returning a Concatenation of XML Elements Used in
the Argument Sequence

This example shows how XMLConcat() returns the concatenation of XMLTypes

from the XMLSequenceType :

SELECT XMLConcat(XMLSequenceType(
 xmltype('<PartNo>1236</PartNo>'),
 xmltype('<PartName>Widget</PartName>'),
 xmltype('<PartPrice>29.99</PartPrice>'))).getClobVal()
 FROM dual;

returns a single fragment of the form:

<PartNo>1236</PartNo>
<PartName>Widget</PartName>
<PartPrice>29.99</PartPrice>

Example 10–12 XMLConcat(): Returning XML Elements By Concatenating the
Elements in the Arguments

The following example creates an XML element for the first and the last names and

then concatenates the result:

SELECT XMLConcat (XMLElement ("first", e.fname), XMLElement ("last", e.lname))
AS "result"
FROM employees e ;

This query might produce the following XML document:

XMLCONCAT (XMLType_instance

,

)

10-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLAgg() Function
<first>Mary</first>
<last>Martin</last>

<first>John</first>
<last>Smith</last>

XMLAgg() Function
XMLAgg() is an aggregate function that produces a forest of XML elements from a

collection of XML elements. Figure 10–7 describes the XMLAgg() syntax, where the

order_by_clause is:

ORDER BY [list of: expr [ASC|DESC] [NULLS {FIRST|LAST}]]

and number literals are not interpreted as column positions. For example, ORDER
BY 1 does not mean order by the first column. Instead the number literals are

interpreted just as any other literal.

As with XMLConcat() , any arguments that are null are dropped from the result.

XMLAgg() function is similar to the SYS_XMLAGG() function except that it returns

a forest of nodes, and does not take the XMLFormat() parameter. This function can

be used to concatenate XMLType instances across multiple rows. It also allows an

optional ORDER BY clause to order the XML values being aggregated.

XMLAgg() is an aggregation function and hence produces one aggregated XML

result for each group. If there is no group by specified in the query, then it returns a

single aggregated XML result for all the rows of the query. NULL values are

dropped from the result.

Figure 10–7 XMLAgg() Syntax

Example 10–13 XMLAgg(): Generating Department Elements with a List of Employee
Elements

The following example produces a Department element containing Employee
elements with employee job ID and last name as the contents of the elements. It also

orders the employee XML elements within the department by their last name.

SELECT XMLELEMENT("Department",
 XMLAGG(

XMLAGG (XMLType_instance
order_by_clause

)

Generating XML Data from the Database 10-17

XMLAgg() Function
 XMLELEMENT("Employee", e.job_id||’ ’||e.last_name)
 ORDER BY last_name))
 as "Dept_list"
FROM employees e
WHERE e.department_id = 30;

Dept_list

<Department>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Tobias</Employee>
</Department>

The result is a single row, because XMLAgg() aggregates the rows. You can use the

GROUP BY clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department", XMLAttributes(department_id AS deptno),
 XMLAGG(XMLELEMENT("Employee", e.job_id||’ ’||e.last_name)))
 AS "Dept_list"
 FROM employees e
 GROUP BY e.department_id;

Dept_list

<Department deptno="1001">
 <Employee>AD_ASST Whalen</Employee>
</Department>

<Department deptno="2002">
 <Employee>MK_MAN Hartstein</Employee>
 <Employee>MK_REP Fay</Employee>
</Department>

<Department deptno="3003">
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_CLERK Tobias</Employee>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
</Department>
10-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLAgg() Function
You can order the employees within each department by using the ORDER BY

clause inside the XMLAgg() expression.

Example 10–14 XMLAgg(): Generating Department Elements, Employee Elements Per
Department, and Employee Dependents

XMLAgg() can be used to reflect the hierarchical nature of some relationships that

exist in tables. The following example generates a department element for each

department. Within this it creates elements for all employees of the department.

Within each employee, it lists their dependents:

SELECT XMLELEMENT("Department", XMLATTRIBUTES (d.dname AS "name"),
 (SELECT XMLAGG(XMLELEMENT ("emp", XMLATTRIBUTES (e.ename AS name),
 (SELECT XMLAGG(XMLELEMENT("dependent",
 XMLATTRIBUTES(de.name AS "name")))
 FROM dependents de
 WHERE de.empno = e.empno)))
 FROM emp e
 WHERE e.deptno = d.deptno)) AS "dept_list"
 FROM dept d ;

The query might produce a row containing the XMLType instance for each

department:

<Department name="Accounting">
 <emp name="Smith">
 <dependent name="Sara Smith"/d>
 <dependent name="Joyce Smith"/>
 </emp>
 <emp name="Yates"/>
</Department>

<Department name="Shipping">
 <emp name="Martin">
 <dependent name="Alan Martin"/>
 </emp>
 <emp name="Oppenheimer">
 <dependent name="Ellen Oppenheimer"/>
 </emp>

Note: Within the order_by_clause , Oracle does not interpret

number literals as column positions, as it does in other uses of this

clause, but simply as number literals.
Generating XML Data from the Database 10-19

Generating XML from the Database Using SQLX Functions
</Department>

Generating XML from the Database Using SQLX Functions
XMLColAttVal() is an Oracle SQLX extension function.

XMLColAttVal() Function
XMLColAttVal() function generates a forest of XML column elements containing

the value of the arguments passed in. Figure 10–8 shows the XMLColAttVal()
syntax.

Figure 10–8 XMLColAttVal() Syntax

The name of the arguments are put in the name attribute of the column element.

Unlike the XMLForest() function, the name of the element is not escaped in any

way and hence this function can be used to transport SQL columns and values

without escaped names.

Example 10–15 XMLColAttVal(): Generating an Emp Element Per Employee with
Name Attribute and Elements with Start Date and Dept as Content

This example generates an Emp element for each employee, with a name attribute

and elements with the employee’s start date and department as the content.

SELECT XMLELEMENT("Emp",XMLATTRIBUTES(e.fname ||' '||e.lname AS "name"),
 XMLCOLATTVAL (e.hire, e.dept AS "department")) AS "result"
 FROM employees e;

This query might produce the following XML result:

<Emp name="John Smith">
 <column name="HIRE">2000-05-24</column>
 <column name="department">Accounting</column>
</Emp>
<Emp name="Mary Martin">
 <column name="HIRE">1996-02-01</column>

XMLCOLATTVAL (value_expr
AS c_alias

,

)

10-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 <column name="department">Shipping</column>
</Emp>
<Emp name="Samantha Stevens">
 <column name="HIRE">1992-11-15</column>
 <column name="department">Standards</column>
</Emp>

Because the name associated with each XMLColAttVal() argument is used to

populate an attribute value, neither the fully escaped mapping nor the partially

escaped mapping is used.

Generating XML from Oracle9 i Database Using DBMS_XMLGEN
DBMS_XMLGEN creates XML documents from any SQL query by mapping the

database query results into XML. It gets the XML document as a CLOB or XMLType.

It provides a “fetch” interface whereby you can specify the maximum rows and

rows to skip. This is useful for pagination requirements in Web applications. DBMS_
XMLGEN also provides options for changing tag names for ROW, ROWSET, and so on.

The parameters of the package can restrict the number of rows retrieved, the

enclosing tag names. To summarize, DBMS_XMLGEN PL/SQL package allows you:

■ To create an XML document instance from any SQL query and get the

document as a CLOB or XMLType.

■ To use a fetch interface with maximum rows and rows to skip. For example,

the first fetch could retrieve a maximum of 10 rows, skipping the first four. This

is useful for pagination in Web-based applications.

■ Options for changing tag names for ROW, ROWSET, and so on.

Sample DBMS_XMLGEN Query Result
The following shows a sample result from executing a “select * from scott.emp”
query on a database:

<?xml version="1.0"?>
<ROWSET>
<ROW>
 <EMPNO>30</EMPNO>
 <ENAME>Scott</ENAME>

See Also: "Generating XML with XSU’s OracleXMLQuery", in

Chapter 7, "XML SQL Utility (XSU)", and compare the functionality

of OracleXMLQuery with DBMS_XMLGEN.
Generating XML Data from the Database 10-21

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 <SALARY>20000</SALARY>
</ROW>
<ROW>
 <EMPNO>30</EMPNO>
 <ENAME>Mary</ENAME>
 <AGE>40</AGE>
</ROW>
</ROWSET>

The result of the getXML() using DBMS_XMLGen package is a CLOB. The default

mapping is as follows:

■ Every row of the query result maps to an XML element with the default tag

name ROW.

■ The entire result is enclosed in a ROWSET element. These names are both

configurable, using the setRowTagName() and setRowSetTagName()
procedures in DBMS_XMLGEN.

■ Each column in the SQL query result, maps as a subelement of the ROW element.

■ Binary data is transformed to its hexadecimal representation.

When the document is in a CLOB, it has the same encoding as the database

character set. If the database character set is SHIFTJIS, then the XML document is

SHIFTJIS.

DBMS_XMLGEN Calling Sequence
Figure 10–9 summarizes the DBMS_XMLGEN calling sequence.
10-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
Figure 10–9 DBMS_XMLGEN Calling Sequence

Here is DBMS_XMLGEN’s calling sequence:

1. Get the context from the package by supplying a SQL query and calling the

newContext() call.

2. Pass the context to all the procedures/functions in the package to set the

various options. For example to set the ROW element’s name, use

setRowTag(ctx) , where ctx is the context got from the previous

newContext() call.

3. Get the XML result, using the getXML() or getXMLType() . By setting the

maximum rows to be retrieved for each fetch using the setMaxRows() call,

you can call this function repeatedly, getting the maximum number of row set

for each call. The function returns null if there are no rows left in the query.

getXML() and getXMLType() always return an XML document, even if there

were no rows to retrieve. If you want to know if there were any rows retrieved,

use the function getNumRowsProcessed().

4. You can reset the query to start again and repeat step 3.

set
the options

REGISTER
Query

close

User / Browser /
Client /

Application

bind
values

Generated
XML

as DOM
User / Browser

Client /
Application

Generated
XML

as String

fetch
XML

Using DBMS_XMLGEN to Generate XML
Generating XML Data from the Database 10-23

Generating XML from Oracle9i Database Using DBMS_XMLGEN
5. Close the closeContext() to free up any resource allocated inside.

Table 10–1 summarizes DBMS_XMLGEN functions and procedures.

Table 10–1 DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

DBMS_XMLGEN Type definitions

SUBTYPE ctxHandle IS NUMBER

The context handle used by all functions.

DTD or schema specifications:

NONE CONSTANT NUMBER:= 0; -- supported for this release.

DTD CONSTANT NUMBER:= 1;

SCHEMA CONSTANT NUMBER:= 2;

Can be used in getXML function to specify whether to generate a DTD
or XML Schema or none. Only the NONE specification is supported in
the getXML functions for this release.

FUNCTION PROTOTYPES

newContext()

Given a query string, generate a new context handle to be used in
subsequent functions.

FUNCTION

newContext(queryString IN VARCHAR2)

Returns a new context

PARAMETERS: queryString (IN)- the query string, the result of which
needs to be converted to XML

RETURNS: Context handle. Call this function first to obtain a handle
that you can use in the getXML() and other functions to get the XML
back from the result.

FUNCTION

newContext(queryString IN SYS_REFCURSOR)
RETURN ctxHandle;

Creates a new context handle from a passed in PL/SQL ref cursor. The
context handle can be used for the rest of the functions. See the example:

setRowTag() Sets the name of the element separating all the rows. The default name is
ROW.

PROCEDURE

setRowTag(ctx IN ctxHandle,rowTag IN
VARCHAR2);

PARAMETERS:

ctx (IN) - the context handle obtained from the newContext call,

rowTag (IN) - the name of the ROW element. NULL indicates that you
do not want the ROW element to be present. Call this function to set the
name of the ROW element, if you do not want the default “ROW” name
to show up. You can also set this to NULL to suppress the ROW element
itself. Its an error if both the row and the rowset are null and there is
more than one column or row in the output.

setRowSetTag() Sets the name of the document’s root element. The default name is
ROWSET
10-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
PROCEDURE

setRowSetTag(ctx IN ctxHandle, rowSetTag IN
VARCHAR2);

PARAMETERS:

 ctx (IN) - the context handle obtained from the newContext call,

rowsetTag (IN) - the name of the document element. NULL indicates
that you do not want the ROW element to be present. Call this to set the
name of the document root element, if you do not want the default
“ROWSET” name in the output. You can also set this to NULL to
suppress the printing of this element. However, this is an error if both
the row and the rowset are null and there is more than one column or
row in the output.

getXML() Gets the XML document by fetching the maximum number of rows
specified. It appends the XML document to the CLOB passed in.

PROCEDURE

getXML(ctx IN ctxHandle,

 clobval IN OUT NCOPY clob,

 dtdOrSchema IN number:= NONE);

PARAMETERS:

ctx (IN) - The context handle obtained from the newContext() call,

clobval (IN/OUT) - the clob to which the XML document is to be
appended,

dtdOrSchema (IN) - whether you should generate the DTD or Schema.
This parameter is NOT supported.

Use this version of the getXML function, to avoid any extra CLOB copies
and if you want to reuse the same CLOB for subsequent calls. This
getXML call is more efficient than the next flavor, though this involves
that you create the lob locator. When generating the XML, the number of
rows indicated by the setSkipRows call are skipped, then the maximum
number of rows as specified by the setMaxRows call (or the entire result
if not specified) is fetched and converted to XML. Use the
getNumRowsProcessed function to check if any rows were retrieved or
not.

getXML() Generates the XML document and returns it as a CLOB.

FUNCTION

getXML(ctx IN ctxHandle, dtdOrSchema IN
number:= NONE) RETURN clob

PARAMETERS: ctx (IN) - The context handle obtained from the
newContext() call,

dtdOrSchema (IN) - whether we should generate the DTD or Schema.
This parameter is NOT supported.

RETURNS: A temporary CLOB containing the document. Free the
temporary CLOB obtained from this function using the dbms_
lob.freetemporary call.

FUNCTION

getXMLType(ctx IN ctxHandle, dtdOrSchema IN
number:= NONE) RETURN XMLTYPE

PARAMETERS: ctx (IN) - The context handle obtained from the
newContext() call,

dtdOrSchema (IN) - whether we should generate the DTD or Schema.
This parameter is NOT supported.

RETURNS: An XMLType instance containing the document.

Table 10–1 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
Generating XML Data from the Database 10-25

Generating XML from Oracle9i Database Using DBMS_XMLGEN
FUNCTION

getXML(sqlQuery IN VARCHAR2, dtdOrSchema
IN NUMBER := NONE) RETURN CLOB;

Converts the query results from the passed in SQL query string to XML
format, and returns the XML as a CLOB.

FUNCTION

getXMLType(sqlQuery IN VARCHAR2,
dtdOrSchema IN NUMBER := NONE) RETURN
XMLTYPE;

Converts the query results from the passed in SQL query string to XML
format, and returns the XML as a CLOB.

getNumRowsProcessed() Gets the number of SQL rows processed when generating the XML
using the getXML call. This count does not include the number of rows
skipped before generating the XML.

FUNCTION

getNumRowsProcessed(ctx IN ctxHandle)

RETURN number

PARAMETERS: queryString (IN)- the query string, the result of which
needs to be converted to XML RETURNS:

This gets the number of SQL rows that were processed in the last call to
getXML. You can call this to find out if the end of the result set has been
reached. This does not include the number of rows skipped. Use this
function to determine the terminating condition if you are calling
getXML in a loop. Note that getXML would always generate a XML
document even if there are no rows present.

setMaxRows() Sets the maximum number of rows to fetch from the SQL query result
for every invocation of the getXML call.

PROCEDURE

setMaxRows(ctx IN ctxHandle, maxRows IN
NUMBER);

PARAMETERS: ctx (IN) - the context handle corresponding to the query
executed,

maxRows (IN) - the maximum number of rows to get for each call to
getXML .

The maxRows parameter can be used when generating paginated results
using this utility. For instance when generating a page of XML or HTML
data, you can restrict the number of rows converted to XML and then in
subsequent calls, you can get the next set of rows and so on. This also
can provide for faster response times.

setSkipRows() Skips a given number of rows before generating the XML output for
every call to the getXML routine.

PROCEDURE

setSkipRows(ctx IN ctxHandle,

 skipRows IN NUMBER);

PARAMETERS: ctx (IN) - the context handle corresponding to the query
executed,

skipRows (IN) - the number of rows to skip for each call to getXML.

The skipRows parameter can be used when generating paginated results
for stateless web pages using this utility. For instance when generating
the first page of XML or HTML data, you can set skipRows to zero. For
the next set, you can set the skipRows to the number of rows that you
got in the first case.

Table 10–1 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
10-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
setConvertSpecialChars() Sets whether special characters in the XML data need to be converted
into their escaped XML equivalent or not. For example, the "<" sign is
converted to <. The default is to perform conversions.

PROCEDURE

setConvertSpecialChars(ctx IN ctxHandle,

 conv IN boolean);

PARAMETERS: ctx (IN) - the context handle to use,

conv (IN) - true indicates that conversion is needed.

You can use this function to speed up the XML processing whenever you
are sure that the input data cannot contain any special characters such as
<, >, ", ’ , and so on, which need to be escaped. Note that it is expensive
to actually scan the character data to replace the special characters,
particularly if it involves a lot of data. So in cases when the data is
XML-safe, then this function can be called to improve performance.

useItemTagsForColl() Sets the name of the collection elements. The default name for collection
elements it the type name itself. You can override that to use the name of
the column with the _ITEM tag appended to it using this function.

PROCEDURE useItemTagsForColl(ctx IN
ctxHandle);

PARAMETERS: ctx (IN) - the context handle.

If you have a collection of NUMBER, say, the default tag name for the
collection elements is NUMBER. You can override this behavior and
generate the collection column name with the _ITEM tag appended to it,
by calling this procedure.

restartQuery() Restarts the query and generate the XML from the first row again.

PROCEDURE

restartQuery(ctx IN ctxHandle);

PARAMETERS: ctx (IN) - the context handle corresponding to the
current query. You can call this to start executing the query again,
without having to create a new context.

closeContext() Closes a given context and releases all resources associated with that
context, including the SQL cursor and bind and define buffers, and so
on.

PROCEDURE

closeContext(ctx IN ctxHandle);

PARAMETERS: ctx (IN) - the context handle to close. Closes all
resources associated with this handle. After this you cannot use
the handle for any other DBMS_XMLGEN function call.

Conversion Functions

FUNCTION

convert(xmlData IN varchar2, flag IN NUMBER :=
ENTITY_ENCODE) return varchar2;

Encodes or decodes the passed in XML data string.

■ Encoding refers to replacing entity references such as '<' to
their escaped equivalent, such as '<'.

■ Decoding refers to the reverse conversion.

FUNCTION

convert(xmlData IN CLOB, flag IN NUMBER :=
ENTITY_ENCODE) return CLOB;

Encodes or decodes the passed in XML CLOB data.

■ Encoding refers to replacing entity references such as '<' to
their escaped equivalent, such as '<'.

■ Decoding refers to the reverse conversion.

Table 10–1 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
Generating XML Data from the Database 10-27

Generating XML from Oracle9i Database Using DBMS_XMLGEN
Example 10–16 DBMS_XMLGEN: Generating Simple XML

This example creates an XML document by selecting out the employee data from an

object-relational table and putting the resulting CLOB into a table.

CREATE TABLE temp_clob_tab(result CLOB);

DECLARE
 qryCtx DBMS_XMLGEN.ctxHandle;
 result CLOB;
BEGIN
 qryCtx := dbms_xmlgen.newContext('SELECT * from scott.emp');

 -- set the row header to be EMPLOYEE
 DBMS_XMLGEN.setRowTag(qryCtx, 'EMPLOYEE');

 -- now get the result
 result := DBMS_XMLGEN.getXML(qryCtx);

 INSERT INTO temp_clob_tab VALUES(result);

 --close context
 DBMS_XMLGEN.closeContext(qryCtx);
END;
/

This query example generates the following XML:

SELECT * FROM temp_clob_tab;

RESULT

<?xml version=''1.0''?>
<ROWSET>
 <EMPLOYEE>
 <EMPNO>7369</EMPNO>
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>17-DEC-80</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </EMPLOYEE>
 <EMPLOYEE>
 <EMPNO>7499</EMPNO>
 <ENAME>ALLEN</ENAME>
10-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 <JOB>SALESMAN</JOB>
 <MGR>7698</MGR>
 <HIREDATE>20-FEB-81</HIREDATE>
 <SAL>1600</SAL>
 <COMM>300</COMM>
 <DEPTNO>30</DEPTNO>
 </EMPLOYEE>
...
</ROWSET>

Example 10–17 DBMS_XMLGEN: Generating Simple XML with Pagination

Instead of generating all the XML for all rows, you can use the fetch interface that

DBMS_XMLGEN provides to retrieve a fixed number of rows each time. This speeds

up response time and also can help in scaling applications that need a DOM API on

the resulting XML, particularly if the number of rows is large.

The following example illustrates how to use DBMS_XMLGENto retrieve results from

table scott.emp :

-- create a table to hold the results..!
CREATE TABLE temp_clob_tab (result clob);

declare
 qryCtx dbms_xmlgen.ctxHandle;
 result CLOB;
begin

 -- get the query context;
 qryCtx := dbms_xmlgen.newContext('select * from scott.emp');

 -- set the maximum number of rows to be 5,
 dbms_xmlgen.setMaxRows(qryCtx, 5);

 loop
 -- now get the result
 result := dbms_xmlgen.getXML(qryCtx);

 -- if there were no rows processed, then quit..!
 exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;

 -- do some processing with the lob data..!
 -- Here, we are inserting the results
 -- into a table. You can print the lob out, output it to a stream,
 -- put it in a queure
Generating XML Data from the Database 10-29

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 -- or do any other processing.
 insert into temp_clob_tab values(result);

 end loop;
 --close context
 dbms_xmlgen.closeContext(qryCtx);
end;
/

Here, for each set of 5 rows, you generate an XML document.

Example 10–18 DBMS_XMLGEN: Generating Complex XML

Complex XML can be generated using object types to represent nested structures:

CREATE TABLE new_departments (
 department_id NUMBER PRIMARY KEY,
 department_name VARCHAR2(20)
);

CREATE TABLE new_employees (
 employee_id NUMBER PRIMARY KEY,
 last_name VARCHAR2(20),
 department_id NUMBER REFERENCES new_departments
);

CREATE TYPE emp_t AS OBJECT(
 "@employee_id" NUMBER,
 last_name VARCHAR2(20)
);
/

CREATE TYPE emplist_t AS TABLE OF emp_t;
/

CREATE TYPE dept_t AS OBJECT(
 "@department_id" NUMBER,
 department_name VARCHAR2(20),
 emplist emplist_t
);
/

qryCtx := dbms_xmlgen.newContext
 ('SELECT dept_t(department_id, department_name,
 CAST(MULTISET
10-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 (SELECT e.employee_id, e.last_name
 FROM new_employees e
 WHERE e.department_id = d.department_id)
 AS emplist_t)) AS deptxml
 FROM new_departments d');
DBMS_XMLGEN.setRowTag(qryCtx, NULL);

-- Here is the resulting XML:
-- <ROWSET>
-- <DEPTXML DEPARTMENT_ID="10">
-- <DEPARTMENT_NAME>SALES</DEPARTMENT_NAME>
-- <EMPLIST>
-- <EMP_T EMPLOYEE_ID="30">
-- <LAST_NAME>Scott</LAST_NAME>
-- </EMP_T>
-- <EMP_T EMPLOYEE_ID="31">
-- <LAST_NAME>Mary</LAST_NAME>
-- </EMP_T>
-- </EMPLIST>
-- </DEPTXML>
-- <DEPTXML DEPARTMENT_ID="20">
-- ...
-- </ROWSET>

Now, you can select the LOB data from the temp_clob_Tab table and verify the

results. The result looks like the sample result shown in the previous section,

"Sample DBMS_XMLGEN Query Result" on page 10-21.

With relational data, the results are a flat non-nested XML document. To obtain

nested XML structures, you can use object-relational data, where the mapping is as

follows:

■ Object types map as an XML element -- see Chapter 5, "Structured Mapping of

XMLType".

■ Attributes of the type, map to sub-elements of the parent element
Generating XML Data from the Database 10-31

Generating XML from Oracle9i Database Using DBMS_XMLGEN
Example 10–19 DBMS_XMLGEN: Generating Complex XML #2 - Inputting User
Defined Types For Nested XML Documents

When you input a user-defined type (UDT) value to DBMS_XMLGEN functions, the

user-defined type is mapped to an XML document using canonical mapping. In the

canonical mapping, user-defined type’s attributes are mapped to XML elements.

Attributes with names starting with “@” are mapped to attributes of the preceding

element.

User-defined types can be used for nesting in the resulting XML document. For

example, consider tables, EMP and DEPT:

CREATE TABLE DEPT
(
 deptno number primary key,
 dname varchar2(20)
);

CREATE TABLE EMP
(
 empno number primary key,
 ename varchar2(20),
 deptno number references dept
);

To generate a hierarchical view of the data, that is, departments with employees in

them, you can define suitable object types to create the structure inside the database

as follows:

CREATE TYPE EMP_T AS OBJECT
(
 "@empno" number, -- empno defined as an attribute!
 ename varchar2(20)
);
/
-- You have defined the empno with an @ sign in front, to denote that it must
-- be mapped as an attribute of the enclosing Employee element.

Note: Complex structures can be obtained by using object types

and creating object views or object tables. A canonical mapping is

used to map object instances to XML.

The @ sign, when used in column or attribute names, is translated

into an attribute of the enclosing XML element in the mapping.
10-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
CREATE TYPE EMPLIST_T AS TABLE OF EMP_T;
/
CREATE TYPE DEPT_T AS OBJECT
(
 "@deptno" number,
 dname varchar2(20),
 emplist emplist_t
);
/

-- Department type, DEPT_T, denotes the department as containing a list of
-- employees. You can now query the employee and department tables and get
-- the result as an XML document, as follows:
declare
 qryCtx dbms_xmlgen.ctxHandle;
 result CLOB;
begin

 -- get the query context;
 qryCtx := dbms_xmlgen.newContext(
 'SELECT
 dept_t(deptno,dname,
 CAST(MULTISET(select empno, ename
 from emp e
 where e.deptno = d.deptno) AS emplist_t)) AS deptxml
FROM dept d');

 -- set the maximum number of rows to be 5,
 dbms_xmlgen.setMaxRows(qryCtx, 5);

 -- set no row tag for this result as we have a single ADT column
 dbms_xmlgen.setRowTag(qryCtx,null);

 loop
 -- now get the result
 result := dbms_xmlgen.getXML(qryCtx);

 -- if there were no rows processed, then quit..!
 exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;

 -- do whatever with the result..!
 end loop;
end;
/

Generating XML Data from the Database 10-33

Generating XML from Oracle9i Database Using DBMS_XMLGEN
The MULTISET operator treats the result of the subset of employees working in the

department as a list and the CAST around it, cast's it to the appropriate collection

type. You then create a department instance around it and call the DBMS_XMLGEN
routines to create the XML for the object instance. The result is:

-- <?xml version="1.0"?>
-- <ROWSET>
-- <DEPTXML deptno="10">
-- <DNAME>Sports</DNAME>
-- <EMPLIST>
-- <EMP_T empno="200">
-- <ENAME>John</ENAME>
-- </EMP_T>
-- <EMP_T empno="300">
-- <ENAME>Jack</ENAME>
-- </EMP_T>
-- </EMPLIST>
-- </DEPTXML>
-- <DEPTXML deptno="20">
-- <!-- .. other columns -->
-- </DEPTXML>
-- </ROWSET>

The default name ROW is not present because you set that to NULL. The deptno
and empno have become attributes of the enclosing element.

Example 10–20 DBMS_XMLGEN: Generating a Purchase Order from the Database in
XML Format

This example uses DBMS_XMLGEN.getXMLType() to generate PurchaseOrder in

XML format from a relational database using object views. Note that the example is

five pages long.

-- Create relational schema and define Object Views
-- Note: DBMS_XMLGEN Package maps UDT attributes names
-- starting with '@' to xml attributes
--
-- Purchase Order Object View Model

-- PhoneList Varray object type
CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20)
/

-- Address object type
CREATE TYPE Address_typ AS OBJECT (
10-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20)
)
/

-- Customer object type
CREATE TYPE Customer_typ AS OBJECT (
 CustNo NUMBER,
 CustName VARCHAR2(200),
 Address Address_typ,
 PhoneList PhoneList_vartyp
)
/

-- StockItem object type
CREATE TYPE StockItem_typ AS OBJECT (
 "@StockNo" NUMBER,
 Price NUMBER,
 TaxRate NUMBER
)
/

-- LineItems object type
CREATE TYPE LineItem_typ AS OBJECT (
 "@LineItemNo" NUMBER,
 Item StockItem_typ,
 Quantity NUMBER,
 Discount NUMBER
)
/
-- LineItems Nested table
CREATE TYPE LineItems_ntabtyp AS TABLE OF LineItem_typ
/

-- Purchase Order object type
CREATE TYPE PO_typ AUTHID CURRENT_USER AS OBJECT (
 PONO NUMBER,
 Cust_ref REF Customer_typ,
 OrderDate DATE,
 ShipDate TIMESTAMP,
 LineItems_ntab LineItems_ntabtyp,
 ShipToAddr Address_typ
)
Generating XML Data from the Database 10-35

Generating XML from Oracle9i Database Using DBMS_XMLGEN
/

-- Create Purchase Order Relational Model tables

--Customer table
CREATE TABLE Customer_tab(
 CustNo NUMBER NOT NULL,
 CustName VARCHAR2(200) ,
 Street VARCHAR2(200) ,
 City VARCHAR2(200) ,
 State CHAR(2) ,
 Zip VARCHAR2(20) ,
 Phone1 VARCHAR2(20),
 Phone2 VARCHAR2(20),
 Phone3 VARCHAR2(20),
 constraint cust_pk PRIMARY KEY (CustNo)
)
ORGANIZATION INDEX OVERFLOW;

-- Purchase Order table
CREATE TABLE po_tab (
 PONo NUMBER, /* purchase order no */
 Custno NUMBER constraint po_cust_fk references Customer_tab,
 /* Foreign KEY referencing customer */
 OrderDate DATE, /* date of order */
 ShipDate TIMESTAMP, /* date to be shipped */
 ToStreet VARCHAR2(200), /* shipto address */
 ToCity VARCHAR2(200),
 ToState CHAR(2),
 ToZip VARCHAR2(20),
 constraint po_pk PRIMARY KEY(PONo)
);

--Stock Table
CREATE TABLE Stock_tab (
 StockNo NUMBER constraint stock_uk UNIQUE,
 Price NUMBER,
 TaxRate NUMBER
);

--Line Items Table
CREATE TABLE LineItems_tab(
 LineItemNo NUMBER,
 PONo NUMBER constraint LI_PO_FK REFERENCES po_tab,
 StockNo NUMBER ,
10-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 Quantity NUMBER,
 Discount NUMBER,
 constraint LI_PK PRIMARY KEY (PONo, LineItemNo)
);

-- create Object Views

--Customer Object View
CREATE OR REPLACE VIEW Customer OF Customer_typ
 WITH OBJECT IDENTIFIER(CustNo)
 AS SELECT c.Custno, C.custname,
 Address_typ(C.Street, C.City, C.State, C.Zip),
 PhoneList_vartyp(Phone1, Phone2, Phone3)
 FROM Customer_tab c;

--Purchase order view
CREATE OR REPLACE VIEW PO OF PO_typ
 WITH OBJECT IDENTIFIER (PONO)
 AS SELECT P.PONo,
 MAKE_REF(Customer, P.Custno),
 P.OrderDate,
 P.ShipDate,
 CAST(MULTISET(
 SELECT LineItem_typ(L.LineItemNo,
 StockItem_typ(L.StockNo,S.Price,S.TaxRate),
 L.Quantity, L.Discount)
 FROM LineItems_tab L, Stock_tab S
 WHERE L.PONo = P.PONo and S.StockNo=L.StockNo)
 AS LineItems_ntabtyp),
 Address_typ(P.ToStreet,P.ToCity, P.ToState, P.ToZip)
 FROM PO_tab P;

-- create table with XMLType column to store po in XML format
create table po_xml_tab(
 poid number,
 poDoc XMLTYPE /* purchase order in XML format */
)
/

-- Populate data

-- Establish Inventory

INSERT INTO Stock_tab VALUES(1004, 6750.00, 2) ;
Generating XML Data from the Database 10-37

Generating XML from Oracle9i Database Using DBMS_XMLGEN
INSERT INTO Stock_tab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_tab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_tab VALUES(1535, 3456.23, 2) ;

-- Register Customers

INSERT INTO Customer_tab
 VALUES (1, 'Jean Nance', '2 Avocet Drive',
 'Redwood Shores', 'CA', '95054',
 '415-555-1212', NULL, NULL) ;

INSERT INTO Customer_tab
 VALUES (2, 'John Nike', '323 College Drive',
 'Edison', 'NJ', '08820',
 '609-555-1212', '201-555-1212', NULL) ;

-- Place Orders

INSERT INTO PO_tab
 VALUES (1001, 1, '10-APR-1997', '10-MAY-1997',
 NULL, NULL, NULL, NULL) ;

INSERT INTO PO_tab
 VALUES (2001, 2, '20-APR-1997', '20-MAY-1997',
 '55 Madison Ave', 'Madison', 'WI', '53715') ;

-- Detail Line Items

INSERT INTO LineItems_tab VALUES(01, 1001, 1534, 12, 0) ;
INSERT INTO LineItems_tab VALUES(02, 1001, 1535, 10, 10) ;
INSERT INTO LineItems_tab VALUES(01, 2001, 1004, 1, 0) ;
INSERT INTO LineItems_tab VALUES(02, 2001, 1011, 2, 1) ;

-- Use DBMS_XMLGEN Package to generate PO in XML format
-- and store XMLTYPE in po_xml table

declare
 qryCtx dbms_xmlgen.ctxHandle;
 pxml XMLTYPE;
 cxml clob;
begin
10-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 -- get the query context;
 qryCtx := dbms_xmlgen.newContext('
 select pono,deref(cust_ref) customer,p.OrderDate,p.shipdate,
 lineitems_ntab lineitems,shiptoaddr
 from po p'
);

 -- set the maximum number of rows to be 1,
 dbms_xmlgen.setMaxRows(qryCtx, 1);
 -- set rowset tag to null and row tag to PurchaseOrder
 dbms_xmlgen.setRowSetTag(qryCtx,null);
 dbms_xmlgen.setRowTag(qryCtx,'PurchaseOrder');

 loop
 -- now get the po in xml format
 pxml := dbms_xmlgen.getXMLType(qryCtx);

 -- if there were no rows processed, then quit..!
 exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;

 -- Store XMLTYPE po in po_xml table (get the pono out)
 insert into po_xml_tab (poid, poDoc)
 values(
 pxml.extract(’//PONO/text()’).getNumberVal(),
 pxml);
 end loop;
end;
/

-- list xml PurchaseOrders

set long 100000
set pages 100
select x.podoc.getClobVal() xpo
from po_xml_tab x;

This produces the following purchase order XML documents:

PurchaseOrder 1001:

<?xml version="1.0"?>
 <PurchaseOrder>
 <PONO>1001</PONO>
 <CUSTOMER>
Generating XML Data from the Database 10-39

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 <CUSTNO>1</CUSTNO>
 <CUSTNAME>Jean Nance</CUSTNAME>
 <ADDRESS>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>95054</ZIP>
 </ADDRESS>
 <PHONELIST>
 <VARCHAR2>415-555-1212</VARCHAR2>
 </PHONELIST>
 </CUSTOMER>
 <ORDERDATE>10-APR-97</ORDERDATE>
 <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
 <LINEITEMS>
 <LINEITEM_TYP LineItemNo="1">
 <ITEM StockNo="1534">
 <PRICE>2234</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>12</QUANTITY>
 <DISCOUNT>0</DISCOUNT>
 </LINEITEM_TYP>
 <LINEITEM_TYP LineItemNo="2">
 <ITEM StockNo="1535">
 <PRICE>3456.23</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>10</QUANTITY>
 <DISCOUNT>10</DISCOUNT>
 </LINEITEM_TYP>
 </LINEITEMS>
 <SHIPTOADDR/>
 </PurchaseOrder>

PurchaseOrder 2001:

<?xml version="1.0"?>
 <PurchaseOrder>
 <PONO>2001</PONO>
 <CUSTOMER>
 <CUSTNO>2</CUSTNO>
 <CUSTNAME>John Nike</CUSTNAME>
 <ADDRESS>
 <STREET>323 College Drive</STREET>
10-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML from Oracle9i Database Using DBMS_XMLGEN
 <CITY>Edison</CITY>
 <STATE>NJ</STATE>
 <ZIP>08820</ZIP>
 </ADDRESS>
 <PHONELIST>
 <VARCHAR2>609-555-1212</VARCHAR2>
 <VARCHAR2>201-555-1212</VARCHAR2>
 </PHONELIST>
 </CUSTOMER>
 <ORDERDATE>20-APR-97</ORDERDATE>
 <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
 <LINEITEMS>
 <LINEITEM_TYP LineItemNo="1">
 <ITEM StockNo="1004">
 <PRICE>6750</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>1</QUANTITY>
 <DISCOUNT>0</DISCOUNT>
 </LINEITEM_TYP>
 <LINEITEM_TYP LineItemNo="2">
 <ITEM StockNo="1011">
 <PRICE>4500.23</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>2</QUANTITY>
 <DISCOUNT>1</DISCOUNT>
 </LINEITEM_TYP>
 </LINEITEMS>
 <SHIPTOADDR>
 <STREET>55 Madison Ave</STREET>
 <CITY>Madison</CITY>
 <STATE>WI</STATE>
 <ZIP>53715</ZIP>
 </SHIPTOADDR>
 </PurchaseOrder>

Example 10–21 DBMS_XMLGEN: Generating a New Context Handle from a Passed in
PL/SQL Ref Cursor

CREATE OR REPLACE FUNCTION joe3 RETURN CLOB
IS
 ctx1 number := 2;
 ctx2 number;
 xmldoc CLOB;
Generating XML Data from the Database 10-41

Generating XML Using Oracle-Provided SQL Functions
 page NUMBER := 0;
 xmlpage boolean := true;
 refcur SYS_REFCURSOR;
BEGIN
 OPEN refcur FOR 'select * from emp where rownum < :1' USING ctx1;

 ctx2 := DBMS_XMLGEN.newContext(refcur);

 ctx1 := 4;
 OPEN refcur FOR 'select * from emp where rownum < :1' USING ctx1;
 ctx1 := 5;
 OPEN refcur FOR 'select * from emp where rownum < :1' USING ctx1;
 dbms_lob.createtemporary(xmldoc, TRUE);
 -- xmldoc will have 4 rows
 xmldoc := DBMS_XMLGEN.getXML(ctx2,DBMS_XMLGEN.NONE);
 DBMS_XMLGEN.closeContext(ctx2);
 return xmldoc;
END;
/

Generating XML Using Oracle-Provided SQL Functions
In addition to the SQL standard functions, Oracle9i provides the SYS_XMLGEN and

SYS_XMLAGG functions to aid in generating XML.

SYS_XMLGEN() Function
This Oracle specific SQL function is similar to the XMLElement() except that it

takes a single argument and converts the result to XML. Unlike the other XML

generation functions, SYS_XMLGEN() always returns a well-formed XML

document. Unlike DBMS_XMLGEN which operates at a query level, SYS_XMLGEN()
operates at the row level returning a XML document for each row.

Example 10–22 Using SQL_XMLGEN to Create XML

SYS_XMLGEN() creates and queries XML instances in SQL queries, as follows:

SELECT SYS_XMLGEN(employee_id)
 FROM employees WHERE last_name LIKE 'Scott%';

The resulting XML document is:

<?xml version=''1.0''?>
<employee_id>60</employee_id>
10-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_XMLGEN() Function
SYS_XMLGEN Syntax
SYS_XMLGEN() takes in a scalar value, object type, or XMLType instance to be

converted to an XML document. It also takes an optional XMLFormat (the old name

was XMLGenFormatType) object that you can use to specify formatting options for

the resulting XML document. See Figure 10–10.

Figure 10–10 SYS_XMLGEN Syntax

SYS_XMLGEN() takes an expression that evaluates to a particular row and column

of the database, and returns an instance of type XMLType containing an XML

document. The expr can be a scalar value, a user-defined type, or a XMLType
instance.

■ If expr is a scalar value, the function returns an XML element containing the

scalar value.

■ If expr is a type, the function maps the user-defined type attributes to XML

elements.

■ If expr is a XMLType instance, then the function encloses the document in an

XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr . For

example, if expr resolves to a column name, the enclosing XML element will have

the same name as the column. If you want to format the XML document differently,

specify fmt , which is an instance of the XMLFormat object.

In this release, the formatting argument for SYS_XMLGEN()accepts the schema and

element name, and generates the XML document conforming to that registered

schema.

SELECT sys_xmlgen(
 dept_t(d.deptno, d.dname, d.loc,
 cast(multiset(
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate,e.sal, e.comm)
 FROM emp e
 WHERE e.deptno = d.deptno) AS emplist_t),
 xmlformat.createformat('Department', 'http://www.oracle.com/dept.xsd'))
 FROM dept d;

SYS_XMLGEN (expr
fmt

)

Generating XML Data from the Database 10-43

SYS_XMLGEN() Function
Example 10–23 SYS_XMLGEN(): Retrieving Employee Email ID From Employees
Table and Generating XML with EMail Element

The following example retrieves the employee email ID from the sample table

oe.employees where the employee_id value is 205, and generates an instance of

a XMLType containing an XML document with an EMAIL element.

SELECT SYS_XMLGEN(email).getStringVal()
 FROM employees
 WHERE employee_id = 205;

SYS_XMLGEN(EMAIL).GETSTRINGVAL()
--
<EMAIL>SHIGGENS</EMAIL>

Why is SYS_XMLGEN() so Powerful?
SYS_XMLGEN() is powerful for the following reasons:

■ You can create and query XML instances within SQL queries.

■ Using the object-relational infrastructure, you can create complex and nested

XML instances from simple relational tables.

SYS_XMLGEN() creates an XML document from either of the following:

■ A user-defined type (UDT) instance

■ A scalar value passed

■ XML

 and returns an XMLType instance contained in the document.

SYS_XMLGEN() also optionally inputs a XMLFormat object type through which

you can customize the SQL results. A NULL format object implies that the default

mapping behavior is to be used.

Using XMLFormat Object Type
You can use XMLFormat to specify formatting arguments for SYS_XMLGEN() and

SYS_XMLAGG() functions.

SYS_XMLGEN() returns an instance of type XMLType containing an XML

document. Oracle9i provides the XMLFormat object, which lets you format the

output of the SYS_XMLGEN function.

Table 10–2 lists the XMLFormat attributes. of the XMLFormat object. The function

that implements this type follows the table.
10-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_XMLGEN() Function
Example 10–24 Creating a Formatting Object with createFormat

You can use the static member function createformat to implement the

XMLFormat object. This function has most of the values defaulted. For example:

STATIC FUNCTION createFormat(
 enclTag IN varchar2 := ’ROWSET’,
 schemaType IN varchar2 := ’NO_SCHEMA’,
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dburlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN XMLGenFormatType,
 MEMBER PROCEDURE genSchema (spec IN varchar2),
 MEMBER PROCEDURE setSchemaName(schemaName IN varchar2),
 MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
 MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
 MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
 MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
 CONSTRUCTOR FUNCTION XMLGenFormatType (
 enclTag IN varchar2 := ’ROWSET’,

Table 10–2 Attributes of the XMLFormat Object

Attribute Datatype Purpose

enclTag VARCHAR2(100) The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, the default
is the column name. Otherwise the default is ROW. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also
gives the name of the XMLSchema element.

schemaType VARCHAR2(100) The type of schema generation for the output document. Valid
values are ’NO_SCHEMA’ and ’USE_GIVEN_SCHEMA’. The default
is ’NO_SCHEMA’.

schemaName VARCHAR2(4000) The name of the target schema Oracle uses if the value of the
schemaType is ’USE_GIVEN_SCHEMA’. If you specify
schemaName, then Oracle uses the enclosing tag as the element
name.

targetNameSpace VARCHAR2(4000) The target namespace if the schema is specified (that is,
schemaType is GEN_SCHEMA_*, or USE_GIVEN_SCHEMA)

dburl VARCHAR2(2000) The URL to the database to use if WITH_SCHEMA is specified. If
this attribute is not specified, the Oracle declares the URL to the
types as a relative URL reference.

processingIns VARCHAR2(4000) User-provided processing instructions, which are appended to the
top of the function output before the element.
Generating XML Data from the Database 10-45

SYS_XMLGEN() Function
 schemaType IN varchar2 := ’NO_SCHEMA’,
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dbUrlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN SELF AS RESULT

Example 10–25 SYS_XMLGEN(): Converting a Scalar Value to an XML Document
Element’s Contents

When you input a scalar value to SYS_XMLGEN(), it converts the scalar value to an

element containing the scalar value. For example:

select sys_xmlgen(empno) from scott.emp where rownum < 2;

returns an XML document that contains the empno value as an element, as follows:

<?xml version="1.0"?>
<EMPNO>30</EMPNO>

The enclosing element name, in this case EMPNO, is derived from the column name

passed to the operator. Also, note that the result of the SELECT statement is a row

containing a XMLType.

Example 10–26 Generating Default Column Name, ROW

In the last example, you used the column name EMPNO for the document. If the

column name cannot be derived directly, then the default name ROW is used. For

example, in the following case:

SELECT sys_xmlgen(empno).getclobval()
FROM scott.emp
WHERE rownum < 2;

you get the following XML output:

<?xml version="1.0"?>
<ROW>60</ROW>

Note: XMLFormat object is the new name for

XMLGenFormatType. You can use both names.
10-46 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_XMLGEN() Function
since the function cannot infer the name of the expression. You can override the

default ROW tag by supplying an XMLFormat (the old name was

"XMLGenFormatType ") object to the first argument of the operator.

Example 10–27 Overriding the Default Column Name: Supplying an XMLFormat
Object to the Operator’s First Argument

For example, in the last case, if you wanted the result to have EMPNO as the tag

name, you can supply a formatting argument to the function, as follows:

SELECT sys_xmlgen(empno *2,
 xmlformat.createformat(’EMPNO’)).getClobVal()
FROM emp;

This results in the following XML:

<?xml version="1.0"?>
<EMPNO>60</EMPNO>

Example 10–28 SYS_XMLGEN(): Converting a User-Defined Type to XML

When you input a user-defined type value to SYS_XMLGEN(), the user-defined

type gets mapped to an XML document using a canonical mapping. In the

canonical mapping the user-defined type’s attributes are mapped to XML elements.

Any type attributes with names starting with “@” are mapped to an attribute of the

preceding element. User-defined types can be used to get nesting within the result

XML document.

Using the same example as given in the DBMS_XMLGEN section (Example 10–18,

"DBMS_XMLGEN: Generating Complex XML" on page 10-30), you can generate a

hierarchical XML for the employee, department example as follows:

SELECT SYS_XMLGEN(
 dept_t(deptno,dname,
 CAST(MULTISET(
 select empno, ename
 from emp e
 where e.deptno = d.deptno) AS emplist_t))).getClobVal()
 AS deptxml
FROM dept d;

The MULTISET operator treats the result of the subset of employees working in the

department as a list and the CAST around it, cast’s it to the appropriate collection

type. You then create a department instance around it and call SYS_XMLGEN() to
create the XML for the object instance.
Generating XML Data from the Database 10-47

SYS_XMLGEN() Function
The result is:

<?xml version="1.0"?>
<ROW DEPTNO="100">
 <DNAME>Sports</DNAME>
 <EMPLIST>
 <EMP_T EMPNO="200">
 <ENAME>John</ENAME>
 <EMP_T>
 <EMP_T>
 <ENAME>Jack</ENAME>
 </EMP_T>
 </EMPLIST>
</ROW>

for each row of the department. The default name ROW is present because the function

cannot deduce the name of the input operand directly.

Example 10–29 SYS_XMLGEN(): Converting an XMLType Instance

If you pass an XML document into SYS_XMLGEN(), SYS_XMLGEN() encloses the

document (or fragment) with an element, whose tag name is the default ROW, or the

name passed in through the formatting object. This functionality can be used to turn

document fragments into well formed documents.

For example, the extract() operation on the following document, can return a

fragment. If you extract out the EMPNO elements from the following document:

<DOCUMENT>
 <EMPLOYEE>
 <ENAME>John</ENAME>
 <EMPNO>200</EMPNO>
 </EMPLOYEE>
 <EMPLOYEE>
 <ENAME>Jack</ENAME>
 <EMPNO>400</EMPNO>
 </EMPLOYEE>

Note: The difference between SYS_XMLGEN() function and

DBMS_XMLGEN package is apparent from the preceding example:

■ SYS_XMLGENworks inside SQL queries and operates on the

expressions and columns within the rows

■ DBMS_XMLGEN works on the entire result set
10-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_XMLGEN() Function
 <EMPLOYEE>
 <ENAME>Joseph</ENAME>
 <EMPNO>300</EMPNO>
 </EMPLOYEE>
</DOCUMENT>

using the following statement:

SELECT e.podoc.extract(’/DOCUMENT/EMPLOYEE/ENAME’)
 FROM po_xml_tab e;

you get an XML document fragment such as the following:

<ENAME>John</ENAME>
<ENAME>Jack</ENAME>
<ENAME>Joseph</ENAME>

You can make this fragment a valid XML document, by calling SYS_XMLGEN() to
put an enclosing element around the document, as follows:

select SYS_XMLGEN(e.podoc.extract(’/DOCUMENT/EMPLOYEE/ENAME’)).getclobval()
 from po_xml_tab e;

This places an element ROW around the result, as follows:

<?xml version="1.0"?>
<ROW>
 <ENAME>John</ENAME>
 <ENAME>Jack</ENAME>
 <ENAME>Joseph</ENAME>
</ROW>

Example 10–30 SYS_XMLGEN(): Using SYS_XMLGEN() with Object Views

-- create Purchase Order object type
CREATE OR REPLACE TYPE PO_typ AUTHID CURRENT_USER AS OBJECT (
 PONO NUMBER,
 Customer Customer_typ,
 OrderDate DATE,

Note: If the input was a column, then the column name would

have been used as default. You can override the enclosing element

name using the formatting object that can be passed in as an

additional argument to the function. See "Using XMLFormat Object

Type" on page 10-44.
Generating XML Data from the Database 10-49

SYS_XMLGEN() Function
 ShipDate TIMESTAMP,
 LineItems_ntab LineItems_ntabtyp,
 ShipToAddr Address_typ
)
/

--Purchase order view
CREATE OR REPLACE VIEW PO OF PO_typ
 WITH OBJECT IDENTIFIER (PONO)
 AS SELECT P.PONo,
 Customer_typ(P.Custno,C.CustName,C.Address,C.PhoneList),
 P.OrderDate,
 P.ShipDate,
 CAST(MULTISET(
 SELECT LineItem_typ(L.LineItemNo,
 StockItem_typ(L.StockNo,S.Price,S.TaxRate),
 L.Quantity, L.Discount)
 FROM LineItems_tab L, Stock_tab S
 WHERE L.PONo = P.PONo and S.StockNo=L.StockNo)
 AS LineItems_ntabtyp),
 Address_typ(P.ToStreet,P.ToCity, P.ToState, P.ToZip)
 FROM PO_tab P, Customer C
 WHERE P.CustNo=C.custNo;

-- Use SYS_XMLGEN() to generate PO in XML format

set long 20000
set pages 100
SELECT SYS_XMLGEN(value(p),
 sys.xmlformat.createFormat('PurchaseOrder')).getClobVal() PO
FROM po p
WHERE p.pono=1001;

This returns the Purchase Order in XML format:

<?xml version="1.0"?>
<PurchaseOrder>
 <PONO>1001</PONO>
 <CUSTOMER>
 <CUSTNO>1</CUSTNO>
 <CUSTNAME>Jean Nance</CUSTNAME>
 <ADDRESS>
 <STREET>2 Avocet Drive</STREET>
 <CITY>Redwood Shores</CITY>
10-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_XMLAGG() Function
 <STATE>CA</STATE>
 <ZIP>95054</ZIP>
 </ADDRESS>
 <PHONELIST>
 <VARCHAR2>415-555-1212</VARCHAR2>
 </PHONELIST>
 </CUSTOMER>
 <ORDERDATE>10-APR-97</ORDERDATE>
 <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
 <LINEITEMS_NTAB>
 <LINEITEM_TYP LineItemNo="1">
 <ITEM StockNo="1534">
 <PRICE>2234</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>12</QUANTITY>
 <DISCOUNT>0</DISCOUNT>
 </LINEITEM_TYP>
 <LINEITEM_TYP LineItemNo="2">
 <ITEM StockNo="1535">
 <PRICE>3456.23</PRICE>
 <TAXRATE>2</TAXRATE>
 </ITEM>
 <QUANTITY>10</QUANTITY>
 <DISCOUNT>10</DISCOUNT>
 </LINEITEM_TYP>
 </LINEITEMS_NTAB>
 <SHIPTOADDR/>
</PurchaseOrder>

SYS_XMLAGG() Function
SYS_XMLAGG() function aggregates all XML documents or fragments represented

by expr and produces a single XML document. It adds a new enclosing element

with a default name, ROWSET. To format the XML document differently then specify

fmt, the instance of XMLFORMAT object

Figure 10–11 SYS_XMLAGG() Syntax

SYS_XMLAGG (expr
fmt

)

Generating XML Data from the Database 10-51

Generating XML Using XSQL Pages Publishing Framework
Generating XML Using XSQL Pages Publishing Framework
Oracle9i introduced XMLType for use with storing and querying XML-based

database content. You can use these database XML features to produce XML for

inclusion in your XSQL pages by using the <xsql:include-xml> action element.

The SELECT statement that appears inside the <xsql:include-xml> element

should return a single row containing a single column. The column can either be a

CLOB or a VARCHAR2 value containing a well-formed XML document. The XML

document will be parsed and included in your XSQL page.

Example 10–31 Using XSQL Servlet’s <xsql:include-xml> and Nested XMLAgg()
Functions to Aggregate the Results Into One XML Document

The following example uses nested xmlagg() functions to aggregate the results of

a dynamically-constructed XML document containing departments and nested

employees into a single XML “result” document, wrapped in a

<DepartmentList> element:

<xsql:include-xml connection="orcl92" xmlns:xsql="urn:oracle-xsql">
 select XmlElement("DepartmentList",
 XmlAgg(
 XmlElement("Department",
 XmlAttributes(deptno as "Id"),
 XmlForest(dname as "Name"),
 (select XmlElement("Employees",
 XmlAgg(
 XmlElement("Employee",
 XmlAttributes(empno as "Id"),
 XmlForest(ename as "Name",
 sal as "Salary",
 job as "Job")
)
)
)
 from emp e
 where e.deptno = d.deptno
)
)
)
).getClobVal()
 from dept d

See Also: Oracle9i SQL Reference
10-52 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML Using XSQL Pages Publishing Framework
 order by dname
</xsql:include-xml>

Example 10–32 Using XSQL Servlet’s <xsql:include-xml>, XMLElement(), and
XMLAgg() to Generate XML from Oracle9i Database

Since it is more efficient for the database to aggregate XML fragments into a single

result document, the <xsql:include-xml> element encourages this approach by

only retrieving the first row from the query you provide.

For example, if you have a number of <Movie> XML documents stored in a table of

XmlType called MOVIES, each document might look something like this:

<Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
 <Director>
 <First>Anthony</First>
 <Last>Minghella</Last>
 </Director>
 <Cast>
 <Actor Role="Tom Ripley">
 <First>Matt</First>
 <Last>Damon</Last>
 </Actor>
 <Actress Role="Marge Sherwood">
 <First>Gwenyth</First>
 <Last>Paltrow</Last>
 </Actress>
 <Actor Role="Dickie Greenleaf">
 <First>Jude</First>
 <Last>Law</Last>
 <Award From="BAFTA" Category="Best Supporting Actor"/>
 </Actor>
 </Cast>
</Movie>

You can use the built-in Oracle9i XPath query features to extract an aggregate list of

all cast members who have received Oscar awards from any movie in the database

using a query like this:

SELECT xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]')))
 FROM movies m;

-- To include this query result of XMLType into your XSQL page,
Generating XML Data from the Database 10-53

Generating XML Using XML SQL Utility (XSU)
-- simply paste the query inside an <xsql:include-xml> element, and add
-- a getClobVal() method call to the query expression so that the result will
-- be returned as a CLOB instead of as an XMLType to the client:
<xsql:include-xml connection="orcl92" xmlns:xsql="urn:oracle-xsql">
 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]'))).getClobVal()
 from movies m
</xsql:include-xml>

Failing to do this results in an attempt by the XSQL page processor to parse a CLOB

that looks like:

<Actor>...</Actor>
<Actress>...</Actress>

Which is not well-formed XML because it does not have a single document element

as required by the XML 1.0 specification. The combination of xmlelement() and

xmlagg() work together to produce a well-formed result like this:

<AwardedActors>
 <Actor>...</Actor>
 <Actress>...</Actress>
</AwardedActors>

This well-formed XML is then parsed and included in your XSQL page.

Generating XML Using XML SQL Utility (XSU)
The Oracle XML SQL Utility (XSU) can still be used with Oracle9i to generate XML.

This might be useful if you want to generate XML on the middle-tier or the client.

XSU now additionally supports generating XML on tables with XMLType columns.

Note: Again we use the combination of XMLElement() and

XMLAgg() to have the database aggregate all of the XML fragments

identified by the query into a single, well-formed XML document.

See Also: Oracle9i XML Developer’s Kits Guide - XDK, the chapter

in “XDK for Java” on XSQL Page Publishing Framework.
10-54 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML Using XML SQL Utility (XSU)
Example 10–33 Generating XML Using XSU for Java getXML

For example, if you have table, parts:

CREATE TABLE parts (PartNo number, PartName varchar2(20), PartDesc xmltype);

You can generate XML on this table using Java with the call:

java OracleXML getXML -user "scott/tiger" -rowTag "Part" "select * from parts"

This produces the result:

<Parts>
 <Part>
 <PartNo>1735</PartNo>
 <PartName>Gizmo</PartName>
 <PartDesc>
 <Description>
 <Title>Description of the Gizmo</Title>
 <Author>John Smith</Author>
 <Body>
 The Gizmo is <i>grand</i>.
 </Body>
 </Description>
 </PartDesc>
 </Part>
 ...
</Parts>

See Also : Oracle9i XML Developer’s Kits Guide - XDK for more

information on XSU
Generating XML Data from the Database 10-55

Generating XML Using XML SQL Utility (XSU)
10-56 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTyp
11

XMLType Views

This chapter describes how to create and use XMLType views. It contains the

following sections:

■ What Are XMLType Views?

■ Creating Non-Schema-Based XMLType Views

■ Creating XML Schema-Based XMLType Views

■ Creating XMLType Views From XMLType Tables

■ Referencing XMLType View Objects Using REF()

■ DML (Data Manipulation Language) on XMLType Views

■ Query Rewrite on XMLType Views

■ Ad-Hoc Generation of XML Schema-Based XML

■ Validating User-Specified Information
e Views 11-1

What Are XMLType Views?
What Are XMLType Views?
XMLType views wrap existing relational and object-relational data in XML formats.

The major advantages of using XMLType views are:

■ You can exploit the new Oracle XML DB XML features that use XMLSchema
functionality without having to migrate your base legacy data.

■ With XMLType views, you can experiment with various other forms of storage,

besides the object-relational or CLOB storage alternatives available to XMLType
tables.

XMLType views are similar to object views. Each row of an XMLType view

corresponds to an XMLType instance. The object identifier for uniquely identifying

each row in the view can be created using an expression such as extract() on the

XMLType value.

Similar to XMLType tables, XMLType views can conform to an XML schema. This

provides stronger typing and enables optimization of queries over these views.

To use XMLType views with XML schemas, you must first register your XML

schema with annotations that represent the bi-directional mapping from XML to

SQL object types. An XMLType view conforming to this registered XML schema can

then be created by providing an underlying query that constructs instances of the

appropriate SQL object type.

This chapter describes the two main ways you can create XMLType views:

■ Based on XML generation functions

■ Based on object types

See Also:

■ Chapter 5, "Structured Mapping of XMLType"

■ Chapter 26, "Oracle XML DB Basic Demo", the section on "7.0

XML DB Demo: Using Views to Access XML from Relational

Tools"

■ Appendix B, "XML Schema Primer"
11-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Non-Schema-Based XMLType Views
Creating Non-Schema-Based XMLType Views
You can create a view of XMLType or a view with one or more XMLType columns,

by using the SQL XML generation functions, particularly those that comply with

the emerging SQLX standards.

Example 11–1 XMLType View: Creating XMLType View Using XMLElement() Function

The following statement creates an XMLType view using XMLElement()
generation function:

DROP TABLE employees;
CREATE TABLE employees
(empno number(4), fname varchar2(20), lname varchar2(20), hire date, salary
number(6));

INSERT INTO employees VALUES
(2100, ’John’, ’Smith’, Date’2000-05-24’, 30000);

INSERT INTO employees VALUES
(2200, ’Mary’, ’Martin’, Date’1996-02-01’, 30000);

CREATE OR REPLACE VIEW Emp_view OF XMLTYPE WITH OBJECT ID
 (EXTRACT(sys_nc_rowinfo$,’/Emp/@empno’).getnumberval())
 AS SELECT XMLELEMENT("Emp", XMLAttributes(empno),
 XMLForest(e.fname ||’ ’|| e.lname AS "name",
 e.hire AS "hiredate")) AS "result"
 FROM employees e
 WHERE salary > 20000;

A query against the XMLType view returns the following employee data in XML

format:

SELECT * FROM Emp_view;
 <Emp empno="2100">
 <name>John Smith</name>
 <hiredate>2000-05-24</hiredate>
 </Emp>

 <Emp empno="2200">
 <name>Mary Martin</name>
 <hiredate>1996-02-01</hiredate>
 </Emp>

See Also: Chapter 10, "Generating XML Data from the Database",

for details on SQLX generation functions.
XMLType Views 11-3

Creating XML Schema-Based XMLType Views
empno attribute in the document should become the unique identifier for each row.

SYS_NC_ROWINFO$ is a virtual column that references the row XMLType instance.

You can perform DML operations on these XMLType views, but, in general, you

must write instead-of triggers to handle the DML operation.

XMLType Views can also be created using SYS_XMLGEN. An equivalent query that

produces the same query results using SYS_XMLGEN is as follows:

CREATE TYPE Emp_t AS OBJECT ("@empno" number(4), fname varchar2(2000),
lname varchar2(2000), hiredate date);

CREATE VIEW employee_view OF XMLTYPE WITH OBJECT ID
 (EXTRACT(sys_nc_rowinfo$,’/Emp/@empno’).getnumberval())
 AS SELECT SYS_XMLGEN(emp_t(empno, fname, lname, hire),
XMLFORMAT(’EMP’))
 FROM employees e
 WHERE salary > 20000;

Existing data in relational or object-relational tables or views can be exposed as

XML using this mechanism. In addition, queries involving simple XPath traversal

over SYS_XMLGEN views are candidates for query rewrite to directly access the

object attributes.

Creating XML Schema-Based XMLType Views
XML schema-based XMLType views are XMLType views whose resultant XML

value is constrained to be a particular element in a registered XML schema. There

are two main ways to create XML schema-based XMLType views:

■ Using SQL/XML functions, such as XMLAgg, XMLElement , XMLForest, and
so on. Here you create the XMLType view using simple XML generation

functions, without the need for creating any object types. This mechanism of

creating XMLType views using SQL/XML functions is more simple as you do

not have to create any object types or object views. The use of object types with

Note: In prior releases, the object identifier clause only supported

attributes of the object type of the view to be specified. In this

release, this has been enhanced to support any expression returning

a scalar value.
11-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
XML schemas however, would also give you the advantage of using Query

Rewrite functionality.

■ Using object types and or object views. Here you create the XMLType view

either using object types or from object views. This mechanism for creating

XMLType views is more convenient when you already have an object-relational

schema and want to map it directly to XML. Also, since the view is based on

XML schema, it derives several performance (memory and access)

optimizations.

Creating XML Schema-Based XMLType Views Using SQL/XML Generation Functions
SQL/XML generation functions can be used to create XML schema-based XMLType
views similar to the non-schema based case explained in the previous section. To

create XML schema-based XMLType views, perform the following steps:

1. Create and register the XML schema document that contains the necessary XML

structures.

2. Create an XMLType view conforming to that XML schema by using SQL/XML

functions.

See Also: "Creating XML Schema-Based XMLType Views Using

SQL/XML Generation Functions" on page 11-5.

See Also: "Creating XMLType Views Using Object Types and

Views" on page 11-11.

Note: In this release, XPath predicates over these SQL/XML

views are not rewritten. Consequently, queries expressed over such

views using predicates such as extract , existsNode ,... are

evaluated functionally over all the rows of the view. If queriability

of the view is important, consider using the object-relational

approach instead.
XMLType Views 11-5

Creating XML Schema-Based XMLType Views
Example 11–2 Creating XML Schema-Based XMLType Views using SQL/XML
Functions

Step 1. Register XML Schema, emp_simple.xsd
Assume that you have an XML schema emp_simple.xsd that contains XML

structures defining an employee. First register the XML schema and identify it

using a URL:

BEGIN
 dbms_xmlschema.deleteSchema(’http://www.oracle.com/emp_simple.xsd’, 4);
END;
/
BEGIN
 dbms_xmlschema.registerSchema(’http://www.oracle.com/emp_simple.xsd’,
 ’<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/emp_simple.xsd" version="1.0"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 elementFormDefault="qualified">
 <element name = "Employee">
 <complexType>
 <sequence>
 <element name = "EmployeeId" type = "positiveInteger"/>
 <element name = "Name" type = "string"/>
 <element name = "Job" type = "string"/>
 <element name = "Manager" type = "positiveInteger"/>
 <element name = "HireDate" type = "date"/>
 <element name = "Salary" type = "positiveInteger"/>
 <element name = "Commission" type = "positiveInteger"/>
 <element name = "Dept">
 <complexType>
 <sequence>
 <element name = "DeptNo" type = "positiveInteger" />
 <element name = "DeptName" type = "string"/>
 <element name = "Location" type = "string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>’, TRUE, TRUE, FALSE);
END;
/

11-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
The preceding statement registers the XML schema with the target location:

"http://www.oracle.com/emp_simple.xsd"

Step 2. Create XMLType View Using SQL/XML Functions
You can now create an XML schema-based XMLType view using SQL/XML

functions. You can also use XMLTransform() or other SQL function that generate

XML.The resultant XML must conform to the XML schema specified for the view.

When using SQL/XML functions to generate XML schema-based content, you must

specify the appropriate namespace information for all the elements and also

indicate the location of the schema using the xsi:schemaLocation attribute. All

these can be specified using the XMLAttributes clause.

CREATE OR REPLACE VIEW emp_simple_xml OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/emp_simple.xsd" ELEMENT "Employee"
 WITH OBJECT ID (extract(sys_nc_rowinfo$,
 ’/Employee/EmployeeId/text()’).getnumberval()) AS
 SELECT XMLElement("Employee",
 XMLAttributes(’http://www.oracle.com/emp_simple.xsd’ AS "xmlns" ,
 ’http://www.w3.org/2001/XMLSchema-instance’ AS "xmlns:xsi",
 ’http://www.oracle.com/emp_simple.xsd
 http://www.oracle.com/emp_simple.xsd’ AS "xsi:schemaLocation"),
 XMLForest(e.empno AS "EmployeeId",
 e.ename AS "Name",
 e.job AS "Job",
 e.mgr AS "Manager",
 to_char(e.hiredate,’SYYYY-MM-DD’) AS "HireDate",
 e.sal AS "Salary",
 e.comm AS "Commission",
 XMLForest(d.deptno AS "DeptNo",
 d.dname AS "DeptName",
 d.loc AS "Location") AS "Dept"))
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In the preceding example, the XMLElement() function creates the Employee XML

element and the inner XMLForest() creates the kids of the employee element. The

XMLAttributes clause inside the XMLElement() constructs the required XML

namespace and schema location attributes so that the XML generated conforms

to the view’s XML schema.The innermost XMLForest() function creates the

department XML element that is nested inside the Employee element.
XMLType Views 11-7

Creating XML Schema-Based XMLType Views
The XML generation function simply generates a non-XML schema-based XML

instance. However, in the case of XMLType views, as long as the names of the

elements and attributes match those in the XML schema, Oracle converts this XML

implicitly into a well-formed and valid XML schema-based document. Any errors

in the generated XML will be caught when further operations, such as validate or

extract,... are performed on the XML instance.

The expression:

to_char(e.hiredate,’SYYYY-MM-DD’) AS "HireDate"

is needed to convert dates in SQL date format to the XML Schema format, since the

default Globalization Support date format for converting date to string may be

different.

You can now query the view and get the XML result from the employee and

department relational tables:

SQL> select value(p) as result from emp_simple_xml p where rownum < 2;

RESULT
--
<Employee xmlns="http://www.oracle.com/emp_simple.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/emp_simple.xsd
 http://www.oracle.com/emp_simple.xsd">
 <EmployeeId>7782</EmployeeId>
 <Name>CLARK</Name>
 <Job>MANAGER</Job>
 <Manager>7839</Manager>
 <HireDate>1981-06-09</HireDate>
 <Salary>2450</Salary>
 <Dept>
 <DeptNo>10</DeptNo>
 <DeptName>ACCOUNTING</DeptName>
 <Location>NEW YORK</Location>
 </Dept>
</Employee>

Using Namespaces with SQL/XML Functions
If you have complicated XML schemas involving multiple namespaces, you need to

use the partially escaped mapping provided in the SQL functions and create

elements with appropriate namespaces and prefixes.
11-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
Example 11–3 Using Namespace Prefixes in XMLType Views

For example the SQL query:

SELECT XMLElement("ipo:Employee",
 XMLAttributes(’http://www.oracle.com/emp_simple.xsd’ AS "xmlns:ipo",
 ’http://www.oracle.com/emp_simple.xsd
 http://www.oracle.com/emp_simple.xsd’ AS "xmlns:xsi"),
 XMLForest(e.empno AS "ipo:EmployeeId",
 e.ename AS "ipo:Name",
 e.job AS "ipo:Job" ,
 e.mgr AS "ipo:Manager",
 to_char(e.hiredate,’SYYYY-MM-DD’) AS "ipo:HireDate",
 e.sal AS "ipo:Salary",
 e.comm AS "ipo:Commission",
 XMLForest(d.deptno AS "ipo:DeptNo",
 d.dname AS "ipo:DeptName",
 d.loc AS "ipo:Location") AS "ipo:Dept"))
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

creates the XML instances with the correct namespace, prefixes, and target schema

location, and can be used as the query in the emp_simple_xml view definition.

The instance created by this query looks like the following:

<ipo:Employee xmlns:ipo="http://www.oracle.com/emp_simple.xsd"
 xmlns:xsi="http://www.oracle.com/emp_simple.xsd
 http://www.oracle.com/emp_simple.xsd">
 <ipo:EmployeeId>7782</ipo:EmployeeId>
 <ipo:Name>CLARK</ipo:Name>
 <ipo:Job>MANAGER</ipo:Job>
 <ipo:Manager>7839</ipo:Manager>
 <ipo:HireDate>1981-06-09</ipo:HireDate>
 <ipo:Salary>2450</ipo:Salary>
 <ipo:Dept>
 <ipo:DeptNo>10</ipo:DeptNo>
 <ipo:DeptName>ACCOUNTING</ipo:DeptName>
 <ipo:Location>NEW YORK</ipo:Location>
 </ipo:Dept>
</ipo:Employee>

If the XML schema had no target namespace you can use the

xsi:noNamespaceSchemaLocation attribute to denote that. For example,

consider the following XML schema that is registered at location:

“emp-noname.xsd ”:
XMLType Views 11-9

Creating XML Schema-Based XMLType Views
BEGIN
 dbms_xmlschema.deleteSchema(’emp-noname.xsd’, 4);
END;
/

BEGIN
 dbms_xmlschema.registerSchema(’emp-noname.xsd’,
 ’<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name = "Employee" xdb:defaultTable="EMP37_TAB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "EmployeeId" type = "xs:positiveInteger"/>
 <xs:element name = "FirstName" type = "xs:string"/>
 <xs:element name = "LastName" type = "xs:string"/>
 <xs:element name = "Salary" type = "xs:positiveInteger"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>’);
END;
/

The following CREATE OR REPLACE VIEWstatement creates a view that conforms

to this XML schema:

CREATE OR REPLACE VIEW emp_xml OF XMLTYPE
 XMLSCHEMA "emp-noname.xsd" ELEMENT "Employee"
 WITH OBJECT ID (extract(sys_nc_rowinfo$,
 ’/Employee/EmployeeId/text()’).getnumberval()) AS
 SELECT XMLElement("Employee",
 XMLAttributes(’http://www.w3.org/2001/XMLSchema-instance’ AS "xmlns:xsi",
 ’emp-noname.xsd’ AS "xsi:noNamespaceSchemaLocation"),
 XMLForest(e.empno AS "EmployeeId",
 e.ename AS "Name",
 e.job AS "Job" ,
 e.mgr AS "Manager",
 to_char(e.hiredate,’SYYYY-MM-DD’) AS "HireDate",
 e.sal AS "Salary",
 e.comm AS "Commission",
 XMLForest(d.deptno AS "DeptNo",
 d.dname AS "DeptName",
 d.loc AS "Location") AS "Dept"))
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;
11-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
The XMLAttributes clause creates an XML element that contains the

noNamespace schema location attribute.

Creating XMLType Views Using Object Types and Views
To wrap relational data with strongly-typed XML, using the object view approach,

perform these steps:

1. Create object types

2. Create or generate and then register an XML schema document that contains

the XML structures, along with its mapping to the SQL object types and

attributes. See Chapter 5, "Structured Mapping of XMLType".

3. Create the XMLType view and specify the XML schema URL and the root

element name. The underlying view query first constructs the object instances

and then converts them to XML. This step can also be done in two steps:

1. Create an object view

2. Create an XMLType view over the object view

Consider the following examples based on the canonical employee -department

relational tables and XML views of this data:

■ Creating Schema-Based XMLType Views over object views

■ XMLType View: View 2, Wrapping Relational Department Data with Nested

Employee Data as XML

Example 11–4 Creating Schema-Based XMLType Views over object views

For the first example view, to wrap the relational employee data with nested

department information as XML, follow these steps:

Step 1. Create Object Types
CREATE OR REPLACE TYPE dept_t AS OBJECT
 (
 DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13)
);
/
CREATE OR REPLACE TYPE emp_t AS OBJECT
 (
XMLType Views 11-11

Creating XML Schema-Based XMLType Views
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPT DEPT_T
);
/

Step 2. Create or Generate XMLSchema, emp.xsd
You can create the XML schema by hand or you can use the DBMS_XMLSchema
package to generate the XML schema automatically from the existing object types.

For example:

SELECT DBMS_XMLSchema.generateSchema(’SCOTT’,’EMP_T’) AS result FROM DUAL;

generates the XML schema for the employee type. You can supply various

arguments to this function to add namespaces, and so on. You can further edit the

XML schema to change the various default mappings that were generated.

generateSchemas() function in the package generates a list of XML schemas one

for each different SQL database schema referenced by the object type and its

attributes.

Step 3. Register XML Schema, emp.xsd
XML schema, emp.xsd also specifies how the XML elements and attributes are

mapped to their corresponding attributes in the object types, as follows:

BEGIN
 dbms_xmlschema.deleteSchema(’http://www.oracle.com/emp.xsd’, 4);
END;
/
BEGIN
 dbms_xmlschema.registerSchema(’http://www.oracle.com/emp.xsd’,
’<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/emp.xsd" version="1.0"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 elementFormDefault="qualified">
 <element name = "Employee" xdb:SQLType="EMP_T" xdb:SQLSchema="SCOTT">
 <complexType>
 <sequence>
 <element name = "EmployeeId" type = "positiveInteger" xdb:SQLName="EMPNO"
11-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
 xdb:SQLType="NUMBER"/>
 <element name = "Name" type = "string" xdb:SQLName="ENAME"

xdb:SQLType="VARCHAR2"/>
 <element name = "Job" type = "string" xdb:SQLName="JOB"
xdb:SQLType="VARCHAR2"/>
 <element name = "Manager" type = "positiveInteger" xdb:SQLName="MGR"
 xdb:SQLType="NUMBER"/>
 <element name = "HireDate" type = "date" xdb:SQLName="HIREDATE"
 xdb:SQLType="DATE"/>
 <element name = "Salary" type = "positiveInteger" xdb:SQLName="SAL"
 xdb:SQLType="NUMBER"/>
 <element name = "Commission" type = "positiveInteger" xdb:SQLName="COMM"
 xdb:SQLType="NUMBER"/>
 <element name = "Dept" xdb:SQLName="DEPT" xdb:SQLType="DEPT_T"
xdb:SQLSchema="SCOTT">
 <complexType>
 <sequence>
 <element name = "DeptNo" type = "positiveInteger"
xdb:SQLName="DEPTNO"
 xdb:SQLType="NUMBER"/>
 <element name = "DeptName" type = "string" xdb:SQLName="DNAME"

xdb:SQLType="VARCHAR2"/>
 <element name = "Location" type = "string" xdb:SQLName="LOC"

xdb:SQLType="VARCHAR2"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>’, TRUE, FALSE, FALSE);
END;
/

The preceding statement registers the XML schema with the target location:

"http://www.oracle.com/emp.xsd"

Step 4a. Create XMLType View Using the One-Step Process
With the one-step process you must create an XMLType view on the relational tables

as follows:
XMLType Views 11-13

Creating XML Schema-Based XMLType Views
CREATE OR REPLACE VIEW emp_xml OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/emp.xsd" ELEMENT "Employee"
 WITH OBJECT ID (ExtractValue(sys_nc_rowinfo$, ’/Employee/EmployeeId’)) AS
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm,
 dept_t(d.deptno, d.dname, d.loc))
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

This example uses the extractValue() SQL function here in the OBJECT ID clause,

since extractValue() can automatically figure out the appropriate SQL datatype

mapping (in this case a SQL Number) using the XML schema information.

Step 4b. Create XMLType View Using the Two-Step Process by First Creating an
Object View
In the two step process, you first create an object-relational view, then create an

XMLType view on the object-relational view, as follows:

CREATE OR REPLACE VIEW emp_v OF emp_t WITH OBJECT ID (empno) AS
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm,
 dept_t(d.deptno, d.dname, d.loc))
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

-- Create the employee XMLType view over the emp_v object view
CREATE OR REPLACE VIEW emp_xml OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/emp.xsd" ELEMENT "Employee"
 WITH OBJECT ID DEFAULT
 AS SELECT VALUE(p) FROM emp_v p;

Example 11–5 XMLType View: View 2, Wrapping Relational Department Data with
Nested Employee Data as XML

For the second example view, to wrap the relational department data with nested

employee information as XML, follow these steps:

Step 1. Create Object Types
DROP TYPE emp_t FORCE;
DROP TYPE dept_t FORCE;
CREATE OR REPLACE TYPE emp_t AS OBJECT
 (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
11-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XML Schema-Based XMLType Views
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2)
);
/
CREATE OR REPLACE TYPE emplist_t AS TABLE OF emp_t;
/
CREATE OR REPLACE TYPE dept_t AS OBJECT
 (
 DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13),
 EMPS EMPLIST_T
);
/

Step 2. Register XML Schema, dept.xsd
You can either use a pre-existing XML schema or you can generate an XML schema

from the object type using the DBMS_XMLSchema.generateSchema(s) functions:

BEGIN
dbms_xmlschema.deleteSchema(’http://www.oracle.com/dept.xsd’, 4);
END;
/
BEGIN
dbms_xmlschema.registerSchema(’http://www.oracle.com/dept.xsd’,
’<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/dept.xsd" version="1.0"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 elementFormDefault="qualified">
 <element name = "Department" xdb:SQLType="DEPT_T" xdb:SQLSchema="SCOTT">
 <complexType>
 <sequence>
 <element name = "DeptNo" type = "positiveInteger" xdb:SQLName="DEPTNO"
 xdb:SQLType="NUMBER"/>
 <element name = "DeptName" type = "string" xdb:SQLName="DNAME"
 xdb:SQLType="VARCHAR2"/>
 <element name = "Location" type = "string" xdb:SQLName="LOC"
 xdb:SQLType="VARCHAR2"/>
 <element name = "Employee" maxOccurs = "unbounded" xdb:SQLName = "EMPS"
 xdb:SQLType="EMPLIST_T"
xdb:SQLSchema="SCOTT">
 <complexType>
XMLType Views 11-15

Creating XML Schema-Based XMLType Views
 <sequence>
 <element name = "EmployeeId" type = "positiveInteger"
 xdb:SQLName="EMPNO"
xdb:SQLType="NUMBER"/>
 <element name = "Name" type = "string" xdb:SQLName="ENAME"
 xdb:SQLType="VARCHAR2"/>
 <element name = "Job" type = "string" xdb:SQLName="JOB"
 xdb:SQLType="VARCHAR2"/>
 <element name = "Manager" type = "positiveInteger"
xdb:SQLName="MGR"
 xdb:SQLType="NUMBER"/>
 <element name = "HireDate" type = "date" xdb:SQLName="HIREDATE"
 xdb:SQLType="DATE"/>
 <element name = "Salary" type = "positiveInteger" xdb:SQLName="SAL"
 xdb:SQLType="NUMBER"/>
 <element name = "Commission" type = "positiveInteger"
 xdb:SQLName="COMM"
xdb:SQLType="NUMBER"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>’, TRUE, FALSE, FALSE);
END;
/

Step 3a. Create XMLType Views on Relational Tables
Create the dept_xml XMLType view from the department object type as follows:

CREATE OR REPLACE VIEW dept_xml OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/dept.xsd" ELEMENT "Department"
 WITH OBJECT ID (EXTRACTVALUE(sys_nc_rowinfo$, ’/Department/DeptNo’)) AS
 SELECT dept_t(d.deptno, d.dname, d.loc,
 cast(multiset(
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate,
 e.sal,e.comm) FROM emp e
 WHERE e.deptno = d.deptno)
 AS emplist_t))
 FROM dept d;
11-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XMLType Views From XMLType Tables
Step 3b. Create XMLType Views on Relational Tables using SQL functions
You can also create the dept_xml XMLType view from the relational tables without

using the object type definitions.

CREATE OR REPLACE VIEW dept_xml OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/dept.xsd" ELEMENT "Department"
 WITH OBJECT ID (EXTRACT(sys_nc_rowinfo$,
’/Department/DeptNo’).getNumberVal()) AS
 SELECT XMLElement("Department",
 XMLAttributes(’http://www.oracle.com/emp.xsd’ AS "xmlns" ,
 ’http://www.w3.org/2001/XMLSchema-instance’ AS "xmlns:xsi",
 ’http://www.oracle.com/dept.xsd
 http://www.oracle.com/dept.xsd’ AS "xsi:schemaLocation"),
 XMLForest(d.deptno "DeptNo",
 d.dname "DeptName",
 d.loc "Location"),
 (SELECT XMLAGG(XMLElement("Employee",
 XMLForest(e.empno "EmployeeId",
 e.ename "Name",
 e.job "Job",
 e.mgr "Manager",
 to_char(e.hiredate,’SYYYY-MM-DD’)
 "Hiredate"),
 e.sal "Salary",
 e.comm "Commission"))
 FROM emp e
 WHERE e.deptno = d.deptno))
 FROM dept d;

Creating XMLType Views From XMLType Tables
An XMLType view can be created on an XMLType table, perhaps to transform the

XML or to restrict the rows returned by using some predicates.

Note: The XML schema and element information must be

specified at the view level because the SELECT list could arbitrarily

construct XML of a different XML schema from the underlying

table.
XMLType Views 11-17

Referencing XMLType View Objects Using REF()
Example 11–6 Creating an XMLType View by Restricting rows From an XMLType Table

Here is an example of creating a XMLType view by restricting the rows returned

from an underlying XMLType table. We use the dept.xsd schema described in the

previous section to create the underlying table.

DROP TABLE dept_xml_tab;

CREATE TABLE dept_xml_tab OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/dept.xsd" ELEMENT "Department"
 nested table xmldata."EMPS" store as dept_xml_tab_tab1;

CREATE OR REPLACE VIEW dallas_dept_view OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/dept.xsd" ELEMENT "Department"
 AS SELECT VALUE(p) FROM dept_xml_tab p
 WHERE Extractvalue(value(p), ’/Department/Location’) = ’DALLAS’;

Here, the dallas_dept_view restricts the XMLType table rows to those

departments whose location is Dallas.

Example 11–7 Creating an XMLType View by Transforming an XMLType Table

You can create an XMLType view by transforming the XML data using a stylesheet.

For example, consider the creation of XMLType table po_tab . Refer to Example 6–1,

"Transforming an XMLType Instance Using XMLTransform() and DBUriType to Get

the XSL Stylesheet" on page 6-6 for an xmltransform() example:

DROP TABLE po_tab;

CREATE TABLE po_tab OF xmltype xmlschema "ipo.xsd" element
 "PurchaseOrder";

You can then create a view of the table as follows:

CREATE OR REPLACE VIEW HR_PO_tab OF xmltype xmlschema "hrpo.xsd" element
 "PurchaseOrder"
 WITH OBJECT ID DEFAULT
 AS SELECT
 xmltransform(value(p),xdburitype(’/home/SCOTT/xsl/po2.xsl’).getxml())
 FROM po_tab p;

Referencing XMLType View Objects Using REF()
You can reference an XMLType view object using the REF() syntax:

SELECT REF(p) FROM dept_xml p;
11-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DML (Data Manipulation Language) on XMLType Views
XMLType view reference REF() is based on one of the following object IDs:

■ On a system-generated OID — for views on XMLType tables or object views

■ On a primary key based OID -- for views with OBJECT ID expressions

These REFs can be used to fetch OCIXMLType instances in the OCI Object cache or

can be used inside SQL queries. These REFs behave in the same way as REFs to

object views.

DML (Data Manipulation Language) on XMLType Views
An XMLType view may not be inherently updatable. This means that you have to

write INSTEAD-OF -TRIGGERS to handle all data manipulation (DML). You can

identify cases where the view is implicitly updatable, by analyzing the underlying

view query.

Example 11–8 Identifying When a View is Implicitly Updatable

For example, if the XMLType view query is based on an object view or an object

constructor that is itself inherently updatable:

DROP TYPE dept_t force;
CREATE OR REPLACE TYPE dept_t AS OBJECT
 (
 DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13)
);
/

BEGIN
dbms_xmlschema.deleteSchema(’http://www.oracle.com/dept.xsd’, 4);
END;
/
BEGIN
dbms_xmlschema.registerSchema(’http://www.oracle.com/dept.xsd’,
’<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/dept.xsd" version="1.0"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 elementFormDefault="qualified">
 <element name = "Department" xdb:SQLType="DEPT_T" xdb:SQLSchema="SCOTT">
 <complexType>
 <sequence>
XMLType Views 11-19

Query Rewrite on XMLType Views
 <element name = "DeptNo" type = "positiveInteger" xdb:SQLName="DEPTNO"
 xdb:SQLType="NUMBER"/>
 <element name = "DeptName" type = "string" xdb:SQLName="DNAME"
 xdb:SQLType="VARCHAR2"/>
 <element name = "Location" type = "string" xdb:SQLName="LOC"
 xdb:SQLType="VARCHAR2"/>
 </sequence>
 </complexType>
 </element>
</schema>’, TRUE, FALSE, FALSE);
END;
/

CREATE OR REPLACE VIEW dept_xml of xmltype
xmlschema "http://www.oracle.com/dept.xsd" element "Department"
with object id (sys_nc_rowinfo$.extract(’/Department/DeptNo’).getnumberval()) as
select dept_t(d.deptno, d.dname, d.loc) from dept d;

INSERT INTO dept_xml VALUES (XMLType.createXML(
’<Department xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.oracle.com/dept.xsd">
 <DeptNo>50</DeptNo>
 <DeptName>EDP</DeptName>
 <Location>NEW YORK</Location>
</Department>’));

UPDATE dept_xml d
 SET d.sys_nc_rowinfo$ = updateXML(d.sys_nc_rowinfo$,
’/Department/DeptNo/text()’, 60)
 WHERE existsNode(d.sys_nc_rowinfo$, ’/Department[DeptNo=50]’) = 1;

Query Rewrite on XMLType Views
For Query Rewrites, XMLType views are the same as regular XMLType table

columns. Hence, extract() or existsNode() operations on view columns, get

rewritten into underlying relational accesses for better performance.

In this release, XPath predicates over these SQL/XML views are not rewritten.

Consequently, queries expressed over such view using predicates such as extract,

existsNode,... would be evaluated functionally over all the rows of the view. If

queriability of the view is important, consider using the object-relational approach,

instead of the SQL/XML functions.
11-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite on XMLType Views
Query Rewrite on XML Schema-Based Views
For example consider the following:

Example 11–9 Query Rewrite on XMLType Views: Query-Rewrite on XML
Schema-Based Views

XCREATE OR REPLACE VIEW dept_ov OF dept_t
 WITH OBJECT ID (deptno) as
 SELECT d.deptno, d.dname, d.loc, cast(multiset(
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS emplist_t)
 FROM dept d;

CREATE OR REPLACE VIEW dept_xml OF XMLTYPE
 WITH OBJECT ID (EXTRACT(sys_nc_rowinfo$, ’/ROW/DEPTNO’).getNumberVal()) AS
 SELECT sys_xmlgen(value(p)) FROM dept_ov p;

A query to select department numbers that have at least one employee making a

salary more than $200000:

SELECT EXTRACTVALUE(value(x),’/ROW/DEPTNO’)
 FROM dept_xml x
 WHERE EXISTSNODE(value(x), ’/ROW/EMPS/EMP_T[SAL > 200]’) = 1;

becomes:

ELECT d.deptno
 FROM dept d
 WHERE EXISTS (SELECT NULL FROM emp e WHERE e.deptno = d.deptno
 AND e.sal > 200);

Query Rewrite on Non-Schema-Based XMLType Views
Consider the following example:

Example 11–10 Query Rewrite on Non-Schema-Based Views

Non-schema-based XMLType views can be created on existing relational and

object-relational tables and views. This provides users with an XML view of the

underlying data.
XMLType Views 11-21

Query Rewrite on XMLType Views
Existing relational data can be transformed into XMLType views by creating

appropriate types, and doing a SYS_XMLGEN at the top-level.For example, the data

in the emp table can be exposed as follows:

CREATE TYPE Emp_t AS OBJECT (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2));

CREATE VIEW employee_xml OF XMLTYPE
 WITH OBJECT ID
 (SYS_NC_ROWINFO$.EXTRACT(’/ROW/EMPNO/text()’).getnumberval()) AS
 SELECT SYS_XMLGEN(
 emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm))
 FROM emp e;

A major advantage of non-schema-based views is that existing object views can be

easily transformed into XMLType views without any additional DDLs. For example,

consider a database which contains the object view employee_ov with the

following definition:

CREATE VIEW employee_ov OF EMP_T
WITH OBJECT ID (empno) AS
SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm)
 FROM emp e;

-- Creating a non-schema-based XMLType views can be achieved by simply
-- calling SYS_XMLGEN over the top-level object column. No additional
-- types need to be created.

CREATE OR REPLACE VIEW employee_ov_xml OF XMLTYPE
 WITH OBJECT ID
 (SYS_NC_ROWINFO$.EXTRACT(’/ROW/EMPNO/text()’).getnumberval()) AS
 SELECT SYS_XMLGEN(value(x)) from employee_ov x;

-- Certain kinds of queries on SYS_XMLGEN views are rewritten to
access the object attributes directly. Simple XPath traversals with existsNode() ,

extractValue() , and extract() are candidates for rewrite. See Chapter 5,

"Structured Mapping of XMLType", "Query Rewrite with XML Schema-Based

Structured Storage" on page 5-51, for details on query rewrite.
11-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Ad-Hoc Generation of XML Schema-Based XML
For example, a query such as the following:

SELECT EXTRACT(VALUE(x), ’/ROW/EMPNO’) FROM employee_ov_xml x
WHERE EXTRACTVALUE(value(x), ’/ROW/ENAME’) = ’SMITH’;

is rewritten to:

SELECT SYS_XMLGEN(empno)
FROM emp e
WHERE e.ename = ’SMITH’;

Ad-Hoc Generation of XML Schema-Based XML
In the preceding examples, the CREATE VIEW statement specified the XML schema

URL and element name, whereas the underlying view query simply constructed a

non-XML schema-based XMLType. However, there are several scenarios where you

may want to avoid the view creation step, but still need to construct XML

schema-based XML.

To achieve this, you can use the following XML generation functions to optionally

accept an XML schema URL and element name:

■ createXML()

■ SYS_XMLGEN()

■ SYS_XMLAGG()

If the XML schema information is specified, the resulting XML is created to be XML

schema-based:

SELECT XMLTYPE.createXML(dept_t(d.deptno, d.dname, d.loc,
 CAST(MULTISET(SELECT emp_t(e.empno, e.ename, e.job, e.mgr,
 e.hiredate, e.sal, e.comm)
 FROM emp e WHERE e.deptno = d.deptno) AS emplist_t),
 'http://www.oracle.com/dept.xsd', 'Department')
 FROM dept d;

Note: Query rewrite only happens with SYS_XMLGEN. Queries

over views based on other functions are not rewritten.

See Also: Chapter 10, "Generating XML Data from the Database".
XMLType Views 11-23

Validating User-Specified Information
Validating User-Specified Information
You can fill in the optional Oracle XML DB attributes before registering the XML

schema. In this case, Oracle validates the extra information to ensure that the

specified values for the Oracle XML DB attributes are compatible with the rest of

the XML schema declarations. This form of XML schema registration typically

happens when wrapping existing data using XMLType views.

You can use the DBMS_XMLSchema generateSchema() and

generateSchemas() functions to generate the default XML mapping for

specified object types. The generated XML schema document has the SQLType,

SQLSchema, and so on, attributes filled in. When these XML schema documents are

then registered, the following validation forms can occur:

■ SQLType for attributes or elements based on simpleType. This is compatible

with the corresponding XMLType. For example, an XML string datatype can

only be mapped to VARCHAR2s or Large Objects (LOBs).

■ SQLType specified for elements based on complexType. This is either a LOB or

an object type whose structure is compatible with the declaration of the

complexType , that is, the object type has the right number of attributes with

the right datatypes.

See: Chapter 5, "Structured Mapping of XMLType" for more

details on this process
11-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Accessing Data Thro
12

Creating and Accessing Data Through

URLs

This chapter describes how to generate and store URLs inside the database and to

retrieve the data pointed to by the URLs. It also introduces the concept of DBUris

which are URLs to relational data stored inside the database. It explains how to

create and store references to data stored in Oracle XML DB Repository hierarchy.

This chapter contains these sections:

■ How Oracle9i Database Works with URLs and URIs

■ URI Concepts

■ UriTypes Store Uri-References

■ HttpUriType Functions

■ DBUri, Intra-Database References

■ Some Common DBUri Scenarios

■ DBUriType Functions

■ XDBUriType

■ Creating Oracle Text Indexes on UriType Columns

■ Using UriType Objects

■ Creating Instances of UriType Objects with the UriFactory Package

■ Why Define New Subtypes of UriType?

■ SYS_DBURIGEN() SQL Function

■ Turning a URL into a Database Query with DBUri Servlet
ugh URLs 12-1

How Oracle9i Database Works with URLs and URIs
How Oracle9i Database Works with URLs and URIs
In developing Internet applications, and particularly Internet-based XML

applications, you often need to refer to data somewhere on a network using URLs

or URIs.

■ A URL, or Uniform Resource Locator, refers to a complete document or a

particular spot within a document.

■ A URI, or Uniform Resource Identifier, is a more general form of URL. A URI

can be identical to a URL, or it can use extra notation in place of the anchor to

identify an enclosed section of a document (rather than a single location).

Oracle9i can represent various kinds of paths within the database. Each corresponds

to a different object type, all derived from a general type called UriType :

■ HttpUriType represents a URL that begins with http://. It lets you create

objects that represent links to Web pages, and retrieve those Web pages by

calling object methods.

■ DBUriType represents a URI that points to a set of rows, a single row, or a

single column within the database. It lets you create objects that represent links

to table data, and retrieve the data by calling object methods.

■ XDBUriType represents a URI that points to an XML document stored in the

ORACLE XML DB Repository inside the database. We refer to these documents

or other data as resources. It lets you create objects that represent links to

resources, and retrieve all or part of any resource by calling object methods.

Note: Throughout this chapter, we refer to URIs because that is

the more general term, but the details apply to URLs as well. Some

of the type names use Uri instead of URI. Because most of this

information is based on SQL and PL/SQL, the names are usually

not case-sensitive; only when referring to a real filename on a Web

site or a Java API name does case matter.
12-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How Oracle9i Database Works with URLs and URIs
Accessing and Processing Data Through HTTP
Any resources stored inside ORACLE XML DB Repository can also be retrieved by

using the HTTP Server in Oracle XML DB. Oracle9i also includes a servlet that

makes table data available through HTTP URLs. The data can be returned as plain

text, HTML, or XML.

Any Web-enabled client or application can use the data without SQL programming

or any specialized database API. You can retrieve the data by linking to it in a Web

page or by requesting it through the HTTP-aware APIs of Java, PL/SQL, or Perl.

You can display or process the data through any kind of application, including a

regular Web browser or an XML-aware application such as a spreadsheet. The

servlet supports generating XML and non-XML content and also transforming the

results using XSLT stylesheets.

Creating Columns and Storing Data Using UriType
You can create database columns using UriType or its child types, or you can store

just the text of each URI or URL and create the object types as needed. When storing

a mixture of subtypes in the database, you can define a UriType column that can

store various subtypes within the same column.

Because these capabilities use object-oriented programming features such as object

types and methods, you can derive your own types that inherit from the

Oracle-supplied ones. Deriving new types lets you use specialized techniques for

retrieving the data or transforming or filtering it before returning it to the program.

UriFactory Package
When storing just the URI text in the database, you can use the UriFactory
package to turn each URI into an object of the appropriate subtype. UriFactory
package creates an instance of the appropriate type by checking what kind of URI is

represented by a given string. For example, any URI that begins with http:// is

considered an HTTP URL. When the UriFactory package is passed such a URI

string, it returns an instance of a HttpUriType object.

See Also: Chapter 26, "Oracle XML DB Basic Demo", section "8.0

XML DB Demo: Accessing Content Using DBUriServlet;

Transforming Content Using XSL".

See Also: "Registering New UriType Subtypes with the

UriFactory Package" on page 12-26
Creating and Accessing Data Through URLs 12-3

URI Concepts
Other Sources of Information About URIs and URLs
Before you explore the features in this chapter, you should be familiar with the

notation for various kinds of URIs.

URI Concepts
This section introduces you to URI concepts.

What Is a URI?
A URI, or Uniform Resource Identifier, is a generalized kind of URL. Like a URL, it

can reference any document, and can reference a specific part of a document. It is

more general than a URL because it has a powerful mechanism for specifying the

relevant part of the document. A URI consists of two parts:

■ URL, that identifies the document using the same notation as a regular URL.

■ Fragment, that identifies a fragment within the document. The notation for the

fragment depends on the document type. For HTML documents, it has the form

#anchor_name. For XML documents, it uses XPath notation.

The fragment appears after the # in the following examples.

See:

■ http://www.w3.org/2002/ws/Activity.html an

explanation of HTTP URL notation

■ http://www.w3.org/TR/xpath for an explanation of the

XML XPath notation

■ http://www.w3.org/TR/xptr/ for an explanation of the

XML XPointer notation

■ http://xml.coverpages.org/xmlMediaMIME.html for a

discussion of MIME types

Note: Only XDBUriType and HttpUriType support the URI

fragment in this release. DBUriType does not support the URI

fragment.
12-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

URI Concepts
How to Create a URL Path from an XML Document View
Figure 12–1 shows a view of the XML data stored in a relational table, EMP, in the

database, and the columns of data mapped to elements in the XML document. This

mapping is referred to as an XML visualization. The resulting URL path can be

derived from the XML document view.

Typical URIs look like the following:

■ For HTML: http://www.url.com/document1#Anchor

where Anchor is a named anchor inside the document.

■ For XML: http://www.xml.com/xml_doc#//po/cust/custname

where:

– The portion before the # identifies the location of the document.

– The portion after the # identifies a fragment within the document. This

portion is defined by the W3C XPointer recommendation.

UriType Objects Can Use Different Protocols to Retrieve Data
Oracle9i introduces new datatypes in the database to store and retrieve objects that

represent URIs. See "UriTypes Store Uri-References" in the following section. Each

datatype uses a different protocol, such as HTTP, to retrieve data.

Oracle9i also introduces new forms of URIs that represent references to rows and

columns of database tables.

Advantages of Using DBUri and XDBUri
The following are advantages of using DBUri and XDBUri :

■ Reference stylesheets within database-generated Web pages. Oracle-supplied

package DBMS_METADATA uses DBUri s to reference XSL stylesheets. XDBUri
can also be used to reference XSL stylesheets stored in ORACLE XML DB

Repository.

■ Reference HTML, images and other data stored in the database. The URLs can

be used to point to data stored in tables or in the Repository hierarchical

folders.

■ Improved Performance by bypassing the Web server. If you already have a

URL in your XML document, you can replace it with a reference to the database

by either:
Creating and Accessing Data Through URLs 12-5

UriTypes Store Uri-References
– Using a servlet

– Using a DBUri /XDBUri to bring back the results

Using DBUri /XDBUri has performance benefits because you interact directly

with the database rather than through a Web server.

■ Accessing XML Documents in the Database Without SQL. You do not need to

know SQL to access an XML document stored in the database. With DBUri you

can access an XML document from the database without using SQL.

Since the files or resources in ORACLE XML DB Repository are stored in tables,

you can access them either through the XDBUri or by using the table metaphor

through the DBUri .

UriTypes Store Uri-References
URIs or Universal Resource Identifiers identify resources such as Web pages

anywhere on the Web. Oracle9i provides the following UriTypes for storing and

accessing external and internal Uri-references:

■ DBUriType. Stores references to relational data inside the database.

■ HttpUriType . Implements the HTTP protocol for accessing remote pages.
Stores URLs to external Web pages or files. Accesses these files using Hyper

Text Transfer Protocol (HTTP) protocol.

■ XDBUriType . Stores references to resources in Oracle XML DB Repository.

These datatypes are object types with member functions that can be used to access

objects or pages pointed to by the objects. By using UriType , you can:

■ Create table columns that point to data inside or outside the database.

■ Query the database columns using functions provided by UriType .

These are related by an inheritance hierarchy. UriType is an abstract type and the

DBUriType, HttpUriType , and XDBUriType are subtypes of UriType . You can

reference data stored in CLOBs or other columns and expose them as URLs to the

external world. Oracle9i provides a standard servlet than can be installed and run

under the Oracle Servlet engine that interprets these URLs.
12-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

UriTypes Store Uri-References
Advantages of Using UriTypes
Oracle already provides the PL/SQL package UTL_HTTP and the Java class

java.net.URL to fetch URL references. The advantages of defining this new

UriType datatype in SQL are:

■ Improved Mapping of XML Documents to Columns. Uri-ref support is needed

when exploding XML documents into object-relational columns, so that the

Uri-ref specified in documents can map to a URL column in the database.

■ Unified access to data stored inside and outside the server. Since you can use

the UriRefs to store pointers to HTTP/DB urls, you get a unified access to the

data wherever it is stored. This lets you create queries and indexes without

having to worry about where the data resides.

UriType Functions
The UriType abstract type supports a variety of functions that can be used over

any subtype. Table 12–1 lists the UriType member functions.

See Also: "Using UriType Objects" on page 12-23.

Table 12–1 UriType Member Functions

UriType Member
Functions Description

getClob() Returns the value pointed to by the URL as a character LOB
value. The character encoding will be that of the database
character set.

getUrl() Returns the URL stored in the UriType . Do not use the
attribute “url” directly. Use this function instead. This can be
overridden by subtypes to give you the correct URL. For
example, HttpUriType stores only the URL and not the
“http://” prefix. Hence getUrl() actually prepends the
prefix and returns the value.

getExternalUrl() Similar to the former (getUrl), except that it calls the escaping
mechanism to escape the characters in the URL as to conform
to the URL specification. For example spaces are converted to
the escaped value %20.

See How Oracle9i Database Works with URLs and URIs on
page 12-2.

getContentType() Returns the MIME information for the URL. For UriType , this
is an abstract function.
Creating and Accessing Data Through URLs 12-7

HttpUriType Functions
HttpUriType Functions
Use HttpUriType to store references to data that can be accessed through the

HTTP protocol. HttpUriType uses the UTL_HTTP package to fetch the data and

hence the session settings for the package can also be used to influence the HTTP

fetch using this mechanism. Table 12–2 lists the HttpUriType member functions.

getXML() Returns the XMLType object corresponding to the given URI.
This is provided so that an application that needs to perform
operations other than getClob/getBlob can use the
XMLType methods to do those operations.

This throws an exception if the URI does not point to a valid
XML document.

getBlob() Returns the BLOB value pointed to by the URL. No character
conversions are performed and the character encoding is the
same as the one pointed to by the URL. This can also be used to
fetch binary data.

createUri(uri IN VARCHAR2) This constructs the UriType. It is not actually in UriType,
rather it is used for creating URI subtypes.

Table 12–2 HttpUriType Member Functions (Page 1 of 2)

HttpUriType Method Description

getClob Returns the value pointed to by the URL as a character LOB value.
The character encoding is the same as the database character set.

getUrl Returns stored URL.

getExternalUrl Similar to getUrl , except that it calls the escaping mechanism to
escape the characters in the URL as to conform to the URL
specification. For example, spaces are converted to the escaped
value %20.

getBlob Gets the binary content as a BLOB. If the target data is non-binary
then the BLOB will contain the XML or text representation of the
data in the database character set.

getXML Returns the XMLType object corresponding to this URI. Will
throw an error if the target data is not XML. See also "getXML()
Function" on page 12-9.

Table 12–1 UriType Member Functions (Cont.)

UriType Member
Functions Description
12-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

HttpUriType Functions
getContentType() Function
getContentType() function returns the MIME information for the URL. The

HttpUriType de-references the URL and gets the MIME header information. You

can use this information to decide whether to retrieve the URL as BLOB or CLOB

based on the MIME type. You would treat a Web page with a MIME type of

x/jpeg as a BLOB, and one with a MIME type of text/plain or text/html as

a CLOB.

Example 12–1 Using getContentType() and HttpUriType to Return HTTP Headers

Getting the content type does not fetch all the data. The only data transferred is the

HTTP headers (for HTTPURiType) or the metadata of the column (for DBUriType).

For example:

declare
 httpuri HttpUriType;
 x clob;
 y blob;
begin
 httpuri := HttpUriType('http://www.oracle.com/object1');
 if httpuri.getContentType() = 'application-x/bin' then
 y := httpuri.getblob();
 else
 x := httpuri.getclob();
 end if;
end;

getXML() Function
getXML() function returns XMLType information for the result. If the document is

not valid XML (or XHTML) an error is thrown.

getContentType() Returns the MIME information for the URL. See also
"getContentType() Function" on page 12-9.

createUri() httpUriType constructor. Constructs in httpUriType .

httpUriType() httpUriType constructor. Constructs in httpUriType .

Table 12–2 HttpUriType Member Functions (Cont.) (Page 2 of 2)

HttpUriType Method Description
Creating and Accessing Data Through URLs 12-9

DBUri, Intra-Database References
DBUri, Intra-Database References
DBUri , a database relative to URI, is a special case of the Uri-ref mechanism,

where ref is guaranteed to work inside the context of a database and session. This

ref is not a global ref like the HTTP URL; instead it is local ref (URL) within the

database.

You can also access objects pointed to by this URL globally, by appending this

DBUri to an HTTP URL path that identifies the servlet that can handle DBUri . This

is discussed in "Turning a URL into a Database Query with DBUri Servlet" on

page 12-34.

Formulating the DBUri
The URL syntax is obtained by specifying XPath-like syntax over a virtual XML

visualization of the database. See Figure 12–1, "DBUri: Visual or SQL View, XML

View, and Associated XPath":

■ The visual model is a hierarchical view of what a current connected user would

see in terms of SQL schemas, tables, rows, and columns.

■ The XML view contains a root element that maps to the database. The root XML

element contains child elements, which are the schemas on which the user has

some privileges on any object. The schema elements contain tables and views

that the user can see.

Example 12–2 The Virtual XML Document that Scott Sees

For example, the user scott can see the following virtual XML document.

<?xml version=’1.0’?>
<oradb SID="ORCL">
 <PUBLIC>
 <ALL_TABLES>
 ..
 </ALL_TABLES>
 <EMP>
 <!-- EMp table -->
 </EMP>
 </PUBLIC>
 <SCOTT>
 <ALL_TABLES>

 </ALL_TABLES>
 <EMP>
12-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBUri, Intra-Database References
 <ROW>
 <EMPNO>1001</EMPNO>
 <ENAME>John</ENAME>
 <EMP_SALARY>20000</EMP_SALARY>
 </ROW>
 <ROW>
 <EMPNO>2001</EMPNO>
 </ROW>
 </EMP>
 <DEPT>
 <ROW>
 <DEPTNO>200</DEPTNO>
 <DNAME>Sports</DNAME>
 </ROW>
 </DEPT>
</SCOTT>
<JONES>
 <CUSTOMER_OBJ_TAB>
 <ROW>
 <NAME>xxx</NAME>
 <ADDRESS>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </ADDRESS>
 </ROW>
 </CUSTOMER_OBJ_TAB>
 </JONES>
</oradb>
Creating and Accessing Data Through URLs 12-11

DBUri, Intra-Database References
Figure 12–1 DBUri: Visual or SQL View, XML View, and Associated XPath

This XML document is constructed at the time you do the query and based on the

privileges that you have at that moment.

You can make the following observations from the previous example:

■ User scott can see the scott database schema and jones database schema.

These are schemas on which the user has some table or views that he can read.

■ Table empshows up as EMP with row element tags. This is the default mapping

for all tables. The same for dept and the customer_obj_tab table under the

jones schema.

■ In this release, null elements are absent

■ There is also a PUBLIC element under which tables and views are accessible

without schema qualification. For example, a SELECT query such as:

SELECT * FROM emp;

when queried by user scott , matches the table emp under the scott schema

and, if not found, tries to match a public synonym named emp. In the same

way, the PUBLIC element contains:

– All the tables and views visible to users through their database schema

– All the tables visible through the PUBLIC synonym

URL becomes . . .
/oracle/scott/emp/row/[empno=21]/ename..

XML document
XMLview

Data stored in tables
Visual model

URI-Reference

Database

Table Emp
Empno Ename Job

.
x
x
x

.
John
Mary
x

.
21
33
x

<oracle>
 <scott>
 <emp>
 <row>
 <EmpNo> 21
 <Ename> John
 </row>
 </emp>
 </scott>
</oracle>

XML
Visualization
12-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBUri, Intra-Database References
Notation for DBUriType Fragments
With the Oracle9i database being visualized as an XML tree, you can perform XPath

traversals to any part of the virtual document. This translates to any row-column

intersection of the database tables or views. By specifying an XPath over the

visualization model, you can create references to any piece of data in the database.

DbUri is specified in a simplified XPath format. Currently, Oracle does not support

the full XPath or XPointer recommendation for DBURType. The following sections

discuss the structure of the DBUri .

As stated in the previous paragraphs, you can now create DBUris to any piece of

data. You can use the following instances in a column as reference:

■ Scalar

■ Object

■ Collection

■ An attribute of an object type within a column. For

example:.../ROW[empno=7263]/COL_OBJ/OBJ_ATTR

These are the smallest addressable units. For example, you can use:

/oradb/SCOTT/EMP

or

/oradb/SCOTT/EMP/ROW[empno=7263]

DBUri Syntax Guidelines
There are restrictions on the kind of XPath queries that can be used to specify a

reference. In general, the fragment part must:

■ Include the user database schema name or specify PUBLIC to resolve the table

name without a specific schema.

■ Include a table or view name.

■ Include the ROW tag for identifying the ROW element.

■ Identify the column or object attribute that you wish to extract.

Note: Oracle does not currently support references within a

scalar, XMLType or LOB data column.
Creating and Accessing Data Through URLs 12-13

DBUri, Intra-Database References
■ Include predicates at any level in the path other than the schema and table

elements.

■ Indicate predicates not on the selection path in the ROW element.

Example 12–3 Specifying Predicate pono=100 With the ROW Node

For example, if you wanted to specify the predicate pono = 100, but the

selection path is:

/oradb/scott/purchase_obj_tab/ROW/line_item_list

you must include the pono predicate along with the ROW node as:

/oradb/scott/purchase_obj_tab/ROW[pono=100]/line_item_list

■ A DBUri must identify exactly a single data value, either an object type or a

collection. If the data value is an entire row, you indicate that by including a

ROW node. The DBUri can also point to an entire table.

Using Predicate (XPath) Expressions in DBUris
The predicate expressions can use the following XPath expressions:

■ Boolean operators AND, OR, and NOT

■ Relational operators - <, >, <=,!=, >=, =, mod, div, * (multiply)

The predicates can be defined at any element other than the schema and table

elements. If you have object columns, you can search on the attribute values as well.

Example 12–4 Searching for Attribute Values on Object Columns Using DBUri

For example, the following DBUri refers to an ADDRESS column containing state,

city, street, and zip code attributes:

/oradb/SCOTT/EMP/ROW[ADDRESS/STATE=’CA’ OR

Note:

■ No XPath axes other than the child axes are supported. The

wild card (*), descendant (//), and other operations are not

valid.

■ Only the text() XPath function is supported. text() is valid

only on a scalar node, not at the row or table level.
12-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Some Common DBUri Scenarios
ADDRESS/STATE=’OR’]/ADDRESS[CITY=’Portland’ OR /ZIPCODE=94404]/CITY

This DBUri identifies the city attribute whose state is either California or Oregon,

or whose city name is Portland, or whose zipcode is 94404.

Some Common DBUri Scenarios
The DBUri can identify various objects, such as a table, a particular row, a

particular column in a row, or a particular attribute of an object column. The

following subsections describe how to identify different object types.

Identifying the Whole Table
This returns an XML document that retrieves the whole table. The enclosing tag is

the name of the table. The row values are enclosed inside a ROW element, as follows,

using the following syntax:

/oradb/ schemaname/ tablename

Example 12–5 Using DBUri to Identify a Whole Table as an XML Document

For example:

/oradb/SCOTT/EMP

returns an XML document with a format like the following:

<?xml version="1.0"?>
<EMP>
 <ROW>
 <EMPNO>7369</EMPNO>
 <ENAME>Smith</ENAME>
 ... <!-- other columns -->
 </ROW>
 <!-- other rows -->
</EMP>

See Also: http://www.w3.org/TR/xpath for an explanation

of the XML XPath notation
Creating and Accessing Data Through URLs 12-15

Some Common DBUri Scenarios
Identifying a Particular Row of the Table
This identifies a particular ROWelement in the table. The result is an XML document

that contains the ROW element with its columns as child elements. Use the following

syntax:

/oradb/ schemaname/ tablename /ROW[predicate_expression]

Example 12–6 Using DBUri to Identify a Particular Row in the Table

For example:

/oradb/SCOTT/EMP/ROW[EMPNO=7369]

returns the XML document with a format like the following:

<?xml version="1.0"?>
<ROW>
 <EMPNO>7369</EMPNO>
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <!-- other columns -->
</ROW>

Identifying a Target Column
In this case, a target column or an attribute of a column is identified and retrieved

as XML.

Use the following syntax:

/oradb/ schemaname/ tablename /ROW[predicate_expression]/ columnname
/oradb/ schemaname/ tablename /ROW[predicate_expression]/ columnname / attribute1/../attributen

Example 12–7 Using DBUri to Identify a Specific Column

/oradb/SCOTT/EMP/ROW[EMPNO=7369 and DEPTNO=20]/ENAME

Note: In the previous example, the predicate expression must

identify a unique row.

Note: You cannot traverse into nested table or VARRAY columns.
12-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Some Common DBUri Scenarios
retrieves the ename column in the emp table, where empno is 7369 , and

department number is 20 , as follows:

<?xml version="1.0"?>
<ENAME>SMITH</ENAME>

Example 12–8 Using DBUri to Identify an Attribute Inside a Column

/oradb/SCOTT/EMP/ROW[EMPNO=7369]/ADDRESS/STATE

retrieves the state attribute inside an address object column for the employee
whose empno is 7369 , as follows:

<?xml version="1.0"?>
<STATE>CA</STATE>

Retrieving the Text Value of a Column
In many cases, it can be useful to retrieve only the text values of a column and not

the enclosing tags. For example, if XSL stylesheets are stored in a CLOB column,

you can retrieve the document text without having any enclosing column name

tags. You can use the text() function for this. It specifies that you only want the

text value of the node. Use the following syntax:

/oradb/ schemaname/ tablename /ROW[predicate_expression]/ columnname /text()

Example 12–9 Using DBUri to Retrieve Only the Text Value of the Node

For example:

/oradb/SCOTT/EMP/ROW[EMPNO=7369]/ENAME/text()

retrieves the text value of the employee name, without the XML tags, for an

employee with empno = 7369 . This returns a text document, not an XML

document, with value SMITH.

Note: The XPath alone does not constitute a valid URI. Oracle

calls it a DBUri since it behaves like a URI within the database, but

it can be translated into a globally valid Uri-ref .
Creating and Accessing Data Through URLs 12-17

Some Common DBUri Scenarios
How DBUris Differ from Object References
A DBUri can access columns and attributes and is loosely typed Object references

can only access row objects. DBUri is a superset of this reference mechanism.

DBUri Applies to a Database and Session
A DBUri is scoped to a database and session. You must already be connected to the

database in a particular session context. The schema and permissions needed to

access the data are resolved in that context.

Where Can DBUri Be Used?
Uri-ref can be used in a number of scenarios, including those described in the

following sections:

Storing URLs to Related Documents
In the case of a travel story Web site where you store travel stories in a table, you

might create links to related stories. By representing these links in a DBUriType
column, you can create intra-database links that let you retrieve related stories

through queries.

Storing Stylesheets in the Database
Applications can use XSL stylesheets to convert XML into other formats. The

stylesheets are represented as XML documents, stored as CLOBs. The application

can use DBUriType objects:

Note: The path is case-sensitive. To specify scott.emp , you use

SCOTT/EMP, because the actual table and column names are stored

capitalized in the Oracle data dictionary. If you need to use

lowercase path values, you can create a lowercase table or column

name by enclosing the name in double quotation marks.

Note: The same URI string may give different results based on the

session context used, particularly if the PUBLIC path is used.

For example, /PUBLIC/FOO_TAB can resolve to SCOTT.FOO_TAB
when connected as scott, and resolve as JONES.FOO_TAB when

connected as JONES.
12-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBUriType Functions
■ To access the XSL stylesheets stored in the database for use during parsing.

■ To make references, such as import or include, to related XSL stylesheets. You

can encode these references within the XSL stylesheet itself.

DBUriType Functions
Table 12–3 lists the DBUriType methods and functions.

Table 12–3 DBUriType Methods and Functions

Note:

■ A DBUri is not a general purpose XPointer mechanism to XML

data.

■ It is not a replacement for database object references. The

syntax and semantics of references differ from those of

Uri-refs .

■ It does not enforce or create any new security models or

restrictions. Instead, it relies on the underlying security

architecture to enforce privileges.

Method/Function Description

getClob() Returns the value pointed to by the URL as a character LOB value. The character
encoding is the same as the database character set.

getUrl() Returns the URL that is stored in the DBUriType .

getExternalUrl() Similar to getUrl , except that it calls the escaping mechanism to escape the
characters in the URL as to conform to the URL specification. For example, spaces
are converted to the escaped value %20.

getBlob() Gets the binary content as a BLOB. If the target data is non-binary, then the BLOB
will contain the XML or text representation of the data in the database character
set.

getXML() Returns the XMLType object corresponding to this URI.

getContentType() Returns the MIME information for the URL.

createUri() Constructs a DBUriType instance.

dbUriType() Constructs a DBUriType instance.
Creating and Accessing Data Through URLs 12-19

XDBUriType
Some of the functions that have a different or special behavior in the DBUriType
are described in the following subsections.

getContentType() Function
This function returns the MIME information for the URL. The content type for a

DBUriType object can be:

■ If the DBUri points to a scalar value, where the MIME type is text/plain .

■ In all other cases, the MIME type is text/xml .

For example, consider the table dbtab under SCOTT:

CREATE TABLE DBTAB(a varchar2(20), b blob);

A DBUriType of '/SCOTT/DBTAB/ROW/A' has a content type of text/xml , since

it points to the whole column and the result is XML.

A DBUriType of '/SCOTT/DBTAB/ROW/B' also has a content type of text/xml .

A DBUriType of '/SCOTT/DBTAB/ROW/A/text()' has a content type of

text/plain.

A DBUriType of '/SCOTT/DBTAB/ROW/B/text()' has a content type of

text/plain .

getClob() and getBlob() Functions
In the case of DBUri , scalar binary data is handled specially. In the case of a

getClob() call on a DBUri '/SCOTT/DBTAB/ROW/B/text()' where B is a

BLOB column, the data is converted to HEX and sent out.

In the case of a getBlob() call, the data is returned in binary form. However, if an

XML document is requested, as in '/SCOTT/DBTAB/ROW/B' , then the XML

document will contain the binary in HEX form.

XDBUriType
XDBUriType is a new subtype of UriType . It provides a way to expose documents

in the ORACLE XML DB Repository as URIs that can be embedded in any

UriType column in a table.

The URL part of the URI is the hierarchical name of the XML document it refers to.

The optional fragment part uses the XPath syntax, and is separated from the URL

part by '#' .
12-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XDBUriType
The following are examples of ORACLE XML DB URIs:

/home/scott/doc1.xml
/home/scott/doc1.xml#/purchaseOrder/lineItem

where:

■ ’/home/scott’ is a folder in Oracle XML DB Repository

■ doc1.xml is an XML document in this folder

■ The XPath expression /purchaseOrder/lineItem refers to the line item in

this purchase order document.

Table 12–4 lists the XDBUriType methods. These methods do not take any

arguments.

How to Create an Instance of XDBUriType
XDBUriType is automatically registered with UriFactory so that an

XDBUriType instance can be generated by providing the URI to the getURI
method.

Table 12–4 XDBUriType Methods

Method Description

getClob() Returns the value pointed to by the URL as a Character Large Object (CLOB)
value. The character encoding is the same as the database character set.

get Blob() Returns the value pointed to by the URL as a Binary Large Object (BLOB) value.

getUrl() Returns the URL that is stored in the XDBUriType .

getExternalUrl() Similar to getUrl , except that it calls the escaping mechanism to escape the
characters in the URL as to conform to the URL specification. For example, spaces
are converted to the escaped value %20.

getXML() Returns the XMLType object corresponding to the contents of the resource that this
URI points to. This is provided so that an application that needs to perform
operations other than getClob/getBlob can use the XMLType methods to do those
operations.

getContentType() Returns the MIME information for the resource stored in the ORACLE XML DB
Repository.

XDBUriType() Constructor. Returns an XDBUriType for the given URI.
Creating and Accessing Data Through URLs 12-21

XDBUriType
Currently, XDBUriType is the default UriType generated by the

UriFactory.getUri method, when the URI does not have any of the recognized

prefixes, such as “http://”,“/DBURI” , or “/ORADB” .

All DBUriType URIs should have a prefix of either /DBURI or /ORADB, case

insensitive.

Example 12–10 Returning XDBUriType Instance

For example, the following statement returns an XDBUriType instance that refers

to /home/scott/doc1.xml :

SELECT sys.UriFactory.getUri(’/home/scott/doc1.xml’) FROM dual;

Example 12–11 Creating XDBUriType, Inserting Values Into a Purchase Order Table
and Selecting All the PurchaseOrders

The following is an example of how XDBUriType is used:

CREATE TABLE uri_tab
(
 poUrl SYS.UriType, -- Note that we have created an abstract type column
 --so that any type of URI can be used
 poName VARCHAR2(1000)
);

 -- insert an absolute url into poUrl
 -- the factory will create an XDBUriType since there's no prefix
INSERT INTO uri_tab VALUES
 (UriFactory.getUri('/public/orders/po1.xml'), 'SomePurchaseOrder');

-- Now get all the purchase orders
SELECT e.poUrl.getClob(), poName FROM uri_tab e;

-- Using PL/SQL, you can access table uri_tab as follows:
declare
 a UriType;
begin
 -- Get the absolute URL for purchase order named like 'Some%'
 SELECT poUrl into a from uri_tab WHERE poName like 'Some%';
 printDataOut(a.getClob());
end;
/

12-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using UriType Objects
Example 12–12 Retrieving Purchase Orders at a URL Using UriType, getXML() and
extractValue()

Since getXML() returns an XMLType, it can be used in the EXTRACT family of

operators. For example:

SELECT e.poUrl.getClob() FROM uri_tab e
 WHERE extractValue(e.poUrl.getXML(),’/User’) = ’SCOTT’;

This statement retrieves all Purchase Orders for user SCOTT.

Creating Oracle Text Indexes on UriType Columns
UriType columns can be indexed natively in Oracle9i database using Oracle Text.

No special datastore is needed.

Using UriType Objects
This section describes how to store pointers to documents and retrieve these

documents across the network, either from the database or a Web site.

Storing Pointers to Documents with UriType
As explained earlier, UriType is an abstract type containing a VARCHAR2 attribute

that specifies the URI. The object type has functions for traversing the reference and

extracting the data.

You can create columns using UriType to store these pointers in the database.

Typically, you declare the column using the UriType , and the objects that you store

use one or more of the derived types such as HttpUriType .

Table 12–4 lists some useful UriType methods.

See: Chapter 7, "Searching XML Data with Oracle

Text","XMLType Indexing" on page 7-34

Note: You can plug in any new protocol using the inheritance

mechanism. Oracle provides HttpUriType and DBUriType
types for handling HTTP protocol and for deciphering DBUri
references. For example, you can implement a subtype of UriType
to handle the gopher protocol.
Creating and Accessing Data Through URLs 12-23

Using UriType Objects
Example 12–13 Creating URL References to a List of Purchase Orders

You can create a list of all purchase orders with URL references to them as follows:

CREATE TABLE uri_tab
(
 poUrl SYS.UriType, -- Note that we have created abstract type columns
-- if you know what kind of uri's you are going to store, you can
-- create the appropriate types.
 poName VARCHAR2(200)
);

 -- insert an absolute url into SYS.UriType..!
 -- the Urifactory creates the correct instance (in this case a HttpUriType
INSERT INTO uri_tab VALUES
 (sys.UriFactory.getUri('http://www.oracle.com/cust/po'),'AbsPo');

-- insert a URL by directly calling the SYS.HttpUriType constructor.
-- Note this is strongly discouraged. Note the absence of the
-- http:// prefix when creating SYS.HttpUriType instance through the default
-- constructor.
INSERT INTO uri_tab VALUES (sys.HttpUriType('proxy.us.oracle.com'),'RelPo');

-- Now extract all the purchase orders
SELECT e.poUrl.getClob(), poName FROM uri_tab e;

-- In PL/SQL
declare
 a SYS.UriType;
begin

 -- absolute URL
 SELECT poUrl into a from uri_Tab WHERE poName like 'AbsPo%';

 SELECT poUrl into a from uri_Tab WHERE poName like 'RelPo%';
 -- here u need to supply a prefix before u can get at the data..!
 printDataOut(a.getClob());
end;
/

See: "Creating Instances of UriType Objects with the UriFactory

Package" on page 12-26 for a description of how to use

UriFactory
12-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using UriType Objects
Using the Substitution Mechanism
You can create columns of the UriType directly and insert HttpUriTypes ,

XDBUriTypes , and DBUriTypes into that column. You can also query the column

without knowing where the referenced document lies. For example, from the

previous example, you inserted DBUri references into the uri_tab table as follows:

INSERT INTO uri_tab VALUES
 (UriFactory.getUri(
 ’/SCOTT/PURCHASE_ORDER_TAB/ROW[PONO=1000]’),’ScottPo’);

This insert assumes that there is a purchase order table in the SCOTT schema. Now,

the URL column in the table contains values that are pointing through HTTP to

documents globally as well as pointing to virtual documents inside the database.

A SELECT on the column using the getClob() method would retrieve the results

as a CLOB irrespective of where the document resides. This would retrieve values

from the global HTTP address stored in the first row as well as the local DBUri
reference.:

SELECT e.poURL.getclob() FROM uri_tab e;

Using HttpUriType and DBUriType
HttpUriType and DBUriType are subtypes of UriType and implement the

functions for HTTP and DBUri references respectively.

Example 12–14 DBUriType: Creating DBUri References

The following example creates a table with a column of type DBUriType and

assigns a value to it.

CREATE TABLE DBURiTab(DBUri DBUriType, dbDocName VARCHAR2(2000));

-- insert values into it..!
INSERT INTO DBUriTab VALUES
 (sys.DBUriType.createUri(’/ORADB/SCOTT/EMP/ROW[EMPNO=7369]’),’emp1’);

INSERT INTO DBUriTab VALUES
 (sys.DBUriType(’/SCOTT/EMP/ROW[EMPNO=7369]/’,null);

-- access the references

Note: HttpUriType cannot store relative HTTP references in this

release.
Creating and Accessing Data Through URLs 12-25

Creating Instances of UriType Objects with the UriFactory Package
SELECT e.DBUri.getCLOB() from DBUriTab e;

Creating Instances of UriType Objects with the UriFactory Package
The functions in the UriFactory package generate instances of the appropriate

UriType subtype (HttpUriType, DBUriType, and XDBUriType). This way,

you can avoid hardcoding the implementation in the program and handle whatever

kinds of URI strings are used as input. See Table 12–5.

The getUri method takes a string representing any of the supported kinds of URI

and returns the appropriate subtype instance. For example:

■ If the prefix starts with http:// , getUri creates and returns an instance of a

SYS.HttpUriType object.

■ If the string starts with either /oradb/ or /dburi/ , getUri creates and

returns an instance of a SYS.DBUriType object.

■ If the string does not start with one of the prefixes noted in the preceding

bullets, getUri creates and returns an instance of a SYS.XDBUriType object.

.

Registering New UriType Subtypes with the UriFactory Package
The UriFactory package lets you register new UriType subtypes:

■ Derive these types using the CREATE TYPE statement in SQL.

■ Override the default methods to perform specialized processing when

retrieving data, or to transform the XML data before displaying it.

■ Pick a new prefix to identify URIs that use this specialized processing.

Note: The way UriFactory generates DBUriType instances has

changed since Oracle9i release 1 (9.0.1):

In Oracle9i release 1 (9.0.1), any URL which did not start with one

of the registered or standard prefixes such as http://... was

mapped to a DBUriType by UriFactory.

In this release, you need to have a /oradb o r /dburi prefix in

order for UriFactory to generate a DBUriType . Otherwise it

generates an XDBUriType .
12-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Instances of UriType Objects with the UriFactory Package
■ Register the prefix using UriFactory.registerURLHandler , so that the

UriFactory package can create an instance of your new subtype when it

receives a URI starting with the new prefix you defined.

For example, you can invent a new protocol ecom:// and define a subtype of

UriType to handle that protocol. Perhaps the subtype implements some special

logic for getCLOB , or does some changes to the XML tags or data within getXML .

When you register the ecom:// prefix with UriFactory, any calls to

UriFactory.getUri generate the new subtype instance for URIs that begin with

the ecom:// prefix.

Example 12–15 UriFactory: Registering the ecom Protocol

Assume you are storing different kinds of URIs in a single table:

CREATE TABLE url_tab (urlcol varchar2(80));

-- Insert an HTTP URL
INSERT INTO url_tab VALUES (’http://www.oracle.com/’);

-- Insert a database URI
INSERT INTO url_tab VALUES (’/oradb/SCOTT/EMPLOYEE/ROW[ENAME="Jack"]’);

Table 12–5 UriFactory: Functions and Procedures

UriFactory Function Description

escapeUri()

MEMBER FUNCTION escapeUri() RETURN
varchar2

Escapes the URL string by replacing the non-URL characters as
specified in the Uri-ref specification by their equivalent escape
sequence.

unescapeUri()

FUNCTION unescapeUri() RETURN varchar2

Unescapes a given URL.

registerUrlHandler()

PROCEDURE registerUrlHandler(prefix IN
varchar2, schemaName in varchar2,
typename in varchar2, ignoreCase in
boolean:= true, stripprefix in boolean := true)

Registers a particular type name for handling a particular URL.

The type also implements the following static member function:
STATIC FUNCTION createUri(url IN varchar2) RETURN
<typename>;

This function is called by getUrl() to generate an instance of the type.
The stripprefix indicates that the prefix must be stripped off before
calling the appropriate constructor for the type.

unRegisterUrlHandler()

PROCEDURE unregisterUrlHandler(prefix in
varchar2)

Unregisters a URL handler.
Creating and Accessing Data Through URLs 12-27

Creating Instances of UriType Objects with the UriFactory Package
-- Create a new type to handle a new protocol called ecom://
CREATE TYPE EComUriType UNDER SYS.UriType
(
 overriding member function getClob return clob,
 overriding member function getBlob RETURN blob,
 overriding member function getExternalUrl return varchar2,
 overriding member function getUrl return varchar2,

-- Must have this for registering with the URL handler
static function createUri(url in varchar2) return EcomUriType
);
/

-- Register a new handler for the ecom:// prefix.
begin
 -- register a new handler for ecom:// prefixes. The handler
 -- type name is ECOMUriTYPE, schema is SCOTT
 -- Ignore the prefix case, so that UriFactory creates the same subtype
 -- for URIs beginning with ECOM://, ecom://, eCom://, and so on.
 -- Strip the prefix before calling the createUri function
 -- so that the string ’ecom://’ is not stored inside the
 -- ECOMUriTYPE object. (It is added back automatically when
 -- you call ECOMUriTYPE.getURL.)
 urifactory.registerURLHandler
 (
 prefix => ’ecom://’,
 schemaname => ’SCOTT’,
 typename => ’ECOMURITYPE’,
 ignoreprefixcase => true,
 stripprefix => true
);
end;
/

-- Now the example inserts this new type of URI into the table.
insert into url_tab values (’ECOM://company1/company2=22/comp’);

-- Use the factory to generate an instance of the appropriate
-- subtype for each URI in the table.
select urifactory.getUri(urlcol) from url_tab;

-- would now generate
HttpUriType(’www.oracle.com’); -- a Http uri type instance
12-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_DBURIGEN() SQL Function
DBUriType(’/oradb/SCOTT/EMPLOYEE/ROW[ENAME="Jack"],null); -- a DBUriType

EComUriType(’company1/company2=22/comp’); -- an EComUriType instance

Why Define New Subtypes of UriType?
Deriving a new class for each protocol has these advantages:

■ If you choose a subtype for representing a column, it provides an implicit

constraint on the column to contain only instances of that protocol type. This

might be useful for implementing specialized indexes on that column for

specific protocols. For example, for the DBUri you can implement some

specialized indexes that can directly go and fetch the data from the disk blocks

rather than executing SQL queries.

■ Additionally, you can have different constraints on the columns based on the

type involved. For instance, for the HTTP case, you could potentially define

proxy and firewall constraints on the column so that any access through the

HTTP would use the proxy server.

SYS_DBURIGEN() SQL Function
You can create an instance of DBUriType type by specifying the path expression to

the constructor or the UriFactory methods. However, you also need methods to

generate these objects dynamically, based on strings stored in table columns. You

do this with the SQL function SYS_DBURIGEN().

Example 12–16 SYS_DBURIGEN(): Generating a URI of type DBUriType that points to
a Column

The following example uses SYS_DBURIGEN() to generate a URI of datatype

DBUriType pointing to the email column of the row in the sample table

hr.employees where the employee_id = 206 :

SELECT SYS_DBURIGEN(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)

DBURITYPE(’/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID = "206"]/EMAIL’, NULL)
Creating and Accessing Data Through URLs 12-29

SYS_DBURIGEN() SQL Function
SYS_DBURIGEN() takes as its argument one or more columns or attributes, and

optionally a rowid, and generates a URI of datatype DBUriType to a particular

column or row object. You can use the URI to retrieve an XML document from the

database. The function takes an additional parameter to indicate if the text value of

the node is needed. See Figure 12–2.

Figure 12–2 SYS_DBURIGEN Syntax

All columns or attributes referenced must reside in the same table. They must

reference a unique value. If you specify multiple columns, the initial columns

identify the row in the database, and the last column identifies the column within

the row.

By default, the URI points to a formatted XML document. To point only to the text

of the document, specify the optional text() keyword.

If you do not specify an XML schema, Oracle interprets the table or view name as a

public synonym.

Rules for Passing Columns or Object Attributes to SYS_DBURIGEN()
The column or attribute passed to the SYS_DBURIGEN() function must obey the

following rules:

■ Unique mapping: The column or object attribute must be uniquely mappable

back to the table or view from which it comes. The only virtual columns

allowed are the VALUE and REFoperators. The column may come from a

TABLE() subquery or an inline view, as long as the inline view does not

rename the columns.

■ Key columns: Either the rowid or a set of key columns must be specified. The

list of key columns does not need to be declared as a unique or primary key, as

long as the columns uniquely identify a particular row in the result.

See Also: Oracle9i SQL Reference for SYS_DBURIGEN syntax

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text () ’
)

12-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_DBURIGEN() SQL Function
■ Same table: All columns referenced in the SYS_DBURIGEN() function must

come from the same table or view.

■ PUBLIC element: If the table or view pointed by the rowid or key columns

does not have a database schema specified, then the PUBLIC keyword is used

instead of the schema. When the DBUri is accessed, the table name resolves to

the same table, synonym, or view that was visible by that name when the

DBUri was created.

■ TEXT function: DBUri , by default, retrieves an XML document containing the

result. To retrieve only the text value, use the text() keyword as the final

argument to the function.

For example:

select SYS_DBURIGEN(empno,ename,’text()’) from scott.emp,
 WHERE empno=7369;

 or you can just generates a URL of the form:

/SCOTT/EMP/ROW[EMPNO=7369]/ENAME/text()

■ Single-column argument: If there is a single-column argument, the column is

used both as the key column to identify the row and as the referenced column.

Example 12–17 Passing Columns With Single Arguments to SYS_DBURIGEN()

For example:

select SYS_DBURIGEN(empno) from emp
 WHERE empno=7369;

uses the empno both as the key column and the referenced column, generating

a URL of the form:

/SCOTT/EMP/ROW[EMPNO=7369]/EMPNO,

for the row with empno=7369

SYS_DBURIGEN Examples

Example 12–18 Inserting Database References Using SYS_DBURIGEN()

CREATE TABLE doc_list_tab(docno number primary key, doc_ref SYS.DBUriType);

-- inserts /SCOTT/EMP/ROW[rowid=’xxx’]/EMPNO
Creating and Accessing Data Through URLs 12-31

SYS_DBURIGEN() SQL Function
INSERT INTO doc_list_tab values(1001,
 (select SYS_DBURIGEN(rowid,empno) from emp where empno = 100));

-- insert a Uri-ref to point to the ename column of emp!
INSERT INTO doc_list_tab values(1002,
 (select SYS_DBURIGEN(empno, ename) from emp where empno = 7369));

-- result of the DBURIGEN looks like, /SCOTT/EMP/ROW[EMPNO=7369]/ENAME

Returning Partial Results
When selecting the results of a large column, you might want to retrieve only a

portion of the result and create a URL to the column instead. For example, consider

the case of a travel story Web site. If all the travel stories are stored in a table, and

users search for a set of relevant stories, you do not want to list each entire story in

the result page. Instead, you show the first 100 characters or gist of the story and

then return a URL to the full story.This can be done as follows:

Example 12–19 Returning a Portion of the Results By Creating a View and Using
SYS_DBURIGEN()

Assume that the travel story table is defined as follows:

CREATE TABLE travel_story
(
 story_name varchar2(100),
 story clob
);

-- insert some value..!
INSERT INTO travel_story values (’Egypt’,’This is my story of how I spent my
time in Egypt, with the pyramids in full view from my hotel room’);

Now, you create a function that returns only the first 20 characters from the story:

create function charfunc(clobval IN clob) return varchar2 is
 res varchar2(20);
 amount number := 20;
begin
 dbms_lob.read(clobval,amount,1,res);
 return res;
end;
/

12-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

SYS_DBURIGEN() SQL Function
Now, you create a view that selects out only the first 100 characters from the story

and then returns a DBUri reference to the story column:

CREATE VIEW travel_view as select story_name, charfunc(story) short_story,
 SYS_DBURIGEN(story_name,story,’text()’) story_link
FROM travel_story;

Now, a SELECT from the view returns the following:

SELECT * FROM travel_view;

STORY_NAME SHORT_STORY STORY_LINK

Egypt This is my story of h

SYS.DBUriType(’/PUBLIC/TRAVEL_STORY/ROW[STORY_NAME=’Egypt’]/STORY/text()’)

RETURNING Uri-Refs
You can use SYS_DBURIGEN() in the RETURNING clause of DML statements to

retrieve the URL of an object as it is inserted.

Example 12–20 Using SYS_DBURIGEN in the RETURNING Clause to Retrieve the
URL of an Object

For example, consider the table CLOB_TAB:

CREATE TABLE clob_tab (docid number, doc clob);

When you insert a document, you might want to store the URL of that document in

another table, URI_TAB.

CREATE TABLE uri_tab (docs sys.DBUriType);

You can specify the storage of the URL of that document as part of the insert into

CLOB_TAB, using the RETURNING clause and the EXECUTE IMMEDIATE syntax to

execute the SYS_DBURIGEN function inside PL/SQL as follows:

declare
 ret sys.dburitype;
begin
 -- exucute the insert and get the url
 EXECUTE IMMEDIATE
’insert into clob_tab values (1,’’TEMP CLOB TEST’’)
 RETURNING SYS_DBURIGEN(docid, doc, ’’text()’’) INTO :1 ’
 RETURNING INTO ret;
Creating and Accessing Data Through URLs 12-33

Turning a URL into a Database Query with DBUri Servlet
 -- insert the url into uri_tab
insert into uri_tab values (ret);
end;
/
The URL created has the form:

/SCOTT/CLOB_TAB/ROW[DOCID="xxx"]/DOC/text()

Turning a URL into a Database Query with DBUri Servlet
You can make table data accessible from your browser or any Web client, using the

URI notation within a URL to specify the data to retrieve:

■ Through DBUri servlet linked in with the database server.

■ By writing your own servlet that runs on a servlet engine. The servlet can read

the URI string from the path of the invoking URL, create a DBUriType object

using that URI, call the UriType methods to retrieve the data, and return the

values in the form of a Web page or an XML document.

DBUri Servlet Mechanism
For the preceding methods, a servlet runs for accessing this information through

HTTP. This servlet takes in a path expression following the servlet name as the

DBUri reference and outputs the document pointed to by the DBUri to the output

stream.

The generated document can be a Web page, an XML document, plain text, and so

on. You can specify the MIME type so that the browser or other application knows

what kind of content to expect:

Note: The text() keyword is appended to the end indicating

that you want the URL to return just the CLOB value and not an

XML document enclosing the CLOB text.

Note: The Oracle servlet engine is being desupported.

Consequently the oracle.xml.dburi.OraDBUriServlet
supported in Oracle9i Release 1 (9.0.1), is also being desupported.

Use the DBUri C-servlet instead which uses the Oracle XML DB

servlet system. See also Chapter 20, "Writing Oracle XML DB

Applications in Java".
12-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Turning a URL into a Database Query with DBUri Servlet
■ By default, the servlet can produce MIME types of text/xml and

text/plain . If the URI ends in a text() function, then the text/plain
MIME type is used, else an XML document is generated with the MIME type of

text/xml .

■ You can override the MIME type and set it to binary/x-jpeg or some other

value using the contenttype argument to the servlet.

Example 12–21 URL for Overriding the MIME Type by Generating the contenttype
Argument, to Retrieve the empno Column of Table Employee

For example, to retrieve the empno column of the employee table, you can write a

URL such as one of the following:

-- Generates a contenttype of text/plain
http://machine.oracle.com:8080/oradb/SCOTT/EMP/ROW[EMPNO=7369]/ENAME/text()
-- Generates a contenttype of text/xml
http://machine.oracle.com:8080/oradb/SCOTT/EMP/ROW[EMPNO=7369/ENAME

where the machine machine.oracle.com is running the Oracle9i database, with

a Web service at port 8080 listening to requests. oradb is the virtual path that maps

to the servlet.

DBUri Servlet: Optional Arguments
Table 12–6 describes the three optional arguments you can pass to DBUri servlet to

customize the output.

Table 12–6 DBUri Servlet: Optional Arguments

Argument Description

rowsettag Changes the default root tag name for the XML document. For
example:
http://machine.oracle.com:8080/oradb/SCOTT/EMP
?rowsettag=Employe e

contenttype Specifies the MIME type of the returned document. For
example:
http://machine.oracle.com:8080/oradb/SCOTT/EMP
?contenttype=text/plain
Creating and Accessing Data Through URLs 12-35

Turning a URL into a Database Query with DBUri Servlet
Installing DBUri Servlet
DbUriServlet is built into the database, and the installation is handled by the

ORACLE XML DB configuration file. To customize the installation of the servlet,

you need to edit it. You can edit the config file, xdbconfig.xml under the

ORACLE XML DB user, through WebDAV, FTP, from Oracle Enterprise Manager, or

in the database. To update the file using FTP or WebDAV, simply download the

document, edit it as necessary, and save it back in the database. There are several

things that can be customized using the configuration file.

transform This argument passes a URL to UriFactory, which in turn
retrieves the XSL stylehseet at that location. This stylesheet is
then applied to the XML document being returned by the
servlet. For example:
http://machine.oracle.com:8080/oradb/SCOTT/EMP
?transform=/oradb/SCOTT/XSLS/DOC/text()&conten
ttype=text/htm l

Note: When using XPath notation in the URL for this servlet, you

may have to escape certain characters such as square brackets. You

can use the getExternalUrl() functions in the UriType types

to get an escaped version of the URL.

Note: In HTTP access, special characters such as,], [, &, | have to

be escaped using the %xx format, where xx is the hexadecimal

number of the ASCII code for that character. Use the

getExternalUrl() function in the UriType family to get an

escaped version of the URL.

See Also:

■ Chapter 20, "Writing Oracle XML DB Applications in Java"

■ Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"

■ Appendix A, "Installing and Configuring Oracle XML DB"

Table 12–6 DBUri Servlet: Optional Arguments (Cont.)

Argument Description
12-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Turning a URL into a Database Query with DBUri Servlet
Notice that the servlet is installed at /oradb/* specified in the servlet-pattern tag.

The * is necessary to indicate that any path following oradb is to be mapped to the

same servlet. The oradb is published as the virtual path. Here, you can change the

path that will be used to access the servlet.

Example 12–22 Installing DBUri Servlet Under /dburi/*

For example, to have the servlet installed under /dburi/* , you can run the

following PL/SQL:

declare
 doc XMLType;
 doc2 XMLType;
begin
 doc := dbms_xdb.cfg_get();
 select updateXML(doc,
’/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/servl
et-mappings/servlet-mapping[servlet-name="DBUriServlet"]/servlet-pattern/text()’
, ’/dburi/*’) into doc2 from dual;
 dbms_xdb.cfg_update(doc2);
 commit;
end;
/

Security parameters, the servlet display-name, and the description can also be

customized in the xdbconfig.xml configuration file. See Appendix A, "Installing

and Configuring Oracle XML DB" and Chapter 20, "Writing Oracle XML DB

Applications in Java". The servlet can be removed by deleting the servlet-pattern for

this servlet. This can also be done using updateXML() to update the

servlet-mapping element to null.

DBUri Security
Servlet security is handled by Oracle9i database using roles. When users log in to

the servlet, they use their database username and password. The servlet will check

to make sure the user logging in belongs to one of the roles specified in the

configuration file. The roles allowed to access the servlet are specified in the

security-role-ref tag. By default, the servlet is available to the special role

authenticatedUser. Any user who logs into the servlet with any valid database

username and password belongs to this role.

 This parameter can be changed to restrict access to any role(s) in the database. To

change from the default authenticated-user role to a role that you have created, say

servlet-users , run:
Creating and Accessing Data Through URLs 12-37

Turning a URL into a Database Query with DBUri Servlet
declare
 doc XMLType;
 doc2 XMLType;
 doc3 XMLType;
begin
 doc := dbms_xdb.cfg_get();
 select updateXML(doc,
’/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/servl
et-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-name/text()’
, ’servlet-users’) into doc2 from dual;
 select updateXML(doc2,
’/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/servl
et-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-link/text()’
, ’servlet-users’) into doc3 from dual;
 dbms_xdb.cfg_update(doc3);
 commit;
end;
/

Configuring the UriFactory Package to Handle DBUris
The UriFactory , as explained in "Creating Instances of UriType Objects with the

UriFactory Package" on page 12-26, takes a URL and generates the appropriate

subtypes of the UriType to handle the corresponding protocol. For HTTP URLs,

UriFactory creates instances of the HttpUriType . But when you have an HTTP

URL that represents a URI path, it is more efficient to store and process it as a

DBUriType instance in the database. The DBUriType processing involves fewer

layers of communication and potentially fewer character conversions.

After you install OraDBUriServlet , so that any URL such as

http://machine-name/servlets/oradb/ gets handled by that servlet, you

can configure the UriFactory to use that prefix and create instances of the

DBUriType instead of HttpUriType :

begin
 -- register a new handler for the dburi prefix..
urifactory.registerHandler(’http://machine-name/servlets/oradb’
 ,’SYS’,’DBUriTYPE’, true,true);
end;
/

After you execute this block in your session, any UriFactory.getUri() call in

that session automatically creates an instance of the DBUriType for those HTTP

URLs that have the prefix.
12-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Turning a URL into a Database Query with DBUri Servlet
See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for details of all functions in DBUriFactory package.
Creating and Accessing Data Through URLs 12-39

Turning a URL into a Database Query with DBUri Servlet
12-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part V

Oracle XML DB Repository: Foldering,

Security, and Protocols

Part V of this manual describes Oracle XML DB Repository. It includes how to

version your data, implement and manage security, and how to use the associated

Oracle XML DB APIs to access and manipulate Repository data.

Part V contains the following chapters:

■ Chapter 13, "Oracle XML DB Foldering"

■ Chapter 14, "Oracle XML DB Versioning"

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

■ Chapter 16, "Oracle XML DB Resource API for PL/SQL (DBMS_XDB)"

■ Chapter 17, "Oracle XML DB Resource API for Java"

■ Chapter 18, "Oracle XML DB Resource Security"

■ Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

■ Chapter 20, "Writing Oracle XML DB Applications in Java"

Oracle XML DB Fo
13

Oracle XML DB Foldering

This chapter describes how to access data in Oracle XML DB Repository using

standard protocols such as FTP, HTTP/WebDAV and other Oracle XML DB

Resource APIs. It also introduces you to using RESOURCE_VIEWand PATH_VIEWas

the SQL mechanism for accessing and manipulating Repository data. It includes a

table for comparing Repository operations through the various Resource APIs.

This chapter contains the following sections:

■ Introducing Oracle XML DB Foldering

■ Oracle XML DB Repository

■ Oracle XML DB Resources

■ Accessing Oracle XML DB Repository Resources

■ Navigational or Path Access

■ Query-Based Access

■ Accessing Repository Data Using Servlets

■ Accessing Data Stored in Oracle XML DB Repository Resources

■ Managing and Controlling Access to Resources

■ Extending Resource Metadata Properties

■ Frequently Asked Questions (FAQs): XML DB Repository
ldering 13-1

Introducing Oracle XML DB Foldering
Introducing Oracle XML DB Foldering
Using the foldering feature in Oracle XML DB you can store content in the database

in hierarchical structures, as opposed to traditional relational database structures.

Figure 13–1 is an example of a hierarchical structure that shows a typical tree of

folders and files in Oracle XML DB Repository. The top of the tree shows ’/’, the

root folder.

Foldering allows applications to access hierarchically indexed content in the

database using the FTP, HTTP, and WebDAV protocol standards as if the database

content is stored in a file system.

This chapter provides an overview of how to access data in Oracle XML DB

Repository folders using the standard protocols. There are other APIs available in

this release, which allow you to access the Repository object hierarchy using Java,

SQL, and PL/SQL.
13-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing Oracle XML DB Foldering
Figure 13–1 A Typical Folder Tree Showing Hierarchical Structures in Oracle XML
Repository

Caution: The directory /sys is used by Oracle XML DB to
maintain system-defined XML schemas, ACLs, and so on. In
general:

■ Do not store any data under the /sys directory.

■ Do not modify any content in the /sys directory.

/ Root Node

/acls
/schemas

/home /sys

/log
/SCOTT /XDB

11_28_01.txt

/PUBLIC

all_all_acl.xml
all_owner_acl.xml

/acls /schemas

/po
/graphics/general

/acls
/schemas /xmlns.oracle.com

/xdb

XDBSchema.xsd

banner.png
logo.gif
architecture.jpg

into.doc
maincode.jav
chapter1.xml

whatsnew.fm
readme.txt

Binary
files stored
as BLOBs

Graphics
or
binary.files
stored in
BLOBs

XML files
typically stored
object-relationally
can also store
in LOBS

Oracle
XML DB
folders
(containers)

po_Jan03.xml
po_Jan02.xml
po_101.xml

XML files
stored in your
XMLType
tables / views

Directories
(containers)

Files or Documents
(non-containers)

ACL files
are stored
in xdb.xdb$ACL
table

Oracle XML DB System Folders
Do not store your data in /sys
Oracle XML DB Foldering 13-3

Oracle XML DB Repository
Oracle XML DB Repository
Oracle XML DB Repository (Repository) is the set of database objects, across all

XML and database schemas, that are mapped to path names. It is a connected,

directed, acyclic graph of resources with a single root node (/). Each resource in the

graph has one or more associated path names.

The Repository can be thought of as a file system of objects rather than files.

Repository Terminology
The following lists describes terms used in Oracle XML DB Repository:

■ Resource: A resource is any object or node in the hierarchy. Resources are

identified by URLs. See "Oracle XML DB Resources" on page 6.

■ Folder: A folder is a node (or directory) in the hierarchy that can contain a

collection of resources. A folder is also a resource.

■ Pathname: A hierarchical name composed of a root element (the first /),

element separators /, and various subelements (or path elements). A path

element may be composed of any character in the database character set except

\ and / , which have special meanings in Oracle XML DB. The forward slash is

the default name separator in a path name, and the backward slash is used to

escape characters. The Oracle XML DB configuration file xdbconfig.xml also

contains a list of user-defined characters that may not appear within a path

name (<invalid-pathname-chars >).

■ Resource or Link name: The name of a resource within its parent folder.

Resource names must be unique (case-sensitive in this release) within a folder.

Resource names are always in the UTF8 character set (NVARCHAR).

See Also:

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

■ Chapter 16, "Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)"

■ Chapter 17, "Oracle XML DB Resource API for Java"

■ Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

Note: The Repository supports multiple links to a given resource.
13-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Repository
■ Contents: The body of a resource, what you get when you treat the resource like

a file and ask for its contents. Contents is always an XMLType.

■ XDBBinary : An XML element defined by the Oracle XML DB schema that

contains binary data. XDBBinary elements are stored in the Repository when

unstructured binary data is uploaded into Oracle XML DB.

■ Access Control List (ACL): Restricts access to a resource or resources. Oracle

XML DB uses ACLs to restrict access to any Oracle XML DB resource (any

XMLType object that is mapped into the Oracle XML DB file system hierarchy).

Many terms used by Oracle XML DB have common synonyms used in other

contexts, as shown in Table 13–1.

See Also: Chapter 18, "Oracle XML DB Resource Security"

Table 13–1 Synonyms for Oracle XML DB Foldering Terms

Synonym
Oracle XML DB
Foldering Term Usage

Collection Folder WebDAV

Directory Folder Operating systems

Privilege Privilege Permission

Right Privilege Various

WebDAV Folder Folder Web Folder

Role Group Access control

Revision Version RCS, CVS

File system Repository Operating systems

Hierarchy Repository Various

File Resource Operating systems

Binding Link WebDAV
Oracle XML DB Foldering 13-5

Oracle XML DB Resources
Oracle XML DB Resources
Oracle XML DB resources conform to the xdbresource.xsl schema, which is

defined by Oracle XML DB. The elements in a resource include those needed to

persistently store WebDAV-defined properties, such as creation date, modification

date, WebDAV locks, owner, ACL, language, and character set.

Contents Element in Resource Index
A resource index has a special element called Contents which contains the

contents of the resource.

any Element
The XML schema for a resource also defines an any element, with maxoccurs
unbounded, which allowed to contain any element outside the Oracle XML DB

XML namespace. This way, arbitrary instance-defined properties can be associated

with the resource.

Where Exactly Is Repository Data Stored?
Oracle XML DB stores Repository data in a set of tables and indexes in the Oracle

XML DB database schema. These tables are accessible. If you register an XML

schema and request the tables be generated by Oracle XML DB, the tables are

created in your database schema. This means that you are able to see or modify

them. However, other users will not be able to see your tables unless you explicitly

grant them permission to do so.

Generated Table Names
The names of the generated tables are assigned by Oracle XML DB and can be

obtained by finding the xdb:defaultTable=XXX attribute in your XML schema

document (or the default XML schema document). When you register an XML

schema, you can also provide your own table name, and override the default

created by Oracle XML DB.

Defining Structured Storage for Resources
Applications that need to define structured storage for resources can do so by

either:

See Also: "Guidelines for Using Registered XML Schemas" on

page 5-14 in Chapter 5, "Structured Mapping of XMLType"
13-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resources
■ Subclassing the Oracle XML DB resource type. Subclassing Oracle XML DB

resources requires privileges on the table XDB$RESOURCE.

■ Storing data conforming to a visible, registered XML schema.

Pathname Resolution
The data relating a folder to its children is managed by the Oracle XML DB

hierarchical index. This provides a fast mechanism for evaluating path names,

similar to the directory mechanisms used by operating-system file systems.

Resources that are folders have the Container attribute set to TRUE.

To resolve a resource name in a folder, the current user must have the following

privileges:

■ resolve privilege on the folder

■ read-properties on the resource in that folder

If the user does not have these privileges, he receives an access denied error.

Folder listings and other queries will not return a row when the

read-properties privilege is denied on its resource.

Deleting Resources
Deletion of a link deletes the resource pointed to by the link if and only if that was

the last link to the resource and the resource is not versioned. Links in Oracle XML

DB Repository are analogous to Unix “hard links”.

See Also: Chapter 5, "Structured Mapping of XMLType".

Note: Error handling in path name resolution differentiates

between invalid resource names and resources that are not folders

for compatibility with file systems. Since Oracle XML DB resources

are accessible from outside the Repository (using SQL), denying

read access on a folder that contains a resource will not prevent

read access to that resource.

See Also: "Deleting Repository Resources: Examples" on

page 15-13
Oracle XML DB Foldering 13-7

Accessing Oracle XML DB Repository Resources
Accessing Oracle XML DB Repository Resources
Oracle XML DB provides two techniques for accessing resources:

■ "Navigational or Path Access" on page 13-9. Navigational/path access to

content in Oracle XML DB is achieved using a hierarchical index of objects or

resources. Each resource has one or more unique path names that reflect its

location in the hierarchy. You can use navigational access to reference any object

in the database without regard to its location in the tablespace.

■ "Query-Based Access" on page 13-12. SQL access to the Repository is done

using a set of views that expose resource properties and path names and map

hierarchical access operators onto the Oracle XML DB schema.

Figure 13–2 illustrates Oracle XML DB data access options. A high level discussion

of which data access option to select is described in Chapter 2, "Getting Started with

Oracle XML DB", "Oracle XML DB Application Design: b. Access Models" on

page 13-4.

Figure 13–2 Oracle XML DB Repository Data Access Options

See Also: Table 13–3, "Accessing Oracle XML DB Repository: API

Options"

Oracle XML DB
Data Access Options

Use SQL Use Repository

JDBC / Java bean

PL/SQL

Available Languages
and APIs

SQL (RESOURCE_ / PATH_VIEW)

JNDI

FTP

HTTP / WebDav

Available Language
and XMLType APIs

Query-based
Access

Path-based
Access
13-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Navigational or Path Access
A Uniform Resource Locator (URL) is used to access an Oracle XML DB resource. A

URL includes the hostname, protocol information, path name, and resource name of

the object.

Navigational or Path Access
Oracle XML DB folders support the same protocol standards used by many

operating systems. This allows an Oracle XML DB folder to function just like a

native folder or directory in supported operating-system environments. For

example: you can:

■ Use Windows Explorer to open and access Oracle XML DB folders and

resources the same way you access other directories or resources in the

Windows NT file system, as shown in Figure 13–3.

■ Access Repository data using HTTP/WebDAV from an Internet Explorer

browser, such as when viewing Web Folders, as shown in Figure 13–4.

Figure 13–3 Oracle XML DB Folders in Windows Explorer
Oracle XML DB Foldering 13-9

Navigational or Path Access
Figure 13–4 Accessing Repository Data Using HTTP/WebDAV and Navigational Access From IE
Browser: Viewing Web Folders

Accessing Oracle XML DB Resources Using Internet Protocols
Oracle Net Services provides one way of accessing database resources. Oracle XML

DB support for Internet protocols provides another way of accessing database

resources.

Where You Can Use Oracle XML DB Protocol Access
Oracle Net Services is optimized for record-oriented data. Internet protocols are

designed for stream-oriented data, such as binary files or XML text documents.

Oracle XML DB protocol access is a valuable alternative to Net Services in the

following scenarios:

■ Direct database access from file-oriented applications using the database like a

file system
13-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Navigational or Path Access
■ Heterogeneous application server environments that want a uniform data

access method (such as XML over HTTP, which is supported by most data

servers, including MS SQL Server, Exchange, Notes, many XML databases,

stock quote services and news feeds)

■ Application server environments that want data as XML text

■ Web applications using client-side XSL to format datagrams not needing much

application processing

■ Web applications using Java servlets running inside the database

■ Web access to XML-oriented stored procedures

Protocol Access Calling Sequence
Protocol access uses the following steps in Oracle XML DB:

1. A connection object is established, and the protocol may decide to read part of

the request.

2. The protocol decides if the user is already authenticated and wants to reuse an

existing session or if the connection must be reauthenticated (generally the

case).

3. An existing session is pulled from the session pool, or a new one is created.

4. If authentication has not been provided and the request is HTTP Get or Head,

the session is run as the ANONYMOUS user. If the session has already been

authenticated as the ANONYMOUS user, there is no cost to reuse the existing

session. If authentication has been provided, the database reauthentication

routines are used to authenticate the connection.

5. The request is parsed.

6. If the requested path name maps to a servlet (for HTTP only), the servlet is

invoked using the Java VM. The servlet code writes out the response to a

response stream or asks XMLType instances to do so.

Retrieving Oracle XML DB Resources
When the protocol indicates that a resource is to be retrieved, the path name to the

resource is resolved. Resources being fetched are always streamed out as XML, with

the exception of resources containing the XDBBinary element, an element defined

to be the XML binary data type, which have their contents streamed out in RAW

form.
Oracle XML DB Foldering 13-11

Query-Based Access
Storing Oracle XML DB Resources
When the protocol indicates that a resource must be stored, Oracle XML DB checks

the document’s file name extension for .xml, .xsl, .xsd, and so on. If the document is

XML, a pre-parse step is done, where enough of the resource is read to determine

the XML schemaLocation and namespace of the root element in the document.

This location is used to look for a registered schema with that schemaLocation
URL. If a registered schema is located with a definition for the root element of the

current document, the default table specified for that element is used to store that

resource's contents.

Using Internet Protocols and XMLType: XMLType Direct Stream Write
Oracle XML DB supports Internet protocols at the XMLType level by using the

writeToStream() Java method on XMLType. This method is natively

implemented and writes XMLType data directly to the protocol request stream. This

avoids the overhead of converting database data through Java datatypes, creating

Java objects, and Java VM execution costs, resulting in significantly higher

performance. This is especially the case if the Java code deals with XML element

trees only close to the root, without traversing too many of the leaf elements, hence

minimizing the number of Java objects created.

Query-Based Access
Oracle XML DB provides two Repository views to enable SQL access to Repository

data:

■ PATH_VIEW

■ RESOURCE_VIEW

Table 13–2 summarizes the differences between PATH_VIEW and RESOURCE_VIEW.

See Also: Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

Table 13–2 Differences Between PATH_VIEW and RESOURCE_VIEW

PATH_VIEW RESOURCE_VIEW

Contains link properties No link properties

Contains resource properties and path name Contains resource properties and path name

Has one row for each unique path in the
Repository

Has one row for each resource in the
Repository
13-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Accessing Repository Data Using Servlets
The single path in the RESOURCE_VIEW is arbitrarily chosen from among the many

possible paths that refer to a resource. Oracle XML DB provides operators like

UNDER_PATH that enable applications to search for resources contained

(recursively) within a particular folder, get the resource depth, and so on. Each row

in the views is of XMLType.

DML on the Oracle XML DB Repository views can be used to insert, rename, delete,

and update resource properties and contents. Programmatic APIs must be used for

other operations, such as creating links to existing resources.

Accessing Repository Data Using Servlets
Oracle XML DB implements the Java servlet API, version 2.2, with the following

exceptions:

■ All servlets must be distributable. They must expect to run in different VMs.

■ WAR and web.xml files are not supported. Oracle XML DB supports a subset

of the XML configurations in this file. An XSL stylesheet can be applied to the

web.xml to generate servlet definitions. An external tool must be used to create

database roles for those defined in the web.xml file.

■ JSP (Java Server Pages) support can be installed as a servlet and configured

manually.

■ HTTPSession and related classes are not supported.

■ Only one servlet context (that is, one Web application) is supported.

Note: Each resource can have multiple paths.

See Also:

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW" for details

on SQL Repository access

■ Chapter 18, "Oracle XML DB Resource Security"

■ Oracle9i XML API Reference - XDK and Oracle XML DB

See Also: Chapter 20, "Writing Oracle XML DB Applications in

Java"
Oracle XML DB Foldering 13-13

Accessing Data Stored in Oracle XML DB Repository Resources
Accessing Data Stored in Oracle XML DB Repository Resources
The three main ways you can access data stored in Oracle XML DB Repository

resources are through:

■ Oracle XML DB Resource APIs for Java/JNDI

■ A combination of Oracle XML DB Resource Views API and Oracle XML DB

Resource API for PL/SQL

■ Internet protocols (HTTP/WebDAV and FTP) and Oracle XML DB Protocol

Server

Table 13–3 lists common Oracle XML DB Repository operations and describes how

these operations can be accomplished using each of the three methods. The table

shows functionality common to three methods. Note that not all the methods are

equally suited to a particular set of tasks.

See Also:

■ Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

■ Chapter 16, "Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)"

■ Chapter 17, "Oracle XML DB Resource API for Java"

■ Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

■ Oracle9i XML API Reference - XDK and Oracle XML DB

Table 13–3 Accessing Oracle XML DB Repository: API Options

Data Access
Operation

Query-Based Access: RESOURCE_VIEW
API

Path-Based Access: Resource API for
PL/SQL

Path-Based
Access:
Protocols

Creating a resource INSERT INTO PATH_VIEW VALUES (path, res, linkprop)

See also DBMS_XDB.CreateResource.

HTTP PUT;

FTP PUT

Updating contents of
a resource using path
name

UPDATE RESOURCE_VIEW SET resource =
updateXML(res, '/Resource/Contents', lob) WHERE
EQUALS_PATH(res, :path) > 0

HTTP PUT;

FTP PUT
13-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Accessing Data Stored in Oracle XML DB Repository Resources
Updating properties
of a resource by path
name

UPDATE RESOURCE_VIEW SET resource =
updateXML(res, '/Resource/propname', newval,
'/Resource/propname2', newval2, …) WHERE
EQUALS_PATH(res, :path) > 0

HTTP PROPPATCH;

FTP N/A

Updating the ACL of
a resource

 UPDATE RESOURCE_VIEW SET resource =
updateXML(res, '/ Resource/ACL', XMLType) WHERE
EQUALS_PATH(res, :path) > 0

 N/A

Unlinking a resource,
deleting it if it is the
last link

DELETE FROM RESOURCE_VIEW WHERE
EQUALS_PATH(res, :path) > 0

HTTP DELETE; FTP
DELETE

Forcibly removing all
links to a resource

DELETE FROM PATH_VIEW WHERE
extractValue(res,’display_name’) = ’My resource’;

N/A

FTP: quote
rm_rf<resource>

Moving a resource or
folder

UPDATE PATH_VIEW SET path = newpath WHERE
EQUALS_PATH(res, :path) > 0

WebDAV MOVE;

FTP RENAME

Copying a resource or
folder

INSERT INTO PATH_VIEW SELECT::newpath,
resource, link FROM PATH_VIEW WHERE
EQUALS_PATH(res,:oldpath)> 0

WebDav COPY;

FTP N/A

Creating a link to an
existing resource

Call dbms_xdb.Link(srcpath IN VARCHAR2, linkfolder IN
VARCHAR2, linkname IN VARCHAR2);

N/A

Getting binary/text
representation of
resource contents by
path name

SELECT GET_CONTENTS(resource) FROM
RESOURCE_VIEW p WHERE EQUALS_PATH(res,
:path) > 0

 HTTP GET;

FTP GET

Getting XMLType
representation of
resource contents by
path name

SELECT extract(res, '/Resource/Contents/*') FROM
RESOURCE_VIEW p WHERE
EQUALS_PATH(Res, :path) > 0

N/A

Getting resource
properties by path
name

SELECT extractValue(res, '/Resource/XXX') FROM
RESOURCE_VIEW WHERE EQUALS_PATH(res,:path)
> 0

WebDAVPROPFIND
(depth = 0);

FTP N/A

Listing a directory SELECT * FROM PATH_VIEW WHERE
UNDER_PATH(res, :path, 1) > 0

WebDAV PROPFIND
(depth=1);
FTP LS

Table 13–3 Accessing Oracle XML DB Repository: API Options (Cont.)

Data Access
Operation

Query-Based Access: RESOURCE_VIEW
API

Path-Based Access: Resource API for
PL/SQL

Path-Based
Access:
Protocols
Oracle XML DB Foldering 13-15

Managing and Controlling Access to Resources
Managing and Controlling Access to Resources
You can set access control privileges on Oracle XML DB folders and resources.

Creating a folder ICall dbms_xdb.createFolder(VARCHAR2) WebDAVMKCOL;
FTP MKDIR

Unlinking a folder DELETE FROM PATH_VIEW WHERE
EQUALS_PATH(res, :path) > 0

HTTP DELETE;FTP
RMDIR

Forcibly deleting a
folder and all links to
it

Call dbms_xdb.deleteFolder(VARCHAR2) N/A

FTP: quote rm_rf
<folder>

Getting a resource
with a row lock

SELECT … FROM RESOURCE_VIEW FOR UPDATE
…;

N/A

Putting a WebDAV
lock on the resource

DBMS_XDB.lock(lock_type INTEGER); WebDAV LOCK;

FTP: QUOTE LOCK

Removing a WebDAV
lock

DBMS_XDB.unlock(path VARCHAR2); WebDAV UNLOCK;

QUOTE UNLOCK

Committing changes COMMIT; Automatically
commits at the end of
each request

Rollback changes ROLLBACK; N/A

See Also:

■ Chapter 18, "Oracle XML DB Resource Security" for more detail

on using access control on Oracle XML DB folders

■ Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"

■ Oracle9i XML API Reference - XDK and Oracle XML DB the

chapters on DBMS_XDB

Table 13–3 Accessing Oracle XML DB Repository: API Options (Cont.)

Data Access
Operation

Query-Based Access: RESOURCE_VIEW
API

Path-Based Access: Resource API for
PL/SQL

Path-Based
Access:
Protocols
13-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Extending Resource Metadata Properties
Extending Resource Metadata Properties
Oracle XML DB resources are described by XML schema, XDBResource.xsd . This

XML schema is described in Appendix G, "Example Setup scripts. Oracle XML DB -

Supplied XML Schemas". XDBResource.xsd declares a fixed set of metadata

properties such as the Owner, CreationDate , and so on. You can specify values

for these metadata attributes while creating or updating resources.

You have two options for storing proprietary (custom) tags as extra metadata with

resources, that is metadata properties that are not defined by the Resource XML

schema:

■ Option 1: Storing extra metadata as a CLOB (ResExtra element). The default

schema has a top-level any element (declared with maxOccurs =

"unbounded "), thus allowing any valid XML data as part of the resource

document, and gets stored in the RESEXTRA CLOB column:

<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
 <Owner>SCOTT</Owner>
 ... <!-- other system defined metadata -->
 <!-- User Metadata (appearing within different namespace) -->
 <ResExtra>
 <myCustomAttrs xmlns="http://www.example.com/customattr">
 <attr1>value1</attr1>
 <attr2>value2</attr2>
 </myCustomAttrs>
 </ResExtra
 <!-- contents of the resource>
 <Contents>
 ...
 </Contents>
</Resource>

Though this approach works well for ad-hoc extensions to the resource

metadata, the queryability and updatability of the user metadata is impacted

because the user metadata is stored in a CLOB.

■ Option 2: Extending the Resource XML Schema. You can extend the resource

XML schema using the techniques specified by the XML schema specifications,

that is, you can register a new XML schema that extends the ResourceType

Note: The XML representing user level metadata must be within a

namespace other than that XDBResource namespace.
Oracle XML DB Foldering 13-17

Frequently Asked Questions (FAQs): XML DB Repository
complexType . This triggers the creation of object subtypes under the

XDB$RESOURCE_T object type, thereby adding new columns to the

XDB$RESOURCE table:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xdbres="http://xmlns.oracle.com/xdb/XDBResource.xsd"
 <complexType name="myCustomResourceType>
 <complexContent>
 <extension base="xdbres:ResourceType>
 <element name="custom-attr1" type="string">
 ...
 </extension>
 </complexContent>
 </complexType>
</schema>

Frequently Asked Questions (FAQs): XML DB Repository

Why Does XML Repository Hierarchical Index Not Work?
In XML DB Release 2 (9.2) the following query worked using the hierarchical index:

SELECT XDBURITYPE(ANY_PATH).GETXML()
 FROM RESOURCE_VIEW
 WHERE CONTAINS(RES,'MYXML') >0;

But this does not work with the latest release. I get the error column not indexed.

How should I use the hierarchical index to search the contents of documents in the

XML Repository? In one place the documentation describes a hierarchical index that

indexes path names but does not mention what type of index this is and when

mentioning the DBMS_XDBT package, it describes a ConText index on the Oracle

XML DB Repository hierarchy that sounds similar?

Answer: It appears that you have not created the Context index on the Repository.

Note that Contains() needs the Context index for its evaluation. You can create

the Context index on xdb$resource by:

a. Using DBMS_XDBT (dbmsxdbt.sql in rdbms/admin) package or

b. Create a Context index explicitly as follows:

CREATE INDEX xdb.ctxi ON xdb.xdb$resource x (value(x))
 indextype is ctxsys.context;
13-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB Repository
(a) is the preferred solution because it takes into account the binary contents in the

Repository and filters it appropriately. Solution (b) will only index the XML and text

content in the Repository.

There are two different indexes on the xdb$resource table:

■ Hierarchical Index. This is always present. The rebuild hierarchical index

procedure is for rebuilding this index.

■ Context index is an optional index, that is, your DBA can create this index if

needed. You will need this index to perform Contains() queries.
Oracle XML DB Foldering 13-19

Frequently Asked Questions (FAQs): XML DB Repository
13-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Ve
14

Oracle XML DB Versioning

This chapter describes how to create and manage versions of Oracle XML DB

resources. It contains the following sections:

■ Introducing Oracle XML DB Versioning

■ Creating a Version-Controlled Resource (VCR)

■ Access Control and Security of VCR

■ Frequently Asked Questions: Oracle XML DB Versioning
rsioning 14-1

Introducing Oracle XML DB Versioning
Introducing Oracle XML DB Versioning
Oracle XML DB versioning provides a way to create and manage different versions

of a resource in Oracle XML DB. In previous releases of Oracle9i database, after a

resource (table, column,...) is updated, its previous contents and properties are lost.

Oracle XML DB versioning prevents this loss by storing a version of the resource in

the database to keep the old resource contents and properties when an update is

issued.

Oracle XML DB provides a PLSQL package, DBMS_XDB_VERSION to put a resource

under version-control and retrieve different versions of the resource.

Oracle XML DB Versioning Features
Oracle XML DB versioning helps keep track of all changes on version-controlled

Oracle XML DB resources (VCR). The following sections discuss these features in

detail. Oracle XML DB versioning features include the following:

■ Version control on a resource. You have the option to turn on or off version

control on an Oracle XML DB resource. See "Creating a Version-Controlled

Resource (VCR)".

■ Updating process of a version-controlled resource. When Oracle XML DB

updates a version-controlled resource, it also creates a new version of the

resource, and this version will not be deleted from the database when the

version-controlled resource is deleted by you. See "Updating a

Version-Controlled Resource (VCR)".

■ Loading a version-controlled resource is similar to loading any other regular
resource in Oracle XML DB using the path name. See "Creating a

Version-Controlled Resource (VCR)".

■ Loading a version of the resource. To load a version of a resource, you must first

find the resource object id of the version and then load the version using that id.

The resource object id can be found from the resource version history or from

the version-controlled resource itself. See "Oracle XML DB Resource ID and

Path Name".

Note: In this release, Oracle XML DB versioning supports version

control for Oracle XML DB resources. It does not support version

control for user-defined tables or data in an Oracle9i database.
14-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing Oracle XML DB Versioning
Oracle XML DB Versioning Terms Used in This Chapter
Table 14–1 lists the Oracle XML DB versioning terms used in this chapter.

Oracle XML DB Resource ID and Path Name
Oracle XML DB resource ID is a unique system-generated ID for an Oracle XML DB

resource. Here Resource ID helps identify resources that do not have path names.

For example, version resource is a system-generated resources and does not have a

path name. The function GetResourceByResId() can be used to retrieve

resources given the resource object ID.

Example 14–1 DBMS_XDB_VERSION. GetResourceByResId(): First version ID is
Returned When Resource’home/index.html’ is makeversioned

declare
resid DBMS_XDB_VERSION.RESID_TYPE;
res XMLType;
begin

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Table 14–1 Oracle XML DB Versioning Terms

Oracle XML DB
Versioning Term Description

Version control When a record or history of all changes to an Oracle XML DB resource is stored
and managed, the resource is said to be put under version control.

Versionable resource Versionable resource is an Oracle XML DB resource that can be put under version
control.

Version-controlled
resource (VCR).

Version-controlled resource is an Oracle XML DB resource that is put under
version control. Here, a VCR is a reference to a version Oracle XML DB resource. It
is not physically stored in the database.

Version resource. Version resource is a version of the Oracle XML DB resource that is put under
version control. Version resource is a read-only Oracle XML DB resource. It cannot
be updated or deleted. However, the version resource will be removed from the
system when the version history is deleted from the system.

Checked-out resource. It is an Oracle XML DB resource created when version-controlled resource is
checked out.

Checkout, checkin, and
uncheckout.

These are operations for updating Oracle XML DB resources. Version-controlled
resources must be checked out before they are changed. Use the checkin operation
to make the change permanent. Use uncheckout to void the change.
Oracle XML DB Versioning 14-3

Creating a Version-Controlled Resource (VCR)
resid := DBMS_XDB_VERSION.MakeVersioned(’/home/SCOTT/versample.html’);
-- Obtain the resource
res := DBMS_XDB_VERSION.GetResoureceByResId(resid);

Creating a Version-Controlled Resource (VCR)
Oracle XML DB does not automatically keep a history of updates since not all

Oracle XML DB resources need this. You must send a request to Oracle XML DB to

put an Oracle XML DB resource under version control. In this release, all Oracle

XML DB resources are versionable resources except for the following:

■ Folders (directories or collections)

■ ACL

When a Version-Controlled Resource (VCR) is created the first version resource of

the VCR is created, and the VCR is a reference to the newly-created version.

See "Version Resource or VCR Version" on page 14-4.

Example 14–2 DBMS_XDB_VERSION.makeVersioned(): Creating a Version-Controlled
Resource (VCR)

Resource ’home/SCOTT/versample.html ’ is turned into a version-controlled

resource.

declare
resid DBMS_XDB_VERSION.RESID_TYPE;
begin
resid := DBMS_XDB_VERSION.MakeVersioned(’/home/SCOTT/versample.html’);
end;
/
MakeVersioned() returns the resource ID of the very first version of the

version-controlled resource. This version is represented by a resource ID, which is

discussed in "Resource ID of a New Version" on page 14-5.

MakeVersioned() is not an auto-commit SQL operation. You have to commit the

operation.

Version Resource or VCR Version
Oracle XML DB does not provide path names for version resources. However, it

does provide a version resource ID. Version resources are read-only resources.

The version ID is returned by a couple of methods in package

DBMS_XDB_VERSION, that are described in the following sections.
14-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating a Version-Controlled Resource (VCR)
Resource ID of a New Version
When a VCR is checked in, a new version resource is created, and its resource ID is

returned to the you. Because the VCR is just a reference to this new version

resource, the resource ID of the version can also be found by calling method

DBMS_XDB.getResourceID() whose input is the VCR path name.

Example 14–3 Retrieving the Resource ID of the New Version After Check In

The following example shows how to get the resource ID of the new version after

checking in ’/home/index.html ’:

-- Declare a variable for resource id
declare
resid DBMS_XDB_VERSION.RESID_TYPE;
res XMLType;
begin
-- Get the id as user checks in.
resid := DBMS_XDB_VERSION.checkin(’/home/SCOTT/versample.html’);

-- Obtain the resource
res := DBMS_XDB_VERSION.GetResourceByResId(resid);
end;
/

Example 14–4 Oracle XML DB: Creating and Updating a Version-Controlled Resource
(VCR)

-- Variable definitions.
declare
resid1 DBMS_XDB_VERSION.RESID_TYPE;
resid2 DBMS_XDB_VERSION.RESID_TYPE;
begin
-- Put a resource under version control.
resid1 := DBMS_XDB_VERSION.MakeVersioned(’/home/SCOTT/versample.html’);

-- Checkout to update contents of the VCR
DBMS_XDB_VERSION.Checkout(’/home/SCOTT/versample.html’);

-- Use resource_view to update versample.html
update resource_view
set res = sys.xmltype.createxml(
’<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/xdb/XDBResource.xsd
Oracle XML DB Versioning 14-5

Creating a Version-Controlled Resource (VCR)
http://xmlns.oracle.com/xdb/XDBResource.xsd">
<Author>Jane Doe</Author>
<DisplayName>versample</DisplayName>
<Comment>Has this got updated or not ?? </Comment>
<Language>en</Language>
<CharacterSet>ASCII</CharacterSet>
<ContentType>text/plain</ContentType>
</Resource>’)
where any_path = ’/home/SCOTT/versample.html’;

-- Checkin the change
resid2 := DBMS_XDB_VERSION.Checkin(’/home/SCOTT/versample.html’);
end;
/

-- At this point, you can download the first version with the resource object
ID,
-- resid1 and download the second version with resid2.

-- Checkout to delete the VCR
DBMS_XDB_VERSION.Checkout(’/home/SCOTT/versample.html’);

-- Delete the VCR
delete from resource_view where any_path = ’/home/SCOTT/versample.html’;

-- Once the delete above is done, any reference
-- to the resource (that is, checkin, checkout,and so on, results in
-- ORA-31001: Invalid resource handle or path name "/home/SCOTT/versample.html"

Accessing a Version-Controlled Resource (VCR)
VCR also has a path name as any regular resource. Accessing a VCR is the same as

accessing any other resources in Oracle XML DB.

Updating a Version-Controlled Resource (VCR)
The operations on regular Oracle XML DB resources do not require the VCR to be

checked-out. Updating a VCR requires more steps than for a regular Oracle XML

DB resource:

Before updating the contents and properties of a VCR, check out the resource. The

resource must be checked in to make the update permanent. All of these operations

are not auto-commit SQL operations. You must explicitly commit the SQL

transaction. Here are the steps to update a VCR:
14-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating a Version-Controlled Resource (VCR)
1. Checkout a resource. To checkout a resource, the path name of the resource

must be passed to Oracle XML DB.

2. Update the resource. You can update either the contents or the properties of the

resource. These features are already supported by Oracle XML DB. A new

version of a resource is not created until the resource is checked in, so an update

or deletion is not permanent until after a checkin request for the resource is

done.

3. Checkin or uncheckout a resource. When a VCR is checked in, a new version is

created, and the VCR has the same contents and properties as the new version.

When a VCR is unchecked out, the VCR is unchanged. That is, it will have the

same contents and properties with the old version. To checkin or uncheckout a

resource, the path name of the resource must be passed to Oracle XML DB. If

the path name has been updated since checkout, the new path name must be

used. It is illegal to use the old path name.

Checkout
In Oracle9i Release 2 (9.2), the VCR checkout operation is executed by calling

DBMS_XDB_VERSION.CheckOut() . If you want to commit an update of a

resource, it is a good idea to commit after checkout. If you do not commit right after

checking out, you may have to rollback your transaction at a later point, and the

update is lost.

Example 14–5 VCR Checkout

For example:

-- Resource ’/home/SCOTT/versample.html’ is checked out.
DBMS_XDB_VERSION.CheckOut(’/home/SCOTT/versample.html’);

Checkin
InOracle9i Release 2 (9.2), the VCR checkin operation is executed by calling

DBMS_XDB_VERSION.CheckIn() . Checkin takes the path name of a resource. This

path name does not have to be the same as the path name that was passed to

checkout, but the checkin and checkout path names must be of the same resource.

Example 14–6 VCR Checkin

For example:

-- Resource ’/home/SCOTT/versample.html’ is checked in.
declare
Oracle XML DB Versioning 14-7

Access Control and Security of VCR
resid DBMS_XDB_VERSION.RESID_TYPE;
begin
 resid := DBMS_XDB_VERSION.CheckIn(’/home/SCOTT/versample.html’);
end;
/

Uncheckout
InOracle9i Release 2 (9.2), uncheckout is executed by calling

DBMS_XDB_VERSION.UncheckOut() . This path name does not have to be the

same as the path name that was passed to checkout, but the checkin and checkout

path names must be of the same resource.

Example 14–7 VCR Uncheckout

For example:

-- Resource ’/home/SCOTT/versample.html’ is unchecked out.
declare
resid DBMS_XDB_VERSION.RESID_TYPE;
begin
 resid := DBMS_XDB_VERSION.UncheckOut(’/home/SCOTT/versample.html’);
end;
/

Update Contents and Properties
After checking out a VCR, all Oracle XML DB user interfaces for updating contents

and properties of a regular resource can be applied to a VCR.

Access Control and Security of VCR
Access control on VCR and version resource is the same as for a regular resource.

Whenever you request access to these resources, ACL is checked.

Version Resource
When a regular resource is makeversioned , the first version resource is created,

and the ACL of this first version is the same as the ACL of the original resource.

When a checked-out resource is checked in, a new version is created, and the ACL

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW" for

details on updating an Oracle XML DB resource.

See Also: Chapter 18, "Oracle XML DB Resource Security"
14-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Access Control and Security of VCR
of this new version is exactly the same as the ACL of the checked-out resource.

After version resource is created, its ACL cannot be changed and is used the same

way as the ACL of a regular resource.

VCR’s ACL is the Same as the First Version
When a VCR is created by makeversioned , the ACL of the VCR is the same as the

ACL of the first version of the resource. When a resource is checked in, a new

version is created, and the VCR will have the same contents and properties

including ACL property with this new version.

Table 14–2 describes the subprograms in DBMS_XDB_VERSION.
Oracle XML DB Versioning 14-9

Access Control and Security of VCR
Table 14–2 DBMS_XDB_VERSION Functions and Procedures

DBMS_XDB_VERSION
Function/Procedure Description

FUNCTION MakeVersioned
MakeVersioned(pathname
VARCHAR2) RETURN
dbms_xdb.resid_type;

Turns a regular resource whose path name is given into a version controlled
resource. If two or more path names are bound with the same resource, a copy
of the resource will be created, and the given path name will be bound with
the newly-created copy. This new resource is then put under version control.
All other path names continue to refer to the original resource.

pathname - the path name of the resource to be put under version control.

return - This function returns the resource ID of the first version (root) of the
VCR. This is not an auto-commit SQL operation. It is legal to call
MakeVersioned for VCR, and neither exception nor warning is raised. It is
illegal to makeversioned for folder, version resource, and ACL. An exception is
raised if the resource doesn’t exist.

PROCEDURE Checkout
Checkout(pathname
VARCHAR2);

Checks out a VCR before updating or deleting it.

pathname - the path name of the VCR to be checked out. This is not an
auto-commit SQL operation. Two users of the same workspace cannot checkout
the same VCR at the same time. If this happens, one user must rollback. As a
result, it is a good idea for you to commit the checkout operation before
updating a resource. That way, you do not loose the update when rolling back
the transaction. An exception is raised when:

■ the given resource is not a VCR,

■ the VCR is already checked out

■ the resource doesn’t exist

FUNCTION Checkin
Checkin(pathname
VARCHAR2) RETURN
dbms_xdb.resid_type;

Checks in a checked-out VCR.

pathname - the path name of the checked-out resource.

return - the resource id of the newly-created version.

This is not an auto-commit SQL operation. Checkin does not have to take the
same path name that was passed to checkout operation. However, the checkin
path name and the checkout path name must be of the same resource for the
operations to function correctly.

If the resource has been renamed, the new name must be used to checkin
because the old name is either invalid or bound with a different resource at the
time being. Exception is raised if the path name does not exist. If the path name
has been changed, the new path name must be used to checkin the resource.
14-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Access Control and Security of VCR
FUNCTION Uncheckout
Uncheckout(pathname
VARCHAR2) RETURN
dbms_xdb.resid_type;

Checks in a checked-out resource.

pathname - the path name of the checked-out resource.

return - the resource id of the version before the resource is checked out. This is
not an auto-commit SQL operation. UncheckOut does not have to take the same
path name that was passed to checkout operation. However, the uncheckout
path name and the checkout path name must be of the same resource for the
operations to function correctly. If the resource has been renamed, the new
name must be used to uncheckout because the old name is either invalid or
bound with a different resource at the time being. An exception is raised if the
path name does not exist. If the path name has been changed, the new path
name must be used to checkin the resource.

FUNCTION GetRoot
GetFirst(vh_id
dbms_xdb.resid_type)
RETURN
dbms_xdb.resid_type;

Given the version history, gets the root of all versions.

vh_id - the resid of the version history.

return - first version resource id. An exception is raised if the vh_id is illegal.

FUNCTION GetPredecessors
 GetPredecessors(pathname
VARCHAR2) RETURN
resid_list_type;

GetPredsByResId(resid
dbms_xdb.resid_type)
RETURN resid_list_type;

Given a version resource or a VCR, gets the predecessors of the resource by
pathname , the path name of the resource.

return - list of predecessors.

Getting predecessors by resid is more efficient than by pathname . An
exception is raised if the resid or pathname is illegal.

Given a version resource or a VCR, gets the predecessors of the resource by
resid (resource id)

Note: The list of predecessors only contains one element (immediate parent),
since Oracle does not support branching in this release. The following function
GetSuccessors also returns only one element

FUNCTION GetSuccessors
GetSuccessors(pathname
VARCHAR2) RETURN
resid_list_type;

GetSuccsByResId(resid
dbms_xdb.resid_type)
RETURN resid_list_type;

Given a version resource or a VCR, gets the successors of the resource by
pathname , the path name of the resource.

return - list of predecessors. Getting successors by resid is more efficient than by
path name. An exception is raised if the resid or pathname is illegal.

Given a version resource or a VCR, get the successors of the resource by resid
(resource id).

FUNCTION GetResourceByResId
GetResourceByResId(resid
dbms_xdb.resid_type)
RETURN XMLType;

Given a resource object ID, gets the resource as an XMLType.

resid - the resource object ID

return - the resource as an XMLType

Table 14–2 DBMS_XDB_VERSION Functions and Procedures (Cont.)

DBMS_XDB_VERSION
Function/Procedure Description
Oracle XML DB Versioning 14-11

Frequently Asked Questions: Oracle XML DB Versioning
Frequently Asked Questions: Oracle XML DB Versioning

Can I Switch a VCR to a Non-VCR?
Answer: No.

How Do I Access the Old Copy of a VCR After Updating It?
Answer: The old copy is the version resource of the last checked-in:

■ If you have the version ID or path name, you can load it using that ID.

■ If you don’t have its ID, you can call getPredecessors() to get the ID.

Can We Use Version Control for Data Other Than Oracle XML DB Data?
Answer: Only Oracle XML DB resources can be put under version control in this

release.
14-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

RESOURCE_VIEW and PAT
15

RESOURCE_VIEW and PATH_VIEW

This chapter describes the SQL-based mechanisms, RESOURCE_VIEW and

PATH_VIEW, used to access Oracle XML DB Repository data. It discusses the SQL

operators UNDER_PATH and EQUALS_PATH used to query resources based on their

path names and the SQL operators PATH and DEPTH that return the resource path

names and depth.

This chapter contains the following sections:

■ Oracle XML DB RESOURCE_VIEW and PATH_VIEW

■ Resource_View, Path_View API

■ UNDER_PATH

■ EQUALS_PATH

■ PATH

■ DEPTH

■ Using the Resource View and Path View API

■ Working with Multiple Oracle XML DB Resources Simultaneously

■ Tuning XML DB to Obtain Faster Queries

■ Searching for Resources Using Oracle Text
H_VIEW 15-1

Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Figure 15–1 shows how Oracle XML DB RESOURCE_VIEWand PATH_VIEWprovide

a mechanism for using SQL to access data stored in Oracle XML DB Repository.

Data stored in Oracle XML DB Repository through protocols like FTP, WebDAV, or

programming API, can be accessed in SQL using RESOURCE_VIEWs and

PATH_VIEWs, and vice versa.

RESOURCE_VIEW and PATH_VIEW together, along with PL/SQL package,

DBMS_XDB, provide all query-based access to Oracle XML DB and DML

functionality that is available through the programming API.

The base table for RESOURCE_VIEW is XDB.XDB$RESOURCE and should only be

accessed through RESOURCE_VIEW or the DBMS_XDB API.

See Also: Chapter 26, "Oracle XML DB Basic Demo", "6.0 XML

DB Demo: Querying RESOURCE_VIEWS Using SQL" on

page 26-62.
15-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Figure 15–1 Accessing Repository Resources Using RESOURCE_VIEW and
PATH_VIEW

RESOURCE_VIEW Definition and Structure
The RESOURCE_VIEW contains one row for each resource in the Repository. The

following describes its structure:

Column Datatype Description
------ -------- ---
RES XMLTYPE A resource in Oracle XML Repository
ANY_PATH VARCHAR2 A path that can be used to access the resource in the
 Repository

See Also: Appendix G, "Example Setup scripts. Oracle XML DB -

Supplied XML Schemas"

Oracle XML DB
Resource Table

Content Properties

Repository

Access through:
• JNDI
• WebDav
• FTP
• DBMS_XDB

Oracle XML DB

RESOURCE
VIEW

PATH
VIEW

SQL
Queries

SQL
Queries

Path-based
Access

Query-based
Access
RESOURCE_VIEW and PATH_VIEW 15-3

Oracle XML DB RESOURCE_VIEW and PATH_VIEW
PATH_VIEW Definition and Structure
The PATH_VIEW contains one row for each unique path to access a resource in the

Repository. The following describes its structure:

Column Datatype Description
------ -------- -----------------------------
PATH VARCHAR2 Path name of a resource
RES XMLTYPE The resource referred by PATH
LINK XMLTYPE Link property

Figure 15–2 illustrates the structure of Resource and PATH_VIEWs.

The path in the RESOURCE_VIEW is an arbitrary one and one of the accessible paths

that can be used to access that resource. Oracle XML DB provides operator

UNDER_PATH that enables applications to search for resources contained

(recursively) within a particular folder, get the resource depth, and so on. Each row

in the PATH_VIEW and RESOURCE_VIEW columns is of XMLType. DML on

Oracle XML DB Repository views can be used to insert, rename, delete, and update

resource properties and contents. Programmatic APIs must be used for some

operations, such as creating links to existing resources.

Figure 15–2 RESOURCE_VIEW and PATH_VIEW Structure

See Also: Appendix G, "Example Setup scripts. Oracle XML DB -

Supplied XML Schemas"

Note: Each resource may have multiple paths called links.

RESOURCE_VIEW Columns
Resource as
an XMLType

Path
PATH_VIEW Columns
Path Resource as

an XMLType
Link as
XMLType
15-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW
The major difference between the RESOURCE_VIEW and PATH_VIEW is:

■ PATH_VIEW displays all the path names to a particular resource whereas

RESOURCE_VIEW displays one of the possible path names to the resource

■ PATH_VIEW also displays the properties of the link

Figure 15–3 illustrates the difference between Resource and PATH_VIEW.

Since many internet applications only need one URL to access a resource,

RESOURCE_VIEW is widely applicable.

PATH_VIEW contains the link properties as well as resource properties, whereas the

RESOURCE_VIEW only contains resource properties.

The RESOURCE_VIEW benefit is generally optimization, if the database knows that

only one path is needed, the index does not have to do as much work to determine

all the possible paths.

Note: When using the RESOURCE_VIEW, if you are specifying a

path with the UNDER_PATH or EQUALS_PATH operators, they will

find the resource regardless of whether or not that path is the

arbitrary one chosen to normally display with that resource using

RESOURCE_VIEW.
RESOURCE_VIEW and PATH_VIEW 15-5

Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Figure 15–3 RESOURCE_VIEW and PATH_VIEW Explained

Operations You Can Perform Using UNDER_PATH and EQUALS_PATH
You can perform the following operations using UNDER_PATH and EQUALS_PATH:

■ Given a path name:

– Get a resource

– List the directory given by the path name

– Create a resource

– Delete a resource

– Update a resource

■ Given a condition, containing UNDER_PATH operator or other SQL operators:

– Update resources

– Delete resources

– Get resources

po_westcoast po_eastcoast

/role/corp

With PATH_VIEW, to acces the target
resource node;You can create a link.
This provides two access paths or
to the target node, for faster access.

R1 R2

In a typical tree the
RESOURCE_VIEW has only

one path

/home

R1

R2

Target Resource

RESOURCE_VIEW Example:
select path(1) from resource_view where under_path(res, '/sys',1);
displays one path to the resource:
/home/corp/po_westcoast

PATH_VIEW Example:
select path from path_view;
displays all pathnames to the resource:
/home/corp/po_westcoast
/home/role/po_eastcoast
15-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

UNDER_PATH
See the "Using the Resource View and Path View API" and EQUALS_PATH.

Resource_View, Path_View API
This section describes the RESOURCE_VIEW and PATH_VIEW operators:

UNDER_PATH
The UNDER_PATH operator uses the Oracle XML DB Repository hierarchical index

to return the paths under a particular path. The hierarchical index is designed to

speed access walking down a path name (the normal usage).

If the other parts of the query predicate are very selective, however, a functional

implementation of UNDER_PATH can be chosen that walks back up the Repository.

This can be more efficient, since a much smaller number of links may need to be

traversed. Figure 15–4 shows the UNDER_PATH syntax.

Figure 15–4 UNDER_PATH Syntax

Table 15–1 describes the UNDER_PATH syntax.

Table 15–1 RESOURCE_VIEW and PATH_VIEW API Syntax: UNDER_PATH

Syntax Description

INTEGER UNDER_PATH(resource_column,
 pathname);

Determines if a resource is under a specified path.

Parameters:

■ resource_column - The column name or column alias of the
'resource' column in the path_view or resource_view.

■ pathname - The path name to resolve.

UNDER_PATH (column
, levels

, path_string
, correlation_integer

)

RESOURCE_VIEW and PATH_VIEW 15-7

UNDER_PATH
INTEGER UNDER_PATH(resource_column,
 depth,
 pathname);

Determines if a resource is under a specified path, with a depth
argument to restrict the number of levels to search.

Parameters:

■ resource_column - The column name or column alias of the

'resource' column in the path_view or resource_view .

■ depth - The maximum depth to search; a depth of less than 0 is
treated as 0.

■ pathname - The path name to resolve.

INTEGER UNDER_PATH(resource_column,
 pathname,
 correlation)

Determines if a resource is under a specified path, with a correlation
argument for ancillary operators.

Parameters:

■ resource_column - The column name or column alias of the

'resource' column in the path_view or resource_view .

■ pathname - The path name to resolve.

■ correlation - An integer that can be used to correlate the
UNDER_PATH operator (a primary operator) with ancillary
operators (PATH and DEPTH).

INTEGER UNDER_PATH(resource_column,
 depth,
 pathname,
 correlation)

Determines if a resource is under a specified path with a depth
argument to restrict the number of levels to search, and with a
correlation argument for ancillary operators.

Parameters:

■ resource_column - The column name or column alias of the

'resource' column in the path_view or resource_view .

■ depth - The maximum depth to search; a depth of less than 0 is
treated as 0.

■ pathname - The path name to resolve.

■ correlation - An integer that can be used to correlate the
UNDER_PATH operator (a primary operator) with ancillary
operators (PATH and DEPTH).

Note that only one of the accessible paths to the resource needs to be
under the path argument for a resource to be returned.

Table 15–1 RESOURCE_VIEW and PATH_VIEW API Syntax: UNDER_PATH (Cont.)

Syntax Description
15-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PATH
EQUALS_PATH
The EQUALS_PATH operator is used to find the resource with the specified path

name. It is functionally equivalent to UNDER_PATH with a depth restriction of zero.

The EQUALS_PATH syntax is describe here and in Figure 15–5.

EQUALS_PATH INTEGER EQUALS_PATH(resource_column,pathname);

Figure 15–5 EQUALS_PATH Syntax

where:

■ resource_column is the column name or column alias of the 'resource' column

in the path_view or resource_view.

■ pathname is the path name to resolve.

PATH
PATH is an ancillary operator that returns the relative path name of the resource

under the specified pathname argument. Note that the path column in the

RESOURCE_VIEW always contains the absolute path of the resource. The PATH
syntax is:

PATH VARCHAR2 PATH(correlation);

where:

■ correlation is an integer that can be used to correlate the UNDER_PATH
operator (a primary operator) with ancillary operators (PATH and DEPTH).

Here are some examples of a RESOURCE_VIEW that include resources specified by

paths:

'/a/b/c'
'/a/b/c/d'

Note: If a path is not under the specified pathname argument, a

NULL value is returned as the output of the current path.

EQUALS_PATH (column , path_string
, correlation_integer

)

RESOURCE_VIEW and PATH_VIEW 15-9

PATH
'/a/e/c'
'/a/e/c/d'

Example 15–1 Determining Paths Under the Specified Pathname Argument

SELECT path(1) FROM resource_view
 WHERE UNDER_PATH(res, '/a/b', 1) = 1;

Returns the following:

PATH(1)

c
c/d
2 rows returned

Example 15–2 Determining Paths Not Under the Specified Pathname Argument

SELECT path(1) FROM resource_view
 WHERE UNDER_PATH(res, '/a/b', 1)!=1

Returns the following:

PATH(1)

2 rows returned

Example 15–3 Determining Paths Using Multiple Correlations

SELECT ANY_PATH, path(1), path(2)

Note: For absolute paths use ANY_PATH as follows:

SELECT ANY_PATH
FROM resource_view
WHERE UNDER_PATH(res, '/a/b')=1;

This returns the following:

ANY_PATH

/a/e/c
/a/e/c/d
2 rows returned
15-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using the Resource View and Path View API
FROM resource_view
WHERE UNDER_PATH(res, '/a/b', 1) = 1 or UNDER_PATH(res, '/a/e', 2) = 1;

This returns the following:

ANY_PATH PATH(1) PATH(2)
--
/a/b/c c
/a/b/c/d c/d
/a/e/c c
/a/e/c/d c/d
4 rows returned

DEPTH
DEPTH is an ancillary operator that returns the folder depth of the resource under

the specified starting path.

DEPTH INTEGER DEPTH(correlation);

where:

correlation is an integer that can be used to correlate the UNDER_PATH operator

(a primary operator) with ancillary operators (PATH and DEPTH).

Using the Resource View and Path View API
The following RESOURCE_VIEW and PATH_VIEW examples use operators

UNDER_PATH, EQUALS_PATH, PATH, and DEPTH.

Accessing Paths and Repository Resources: Examples
The following examples illustrate how you can access paths, resources, and link

properties in the Repository:

Example 15–4 Using UNDER_PATH: Given a Path Name, List the Directory Given by
the Path Name from the RESOURCE_VIEW

select any_path from resource_view where any_path like ’/sys%’;
RESOURCE_VIEW and PATH_VIEW 15-11

Using the Resource View and Path View API
Example 15–5 Using UNDER_PATH: Given a Path Name, Get a Resource From the
RESOURCE_VIEW

select any_path, extract(res, ’/display_name’) from resource_view
 where under_path(res, ’/sys’) = 1;

Example 15–6 Using RESOURCE_VIEW: Given a Path, Get all Relative Path Names
for Resources up to Three Levels

select path(1) from resource_view
 where under_path (res, 3, ’/sys’,1)=1;

Example 15–7 Using UNDER_PATH: Given a Path Name, Get Path and Depth Under a
Specified Path from the PATH_VIEW

select path(1) PATH,depth(1) depth
 from path_view
 where under_path(RES, 3,'/sys',1)=1

Example 15–8 Given a Path Name, Get Paths and Link Properties from PATH_VIEW

select path, extract(link, '/LINK/Name/text()').getstringval(),
 extract(link, '/LINK/ParentName/text()').getstringval(),
 extract(link, '/LINK/ChildName/text()').getstringval(),
 extract(res, '/Resource/DisplayName/text()').getstringval()
 from path_view
 where path LIKE ’/sys%’;

Example 15–9 Using UNDER_PATH: Given a Path Name, Find all the Paths up to a
Certain Number of Levels, Including Links Under a Specified Path from the PATH_VIEW

select path(1) from path_view
 where under_path(res, 3,’/sys’, 1) > 0 ;

Example 15–10 Using EQUALS_PATH to Locate a Path

select any_path from resource_view
 where equals_path(res, ’/sys’) > 0;

Inserting Data into a Repository Resource: Examples
The following example illustrates how you can insert data into a resource:

Example 15–11 Creating Resources: Inserting Data Into a Resource

insert into resource_view values(sys.xmltype.createxml('
15-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using the Resource View and Path View API
 <Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/XDBResource.xsd
http://xmlns.oracle.com/xdb/XDBResource.xsd">
 <Author>John Doe</Author>
 <DisplayName>example</DisplayName>
 <Comment>This resource was contrived for resource view demo</Comment>
 <Language>en</Language>
 <CharacterSet>ASCII</CharacterSet>
 <ContentType>text/plain</ContentType>
 </Resource>'), '/home/SCOTT');

Deleting Repository Resources: Examples
The following examples illustrate how you can delete resources or paths:

Example 15–12 Deleting Resources

delete from resource_view where any_path = '/home/SCOTT/example

If only leaf resources are deleted, you can perform a delete using delete from
resource_view where... .

Deleting Non-Empty Containers Recursively
If only leaf resources are deleted, you can delete them using "delete from
resource_view where... ". For example, one way to delete leaf node

’/public/test/doc.xml’ is as follows:

delete from resource_view where under_path(res, ’/public/test/doc.xml’) = 1;

However, if you attempt to delete a non-empty container recursively, the following

rules apply:

■ Delete on a non-empty container is not allowed

■ The order of the paths returned from the where clause predicates is not

guaranteed

Therefore you should guarantee that a container is deleted only after its children

have been deleted.
RESOURCE_VIEW and PATH_VIEW 15-13

Using the Resource View and Path View API
Example 15–13 Recursively Deleting Paths

For example, to recursively delete paths under ’/public’), you may want to try the

following:

delete from
(select 1 from resource_view
 where UNDER_PATH(res, ’/public’, 1) = 1
 order by depth(1) desc);

Updating Repository Resources: Examples
The following examples illustrate how to update resources and paths:

Example 15–14 Updating Resources

update resource_view set res = sys.xmltype.createxml('
 <Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/XDBResource.xsd
http://xmlns.oracle.com/xdb/XDBResource.xsd">
 <Author>John Doe</Author>
 <DisplayName>example</DisplayName>
 <Comment>Has this got updated or not ? </Comment>
 <Language>en</Language>
 <CharacterSet>ASCII</CharacterSet>
 <ContentType>text/plain</ContentType>
 </Resource>')
 where any_path = '/home/SCOTT/example';

Example 15–15 Updating a Path in the PATH_VIEW

update path_view set path = '/home/XDB'
 where path = '/home/SCOTT/example'
15-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Working with Multiple Oracle XML DB Resources Simultaneously
Working with Multiple Oracle XML DB Resources Simultaneously
Operations listed in Table 13–3, Chapter 13, "Oracle XML DB Foldering", typically

apply to only one resource at a time. To perform the same operation on multiple

Oracle XML DB resources, or to find one or more Oracle XML DB resources that

meet a certain set of criteria, use RESOURCE_VIEWand PATH_VIEW in SQL.

For example, you can perform the following operations with these resource_view

and PATH_VIEW SQL clauses:

■ Updating based on attributes

UPDATE RESOURCE_VIEW SET … WHERE extractValue(resource, '/display_name') =
'My stuff'

■ Finding recursively in a folder

SELECT FROM RESOURCE_VIEW WHERE UNDER_PATH(resource, '/sys') …

■ Copying a set of Oracle XML DB resources

INSERT INTO PATH_VIEW SELECT …. FROM PATH_VIEW WHERE ...

Note: If you need to get all the resources under a directory, you

can use the LIKE operator, as shown in Example 15–4 on

page 15-11.

If you need to get the resources up to a certain number of levels, or

get the relative path, then use the UNDER_PATH operator, as shown

in Example 15–5 on page 15-12.

The query plan for Example 15–4 will be more optimal than that of

Example 15–5.

See Also: Chapter 13, "Oracle XML DB Foldering",Table 13–3,

"Accessing Oracle XML DB Repository: API Options" on page 13-14

for additional examples that use the RESOURCE_VIEW and

PATH_VIEW operators.
RESOURCE_VIEW and PATH_VIEW 15-15

Tuning XML DB to Obtain Faster Queries
Tuning XML DB to Obtain Faster Queries
XML DB uses the xdbconfig file for configuring the system and protocol

environment. In Release 2 (9.2.0.2) it includes an element

resource-view-cache-size parameter that defines the in-memory size of the

RESOURCE_VIEW cache. The default value is 1048576.

Some queries on RESOURCE_VIEW and PATH_VIEW can be sped up by tuning

resource-view-cache-size . In general, the bigger the cache size, the faster the

query. The default resource-view-cache-size is appropriate for most cases.

However you may want to enlarge your resource-view-cache-size element when

querying sizable RESOURCE_VIEWs.

Searching for Resources Using Oracle Text
The XDB$RESOURCE table in Oracle XML DB user schema stores in Oracle XML DB

the metadata and data corresponding to resources, such as files and folders. You can

search for resources containing a specific keyword by using the CONTAINSoperator

in RESOURCE_VIEW or PATH_VIEW.

Example 15–16 Find All Resources Containing Keywords "Oracle" and "Unix"

select path
 from path_view
 where contains(res, 'Oracle AND Unix') > 0;

Example 15–17 Find All Resources Containing Keyword "Oracle" that are Also Under
a Specified Path.

select any_path
 from resource_view
 where contains(res, 'Oracle') > 0
 and under_path(res, '/myDocuments') > 0;

To evaluate such queries, you must create a Context Index on the XDB$RESOURCE
table. Depending on the type of documents stored in Oracle XML DB, choose one of

the following options for creating your Context Index:

■ If Oracle XML DB contains only XML documents, that is, no binary data, a

regular Context Index can be created on the XDB$RESOURCE table.

See Also: Appendix A, "Installing and Configuring Oracle XML

DB"
15-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Searching for Resources Using Oracle Text
create index xdb$resource_ctx_i
 on xdb.xdb$resource x (value(x))
 indextype is ctxsys.context;

■ If Oracle XML DB contains binary data, for example WORD documents, a user

filter is required to filter such documents prior to indexing. It is recommended

that you use the DBMS_XDBT package (dbmsxdbt.sql) to create and configure

the Context Index.

Rem Install the package - connected as SYS
SQL>@dbmsxdbt
Rem Create the preferences
SQL>exec dbms_xdbt.createPreferences;
Rem Create the index
SQL>exec dbms_xdbt.createIndex;

DBMS_XDBT package also includes procedures to sync and optimize the index. You

can use the configureAutoSync() procedure to configure automatic sync of the

index by using job queues.

See Also: Chapter 7, "Searching XML Data with Oracle Text",

"XMLType Indexing" on page 7-35.

See:

■ Oracle9i XML API Reference - XDK and Oracle XML DB, the

chapter on DBMS_XDBT for information on installing and

using DBMS_XDBT.

■ Appendix F, "Oracle XML DB XMLType API, PL/SQL and

Resource PL/SQL APIs: Quick Reference", DBMS_XDBT on

page F-27.
RESOURCE_VIEW and PATH_VIEW 15-17

Searching for Resources Using Oracle Text
15-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resource API for PL/SQL (DB
16

Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)

This chapter describes the Oracle XML DB Resource API for PL/SQL (DBMS_XDB)
used for accessing and managing Oracle XML DB Repository resources and data

using PL/SQL. It includes methods for managing the resource security and Oracle

XML DB configuration.

It contains the following sections:

■ Introducing Oracle XML DB Resource API for PL/SQL

■ Overview of DBMS_XDB

■ DBMS_XDB: Oracle XML DB Resource Management

■ DBMS_XDB: Oracle XML DB ACL-Based Security Management

■ DBMS_XDB: Oracle XML DB Configuration Management

■ DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes
MS_XDB) 16-1

Introducing Oracle XML DB Resource API for PL/SQL
Introducing Oracle XML DB Resource API for PL/SQL
This chapter describes the Oracle XML DB Resource API for PL/SQL (PL/SQL

package DBMS_XDB). This is also known as the PL/SQL foldering API.

Oracle XML DB Repository is modeled on XML and provides a database file system

for any data. Oracle XML DB Repository maps path names (or URLs) onto database

objects of XMLType and provides management facilities for these objects.

DBMS_XDB package provides functions and procedures for accessing and managing

Oracle XML DB Repository using PL/SQL.

Overview of DBMS_XDB
The DBMS_XDB provides the PL/SQL application developer with an API that

manages:

■ Oracle XML DB Resources

■ Oracle XML DB ACL based Security

■ Oracle XML DB Configuration

■ Oracle XML DB Hierarchical Index Rebuild

DBMS_XDB: Oracle XML DB Resource Management
Table 16–1 lists the DBMS_XDB Oracle XML DB resource management methods.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Table 16–1 DBMS_XDB Resource Management Methods

DBMS_XDB Method Arguments, Return Values

Link Argument: (srcpath VARCHAR2, linkfolder VARCHAR2, linkname VARCHAR2)
Return value: N/A

LockResource Argument: (path IN VARCHAR2, depthzero IN BOOLEAN, shared IN boolean)
Return value: TRUE if successful.

GetLockToken Argument: (path IN VARCHAR2, locktoken OUT VARCHAR2)

Return value: N/A

UnlockResource Argument: (path IN VARCHAR2, deltoken IN VARCHAR2)

Return value: TRUE if successful.
16-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB: Oracle XML DB Resource Management
Using DBMS_XDB to Manage Resources, Calling Sequence
Figure 16–1 describes the calling sequence when using DBMS_XDB to manage

Repository resources:

1. When managing Repository resources the calling sequence diagram assumes

that the resources and folders already exist. If not, you need to create the

resources using createResource() or create folders using

createFolder()

– createResource() takes resource data and the resource path as

parameters.

– createFolder() takes the resource path as a parameter.

2. If the resource or folder does not need further processing or managing, they are

simply output.

3. If the resource or folder need further processing or managing you can apply

any or all of the following methods as listed in Table 16–1:

– Link()

CreateResource FUNCTION CreateResource (path IN VARCHAR2, data IN VARCHAR2)
RETURN BOOLEAN; Creates a new resource with the given string as its contents.

FUNCTION CreateResource (path IN VARCHAR2, data IN SYS.XMLTYPE)
RETURN BOOLEAN; Creates a new resource with the given XMLType data as its
contents.

FUNCTION CreateResource (path IN VARCHAR2, datarow IN REF
SYS.XMLTYPE) RETURN BOOLEAN; Given a PREF to an existing XMLType row,
creates a resource whose contents point to that row. That row should not already
exist inside another resource.

FUNCTION CreateResource (path IN VARCHAR2, data IN CLOB) RETURN
BOOLEAN; Creates a resource with the given CLOB as its contents.

FUNCTION CreateResource (path IN VARCHAR2, data IN BFILE) RETURN
BOOLEAN; Creates a resource with the given BFILE as its contents.

CreateFolder Argument: (path IN VARCHAR2)

Return value: TRUE if successful.

DeleteResource Argument: (path IN VARCHAR2)

Return value: N/A

Table 16–1 DBMS_XDB Resource Management Methods (Cont.)

DBMS_XDB Method Arguments, Return Values
Oracle XML DB Resource API for PL/SQL (DBMS_XDB) 16-3

DBMS_XDB: Oracle XML DB Resource Management
– LockResource()

– GetLockToken()

– UnlockResource()

– DeleteResource()

See Example 16–1 for an examples of using DBMS_XDB to manage Repository

resources.

Figure 16–1 Using DBMS_XDB to Manage Resources: Calling Sequence

Example 16–1 Using DBMS_XDB to Manage Resources

DECLARE
 retb boolean;
BEGIN
 retb := dbms_xdb.createfolder(’/public/mydocs’);
 commit;
END;
/

declare
 bret boolean;
begin
 bret :=

Available methods:
• link()
• lockResource()
• getLockToken()
• unlockResource()
• deleteResource()

createResource() createFolder()

Resource Data Resource Path
16-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB: Oracle XML DB ACL-Based Security Management
dbms_xdb.createresource(’/public/mydocs/emp_scott.xml’,’<emp_name>scott</emp_nam
e>’);
 commit;
end;
/

declare
 bret boolean;
begin
 bret :=
dbms_xdb.createresource(’/public/mydocs/emp_david.xml’,’<emp_name>david</emp_nam
e>’);
 commit;
end;
/

call dbms_xdb.link(’/public/mydocs/emp_scott.xml’,’/public/mydocs’,
’person_scott.xml’);
call dbms_xdb.link(’/public/mydocs/emp_david.xml’,’/public/mydocs’,
’person_david.xml’);
commit;

call dbms_xdb.deleteresource(’/public/mydocs/emp_scott.xml’);
call dbms_xdb.deleteresource(’/public/mydocs/person_scott.xml’);
call dbms_xdb.deleteresource(’/public/mydocs/emp_david.xml’);
call dbms_xdb.deleteresource(’/public/mydocs/person_david.xml’);
call dbms_xdb.deleteresource(’/public/mydocs’);
commit;

DBMS_XDB: Oracle XML DB ACL-Based Security Management
Table 16–2 lists the DBMS_XDB Oracle XML DB ACL- based security management

methods. Because the arguments and return values for the methods are

self-explanatory, only a brief description of the methods is provided here.

Table 16–2 DBMS_XDB: Security Management Methods

DBMS_XDB Method Arguments, Return Values

getAclDocument Argument: (abspath VARCHAR2)

Return value: XMLType for the ACL document
Oracle XML DB Resource API for PL/SQL (DBMS_XDB) 16-5

DBMS_XDB: Oracle XML DB ACL-Based Security Management
Using DBMS_XDB to Manage Security, Calling Sequence
Figure 16–2 describes the calling sequence when using DBMS_XDB to manage

security.

1. Each DBMS_XDB security management method take in a path (resource_path,

abspath, or acl_path).

2. You can then use any or all of the DBMS_XDB methods listed in Table 16–2 to

perform security management tasks:

– getAclDocument()

– ACLCheckPrivileges()

– checkPrivileges()

– getPrivileges()

– changePrivileges()

– setACL()

See Example 16–2 for an examples of using DBMS_XDB to manage Repository

resource security.

ACLCheckPrivileges Argument: (acl_path IN VARCHAR2, owner IN VARCHAR2,
privs IN XMLType)

Return value: Positive integer if privileges are granted.

checkPrivileges Argument: (res_path IN VARCHAR2, privs IN XMLType

Return value: Positive integer if privileges are granted.

getprivileges Argument: (res_path IN VARCHAR2)

Return value: XMLType instance of the <privilege> element.

changePrivileges Argument: (res_path IN VARCHAR2, ace IN XMLType)

Return value: Positive integer if ACL was successfully
modified.

setAcl Argument: (res_path IN VARCHAR2, acl_path IN
VARCHAR2). This sets the ACL of the resource at res_path to
the ACL located at acl_path.

Return value: N/A

Table 16–2 DBMS_XDB: Security Management Methods (Cont.)

DBMS_XDB Method Arguments, Return Values
16-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB: Oracle XML DB ACL-Based Security Management
Figure 16–2 Using DBMS_XDB to Manage Security: Calling Sequence

Example 16–2 Using DBMS_XDB to Manage ACL-Based Security

DECLARE
 retb boolean;
BEGIN
 retb := dbms_xdb.createfolder(’/public/mydocs’);
 commit;
END;
/

declare
 bret boolean;
begin
 bret :=
dbms_xdb.createresource(’/public/mydocs/emp_scott.xml’,’<emp_name>scott</emp_nam
e>’);
 commit;
end;
/

call dbms_xdb.setacl(’/public/mydocs/emp_scott.xml’,
’/sys/acls/all_owner_acl.xml’);
commit;

select dbms_xdb.getacldocument(’/public/mydocs/emp_scott.xml’) from
dual;

Available methods:
• GetAclDocument()
• ACLCheckPrivileges()
• checkPrivileges()
• changePrivileges()
• setAcl()

Resource Path

XMLType instance
or positive integer
or N/A
Oracle XML DB Resource API for PL/SQL (DBMS_XDB) 16-7

DBMS_XDB: Oracle XML DB Configuration Management
declare
 r pls_integer;
 ace xmltype;
 ace_data varchar2(2000);
begin
 ace_data :=
’<ace
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd
 DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <principal>SCOTT</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>’;
 ace := xmltype.createxml(ace_data);
 r := dbms_xdb.changeprivileges(’/public/mydocs/emp_scott.xml’, ace);
 dbms_output.put_line(’retval = ’ || r);
 commit;
end;
/

select dbms_xdb.getacldocument(’/public/mydocs/emp_scott.xml’) from
dual;
select dbms_xdb.getprivileges(’/public/mydocs/emp_scott.xml’) from dual;
call dbms_xdb.deleteresource(’/public/mydocs/emp_scott.xml’);
call dbms_xdb.deleteresource(’/public/mydocs’);
commit;

DBMS_XDB: Oracle XML DB Configuration Management
Table 16–3 lists the DBMS_XDB Oracle XML DB Configuration Management

Methods. Because the arguments and return values for the methods are

self-explanatory, only a brief description of the methods is provided here.
16-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB: Oracle XML DB Configuration Management
Using DBMS_XDB for Configuration Management, Calling Sequence
Figure 16–3 shows the calling sequence when using DBMS_XDB for configuration

management.

The diagram shows the following sequence:

1. To manage the Oracle XML DB configuration you must first retrieve the

configuration instance using cfg_get.

2. You can then optionally also modify the Oracle XML DB configuration xmltype

instance in order to update it, or simply output the Oracle XML DB

configuration.

3. To update the Oracle XML DB configuration resource use cfg_update. You need

to either input a new Oracle XML DB configuration xmltype instance or use a

modified version of the current configuration.

4. To refresh the Oracle XML DB configuration resource use cfg_refresh. You do

not need to input a configuration xmltype instance.

See Example 16–3 for an example of using DBMS_XDB for configuration

management of Repository resources.

Table 16–3 DBMS_XDB: Configuration Management Methods

DBMS_XDB Method Arguments, Return Value

CFG_get Argument: None

Return value: XMLType for session configuration information

CFG_refresh Argument: None

Return value: N/A

CFG_update Argument: (xdbconfig IN XMLType)

Return value: N/A
Oracle XML DB Resource API for PL/SQL (DBMS_XDB) 16-9

DBMS_XDB: Oracle XML DB Configuration Management
Figure 16–3 Using DBMS_XDB for Configuration Management: Calling Sequence

Example 16–3 Using DBMS_XDB for Configuration Management of Oracle XML DB

connect system/manager
select dbms_xdb.cfg_get() from dual;
declare
 config xmltype;
begin
 config := dbms_xdb.cfg_get();
 -- Modify the xdb configuration using updatexml, etc ...
 dbms_xdb.cfg_update(config);
end;
/

-- To pick up the latest XDB Configuration
-- In this example it is not needed as cfg_update(),
-- automatically does a cfg_refresh().
call dbms_xdb.cfg_refresh();

cfg_update

cfg_get

New Session
Configuration
Information

Modify the Oracle XML DB
Configuration XMLType

cfg_refresh
16-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes
DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes
Table 16–4 lists the DBMS_XDB Oracle XML DB hierarchical index rebuild methods.

Because the arguments and return values for the methods are self-explanatory, only

a brief description of the methods is provided here.

Using DBMS_XDB to Rebuild Hierarchical Indexes, Calling Sequence
Figure 16–4 shows the calling sequence when using DBMS_XDB for rebuilding

hierarchical indexes. To rebuild the hierarchical indexes, first delete the entries from

xdb.xdb$h_index and rebuild the hierarchical index by executing

DBMS_XDB.RebuildHierachicalIndex . Example 16–4 shows how to use

DBMS_XDB to rebuild the Repository hierarchical indexes.

Figure 16–4 Using DBMS_XDB to Rebuild Hierarchical Indexes: Calling Sequence

Example 16–4 Using DBMS_XDB for to Rebuild a Hierarchical index

connect system/manager
delete from xdb.xdb$h_index;
commit;
execute dbms_xdb.RebuildHierarchicalIndex;

Table 16–4 DBMS_XDB: Hierarchical Index Rebuild Method

DBMS_XDB Method Arguments, Return Values

RebuildHierarchicalIndex Argument: None

Return value: N/A

rebuild hierarchical index
using: dbms_xdb.rebuildHierarchicalIndex

Remove index
entries from
xdb.xdb$h_index
using: DELETE
Oracle XML DB Resource API for PL/SQL (DBMS_XDB) 16-11

DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes
16-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resource API f
17

Oracle XML DB Resource API for Java

This chapter describes the Oracle XML DB Resource API for Java. It contains the

following sections:

■ Introducing Oracle XML DB Resource API for Java

■ Using Oracle XML DB Resource API for Java

■ Parameters for Oracle XML DB Resource API for Java

■ Oracle XML DB Resource API for Java: Examples
or Java 17-1

Introducing Oracle XML DB Resource API for Java
Introducing Oracle XML DB Resource API for Java

Using Oracle XML DB Resource API for Java
Oracle XML DB Resource API for Java operates as follows:

■ JDBC can be used to access Oracle XML DB resource views to retrieve and

modify resources.

Additionally, you can perform these operations:

■ Use the Java API for XMLType to access and modify parts of XMLType objects.

■ Use the save() method to write changes to the database.

Oracle XML DB Resource API for Java includes a set of sub-interfaces that indicate

resource type Versioning information WebDAV.

The API includes interfaces for objects such as workspaces, branches, and baselines

(as defined by the WebDAV versioning specification).

Parameters for Oracle XML DB Resource API for Java
Table 17–1 lists the parameters supported by Oracle XML DB Resource API for Java.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Chapter 9, "Java API for XMLType"

Table 17–1 Oracle XML DB Resource API for Java: Parameters

Parameter Name Description

PROVIDER_URL The start path from which objects are to be returned.

INITIAL_CONTEXT_FACTORY The context factory to be used to generating contexts – always
“oracle.xdb.spi.XDBContextFactory”.
17-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resource API for Java: Examples
Oracle XML DB Resource API for Java: Examples

Example 17–1 Resource JDBC: Using SQL To Determine Purchase Order Properties

Here is an example using SQL, that provides the power of SQL SELECT potentially

using criteria other than path name to find the XMLType object.

PreparedStatement pst = con.prepareStatement(
"SELECT r.RESOLVE_PATH('/companies/oracle') FROM XDB$RESOURCE r");

pst.executeQuery();
XMLType po = (XMLType)pst.getObject(1);
Document podoc = (Document) po.getDOM();

XDB_RESOURCE_TYPE Determines what data is returned to the application by default
when a path name is resolved:

■ “Resource”: A resource class will be returned.

■ “ XMLType”: The contents of the resource will be
returned.

In this release, Oracle XML DB has implemented only the
javax.naming package. Oracle XML DB has an extension to
this package, an extension to the lookup() method. The
extension (an overload) also takes a Boolean (indicating that a
row lock should be grabbed) to indicate a “lookup FOR
UPDATE” and a String with an XPath to define a fragment of
the document to load immediately (rather than relying on the
lazy manifest facility).

Table 17–1 Oracle XML DB Resource API for Java: Parameters (Cont.)

Parameter Name Description
Oracle XML DB Resource API for Java 17-3

Oracle XML DB Resource API for Java: Examples
17-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resourc
18

Oracle XML DB Resource Security

This chapter describes Access Control Lists (ACL) based security mechanism for

Oracle XML DB resources. It describes how to create ACLs, set and change ACls on

resources, and how ACL security interacts with other database security

mechanisms.

This chapter contains the following sections:

■ Introducing Oracle XML DB Resource Security and ACLs

■ Access Control List Terminology

■ Oracle XML DB ACL Features

■ Access Control: User and Group Access

■ Oracle XML DB Supported Privileges

■ ACL Evaluation Rules

■ Using Oracle XML DB ACLs

■ ACL and Resource Management

■ Using DBMS_XDB to Check Privileges
e Security 18-1

Introducing Oracle XML DB Resource Security and ACLs
Introducing Oracle XML DB Resource Security and ACLs
Oracle XML DB maintains object-level security for any resource in Oracle XML DB

Repository hierarchy.

Oracle XML DB uses an access control list (ACL) mechanism to restrict access to any

Oracle XML DB resource or database object mapped to Oracle XML DB Repository.

The Oracle XML DB ACL security mechanism supports the WebDAV ACL

specification. ACLs are a standard security mechanism used in Java, Windows NT,

and other systems.

Oracle XML DB ACL security mechanism is designed to handle large volumes of

XML data stored in Oracle9i database. Privileges can be granted or denied to the

principal dav:owner, that represents the owner of the document, regardless of who

the owner is.

How the ACL-Based Security Mechanism Works
Before a user performs an operation or method on a resource, a check of privileges

for the user on the resource takes place. The set of privileges checked depends on

the operation or method performed. For example, to increase employee Scott’s

salary by 10 percent, READ and WRITE privileges are needed for the

scott/salary.xml resource.

Access Control List Terminology
A few access control list (ACL) terms are described here:

■ Principal. An entity that may be granted access control privileges to an Oracle

XML DB resource. Oracle XML DB supports as principals:

■ Database users.

Note: XML objects not stored in Oracle XML DB Repository do

not have object-level access control.

See Also:

■ Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"

■ Oracle9i XML API Reference - XDK and Oracle XML DB
18-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Access Control List Terminology
■ Database roles. A database role can be understood as a group, for example,

the DBA role represents the DBA group of all the users granted the DBA

role.

There is a special principal named dav:owner that corresponds to a separate

property on the object being secured. Use of the dav:owner principal allows

greater ACL sharing between users, since the owner of the document often has

special rights. See Also "Access Control: User and Group Access" on page 18-6.

■ Privilege: This is a particular right that can be granted to a principal. Oracle

XML DB has a set of system-defined rights (such as READ, INSERT, or

UPDATE) that can be referenced in any ACL. Privileges can be one of the

following:

– Aggregate (containing other privileges)

– Atomic (which cannot be subdivided)

Aggregate privileges are a naming convenience to simplify usability when the

number of privileges becomes large, as well as to promote interoperability

between ACL clients. A set of privileges controls the ability to perform a given

operation or method on an Oracle XML DB resource. For example, if the

principal Scott wants to perform the read operation on a given resource, the

read privileges must be granted to Scott prior to the read operation.

Therefore, privileges control how users can operate on given resources.

■ ACE (access control entry): Part of an ACL that grants or denies access to a

particular principal. An ACL consists of a list of ACEs where ordering is

irrelevant. There can be only one gran t ACE and one deny ACE for a particular

principal in a single ACL.

An Oracle XML DB ACE element has the following attributes:

– Operation: Either grant or deny

– Principal: Either a User or a group/collection

Note: Users and roles imported from an LDAP server are also

supported as a part of the database's general authentication model.

Note: Many grant ACEs (or deny ACEs) may apply to a particular

user since a user may be granted many roles.
Oracle XML DB Resource Security 18-3

Access Control List Terminology
– Privileges Set: Particular set of privileges that are to be either granted or

denied for a particular principal

■ Access control list (ACL): A list of access control entry elements, with the

element name ace , that defines access control to a resource. An ACE either

grants or denies privileges for a principal.

■ Named ACLs: An ACL that is a resource itself, that is, it has its own path name.

Named ACLs can be shared by multiple resources, improving manageability,

ease of use, and performance. Named ACLs have a unique name and also have

an optional type restrictor, such as:

http://xmlns.oracle.com/xdb/XDBDemo.xsd#PurchaseOrder

that specifies that the ACL can only be applied to instances of that XML element

and elements in a substitution group with that element.

■ Default ACL: When a resource is inserted into the Oracle XML DB Repository,

there are two ways to specify an ACL for this resource:

– Using the default ACL (the ACL of the parent folder)

– Specifying a particular ACL

■ Bootstrap ACL: Every ACL is protected by the contents of another ACL except

the bootstrap ACL. The bootstrap ACL, stored in:

/sys/acls/bootstrap_acl.xml , is the only ACL protected by its own

contents. All of the default ACLs are protected by the bootstrap ACL, which

grants the xdb:readContents privilege to all users. The bootstrap ACL

grants FULL ACCESS to Oracle XML DB ADMIN and DBA groups. The

XDBADMIN role is particularly useful for users that must register global XML

schemas.

■ Other ACLs supplied with Oracle XML DB:

– all_all_acl.xml Grants all privileges to all users.

– all_owner_acl.xml Grants all privileges to owner user.

– ro_all_acl.xml Grants read privileges to all users.

Note: ACLs are stored as Oracle XML DB resources, so they also

need to be protected by Oracle XML DB ACLs. There is only one

ACL, the bootstrap ACL, that is self-protected; that is, it is

protected by its own contents.
18-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB ACL Features
■ ACL file-naming conventions: Supplied ACLs use the following file-naming

conventions: privilege_users_acl.xml

where privilege represents the privilege granted and user represents the

users that are granted access to the resource.

Oracle XML DB ACL Features
Oracle XML DB supports the following ACL features:

ACL Interaction with Oracle XML DB Table/View Security
Users must have the appropriate privilege on the underlying table/view where the

XML object is stored, as well as permissions through the ACL for that individual

instance.

LDAP Integration and User IDs
LDAP is integrated with Oracle XML DB to allow external users access to Oracle

XML DB. External users can perform the same operations that a local database user

can.

Oracle XML DB Resource API for ACLs (PL/SQL)
The PL/SQL API for ACL security allows the PL/SQL developer access to the

security mechanisms, to check privileges given a particular ACL, and to list the set

of privileges the current user has for a particular ACL and object.

How Concurrency Issues Are Resolved with Oracle XML DB ACLs
Oracle XML DB ACLs are cached for very fast evaluation. When a transaction

modifying an ACL is committed, the modified ACL is picked up after the time-out

specified in the Oracle XML DB configuration file is up. The XPath for this

configuration parameter is /xdbconfig/sysconfig/acl-max-age .

Note: Some, but not all, objects in a particular table may be

mapped to Oracle XML DB resources. In that case, only those

objects mapped into the Oracle XML DB Repository hierarchy have

ACL checking done, although they will all have table-level security.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
Oracle XML DB Resource Security 18-5

Access Control: User and Group Access
Access Control: User and Group Access
The principal can be either an individual user or a group. A group is also

referred to as a collection. A user is granted access as a group principal if the user

has been granted a database role.

Access privileges for each principal are stored in access control entries (ACEs) in the

ACL.

Example 18–1 ACE Entries in an ACL for Controlling User and Group Access

The following example shows entries in an ACL:

<acl description="myacl"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:dav="DAV:"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd">
 <ace>
 <principal>OWNER</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

ACE Elements Specify Access Privileges for Principals
The preceding ACL grants all privileges to the owner of the document. Access to an

Oracle XML DB resource is granted for each principal. Table 18–1 lists the access

control entry (ACE) elements. Each ACE element specifies access privileges for a

given principal using values set for the following elements.

Table 18–1 Access Control Entry (ACE) Elements

Element Description

<principal> Specifies the principal (user or group).

<grant> A boolean value that specifies whether the principal has been
granted access to the resource. A value of true specifies that
the access is granted. A value of false specifies that access is
denied.

<privilege> Specifies the privileges granted to the principal.
18-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Supported Privileges
Oracle XML DB Supported Privileges
Oracle XML DB provides a set of privileges to control access to Oracle XML DB

resources. Access privileges in an ACE are stored in the privilege element.

Privileges can be:

■ Aggregate, composed of other privileges

■ Atomic, cannot be subdivided

When an ACL is stored in Oracle XML DB, the aggregate privileges retain their

identity, that is, they are not decomposed into the corresponding leaf privileges. In

WebDAV terms, these are non-abstract aggregate privileges, so they can be used in

ACEs.

Atomic Privileges:

> read-properties

> read-contents

> update

> link (applies only to containers)

> unlink (applies only to containers)

> read-acl

> write-acl-ref

> update-acl

> link-to

> unlink-from

> resolve

> dav:lock

> dav:unlock

>

> Aggregate Privileges:

> dav:read (read-properties, read-contents, resolve)

> dav:write (update, link, unlink, unlink-from)
Oracle XML DB Resource Security 18-7

Oracle XML DB Supported Privileges
> dav:read-acl (read-acl)

> dav:write-acl (write-acl-ref, update-acl)

> dav:all (dav:read, dav:write, dav:read-acl, dav:write-acl, dav:lock, dav:unlock)

Atomic Privileges
Table 18–2 lists the atomic privileges supported by Oracle XML DB.

Since you can directly access the XMLType storage for ACLs, the XML structure is

part of the client interface. Hence ACLs can be manipulated using XMLType APIs.

Table 18–2 Atomic Privileges

Privilege Name Description
Database
Counterpart

read-properties Read the properties of a resource SELECT

read-contents Read the contents of a resource SELECT

update Update the properties and contents of a resource UPDATE

link For containers only. Allows resources to be bound to the container. INSERT

unlink For containers only. Allows resources to be unbound from the container. DELETE

link-to Allows resources to be linked N/A

unlink-from Allows resources to be unlinked N/A

read-acl Read the resource’s ACL SELECT

write-acl-ref Changes the resource’s ID UPDATE

update-acl Change the contents of the resource’s ACL UPDATE

resolve For containers only: Allows the container to be traversed SELECT

dav:lock Lock a resource using WebDAV locks UPDATE

dav:unlock Unlock a resource locked using a WebDAV lock UPDATE

Note: Privilege names are XML element names. Privileges with a

dav: prefix are part of the WebDAV namespace. Others privileges

are part of Oracle XML DB ACL namespace:

http://xmlns.oracle.com/xdb/acl.xsd
18-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Supported Privileges
Aggregate Privileges
Table 18–3 lists the aggregate privileges defined by Oracle XML DB, along with the

atomic privileges of which they are composed.

Table 18–4 shows the privileges required for some common operations on resources

in Oracle XML DB Repository. The Privileges Required column assumes that you

already have resolve privilege on container C and all its parent containers, up to

the root of the hierarchy.

Table 18–3 Aggregate Privileges

Aggregate Privilege
Names Atomic Privileges

all All atomic privileges: dav:read, dav:write, dav:read-acl,
dav:write-acl, dav:lock, dav:unlock

dav:all All atomic privileges except linkto

dav:read read-properties, read-contents, resolve

dav:write update, link, unlink, unlink-from

dav:read-acl read-acl

dav:write-acl write-acl-ref, update-acl

Table 18–4 Privileges Needed for Operations on Oracle XML DB Resources

Operation Description Privileges Required

CREATE Create a new resource in container C update and link on C

DELETE Delete resource R from container C update and unlinkfrom on R, update and
unlink on C

UPDATE Update the contents/properties of resources
R

update on R

GET An FTP/HTTP GET of resource R read-properties, read-contents on R

SET_ACL Set the ACL of a resource R dav:write-acl on R

LIST List the resources in container C read-properties on C, read-properties on
resources in C. Only those resources on which
the user has read-properties privilege are
listed.
Oracle XML DB Resource Security 18-9

ACL Evaluation Rules
ACL Evaluation Rules
To evaluate an ACL, the database collects the list of ACEs applying to the user

logged into the current database session. The list of currently active roles for the

given user is maintained as a part of the session and is used to match ACEs with the

current users. To resolve conflicts between ACEs, the following rule is used: if a

privilege is denied by any ACE, the privilege is denied for the entire ACL.

Entries in an ACL must observe the following rule:

■ Each principal will have two individual ACEs at most, one for granting

privileges and one for denying privileges.

■ Multiple grant ACEs are not allowed for any principal.

■ Multiple deny ACEs are not allowed for any principal.

Using Oracle XML DB ACLs
Every resource in the Oracle XML DB Repository hierarchy has an associated ACL.

The ACL mechanism specifies a privilege-based access control for resources to

principals. Whenever a resource is accessed, a security check is performed. The

ACL determines which principals have which set of privileges to access the

resource. An Oracle XML DB principal can be either of the following:

■ An individual principal, such as a database user

■ A group principal, such as a group of database users that are granted a common

role

Each ACL has a list of ACEs. An ACE has the following elements:

■ A boolean value indicating whether or not this ACE is granting or denying

privileges

■ A principal (either a user or a role) indicating to whom the ACL applies

■ A list of privileges that are being granted or denied

Named ACLs also have a name attribute and an optional type restrictor, for

example, http://xmlns.oracle.com/xdb/XDBDemo.xsd#PurchaseOrder,
that specifies that the ACL may only be applied to instances of that XML element

(and elements in a substitution group with that element). Note that a privilege that

is neither granted nor denied to a user is assumed to be denied.

To evaluate an ACL, the database collects the list of ACEs applying to the user

logged into the current database session. The list of currently active roles for the
18-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XML DB ACLs
given user is maintained as a part of the session and is used to match ACEs along

with the current user.

To check if a user has a certain privilege, you need to know the ID of the ACL and

the owner of the object being secured. The Oracle XML DB hierarchy automatically

associates an ACL ID and owner with an object that is mapped into its file system

(they are stored in a table in the Oracle XML DB schema).

Updating the Default ACL on a Folder

Example 18–2 Updating the Default ACL on a Folder and the Owner of the Folder

This example creates two users, Oracle XML DB administrator, xdbadmin , and

Oracle XML DB user, xdbuser . The administrator creates the user's folder under

'/'. The default ACL on this folder, inherited from the parent container, allows:

■ All permissions to the owner

■ Only read permission to public

The owner of the folder is changed to the user, by updating the resource_view .

You can also make the user's folder completely private by changing the ACL to

another system ACL, such as, all_owner_acl.xml

connect system/manager

Rem Create an Oracle XML DB administrator user (has XDBADMIN role)
grant connect, resource, xdbadmin to xdbadmn identified by xdbadmn;

Rem Create Oracle XML DB user
grant connect, resource to xdbuser identified by xdbuser;

conn xdbadmn/xdbadmn

Rem create the user's folder
declare
retval boolean;
begin
retval := dbms_xdb.createfolder('/xdbuser');
end;
 /

Rem update the OWNER of the user folder
update resource_view
set res = updatexml(res, '/Resource/Owner/text()', 'XDBUSER')
Oracle XML DB Resource Security 18-11

ACL and Resource Management
where any_path = '/xdbuser';

commit;

connect xdbuser/xdbuser

Rem XDBUSER has full permissions to operate on her folder
declare
retval boolean;
begin
retval := dbms_xdb.createfolder('/xdbuser/workdir');
end;
 /

Rem All users can read /xdbuser folder at this time.
Rem change ACL to make folder completely private
call dbms_xdb.setacl('/xdbuser', '/sys/acls/all_owner_acl.xml');

ACL and Resource Management
The following subsections describe ACL and resource management in Oracle XML

DB Repository.

How to Set Resource Property ACLs
Any Oracle XML DB resource has an ACL as a resource property. To set the ACL

resource property, use any of the following methods:

■ Perform a RESOURCE_VIEW update

■ PL/SQL API: Use DBMS_XDB.setacl(res_path VARCHAR2,acl_path
VARCHAR2) to set the ACL property of the resource represented by res_path to

the ACL represented by acl_path.

■ Quote command in FTP: Use “quote sacl <res_path> <acl_path> ” to

set the ACL resource property of res_path to the ACLOID for acl_path

Default Assignment of ACLs
When a resource is inserted into the Oracle XML DB hierarchy, and the resource

does not specify an ACL, it shares the ACL of its parent container.

See Also: Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"
18-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using DBMS_XDB to Check Privileges
Retrieving ACLs for a Resource
The following DBMS_XDB API can be used to get the ACL for a given resource:

DBMS_XDB.getAclDocument(res_path IN VARCHAR2)

It returns an XMLType instance of <acl > element representing the ACL for the

resource at res_path.

Changing Privileges on a Given Resource
The following DBMS_XDB API can be used to add an ACE to a resource’s ACL:

DBMS_XDB.changePrivileges(res_path IN VARCHAR2, ace IN XMLType)

Restrictions for Operations on ACLs
All named ACLs are XML schema-based resources in the Oracle XML DB

Repository hierarchy. Every method used for other resources in Oracle XML DB

Repository hierarchy can also be used for ACLs. For example, FTP commands,

PL/SQL DOM, and XMLType methods can operate on ACLs. However, because

ACLs are part of the access control security scheme and Oracle XML DB Repository

hierarchy, the following restrictions are enforced:

■ ACL insertion: Can be at most one grant ACE and one deny ACE for a

particular principal in an ACL

■ ACL deletion: If a resource is currently using the ACL, the ACL cannot be

deleted.

■ ACL update (modify): If an ACL resource is updated with non-ACL content,

the same rules as for ACL deletion will apply.

Using DBMS_XDB to Check Privileges
You can enforce Oracle XML DB access control using the following DBMS_XDB
functions:

■ CheckPrivileges , getAclDocument , and getPrivileges for Oracle XML

DB resources.

■ AclCheckPrivileges for database objects. This function loads the ACL from

the cache, and performs the access request evaluation as described in the next

section.
Oracle XML DB Resource Security 18-13

Using DBMS_XDB to Check Privileges
Row-Level Security for Access Control Security
ACL security in Oracle XML DB acts in conjunction with database security for XML

objects. The user must have the appropriate rights on the underlying table/view

where the XML object is stored as well as permissions in the ACL for that

individual instance. When an object from a particular table is first stored in the

Oracle XML DB hierarchy (and mapped to a resource), a row-level security (RLS)

policy is added to that table that checks ACL-based permission only for those rows

in the table that are mapped to a resource. RLS is enforced for XMLType tables or

views that are part of the Oracle XML DB hierarchy.
18-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using FTP, HTTP, and WebDAV P
19

Using FTP, HTTP, and WebDAV Protocols

This chapter describes how to access Oracle XML DB Repository using FTP,

HTTP/WebDAV protocols. It contains the following sections:

■ Introducing Oracle XML DB Protocol Server

■ Oracle XML DB Protocol Server Configuration Management

■ Using FTP and Oracle XML DB Protocol Server

■ Using HTTP and Oracle XML DB Protocol Server

■ Using WebDAV and Oracle XML DB
rotocols 19-1

Introducing Oracle XML DB Protocol Server
Introducing Oracle XML DB Protocol Server
As described in Chapter 2, "Getting Started with Oracle XML DB" and Chapter 13,

"Oracle XML DB Foldering", Oracle XML DB Repository provides a hierarchical

data repository in the database modeled on XML. Oracle XML DB Repository maps

path names (or URLs) onto database objects of XMLType and provides management

facilities for these objects.

Oracle XML DB also provides the Oracle XML DB Protocol Server. This supports

standard Internet protocols, FTP, WebDAV, and HTTP, for accessing its hierarchical

repository/ file system. Since XML documents reference each other using URLs,

typically HTTP URLs, Oracle XML DB Repository and its protocol support are

important Oracle XML DB components. These protocols can provide direct access to

Oracle XML DB to many users without having to install additional software.

Session Pooling
Oracle XML DB Protocol Server maintains a shared pool of sessions. Each protocol

connection is associated with one session from this pool. After a connection is

closed the session is put back into the shared pool and can be used to serve later

connections.

HTTP Performance is Improved
Session Pooling improves performance of HTTP by avoiding the cost of re-creating

session states, especially when using HTTP 1.0, which creates new connections for

each request. For example, a couple of small files can be retrieved by an existing

HTTP/1.1 connection in the time necessary to create a database session. You can

tune the number of sessions in the pool by setting session-pool-size in Oracle XML

DB’s xdbconfig.xml file, or disable it by setting pool size to zero.

Java Servlets
Session pooling can affect users writing Java servlets, since other users can come

along and see session state initialized by another request for a different user. Hence,

servlet writers should only use session memory, such as, Java static variables, to

hold data for the entire application rather than for a particular user. Per user state

must be stored in the database or in a look-up table rather than assuming a session

will only exist for a single user.

See Also: "Accessing Oracle XML DB Resources Using Internet

Protocols" on page 13-10
19-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Server Configuration Management
Figure 19–1 illustrates the Oracle XML DB Protocol Server components and how

they are used to access files in Oracle XML DB XML Repository and other data.

Only the relevant components of the Repository are shown

Figure 19–1 Oracle XML DB Architecture: Protocol Server

Oracle XML DB Protocol Server Configuration Management
Oracle XML DB Protocol Server uses configuration parameters stored in

/xdbconfig.xml to initialize its startup state and manage session level

configuration.The following section describes the protocol-specific configuration

parameters that you can configure in the Oracle XML DB configuration file.

See Also: Chapter 20, "Writing Oracle XML DB Applications in

Java"

See Also: Appendix A, "Installing and Configuring Oracle XML

DB".

HTTP
WebDAV

Client

FTP
Client

Network Protocol
Server

HTTP /
WebDAV
Server

FTP
Server Foldering

Configuration
Management

ACL
Security

Oracle XML DB Repository
Using FTP, HTTP, and WebDAV Protocols 19-3

Oracle XML DB Protocol Server Configuration Management
Configuring Protocol Server Parameters
Table 19–1 shows the parameters common to all protocols. All parameter names in

this table, except those starting with /xdbconfig , are relative to the following

XPath in the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/common

■ FTP-specific parameters. Table 19–2 shows the FTP-specific parameters. These

are relative to the following XPath in the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/ftpconfig

■ HTTP/WebDAV specific parameters except servlet-related parameters.

Table 19–3 shows the HTTP/WebDAV-specific parameters. These parameters

are relative to the following XPath in the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/httpconfig

 For examples of the usage of these parameters, see the configuration file

/xdbconfig.xml, listed in Appendix A, "Installing and Configuring Oracle XML

DB" and Appendix G, "Example Setup scripts. Oracle XML DB - Supplied XML

Schemas", the section, "xdbconfig.xsd: XML Schema for Configuring Oracle XML

DB".

Table 19–1 Common Protocol Configuration Parameters

Parameter Description

extension-mappings/mime-mappings Specifies the mapping of file extensions to mime
types. When a resource is stored in the Oracle XML
DB Repository, and its mime type is not specified,
this list of mappings is used to set its mime type.

extension-mappings/lang-mappings Specifies the mapping of file extensions to
languages. When a resource is stored in the Oracle
XML DB Repository, and its language is not
specified, this list of mappings is used to set its
language.

extension-mappings/encoding-mappings Specifies the mapping of file extensions to
encodings. When a resource is stored in the Oracle
XML DB Repository, and its encoding is not
specified, this list of mappings is used to set its
encoding.
19-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Server Configuration Management
extension-mappings/charset-mappings Specifies the mapping of file extensions to character
sets. When a resource is stored in the Oracle XML
DB Repository, and its character set is not specified,
this list of mappings is used to set its character set.

session-pool-size Maximum number of sessions that are kept in the
protocol server’s session pool

/xdbconfig/sysconfig/call-timeout If a connection is idle for this time (in hundredths of
a second), the shared server serving the connection
is freed up to serve other connections.

session-timeout Time (in hundredths of a second) after which a
session (and consequently the corresponding
connection) will be terminated by the protocol
server if the connection has been idle for that time.
This parameter is used only if the specific protocol’s
session timeout is not present in the configuration

/xdbconfig/sysconfig/default-lock-timeout Time after which a WebDAV lock on a resource
becomes invalid. This could be overridden by a
Timeout specified by the client that locks the
resource.

Table 19–2 Configuration Parameters Specific to FTP

Parameter Description

ftp-port Port on which FTP server listens. By default this is
2100

ftp-protocol Protocol over which the FTP server runs. By default
this is tcp

session-timeout Time (in hundredths of a second) after which an FTP
session (and consequently the corresponding
connection) will be terminated by the protocol
server if the connection has been idle for that time.

Table 19–3 Configuration Parameters Specific to HTTP/WebDAV (Except Servlet
Parameters)

Parameter Description

http-port Port on which HTTP/WebDAV server listens

Table 19–1 Common Protocol Configuration Parameters (Cont.)

Parameter Description
Using FTP, HTTP, and WebDAV Protocols 19-5

Oracle XML DB Protocol Server Configuration Management
Interaction with Oracle XML DB Filesystem Resources
The protocol specifications, RFC 959 (FTP), RFC 2616 (HTTP), and RFC 2518

(WebDAV) implicitly assume an abstract, hierarchical file system on the server side.

This is mapped to the Oracle XML DB hierarchical Repository. Oracle XML DB

Repository provides features such as:

■ Name resolution

■ ACL-based security

■ The ability to store and retrieve any content. Oracle XML DB Repository can

store both binary data input through FTP and XML schema-based documents.

http-protocol Protocol over which the HTTP/WebDAV server
runs. By default this is tcp

session-timeout Time (in hundredths of a second) after which an
HTTP session (and consequently the corresponding
connection) will be terminated by the protocol
server if the connection has been idle for that time.

server-name The value of the Server header in an HTTP response

max-header-size Maximum size (in bytes) of an HTTP header

max-request-body Maximum size (in bytes) of an HTTP request body

webappconfig/welcome-file-list List of filenames that are considered “welcome
files”. When an HTTP GET request for a container is
received, the server first checks if there’s a resource
in the container with any of these names. If so, the
contents of that file are sent, instead of a list of
resources in the container.

default-url-charset The character set in which an HTTP Protocol Server
assumes incoming URL is encoded when it is not
encoded in UTF-8 or the request’s Content-Type
field Charset parameter.

Table 19–3 Configuration Parameters Specific to HTTP/WebDAV (Except Servlet
Parameters) (Cont.)

Parameter Description
19-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using FTP and Oracle XML DB Protocol Server
Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents
Oracle XML DB Protocol Server enhances the protocols by always checking if XML

documents being inserted are based on XML schemas registered in the Repository.

■ If the incoming XML document specifies an XML schema, the Oracle XML DB

storage to use is decided by that XML schema. This functionality comes in

handy when you need to store XML documents object-relationally in the

database, using simple protocols like FTP or WebDAV instead of having to

write SQL statements.

■ If the incoming XML document is not XML schema-based, it is stored as a

binary document.

Event-Based Logging
In certain cases, it may be useful to log the requests received and responses sent by

a protocol server. This can be achieved by setting event number 31098 to level 2. To

set this event, add the following line to init.ora and restart the database:

event=”31098 trace name context forever, level 2”

Using FTP and Oracle XML DB Protocol Server
The following sections describe FTP features supported by Oracle XML DB.

Oracle XML DB Protocol Server: FTP Features
File Transfer Protocol (FTP) is one of the oldest and most popular protocols on the

net. FTP is specified in RFC959 and provides access to heterogeneous file systems in

a uniform manner. FTP works by providing well defined commands for

communication between the client and the server. The transfer of commands and

the return status happens on a single connection. However, a new connection is

opened between the client and the server for data transfer. In HTTP, the transfer of

commands and data happens on a single connection.

See Also:

■ http://rfc.sunsite.dk/rfc/rfc959.html

■ http://256.com/gray/docs/rfc2616/

■ http://www.faqs.org/rfcs/rfc2518.html
Using FTP, HTTP, and WebDAV Protocols 19-7

Using FTP and Oracle XML DB Protocol Server
FTP is implemented by both dedicated clients at the operating system level, file

system explorer clients, and browsers. FTP is typically session-oriented, in that a

user session is created through an explicit logon, a number of files / directories are

downloaded and browsed, and then the connection is closed.

Non-Supported FTP Features
Oracle XML DB implements FTP, as defined by RFC 959, with the exception of the

following optional features:

■ Record-oriented files, for example, only the FILE structure of the STRU

command is supported. This is the most widely used structure for transfer of

files. It is also the default specified by the specification. Structure mount is not

supported.

■ Append.

■ Allocate. This pre-allocates space before file transfer.

■ Account. This uses the insecure Telnet protocol.

■ Abort.

Using FTP on Standard or Non-Standard Ports
It can be configured through the Oracle XML DB configuration file

/xdbconfig.xml , to listen on an arbitrary port. FTP ships listening on a

non-standard, non-protected port. To use FTP on the standard port (21), your DBA

has to chown the TNS listener to setuid ROOT rather than setuid ORACLE.

FTP Server Session Management
Protocol Server also provides session management for this protocol. After a short

wait for a new command, FTP returns to the protocol layer and the shared server is

freed up to serve other connections. The duration of this short wait is configurable

by changing the call-timeOut parameter in the Oracle XML DB configuration

file. For high traffic sites, the call-timeout should be shorter so that more

connections can be served. When new data arrives on the connection, the FTP

Server is re-invoked with fresh data. So, the long running nature of FTP does not

affect the number of connections which can be made to the Protocol Server.

See Also: RFC 959: FTP Protocol Specification
19-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using HTTP and Oracle XML DB Protocol Server
Using HTTP and Oracle XML DB Protocol Server
Oracle XML DB implements HyperText Transfer Protocol (HTTP), HTTP 1.1 as

defined in RFC2616 specification. In this release, Oracle XML DB Protocol Server

also supports the HTTP protocol extension, RFC 2109 “HTTP State Management”,

that is “cookies”.

Oracle XML DB Protocol Server: HTTP Features
The Oracle XML DB HTTP component in the Oracle XML DB Protocol Server

implements the RFC2616 specification with the exception of the following optional

features:

■ gzip and compress transfer enco1dings

■ byte-range headers

■ The TRACE method (used for proxy error debugging)

■ Cache-Control directives (requires you to specify expiration dates for content,

and are not generally used)

■ TE, Trailer, Vary & Warning headers

■ Weak entity tags

■ Web common log format

■ Multi-homed Web server

Non-Supported HTTP Features
Oracle XML DB does not implement the new Set-Cookie2 header specified in RFC

2965, as most of the Internet community is not yet using it. Digest Authentication

(RFC 2617) is not supported. In this release, Oracle XML DB supports Basic

Authentication, where a client sends the user name and password in clear text in

the “Authorization” header.

Using HTTP on Standard or Non-Standard Ports
HTTP ships listening on a non-standard, non-protected port (8080). To use HTTP on

the standard port (80), your DBA must chown the TNS listener to setuid ROOT

rather than setuid ORACLE, and configure the port number in the Oracle XML DB

configuration file /xdbconfig.xml .

See Also: RFC 2616: HTTP 1.1 Protocol Specification
Using FTP, HTTP, and WebDAV Protocols 19-9

Using HTTP and Oracle XML DB Protocol Server
HTTP Server and Java Servlets
Oracle XML DB supports Java servlets. To use a servlet, it must be registered with a

unique name in the Oracle XML DB configuration file, along with parameters to

customize its behavior. It should be compiled, and loaded into the database. Finally,

the servlet name must be associated with a pattern, which can be an extension such

as “*.jsp” or a path name such as “/a/b/c” or “/sys/*”, as described in Java servlet

API version 2.2.

While processing an HTTP request, the path name for the request is matched with

the registered patterns. If there is a match, the Protocol Server invokes the

corresponding servlet with the appropriate initialization parameters. For Java

servlets, the existing Java Virtual Machine (JVM) infrastructure is used. This starts

the JVM if need be, which in turn runs a Java method to initialize the servlet, create

response, and request objects, pass these on to the servlet, and run it.

Non-ASCII Characters in URLs
When a client sends multibyte data in a URL, RFC 2718 specifies that the client

should send the URL using the %HH format where HH is the hexadecimal notation

of the byte value in UTF-8 encoding. The following are some URL examples that

can be sent to XML DB in either an HTTP or WebDAV context:

http://urltest/xyz%E3%81%82%E3%82%A2
http://%E3%81%82%E3%82%A2
http://%E3%81%82%E3%82%A2/abc%81%86%E3%83%8F.xml

XML DB processes the requested URL, any URLs within an IF header, any URLs

within the DESTINATION header, and any URLs in the REFERRED header that

contains multibyte data.

Some clients may either not encode the hexadecimal value in UTF-8, or completely

disregard the %HH notation and send straight multibyte data. XML DB handles

these non-conforming clients by following a specific algorithm. The URL is

processed as follows:

1. Attempts to decode the multibyte data in UTF-8. If this is not valid.

2. Uses the Content-Type charset header value. If the data is not encoded in that

encoding then.

3. If the default-url-charset configuration value is specified, It attempts to

decode the value using that character set.

See Also: Chapter 20, "Writing Oracle XML DB Applications in

Java"
19-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using WebDAV and Oracle XML DB
4. Finally, it assumes it is in the database character set.

Here are some examples of non-conforming URLs:

http://urltest/ã?,ã??ã??ã?̂
http://urltest/xyz%<shift-jis HH encoding>%<shift-jis HH encoding>

The default-url-charset must be an IANA name.

Using WebDAV and Oracle XML DB
Web Distributed Authoring and Versioning (WebDAV) is a standard protocol used

to provide users with a file system interface to Oracle XML Repository over the

Internet. The most popular way of accessing a WebDAV server folder is through

“WebFolders” on Microsoft Windows 2000 or Microsoft NT.

WebDAV is an extension to HTTP 1.1 protocol. It allows clients to perform remote

web content authoring through a coherent set of methods, headers, request body

formats and response body formats. WebDAV provides operations to store and

retrieve resources, create and list contents of resource collections, lock resources for

concurrent access in a coordinated manner, and to set and retrieve resource

properties.

Oracle XML DB WebDav Features
Oracle XML DB supports the following WebDAV features:

■ Foldering, specified by RFC2518

■ Access Control

WebDAV is a set of extensions to the HTTP protocol that allow you to edit or

manage your files on remote Web servers. WebDav can also be used, for example,

to:

■ Share documents over the Internet

■ Edit content over the Internet

Oracle XML DB’s Non-Supported WebDAV Features
Oracle XML DB supports the contents of RFC2518, with the following exceptions:

See Also: RFC 2518: WebDAV Protocol Specification
Using FTP, HTTP, and WebDAV Protocols 19-11

Using WebDAV and Oracle XML DB
■ Lock-NULL resources create actual zero-length resources in the file system, and

cannot be converted to folders.

■ Implementing the WebDAV ACL protocol and binding protocol

■ Depth-infinity locks

■ Only Basic Authentication is supported

Using Oracle XML DB and WebDAV: Creating a WebFolder in Windows 2000
To create a WebFolder in Windows 2000, follow these steps:

1. From your desktop, select My Network Places.

2. Double click “Add Network Place”.

3. Type the location of the folder, for example:

http://[Oracle server name]:<HTTP port number>

See Figure 19–2.

4. Click Next.

5. Enter any name to identify this WebFolder

6. Click Finish.

You can now access Oracle XML DB Repository just like you access any Windows

folder.
19-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using WebDAV and Oracle XML DB
Figure 19–2 Creating a WebFolder in Windows 2000
Using FTP, HTTP, and WebDAV Protocols 19-13

Using WebDAV and Oracle XML DB
19-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Writing Oracle XML DB App
20

Writing Oracle XML DB Applications in Java

This chapter describes how to write Oracle XMl DB applications in Java. It includes

design guidelines for writing Java applications including servlets, and how to

configure the Oracle XML DB servlets.

It contains these sections:

■ Introducing Oracle XML DB Java Applications

■ Design Guidelines: Java Inside or Outside the Database?

■ Writing Oracle XML DB HTTP Servlets in Java

■ Configuring Oracle XML DB Servlets

■ HTTP Request Processing for Oracle XML DB Servlets

■ The Session Pool and XML DB Servlets

■ Native XML Stream Support

■ Oracle XML DB Servlet APIs

■ Oracle XML DB Servlet Example
lications in Java 20-1

Introducing Oracle XML DB Java Applications
Introducing Oracle XML DB Java Applications
Oracle XML DB provides two main architectures for the Java programmer:

■ In the database using the Java Virtual Machine (VM)

■ In a client or application server, using the Thick JDBC driver

Because Java in the database runs in the context of the database server process, the

methods of deploying your Java code are restricted to one of the following ways:

■ You can run Java code as a stored procedure invoked from SQL or PL/SQL or

■ You can run a Java servlet.

Stored procedures are easier to integrate with SQL and PL/SQL code, and require

using Oracle Net Services as the protocol to access Oracle9i database.

Servlets work better as the top level entry point into Oracle9i database, and require

using HTTP as the protocol to access Oracle9i database.

Which Oracle XML DB APIs Are Available Inside and Outside the Database?
In this release, some of Oracle XML DB APIs are only available to applications

running in the server. Table 20–1 illustrates which Oracle XML DB APIs are

available in each architecture in this release. The “NO” fields will become “YES” in

a forthcoming release.

Oracle XML DB APIs AVailable Inside and Outside Oracle9i Database

Table 20–1 Oracle XML DB APIs Inside and Outside Oracle9i Database

Java Oracle XML DB
APIs Description

Inside the Database:Java
Servlets/Stored Procedures

Outside the Database: Using
Thick JDBC (OCI) Drivers

JDBC support for
XMLType

YES YES

XMLType class YES YES

Java DOM implementation YES YES
20-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Design Guidelines: Java Inside or Outside the Database?
Design Guidelines: Java Inside or Outside the Database?
When choosing an architecture for writing Java Oracle XML DB applications,

consider the following guidelines:

HTTP: Accessing Java Servlets or Directly Accessing XMLType Resources
If the downstream client wants to deal with XML in its textual representation, using

HTTP to either access the Java servlets or directly access XMLType resources, will

perform the best, especially if the XML node tree is not being manipulated much by

the Java program.

The Java implementation in the server can natively move data from the database to

the network without converting character data through UCS-2 Unicode (which is

required by Java strings), and in many cases copies data directly from the database

buffer cache to the HTTP connection. There is no need to convert data from the

buffer cache into the SQL serialization format used by Oracle Net Services, move it

to the JDBC client, and then convert to XML. The load-on-demand and LRU cache

for XMLType are most effective inside the database server.

Accessing Many XMLType Object Elements: Use JDBC XMLType Support
If the downstream client is an application that will programmatically access many

or most of the elements of an XMLType object using Java, using JDBC XMLType
support will probably perform the best. It is often easier to debug Java programs

outside of the database server, as well.

Use the Servlets to Manipulate and Write Out Data Quickly as XML
Oracle XML DB servlets are intended for writing “HTTP stored procedures” in Java

that can be accessed using HTTP. They are not intended as a platform for

developing an entire Internet application. In that case, the application servlet

should be deployed in Oracle9iAS application server and access data in the

database either using JDBC, or by using the java.net.* or similar APIs to get XML

data through HTTP.

They are best used for applications that want to get into the database, manipulate

the data, and write it out quickly as XML, not to format HTML pages for end-users.
Writing Oracle XML DB Applications in Java 20-3

Writing Oracle XML DB HTTP Servlets in Java
Writing Oracle XML DB HTTP Servlets in Java
Oracle XML DB provides a Protocol Server that supports FTP, HTTP 1.1, WebDAV,

and Java Servlets. The support for Java Servlets in this release is not complete, and

provides a subset designed for easy migration to full compliance in a following

release. Currently, Oracle XML DB supports Java Servlet version 2.2, with the

following exceptions:

■ The Servlet WAR file (web.xml) is not supported in its entirety. Some web.xml
configuration parameters must be handled manually. For example, creating

roles must be done using the SQL CREATE ROLE command.

■ RequestDispatcher and associated methods are not supported.

■ HTTPServletRequest.getCookies() method is not supported.

■ Only one ServletContext (and one web-app) is currently supported.

■ Stateful servlets (and thus the HttpSession class methods) are not supported.

Servlets must maintain state in the database itself.

Configuring Oracle XML DB Servlets
Oracle XML DB servlets are configured using the /xdbconfig.xml file in the

Repository. Many of the XML elements in this file are the same as those defined by

the Java Servlet 2.2 specification portion of Java 2 Enterprise Edition (J2EE), and

have the same semantics. Table 20–2 lists the XML elements defined for the servlet

deployment descriptor by the Java Servlet specification, along with extension

elements supported by Oracle XML DB.

Table 20–2 XML Elements Defined for Servlet Deployment Descriptors

XML Element Name Defined By Supported? Description Comment

auth-method Java no Specifies an HTTP authentication
method required for access

--

charset Oracle yes Specifies a IANA character set
name

For example:
“ISO8859”, “UTF8”

charset-mapping Oracle yes Specifies a mapping between a
filename extension and a charset

--

context-param Java no Specifies a parameter for a web
application

Not yet supported

description Java yes A string for describing a servlet or
Web application

Supported for servlets
20-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Configuring Oracle XML DB Servlets
display-name Java yes A string to display with a servlet or
web app

Supported for servlets

distributable Java no Indicates whether or not this servlet
can function if all instances are not
running in the same Java virtual
machine

All servlets running in
the Oracle9i database
MUST be
distributable.

errnum Oracle yes Oracle error number See Oracle9i Database
Error Messages

error-code Java yes HTTP error code Defined by RFC 2616

error-page Java yes Defines a URL to redirect to if an
error is encountered.

Can be specified
through an HTTP
error, an uncaught
Java exception, or
through an uncaught
Oracle error message

exception-type Java yes Classname of a Java exception
mapped to an error page

--

extension Java yes A filename extension used to
associate with MIME types,
character sets, and so on.

--

facility Oracle yes Oracle facility code for mapping
error pages

For example: “ORA”,
“PLS”, and so on.

form-error-page Java no Error page for form login attempts Not yet supported

form-login-config Java no Config spec for form-based login Not yet supported

form-login-page Java no URL for the form-based login page Not yet supported

icon Java Yes URL of icon to associate with a
servlet

Supported for servlets

init-param Java Yes Initialization parameter for a servlet --

jsp-file Java No Java Server Page file to use for a
servlet

Not supported

lang Oracle Yes IANA language name For example: “en-US”

lang-mapping Oracle Yes Specifies a mapping between a
filename extension and language
content

--

Table 20–2 XML Elements Defined for Servlet Deployment Descriptors (Cont.)

XML Element Name Defined By Supported? Description Comment
Writing Oracle XML DB Applications in Java 20-5

Configuring Oracle XML DB Servlets
large-icon Java Yes Large sized icon for icon display --

load-on-startup Java Yes Specifies if a servlet is to be loaded
on startup

--

location Java Yes Specifies the URL for an error page Can be a local path
name or HTTP URL

login-config Java No Specifies a method for
authentication

Not yet supported

mime-mapping Java Yes Specifies a mapping between
filename extension and the MIME
type of the content

--

mime-type Java Yes MIME type name for resource
content

For example:
“text/xml” or
“application/octet-str
eam”

OracleError Oracle Yes Specifies an Oracle error to
associate with an error page

--

param-name Java Yes Name of a parameter for a Servlet
or ServletContext

Supported for servlets

param-value Java Yes Value of a parameter --

realm-name Java No HTTP realm used for authentication Not yet supported

role-link Java Yes Specifies a role a particular user
must have in order to access a
servlet

Refers to a database
role name. Make sure
to capitalize by
default!

role-name Java Yes A servlet name for a role Just another name to
call the database role.
Used by the Servlet
APIs

security-role Java No Defines a role for a servlet to use Not supported. You
must manually create
roles using the SQL
CREATE ROLE

security-role-ref Java Yes A reference between a servlet and a
role

--

servlet Java Yes Configuration information for a
servlet

--

Table 20–2 XML Elements Defined for Servlet Deployment Descriptors (Cont.)

XML Element Name Defined By Supported? Description Comment
20-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Configuring Oracle XML DB Servlets
servlet-class Java Yes Specifies the classname for the Java
servlet

--

servlet-language Oracle Yes Specifies the programming
language in which the servlet is
written.

Either “Java”, “C”, or
“PL/SQL”. Currently,
only Java is supported
for customer-defined
servlets.

servlet-mapping Java Yes Specifies a filename pattern with
which to associate the servlet

All of the mappings
defined by Java are
supported

servlet-name Java Yes String name for a servlet Used by Servlet APIs

servlet-schema Oracle Yes The Oracle Schema in which the
Java class is loaded. If not specified,
the schema is searched using the
default resolver specification.

If this is not specified,
the servlet must be
loaded into the SYS
schema to ensure that
everyone can access it,
or the default Java
class resolver must be
altered. Note that the
servlet-schema is
capitalized unless the
value is quoted with
double-quotes.

session-config Java No Configuration information for an
HTTPSession

HTTPSession is not
supported

session-timeout Java No Timeout for an HTTP session HTTPSession is not
supported

small-icon Java Yes Small icon to associate with a
servlet

--

taglib Java No JSP tag library JSPs currently not
supported

taglib-uri Java No URI for JSP tag library description
file relative to the web.xml file

JSPs currently not
supported

taglib-location Java No Pathname relative to the root of the
web application where the tag
library is stored

JSPs currently not
supported

url-pattern Java Yes URL pattern to associate with a
servlet

See Section 10 of Java
Servlet 2.2 spec

Table 20–2 XML Elements Defined for Servlet Deployment Descriptors (Cont.)

XML Element Name Defined By Supported? Description Comment
Writing Oracle XML DB Applications in Java 20-7

HTTP Request Processing for Oracle XML DB Servlets
HTTP Request Processing for Oracle XML DB Servlets
Oracle XML DB handles an HTTP request using the following steps:

1. If a connection has not yet been established, Oracle listener hands the

connection to a shared server dispatcher.

2. When a new HTTP request arrives, the dispatcher wakes up a shared server.

3. The HTTP headers are parsed into appropriate structures.

web-app Java No Configuration for a web application Only one web
application is
currently supported

welcome-file Java Yes Specifies a welcome-file name --

welcome-file-list Java Yes Defines a list of files to display
when a folder is referenced through
an HTTP GET

Example:
“index.html ”

Note:

■ Note 1: The following parameters defined for the web.xml file

by Java are usable only by J2EE-compliant Enterprise Java Bean

containers, and are not required for Java Servlet Containers that

do not support a full J2EE environment: env-entry,
env-entry-name, env-entry-value, env-entry-type, ejb-ref, ejb-ref-type,
home, remote, ejb-link, resource-ref, res-ref-name, res-type, res-auth

■ Note 2: The following elements are used to define access

control for resources: security-constraint, web-resource-collection,
web-resource-name, http-method, user-data-constraint,
transport-guarantee, auth-constrain. Oracle XML DB provides this

functionality through Access Control Lists (ACLs). A future

release will support using a web.xml file to generate ACLs

See Also: Appendix A, "Installing and Configuring Oracle XML

DB" for more information about configuring the /XDBconfig.xml
file.

Table 20–2 XML Elements Defined for Servlet Deployment Descriptors (Cont.)

XML Element Name Defined By Supported? Description Comment
20-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Native XML Stream Support
4. The shared server attempts to allocate a database session from the XML DB

session pool, if available, but otherwise will create a new session.

5. A new database call is started, as well as a new database transaction.

6. If HTTP has included authentication headers, the session will be authenticated

as that database user (just as if they logged into SQL*Plus). If no authentication

information is included, and the request is GET or HEAD, Oracle XML DB

attempts to authenticate the session as the ANONYMOUS user. If that database

user account is locked, no unauthenticated access is allowed.

7. The URL in the HTTP request is matched against the servlets in the

xdbconfig.xml file, as specified by the Java Servlet 2.2 specification.

8. The XML DB Servlet Container is invoked in the Java VM inside Oracle. If the

specified servlet has not been initialized yet, the servlet is initialized.

9. The Servlet reads input from the ServletInputStream , and writes output to

the ServletOutputStream , and returns from the service() method.

10. If no uncaught Oracle error occurred, the session is put back into the session

pool.

The Session Pool and XML DB Servlets
The Oracle database keeps one Java VM for each database session. This means that

a session reused from the session pool will have any state in the Java VM (Java

static variables) from the last time the session was used.

This can be useful in caching Java state that is not user-specific, such as, metadata,

but DO NOT STORE SECURE USER DATA IN JAVA STATIC MEMORY! This

could turn into a security hole inadvertently introduced by your application if you

are not careful.

Native XML Stream Support
The DOMNode class has an Oracle-specific method called write() , which takes the

following arguments, returning void:

■ java.io.OutputStream stream: A Java stream to write the XML text to

■ String charEncoding : The character encoding to write the XML text in. If null,

the database character set is used

See Also: Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"
Writing Oracle XML DB Applications in Java 20-9

Oracle XML DB Servlet APIs
■ Short indent The number of characters to indent nested XML elements

This method has a shortcut implementation if the stream provided is the

ServletOutputStream provided inside the database. The contents of the Node

are written in XML in native code directly to the output socket. This bypasses any

conversions into and out of Java objects or Unicode (required for Java strings) and

provides very high performance.

Oracle XML DB Servlet APIs
The APIs supported by Oracle XML DB servlets are defined by the Java Servlet 2.2

specification, the Javadoc for which is available, as of the time of writing this,

online at:

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Table 20–3 lists non-implemented Java Servlet 2.2 methods. In this release they

result in runtime exceptions.

Oracle XML DB Servlet Example
The following is a simple servlet example that reads a parameter specified in a URL

as a path name, and writes out the content of that XML document to the output

stream.

Example 20–1 Writing an Oracle XML DB Servlet

The servlet code looks like:

/* test.java */
import javax.servlet.http.*;
import javax.servlet.*;
import java.util.*;
import java.io.*;
import javax.naming.*;
import oracle.xdb.dom.*;

Table 20–3 Non-Implemented Java 2.2 Methods

Interface Methods

HttpServletRequest getSession(), isRequestedSessionIdValid()

HttpSession ALL

HttpSessionBindingListener ALL
20-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Servlet Example
public class test extends HttpServlet
{
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 OutputStream os = resp.getOutputStream();
 Hashtable env = new Hashtable();
 XDBDocument xt;

 try
 {
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "oracle.xdb.spi.XDBContextFactory");
 Context ctx = new InitialContext(env);
 String [] docarr = req.getParameterValues("doc");
 String doc;

 if (docarr == null || docarr.length == 0)
 doc = "/foo.txt";
 else
 doc = docarr[0];
 xt = (XDBDocument)ctx.lookup(doc);
 resp.setContentType("text/xml");
 xt.write(os, "ISO8859", (short)2);
 }
 catch (javax.naming.NamingException e)
 {
 resp.sendError(404, "Got exception: " + e);
 }
 finally
 {
 os.close();
 }
 }
}

Installing the Oracle XML DB Example Servlet
To install this servlet, compile it, and load it into Oracle9i database using

commands such as:

% loadjava –grant public –u scott/tiger –r test.class
Writing Oracle XML DB Applications in Java 20-11

Oracle XML DB Servlet Example
Configuring the Oracle XML DB Example Servlet
To configure Oracle XML DB servlet, update the /xdbconfig.xml file by inserting

the following XML element tree in the <servlet-list> element:

<servlet>
 <servlet-name>TestServlet</servlet-name>
 <servlet-language>Java</servlet-language>
 <display-name>XML DB Test Servlet</display-name>
 <servlet-class>test</servlet-class>
 <servlet-schema>scott</servlet-schema>
</servlet>

and update the /xdbconfig.xml file by inserting the following XML element tree

in the <servlet-mappings> element:

<servlet-mapping>
 <servlet-pattern>/testserv</servlet-pattern>
 <servlet-name>TestServlet</servlet-name>
</servlet-mapping>

You can edit the /xdbconfig.xml file with any WebDAV-capable text editor, or

by using the updateXML() SQL operator.

Testing the Example Servlet
To test the example servlet, load an arbitrary XML file at /foo.xml , and type the

following URL into your browser, replacing the hostname and port number as

appropriate:

http://hostname:8080/testserv?doc=/foo.xml

Note: You will not be allowed to actually delete the

/xdbconfig.xml file, even as SYS!
20-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part VI

 Oracle Tools that Support Oracle XML DB

Part VI of this manual introduces you to Oracle SQL*Loaderand the Import-Export

Utility for loading XML data. It also describes how to use Oracle Enterprise

Manager for managing and administering your XML database applications.

Part VI contains the following chapters:

■ Chapter 21, "Managing Oracle XML DB Using Oracle Enterprise Manager"

■ Chapter 22, "Loading XML Data into Oracle XML DB"

■ Chapter 23, "Importing and Exporting XMLType Tables"

Managing Oracle XML DB Using Oracle Enterp
21

Managing Oracle XML DB Using Oracle

Enterprise Manager

This chapter describes how Oracle Enterprise Manager can be used to manage

Oracle XML DB. Oracle Enterprise Manager can be used to configure, create and

manage Repository resources, and database objects such as XML schemas and

XMLType tables.

It contains the following sections:

■ Introducing Oracle XML DB and Oracle Enterprise Manager

■ Oracle Enterprise Manager Oracle XML DB Features

■ The Enterprise Manager Console for Oracle XML DB

■ Configuring Oracle XML DB with Enterprise Manager

■ Creating and Managing Oracle XML DB Resources with Enterprise Manager

■ Managing XML Schema and Related Database Objects

■ Creating Structured Storage Infrastructure Based on XML Schema
rise Manager 21-1

Introducing Oracle XML DB and Oracle Enterprise Manager
Introducing Oracle XML DB and Oracle Enterprise Manager
This chapter describes how to use Oracle Enterprise Manager (Enterprise Manager)

to administer and manage Oracle XML DB.

Getting Started with Oracle Enterprise Manager and Oracle XML DB
Oracle Enterprise Manager is supplied with Oracle9i database software, both

Enterprise and Standard Editions. To run the Enterprise Manager version that

supports Oracle XML DB functionality, use Oracle9i Release 2 (9.2) or higher.

Enterprise Manager: Installing Oracle XML DB
Oracle XML DB is installed by default when the Database Configuration Assistant

(DBCA) is used to create a new database. The following actions take place during

Oracle XML DB installation:

■ Oracle registers the configuration XML schema:

http://www.oracle.com/xdb/xdbconfig.xsd

■ Oracle inserts a default configuration document. It creates resource

/sys/xdbconfig.xml conforming to the configuration XML schema. This

resource contains default values for all Oracle XML DB parameters.

You Must Register Your XML Schema with Oracle XML DB
Oracle XML DB is typically used for its faster retrieval and search capabilities,

access control, and versioning of XML documents. XML instance documents saved

in the database can conform to an XML Schema. XML Schema is a schema

definition language, also written in XML, that can be used to describe the structure

and various other semantics of a conforming XML instance document.

Oracle XML DB provides a mechanism to register XML Schemas with the database.

Assuming that your XML schema document(s) already exists, registering the XML

schema is your first task. Before you register the XML schema, you must know the

following:

See Also:

■ Chapter 2, "Getting Started with Oracle XML DB"

■ Appendix A, "Installing and Configuring Oracle XML DB"
21-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle Enterprise Manager Oracle XML DB Features
1. Whether the data for the XML instance documents already exists in relational
tables. This would be the case for legacy applications. If so, Object Views for

XML must be created.

2. What is the storage model? Are you using LOB storage, object-relational

storage, or both? The answer to this question depends on which parts of the

document are queried the most often, and hence would need faster retrieval.

3. Is the XML Schema document annotated with comments to generate object
datatypes and object tables? If not, these objects will have to be created and

mapped manually to the database schema.

For most cases, it is assumed that you have XML schema annotated with

information to automatically generate object types and object tables. Hence the

Oracle9i database, as part of XML schema registration, automatically generates

these objects.

Oracle XML DB is now ready for you to insert conforming XML documents.

Oracle Enterprise Manager Oracle XML DB Features
With Enterprise Manager you can perform the following main Oracle XML DB

administrative tasks:

■ Configure Oracle XML DB

■ Create and Manage Resources

■ Manage XML Schema and Related Database Objects

See Figure 21–1 and Figure 21–2.

See Also:

■ Chapter 3, "Using Oracle XML DB"

■ Chapter 5, "Structured Mapping of XMLType"

See Also: "Managing XML Schema and Related Database

Objects" on page 21-27.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-3

Oracle Enterprise Manager Oracle XML DB Features
Figure 21–1 Managing Oracle XML DB with Enterprise Manager: Main Tasks

Configure Oracle XML DB
Oracle XML DB is managed through the configuration file, xdbconfig.xml .

Through Enterprise Manager, you can view or configure this file’s parameters. To

access the Oracle XML DB configuration options, from the Enterprise Manager right

hand window, select “Configure XML Database”. See "Configuring Oracle XML DB

with Enterprise Manager" on page 21-7.

Create and Manage Resources
To access the XML resource management options, select the XML Database object in

the Navigator and click “Create a Resource” in the detail view. See "Creating and

Managing Oracle XML DB Resources with Enterprise Manager" on page 21-12.

Manage XML Schema and Related Database Objects
To access the XML schema management options, select the XML Database object in

the Navigator and click “Create Table and Views Based on XML Schema” in the

detail view. See "Managing XML Schema and Related Database Objects" on

page 21-27.

You can register, delete, view, generate (that is, reverse engineer) an XML schema

and see its dependencies. You can also view an XML schema’s contents and

perform actions on its constituent elements.

■ Views. Create or alter an object view of XMLType, and look at the

corresponding indexes.

Oracle Enterprise Manager
Oracle XML DB Management

Configure
Oracle XML DB
- xdbconfig.xml

Create and
Manage
Resources
- including

resource
security

Manage
XML Schema
- Create tables and

views based on XML
Schema

- Create XMLType, tables
- Create tables with

XMLType columns
21-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle Enterprise Manager Oracle XML DB Features
■ Tables. Create XML schema-based and non-XML schema-based XMLType tables

and columns, and look at the corresponding indexes. You can also specify LOB

storage attributes on these columns.

You can create XMLType tables in CLOB or object-relational form, and specify

constraints and LOB storage attributes on hidden XMLType columns.

■ Indexes. Create index on the hidden columns of XMLType.

■ DML operations. You can also perform other DML operations such as inserting

and updating rows using XML instance documents.

■ XML Schema Elements. You can view elements in their XML form and the XML

instance data stored in the database corresponding to that element. You can also

view the XML schema’s dependent objects, such as tables, views, indexes,

object types, array types, and table types.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-5

Oracle Enterprise Manager Oracle XML DB Features
Figure 21–2 Enterprise Manager Console: XML Database Management Window
21-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Configuring Oracle XML DB with Enterprise Manager
The Enterprise Manager Console for Oracle XML DB
See Figure 21–2. From the Enterprise Manager console you can quickly browse and

manage Oracle XML DB objects.

XML Database Management Window: Right-Hand Dialog Windows
From the XML Database Management detail view you can access the XML DB

management functionality. From there you can select which task you need to

perform.

Hierarchical Navigation Tree: Navigator
Use the left-hand Navigator, to select the Oracle XML DB resources and database

objects you need to view or modify.

Configuring Oracle XML DB with Enterprise Manager
Oracle XML DB configuration is an integral part of Oracle XML DB. It is used by

protocols such as HTTP/WebDav or FTP, and any other components of Oracle XML

DB that can be customized, such as, in the ACL based security.

Oracle XML DB configuration is stored as an XML schema based XML resource,

xdbconfig.xml in the Oracle XML DB Repository. It conforms to the Oracle XML

DB configuration XML schema stored at:

http://www.oracle.com/xdb/xdbconfig.xsd

This configuration XML schema is registered when Oracle XML DB is installed. The

configuration property sheet has two tabs:

■ For System Configurations. General parameters and FTP and HTTP protocol

specific parameters can be displayed on the System Configurations tab.

■ For User Configurations. Custom parameters can be displayed on the User

Configurations tab.

To configure items in Oracle XML DB, select the Configuration node under XML

Database in the Navigator. See Figure 21–3 and See Figure 21–4.

The XML Database Parameters page displays a list of configuration parameters for

the current XML database. You can also access this page from the XML Database

Management main window > Configure XML Database.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-7

Configuring Oracle XML DB with Enterprise Manager
When you click the Configuration node for the XML database in the Enterprise

Manager Navigator, the XML DB Parameters page appears in the main panel to the

right. The XML DB Parameters window lists the following information:

■ Parameter Name -- Lists the name of the parameter.

■ Value -- Displays the current value of the parameter. This is an editable field.

■ Default -- Indicates whether the value is a default value. A check mark indicates

a default value.

■ Dynamic -- Indicates whether or not the value is dynamic. A check mark

indicates dynamic.

■ Category -- Displays the category of the parameter. Category can be HTTP, FTP,

or Generic.

You can change the value of a parameter by clicking the Value field for the

parameter and making the change. Click the Apply button to apply any changes

you make. You can access a description of a parameter by clicking on the parameter

in the list and then clicking the Description button at the bottom of the page. A text

Description text box displays that describes in greater detail the parameter you

selected. You can close the Description box by clicking again on the Description
button.
21-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Configuring Oracle XML DB with Enterprise Manager
Figure 21–3 Enterprise Manager Console: Configuring Oracle XML DB
Managing Oracle XML DB Using Oracle Enterprise Manager 21-9

Configuring Oracle XML DB with Enterprise Manager
Since Oracle XML DB provides support for standard Internet protocols (FTP and

WebDAV/HTTP) as a means of accessing the Repository, Enterprise Manager

provides you with related information:

■ Oracle XML DB FTP Port: displays the port number the FTP protocol will be

listening to. FTP by default listens on a non-standard, non-protected port.

■ Oracle XML DB HTTP Port: displays the port number the HTTP protocol will

be listening to. HTTP will be managed as a Shared Server presentation, and can

be configured through the TNS listener to listen on arbitrary ports. HTTP listens

on a non-standard, non-protected port.
21-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Configuring Oracle XML DB with Enterprise Manager
Figure 21–4 Enterprise Manager Console: Oracle XML DB Configuration Parameters
Dialog

Viewing or Editing Oracle XML DB Configuration Parameters
With Enterprise Manager you can view and edit partial Oracle XML DB

configuration parameters, in the following categories:

Category: Generic
■ case-sensitive
Managing Oracle XML DB Using Oracle Enterprise Manager 21-11

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Category: FTP
■ ftp-port: Enterprise Manager manages FTP as a Shared Server presentation. It

can be configured using TNS listeners to listen on arbitrary ports.

■ ftp-logfile-path: The file path of the FTP Server log file.

■ ftp-log-level: The level of logging for FTP error and warning conditions.

Category: HTTP
■ http-port: Enterprise Manager manages HTTP as a Shared Server presentation.

It can be configured using TNS listeners to listen on arbitrary ports.

■ session-timeout: The maximum time the server will wait for client responses

before it breaks a connection.

■ server-name: Hostname to use by default in HTTP redirects and servlet API.

■ http-logfile-path: The file path of the HTTP server log file.

■ http-log-level: The level of logging for HTTP error and warning conditions.

■ welcome-file-list: The list of welcome files used by the server.

Creating and Managing Oracle XML DB Resources with Enterprise
Manager

The Resources folder in the Enterprise Manager navigation tree is under the XML

Database folder. It contains all the resources in the database regardless of the owner.

Figure 21–5 shows a typical Resources tree.

When the Resources folder is selected in the Navigator, the right-hand side of the

screen displays all the top level Oracle XML DB resources under root, their names,

and their creation and modification dates. See Figure 21–6.

Note: Oracle XML DB always preserves case.
21-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–5 Enterprise Manager: Oracle XML DB Resources Tree Showing Resources
Folder Selected
Managing Oracle XML DB Using Oracle Enterprise Manager 21-13

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–6 Enterprise Manager: Top Level Resources Under Root
21-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Administering Individual Resources
Once you select a resource sub-folder under the main Resources folder in the

Navigator, you can see the resources “General Page” in the detail view, as shown in

Figure 21–7.

Figure 21–7 Enterprise Manager: Individual Resources - General Page
Managing Oracle XML DB Using Oracle Enterprise Manager 21-15

Creating and Managing Oracle XML DB Resources with Enterprise Manager
General Resources Page
The Oracle XML DB Resources General page (also called the XML Resources Page)

displays overview information about the resource container or resource file. When

you select one of the Oracle XML DB resource containers or files in the Navigator,

Enterprise Manager displays the Oracle XML DB Resources General page. This is a

read-only page. It displays the following information:

■ Name - name of the resource file or container

■ Creator - the user or role that created the resource

■ Last Modifier - the name of the user who last modified the resource

■ Created - the date and time the resource was created

■ Modified - the date and time that the resource was last changed

■ Language - the resource language, such as, US English

■ Type - File or Container

Security Page
Oracle XML DB Resources Security page changes the ACL associated with the XML

DB resource container or file. Use the ACL files to restrict access to all XML DB

resources. When you change the ACL file for the resource, you change the access

privileges for the resource file. See Figure 21–8.

To specify a new ACL file:

1. Click the Specify a new ACL File option box and then choose a new ACL file

from the drop down list in the File Name field.

2. Click the Apply button to apply the change.

3. Click the Revert button to abandon any changes you have made to the File

Name field.
21-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–8 Enterprise Manager: Individual Oracle XML DB Resource - Security Page

Individual Resource Content Menu
Figure 21–9 shows the context-sensitive menu displayed when you select and

right-click an individual Oracle XML DB resource object in the Navigator.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-17

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–9 Enterprise Manager: When You Right-Click an Individual Resource...

You can perform the following Oracle XML DB tasks from the Enterprise Manager

Content Menu:

Create Resource
Figure 21–10 shows how you can use the Create XML DB Resource dialog box to

create an XML DB resource container or file. From the XML DB Resource dialog you

can name the resource and then either create a new resource container or create a

new resource file, designating the location of the file as either a local file, a file at a

specified URL, or specifying the contents of the file.

1. Access the Create XML DB Resource dialog box by right clicking on the

Resources folder or any individual resource node and selecting Create from the

context menu. When you name the resource in the Name field, you can change

the location by clicking on the Change Location button to the right of the

Location field.

2. Specify whether the resource you are creating is a container or a file. If you

create a file by choosing Create a new resource file, you can select from one of

three file type location options:

– Local File -- Select Use a file in the local file system to browse for a file

location on your network.

– File at URL -- Select Use a file at the URL to enter the location of the file on

the internet or intranet.

– File Contents -- Select Specify the resource contents here to enter the

contents of a file in the edit box located at the bottom of the Create XML DB

Resource dialog box.
21-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–10 Enterprise Manager: Create Oracle XML DB Resource Dialog Box

Grant Privileges On...
Figure 21–11 shows the Grant Privileges On dialog box which assigns privileges on

an Oracle XML DB resource to users or roles. You can grant multiple privileges to

multiple users or roles. Grant Privileges On dialog box lists the available Oracle

XML DB resource privileges in the Grant section at the top of the panel.

1. To grant privileges, select the privileges you want to grant by clicking on a

privilege. You can select multiple privileges by holding down the Ctrl key while

selecting more than one privilege. You can select consecutive privileges by

clicking the first privilege in a sequence and holding down the Shift key while

clicking the last privilege in the sequence.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-19

Creating and Managing Oracle XML DB Resources with Enterprise Manager
2. Select the user/ group in the To: box at the bottom of the dialog page. Use the

same procedure to select multiple users/roles to which to grant privileges.

Figure 21–11 Enterprise Manager: Granting Privileges On Oracle XML DB Resources

Show Contents
Figure 21–12 is an example of a Show Contents dialog box. It displays the contents

of the selected resource file.

See Also: "Enterprise Manager and Oracle XML DB: ACL

Security" on page 21-22.
21-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–12 Enterprise Manager: Show Contents Menus of Individual Oracle XML
DB Resource

Show Grantee
Figure 21–11 shows the Show Grantee of XML DB Resource dialog box. It displays

a list of all granted privileges on a specified XML DB resource for the connected

Enterprise Manager user. Show Grantee dialog box lists the connected Enterprise

Manager user, privilege, and granted status of the privilege in tabular format.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-21

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–13 Enterprise Manager: Show Grantee of Oracle XML DB Resources

Enterprise Manager and Oracle XML DB: ACL Security
From Enterprise Manager you can restrict access to all XML DB resources by means

of ACLs. You can grant XML DB resource privileges to database user and database

role separately using the existing Security/Users/user and

Security/Roles/role interface, respectively.

You can access the Enterprise Manager security options in two main ways:

■ To view or modify user (or role) security: In the Navigator, under the Oracle

XML DB database in question > Security >Users >user (or > Security > Roles >

role). In the detail view, select the XML tag. See Figure 21–14. This user security

option is described in more detail in "Granting and Revoking User Privileges

with User > XML Tab" on page 21-23.

■ To view or modify a resource’s security: Select the individual resource node

under the “Resources” folder in the left navigation panel. Select the Security tag

in the detail view. See Figure 21–15.
21-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Granting and Revoking User Privileges with User > XML Tab
This section describes how to grant and revoke privileges for a “user”, The same

procedure applies when granting and revoking privileges for a “role”. To grant

privileges to a user follow these steps:

1. Select a particular user from the Enterprise Manager Navigator. The detail view

displays an additional tab, XML, in the existing property sheet.

2. To view and select resources on which you want to grant privileges to users or

roles, select the XML tab. Once you select a resource, all available privileges for

that resource are displayed in the Available Privileges list to the right of the

Resources list.

3. Select the privileges required from the Available Privileges list and move them

down to the Granted list that appears at the bottom of the window by clicking

on the down arrow.

Conversely, you can revoke privileges by selecting them in the Granted list and

clicking on the up arrow.

4. After setting the appropriate privileges, click the Apply button to save your

changes. Before you save your changes, you can click the Revert button to

abandon your changes.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-23

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Figure 21–14 Adding or Revoking Privileges with Users > user> XML
21-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating and Managing Oracle XML DB Resources with Enterprise Manager
Resources List
The Resources list is a tree listing of resources located in Oracle XML DB

Repository. You can navigate through the folder hierarchy to locate the resource on

which you want to set privileges for the user or role you selected in Navigator.

When you select a resource in the tree listing, its privileges appear in the Available
Privileges list to the right.

Available Privileges List
The Available Privileges list displays all privileges available for a resource. Click a

privilege and then press the down arrow button to add the privilege to the Granted
list. You can select consecutive privileges by clicking on the first privilege and then

holding the Shift key down to select the last in the list. Also, you can select

non-consecutive privileges by holding the Ctrl-key down while making selections.

Privileges can be either of the following:

■ aggregate privileges. They contain other privileges.

■ atomic privileges. They cannot be subdivided.

Granted List
The Granted list displays all privileges granted to the user or role for the resource

selected in the Resources list. You can revoke a privilege by highlighting it and

clicking the up arrow to remove it.

XML Database Resource Privileges
Privilege can be aggregate (contain other privileges) or atomic (cannot be

subdivided). The following system privileges are supported:

■ Atomic Privileges

– all

– read-properties

– read-contents

– update

– link (applies only to containers)

– unlink (applies only to containers)

– read-acl
Managing Oracle XML DB Using Oracle Enterprise Manager 21-25

Creating and Managing Oracle XML DB Resources with Enterprise Manager
– write-acl-ref

– update-acl

– link-to

– unlink-from

– resolve

– dav:lock

– dav:unlock

■ Aggregate Privileges

– dav:read (read-properties, read-contents, resolve)

– dav:write (update, link, unlink, unlink-from)

– dav:read-acl (read-acl)

– dav:write-acl (write-acl-ref, update-acl)

– dav:all (dav:read, dav:write, dav:read-acl, dav:write-acl, dav:look,

dav:unlock)
21-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing XML Schema and Related Database Objects
Figure 21–15 Granting Privileges on a Resource

Managing XML Schema and Related Database Objects
From the XML Database Management detail view, when you select “Create tables

and views based on XML Schema” the “XML Schema Based Objects” page appears.

With this you can:

■ Register an XML schema

■ Create a structured storage based on XML schema

See Also: Chapter 18, "Oracle XML DB Resource Security" for a

list of supported system privileges.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-27

Managing XML Schema and Related Database Objects
■ Create an XMLType table

■ Create a table with XMLType columns

■ Create a view based on XML schema

■ Create a function-based index based on XPath expressions

Navigating XML Schema in Enterprise Manager
Under the XML Schema folder, the tree lists all the XML schema owners. The

example here is owner “XDB”. See Figure 21–16:

■ Schema Owners. Under the individual XML schema owners, the tree lists the

XML schemas owned by the owner(s). Here you can see:

http://xmlns.oracle.com/xdb/XDBResource.xsd
http://xmlns.oracle.com/xdb/XDBSchema.xsd
http://xmlns.oracle.com/xdb/XDBStandard.xsd

■ Top level elements. Under each XML schema, the tree lists the top level

elements. These elements are used to create the XMLType tables, tables with

XMLType columns, and views. For example, Figure 21–16 shows top level

elements servlet and LINK. The number and names of these elements are

dictated by the relevant XML schema definition, which in this case is:

http://xmlns.oracle.com/XDBStandard.xsd.

■ Dependent objects. Under each element, the tree lists the created dependent

objects, Tables, Views, and User Types respectively. In this example, you can see

that top level element servlet has dependent XMLType Tables, Views, and User
types.

■ Dependent object owners. Under each dependent object type, the tree lists the

owner.

– Tables. For example, under Tables, “XDB” is an owner, and XDB owns a

table called SERVLET.

* Table characteristics. Under each table name the tree lists any created

Indexes, Materialized View Logs (Snapshots), Partitions, and

Triggers.

– Views. Not shown here but under Views you would see any view owners

and the name of views owned by these owners:

* View characteristics. These are not listed here.
21-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing XML Schema and Related Database Objects
■ User Types. The tree lists any user types associated with the top level

element servlet. These are listed according to the type:

* Object types. Under Object types the tree lists the object type owners.

* Array types. Under Array types the tree lists the array type owners.

* Table types. Under table types the tree lists the table type owners.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-29

Managing XML Schema and Related Database Objects
Figure 21–16 Enterprise Manager Console: Navigating XML Schema
21-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing XML Schema and Related Database Objects
Figure 21–17 Enterprise Manager: Creating XML Schema-Based Objects

Registering an XML Schema
Registering an XML schema is one of the central, and often first, tasks before the

you use Oracle XML DB. XML schema are registered using

DBMS_XMLSCHEMA.registerSchema() .

Figure 21–18 shows you how to register an XML schema.

See Also: Chapter 5, "Structured Mapping of XMLType"
Managing Oracle XML DB Using Oracle Enterprise Manager 21-31

Managing XML Schema and Related Database Objects
General Page
From the GENERAL page, input the XML schema URL and select the Owner of the

XML schema from the drop-down list.

Select either:

■ Global, that is XML schema is visible to public

■ Local, that is XML schema is visible only to the user creating it

You can obtain the XML schema in one of four ways:

■ By specifying the location of the file in the local file system

■ By specifying the XML Database (Repository) resource where the XML schema

is located

■ By specifying the URL location

■ By cutting and pasting the text form another screen

Options Page
From the Options page you can select the following options:

■ Generate the object types based on this XML schema

■ Generate tables based on this XML schema

■ Generate Java beans based on this XML schema

■ Register this XML schema regardless of any errors

See Figure 21–19. Press Create from either the General Tab or Options Tab to register

this XML schema.
21-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing XML Schema and Related Database Objects
Figure 21–18 Enterprise Manager: Registering an XML Schema - General Page
Managing Oracle XML DB Using Oracle Enterprise Manager 21-33

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–19 Enterprise Manager: Creating XML Schema - Options Page

Creating Structured Storage Infrastructure Based on XML Schema
This section describes how to use Oracle Enterprise Manager to create XMLType
tables, views, and indexes.

Creating Tables
You have two main options when creating tables:

■ "Creating an XMLType Table" on page 21-35

■ "Creating Tables with XMLType Columns" on page 21-37

Creating Views
To create an XMLType view, see "Creating a View Based on XML Schema" on

page 21-39.

Creating Function-Based Indexes
To create function-based indexes see "Creating a Function-Based Index Based on

XPath Expressions" on page 21-42.
21-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Structured Storage Infrastructure Based on XML Schema
Creating an XMLType Table
From the Create Table property sheet, enter the desired name of the table you are

creating on the General page. Select the table owner from the drop-down list

“Schema”. Leave Tablespace at the default setting. Select “XMLType” table.

Under the lower “Schema” option, select the XML schema owner, from the

drop-down list.

Under “XML Schema”, select the actual XML schema from the drop-down list.

Under “Element”, select the required element to from the XMLType table, from the

drop-down list.

Specify the storage:

■ Store as defined by the XML schema. When you select this option, hidden

columns are created based on the XML schema definition annotations. Any

SELECTs or UPDATEs on these columns are optimized.

■ Store as CLOB. When you select CLOB the LOB Storage tab dialog appears.

Here you can customize the CLOB storage. See Figure 21–21.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-35

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–20 Enterprise Manager: Creating XMLType Tables-General Page
21-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–21 Enterprise Manager: Creating XMLType Tables - Specifying LOB
Storage

Creating Tables with XMLType Columns
See Figure 21–22 shows the Create Table General page. To create a table with

XMLType columns follow these steps:

1. From the Create Table property sheet, enter the desired name of the table you

are creating on the General page.

2. Select the table owner from the drop-down list “Schema”. Leave Tablespace at

the default setting.

3. Select “Define Columns”.

4. Enter the Name. Enter the Datatype; select XMLType from the drop-down list.

The XMLType Options dialog window appears. See Figure 21–23.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-37

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–22 Enterprise Manager: Creating Tables With XMLType Column - General
Page

5. From this screen you can specify for a particular XMLType column, whether it is

XML schema-based or non-schema-based.

■ If it is XML schema-based:

* Under the “Schema” option, select the XML schema owner, from the

drop-down list.

* Under “XML Schema”, select the actual XML schema from the

drop-down list.

* Under “Element”, select the required element to form the XMLType
column, from the drop-down list.

* Specify the storage:

* Store as defined by the XML schema.

* Store as CLOB. When you select CLOB the LOB Storage tab dialog

appears. Here you can customize the CLOB storage.

■ If it is non-schema-based you do not need to change the default settings.
21-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–23 Enterprise Manager: Creating Tables With XMLType Column - XMLType
Options

Creating a View Based on XML Schema
Figure 21–24 shows the Create View General page. To create a view based on an

XML schema, follow these steps:

1. Enter the desired view name. Under “Schema”, select the view owner from the

drop-down list.

2. Enter the SQL statement text in the “Query Text” window to create the view.

Select the Advanced tab. See Figure 21–25.

From here you can select Force mode

3. Select the “As Object” option. The view can be set to Read Only or With Check

Option.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-39

Creating Structured Storage Infrastructure Based on XML Schema
4. Because this is an XMLType view, select the “As Object” option. Select

“XMLType” not “Object Type”.

5. Under the “Schema” option, select the XML schema owner, from the

drop-down list.

6. Under “XML Schema”, select the actual XML schema from the drop-down list.

7. Under “Element”, select the required element to form the XMLType column,

from the drop-down list.

8. Specify the Object Identifier (OID):

– If your SQL statement to create the view is based on an object type table,

then select the “Use default if your query is based on...”

– Otherwise, select “Specify based on XPath expression on the structure of

the element”. Enter your XPath expression. See Chapter 11, "XMLType

Views".
21-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–24 Enterprise Manager: Creating an XMLType View - General Page
Managing Oracle XML DB Using Oracle Enterprise Manager 21-41

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–25 Enterprise Manager: Creating XMLType Views - Advanced Page

Creating a Function-Based Index Based on XPath Expressions
See Figure 21–26 shows the Create Index General page. To create a function-based

index based on an XPath expression follow these steps:

1. Provide the owner and name of the index. Under “Name” enter the name of the

required index. Under “Schema” select the owner of the index from the

drop-down list.

2. Under “Index On”, select Table.

3. Under the lower “Schema” select the table owner from the drop-down list.
21-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating Structured Storage Infrastructure Based on XML Schema
4. Under “Table”, select either the XMLType table or table with XMLType column

from the drop-down list.

You can also enter an alias for a column expression. You can specify this alias

inside your function-based index statement.

5. For tables with XMLType columns, first click the lower left-hand “+” icon. This

creates a new row for you to enter your extract XPath expression under “Table

Columns”.

6. For XMLType tables, a new empty row is automatically created for you to

create your extract XPath expression under “Table Columns”.

7. “Datatype” defaults to “Column Expression”. You do not need to change this.
Managing Oracle XML DB Using Oracle Enterprise Manager 21-43

Creating Structured Storage Infrastructure Based on XML Schema
Figure 21–26 Enterprise Manager: Creating a Function-Based Index Based on XPath
Expressions
21-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Loading XML Data into Or
22

Loading XML Data into Oracle XML DB

This chapter describes how XML data can be loaded into Oracle XML DB using

SQL*Loader.

It contains the following sections:

■ Loading XMLType Data into Oracle9i Database

■ Using SQL*Loader to Load XMLType Columns
acle XML DB 22-1

Loading XMLType Data into Oracle9i Database
Loading XMLType Data into Oracle9 i Database
In Oracle9i Release 1 (9.0.1) and higher, both Export/Import utilities and

SQL*Loader support XMLType as a column type. In other words, if your table has a

column of type XMLType, it can be properly Exported and Imported from and to

Oracle9i database, and you can load XML data into that column using SQL*Loader.

Restoration
In the current release, Oracle XML DB Repository information is not exported when

user data is exported. This means that the resources and all information is not

exported.

Using SQL*Loader to Load XMLType Columns
XML columns are columns declared to be of type XMLType.

SQL*Loader treats XML columns as if they are CLOBs. All methods described in the

following sections for loading LOB data from the primary datafile or from

LOBFILEs are applicable to loading XML columns.

Because LOBs can be quite large, SQL*Loader is able to load LOB data from either a

primary datafile (in line with the rest of the data) or from LOBFILEs. This section

addresses the following topics:

■ Loading LOB Data from a Primary Datafile

■ Loading LOB Data from an External LOBFILE (BFILE)

■ Loading LOB Data from LOBFILEs

■ Loading LOB Data from a Primary Datafile

To load internal LOBs (BLOBs, CLOBs, and NCLOBs) or XML columns from a

primary datafile, you can use the following standard SQL*Loader formats:

See Also: Oracle9i Database Utilities

See Also: Oracle9i Database Utilities

Note: You cannot specify an SQL string for LOB fields. This is true

even if you specify LOBFILE_spec.
22-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using SQL*Loader to Load XMLType Columns
■ Predetermined size fields

■ Delimited fields

■ Length-value pair fields

These formats is described in the following sections and in Oracle9i Database
Utilities.

LOB Data in Predetermined Size Fields
This is a very fast and conceptually simple format in which to load LOBs.

Note: Because the LOBs you are loading may not be of equal size, you can use

whitespace to pad the LOB data to make the LOBs all of equal length within a

particular data field.

LOB Data in Delimited Fields
This format handles LOBs of different sizes within the same column (datafile field)

without problem. However, this added flexibility can affect performance, because

SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should

consider the character set of the datafile. When the character set of the datafile is

different than that of the control file, you can specify the delimiters in hexadecimal

(that is, ’hexadecimal string’). If the delimiters are specified in hexadecimal

notation, the specification must consist of characters that are valid in the character

set of the input datafile. In contrast, if hexadecimal specification is not used, the

delimiter specification is considered to be in the client’s (that is, the control file’s)

character set. In this case, the delimiter is converted into the datafile’s character set

before SQL*Loader searches for the delimiter in the datafile.

Loading LOB Data from LOBFILEs
LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE

instead of from a primary datafile. In LOBFILEs, LOB data instances are still

considered to be in fields (predetermined size, delimited, length-value), but these

fields are not organized into records (the concept of a record does not exist within

LOBFILEs). Therefore, the processing overhead of dealing with records is avoided.

This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader

reads LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields:
Loading XML Data into Oracle XML DB 22-3

Using SQL*Loader to Load XMLType Columns
■ A single LOB field into which the entire contents of a file can be read

■ Predetermined size fields (fixed-length fields)

■ Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

■ The clause PRESERVE BLANKS is not applicable to fields read from a

LOBFILE.

■ Length-value pair fields (variable-length fields)--VARRAW, VARCHAR, or

VARCHARC loader datatypes--are used for loading from this type of field.

All of the previously mentioned field types can be used to load XML columns.

Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (you specify the actual name of the file)

or dynamically (you use a FILLER field as the source of the filename). In either case,

when the EOF of a LOBFILE is reached, the file is closed and further attempts to

read data from that file produce results equivalent to reading data from an empty

field.

You should not specify the same LOBFILE as the source of two different fields. If

you do so, typically, the two fields will read the data independently.
22-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Importing and Exporting XM
23

Importing and Exporting XMLType Tables

This chapter describes how you can import and export XMLType tables for use with

Oracle XML DB.

It contains the following sections:

■ Overview of IMPORT/EXPORT Support in Oracle XML DB

■ Non-XML Schema-Based XMLType Tables and Columns

■ XML Schema-Based XMLType Tables

■ IMPORT/EXPORT Syntax and Examples

■ Metadata in Repository is Not Exported During a Full Database Export

■ Importing and Exporting with Different Character Sets
LType Tables 23-1

Overview of IMPORT/EXPORT Support in Oracle XML DB
Overview of IMPORT/EXPORT Support in Oracle XML DB
Oracle XML DB supports XMLType tables and columns that can store XML data and

be based on a registered XML schema. Tables storing XML schema-based or

non-schema-based data can be imported and exported.

Resource s and Foldering Do Not Fully Support IMPORT/EXPORT
Oracle XML DB also supports a foldering mechanism in the database that provides

a file-system like paradigm to database data. This model uses pathnames and URIs

to refer to data (referred to as resources) rather than table names, column names, and

so on. This release however does not support this paradigm using

IMPORT/EXPORT.

However for resources based on a registered XML schema, the actual XMLType
tables storing the data can be exported and imported. This implies that only the

XML data is exported while the relationship in the Oracle XML DB foldering

hierarchy would be lost.

Non-XML Schema-Based XMLType Tables and Columns
XMLType tables and columns can be created without any XML schema specification

in which case the XML data is stored in a CLOB.

Data from these tables can be exported and imported in a manner similar to LOB

columns. The export dump file stores the actual XML text.

XML Schema-Based XMLType Tables
Oracle supports the export and import of XML schema-based XMLType tables. An

XMLType table depends on the XML schema used to define it. Similarly the XML

schema has dependencies on the SQL object types created or specified for it. Thus,

export of XMLType tables or a database with XMLType tables, consists of the

following steps:

1. Exporting SQL Types During XML Schema Registration. As a part of the XML

schema registration process, SQL types can be created. These SQL types are

exported as a part of CREATE TYPE statement along with their OIDs.

2. Exporting XML Schemas. After all the types are exported, XML schemas are

exported as XML text as part of the DBMS_XMLSCHEMA.REGISTERSCHEMA
statement. In this statement:
23-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema-Based XMLType Tables
■ FORCE flag is set to true. This is necessary for out-of-order registration of

schemas during import. Since the export process does not dump XML schemas

in any particular order, a schema that imports other schemas may not

necessarily occur after them. Also, cyclical references between XML schemas

require the FORCE flag to be true for successful registration.

■ GENTYPES flag is set to false. The types have already been generated in step 1.

■ GENTABLES flag is set to false. The tables will be created later (step 3) along

with their OIDs. It is not possible to specify OIDs in the registerSchema
statement.

■ GENBEANS flag is set to false.

■ Any attributes that refer to the owner are suppressed. For example, attributes

such as SchemaOwner and SQLSchema,... This is necessary to be able to import

data from a different user.

3. Exporting XML Tables. The next step is to export the tables. Export of each

table consists of two steps:

1. The table definition is exported as a part of the CREATE TABLE statement

along with the table OID.

2. The data in the table is exported as XML text. Note that data for out-of-line

tables is not explicitly exported. It is exported as a part of the data for the

parent table.

Guidelines for Exporting Hierarchy-Enabled Tables
The following describes guidelines for exporting hierarchy-enabled tables:

■ The RLS policies and path-index triggers are not exported for hierarchy-enabled

tables. This implies that when these tables are imported, they are not

hierarchy-enabled.

■ Hidden columns ACLOID and OWNERID are not exported for these tables. This

is because in an imported database, the values of these columns could be

different and hence should be re-initialized.

Note: OCTs and nested tables are not exported separately. They

are exported as parts of the parent table.
Importing and Exporting XMLType Tables 23-3

IMPORT/EXPORT Syntax and Examples
IMPORT/EXPORT Syntax and Examples
The IMPORT/EXPORT syntax and description are described in Oracle9i Database
Utilities. This chapter includes additional guidelines and examples for using

IMPORT/EXPORT with XMLType data.

IMPORT/EXPORT Example Assumptions
The examples here assume that you are using a database with the following

features:

■ Two users U1 and U2

■ U1 has a registered local XML schema SL1. This also created a default table TL1.

■ U1 has a registered global XML schema SG1. This also created a default table

TG1.

■ U2 has created table TG2 based on schema SG1.

User Level Import/Export

Example 23–1 Exporting XMLType Data

export sytem/manager file=file1 owner=U1

This exports the following:

■ Any types that were generated during schema registration of schemas SL1 and

SG1.

■ Schemas SL1 and SG1

■ Tables TL1 and TG1 and any other tables that were generated during schema

registration of schemas SL1 and SG1.

■ Any data in any of the preceding tables.

Example 23–2 Exporting XMLType Tables

export sytem/manager file=file2 owner=U2

This exports the following:

■ Table TG2 and any other tables that were generated during creation of TG2.

■ Any data in any of the preceding tables.
23-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

IMPORT/EXPORT Syntax and Examples
Example 23–3 Importing Data from a File

import system/manager file=file1 fromuser=U1 touser=newuser

This imports all the data in file1.dmp to schema newuser.

Table Mode Export
An XMLType table has a dependency on the XML schema that was used to define it.

Similarly the XML schema has dependencies on the SQL object types created or

specified for it. Importing an XMLType table requires the existence of the XML

schema and the SQL object types. When a TABLE mode export is used, only the

table related metadata and data are exported. To be able to import this data

successfully, the user needs to ensure that both the XML schema and object types

have been created.

Example 23–4 Exporting XML Data in TABLE Mode

exp SYSTEM/MANAGER file=expdat.dmp owner=U1 tables=TG1

This exports:

■ Table TG1 and any other tables that were generated during creation of TG1.

■ Any data in any of the preceding tables.

Example 23–5 Importing XML Data in TABLE Mode

imp SYSTEM/MANAGER file=expdat.dmp fromuser=U1 touser=U2 tables=TG1

This creates table TG1 for user U2 since U2 already has access to the globals schema

SG1 and the types that it depends on.

Note: This does not export Schema SG1 or any types that were

created during the registration of schema SG1.

Note: This does not export schema SG1 or any types that were

created during the registration of schema SG1.
Importing and Exporting XMLType Tables 23-5

Metadata in Repository is Not Exported During a Full Database Export
Metadata in Repository is Not Exported During a Full Database Export
Oracle XML DB stores the metadata (and the non-schema data) for the Repository

in the XML DB database user schema. Since Oracle does not support the Repository

structure to be exported, these metadata tables and structures will not be exported

when doing a full database export.

In fact the entire XML DB user schema will be skipped during a full database export

and any database objects owned by XML DB ("XDB") will not be exported.

Importing and Exporting with Different Character Sets
As with other database objects, XML data is exported in the character set of the

exporting server. During import, the data gets converted to the character set of the

importing server.
23-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part VII

 XML Data Exchange Using Advanced

Queueing

Part VII of this manual describes XML data exchange using Oracle Advanced

Queueing (AQ) and the AQs XMLType support. Part VII contains the following

chapter:

■ Chapter 24, "Exchanging XML Data Using Advanced Queueing (AQ) and

Oracle Streams"

Exchanging XML Data Using Advanced Queueing (AQ) and Oracle
24

Exchanging XML Data Using Advanced

Queueing (AQ) and Oracle Streams

This chapter describes how XML data can be exchanged using Oracle Advanced

Queueing. It contains the following sections:

■ What Is AQ?

■ How Do AQ and XML Complement Each Other?

■ Oracle Streams and AQ

■ XMLType Attributes in Object Types

■ Internet Data Access Presentation (IDAP)

■ IDAP Architecture

■ Enqueue Using AQ XML Servlet

■ Dequeue Using AQ XML Servlet

■ IDAP and AQ XML Schemas

■ Frequently Asked Questions (FAQs): XML and Advanced Queuing
 Streams 24-1

What Is AQ?
What Is AQ?
Oracle Advanced Queuing (AQ) provides database integrated message queuing

functionality. AQ:

■ Enables and manages asynchronous communication of two or more

applications using messages

■ Supports point-to-point and publish/subscribe communication models

Integration of message queuing with Oracle9i database brings the integrity,

reliability, recoverability, scalability, performance, and security features of Oracle9i
to message queuing. Integration with Oracle9i also facilitates the extraction of

intelligence from message flows.

How Do AQ and XML Complement Each Other?
XML has emerged as a standard format for business communications. XML is being

used not only to represent data communicated between business applications, but

also, the business logic that is encapsulated in the XML.

In Oracle9i, AQ supports native XML messages and also allows AQ operations to

be defined in the XML-based Internet-Data-Access-Presentation (IDAP) format.

IDAP, an extensible message invocation protocol, is built on Internet standards,

using HTTP and email protocols as the transport mechanism, and XML as the

language for data presentation. Clients can access AQ using this.

AQ and XML Message Payloads
Figure 24–1 shows an Oracle9i database using AQ to communicate with three

applications, with XML as the message payload. The general tasks performed by

AQ in this scenario are:

■ Message flow using subscription rules

■ Message management

■ Extracting business intelligence from messages

■ Message transformation

This is an intra- and inter-business scenario where XML messages are passed

asynchronously among applications using AQ.

■ Intra-business. Typical examples of this kind of scenario include sales order

fulfillment and supply-chain management.
24-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How Do AQ and XML Complement Each Other?
■ Inter-business processes. Here multiple integration hubs can communicate over

the Internet backplane. Examples of inter-business scenarios include travel

reservations, coordination between manufacturers and suppliers, transferring of

funds between banks, and insurance claims settlements, among others.

Oracle uses this in its enterprise application integration products. XML

messages are sent from applications to an Oracle AQ hub. This serves as a

“message server” for any application that wants the message. Through this

hub-and-spoke architecture, XML messages can be communicated

asynchronously to multiple loosely coupled receiving applications.

Figure 24–1 shows XML payload messages transported using AQ in the following

ways:

■ Web-based application that uses an AQ operation over an HTTP connection

using IDAP

■ An application that uses AQ to propagate an XML message over a Net*

connection

■ An application that uses AQ to propagate an internet/XML message directly to

the database over HTTP or SMTP

The figure also shows that AQ clients can access data using OCI, Java, or PL/SQL.
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-3

How Do AQ and XML Complement Each Other?
Figure 24–1 Advanced Queuing and XML Message Payloads

AQ Enables Hub-and-Spoke Architecture for Application Integration
A critical challenge facing enterprises today is application integration. Application

integration involves getting multiple departmental applications to cooperate,

coordinate, and synchronize in order to execute complex business transactions.

AQ enables hub-and-spoke architecture for application integration. It makes

integrated solution easy to manage, easy to configure, and easy to modify with

changing business needs.

Messages Can Be Retained for Auditing, Tracking, and Mining
Message management provided by AQ is not only used to manage the flow of

messages between different applications, but also, messages can be retained for

future auditing and tracking, and extracting business intelligence.

Internet Users

Advanced
queues

Internet Access

XML-Based Internet
Transport

(HTTP(s), SMTP)

Internet
Propagation

Internet
Propagation

(Oracle
Net)

OCI, PL/SQL,
Java clients

Global Agents,
Global Subscriptions,

Global Events

MQ Series

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Oracle
24-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle Streams and AQ
Viewing Message Content with SQL Views
AQ also provides SQL views to look at the messages. These SQL views can be used

to analyze the past, current, and future trends in the system.

Advantages of Using AQ
AQ provides the flexibility of configuring communication between different

applications.

Oracle Streams and AQ
Oracle Streams (Streams) enables you to share data and events in a stream. The

stream can propagate this information within a database or from one database to

another. The stream routes specified information to specified destinations. This

provides greater functionality and flexibility than traditional solutions for capturing

and managing events, and sharing the events with other databases and

applications.

Streams enables you to break the cycle of trading off one solution for another. It

enable you to build and operate distributed enterprises and applications, data

warehouses, and high availability solutions. You can use all the capabilities of

Oracle Streams at the same time.

You can use Streams to:

■ Capture changes at a database. You can configure a background capture

process to capture changes made to tables, database schemas, or the entire

database. A capture process captures changes from the redo log and formats

each captured change into a logical change record (LCR). The database where

changes are generated in the redo log is called the source database.

■ Enqueue events into a queue. Two types of events may be staged in a Streams

queue: LCRs and user messages. A capture process enqueues LCR events into a

queue that you specify. The queue can then share the LCR events within the

same database or with other databases. You can also enqueue user events

explicitly with a user application. These explicitly enqueued events can be LCRs

or user messages.

■ Propagate events from one queue to another. These queues may be in the same

database or in different databases.

■ Dequeue events. A background apply process can dequeue events. You can also

dequeue events explicitly with a user application.
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-5

XMLType Attributes in Object Types
■ Apply events at a database. You can configure an apply process to apply all of

the events in a queue or only the events that you specify. You can also configure

an apply process to call your own PL/SQL subprograms to process events.

The database where LCR events are applied and other types of events are

processed is called the destination database. In some configurations, the source

database and the destination database may be the same.

Streams Message Queuing
Streams allows user applications to:

■ Enqueue messages of different types

■ Propagate messages are ready for consumption

■ Dequeue messages at the destination database

Streams introduces a new type of queue that stages messages of SYS.AnyData
type. Messages of almost any type can be wrapped in a SYS.AnyData wrapper and

staged in SYS.AnyData queues. Streams interoperates with Advanced Queuing

(AQ), which supports all the standard features of message queuing systems,

including multiconsumer queues, publishing and subscribing, content-based

routing, internet propagation, transformations, and gateways to other messaging

subsystems.

XMLType Attributes in Object Types
You can now create queues that use Oracle object types containing attributes of the

new, opaque type, XMLType. These queues can be used to transmit and store

messages that are XML documents. Using XMLType, you can do the following:

■ Store any type of message in a queue

■ Store documents internally as CLOBs

■ Store more than one type of payload in a queue

■ Query XMLType columns using the operators ExistsNode() and

SchemaMatch()

■ Specify the operators in subscriber rules or dequeue selectors

See Also: Oracle9i Streams, and its Appendix, Appendix A, “XML
Schema for LCRs”.
24-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

IDAP Architecture
Internet Data Access Presentation (IDAP)
You can access AQ over the Internet by using Simple Object Access Protocol

(SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for AQ

operations. IDAP defines XML message structure for the body of the SOAP request.

An IDAP-structured message is transmitted over the Internet using transport

protocols such as HTTP or SMTP.

IDAP uses the text/xml content type to specify the body of the SOAP request.

XML provides the presentation for IDAP request and response messages as follows:

■ All request and response tags are scoped in the SOAP namespace.

■ AQ operations are scoped in the IDAP namespace.

■ The sender includes namespaces in IDAP elements and attributes in the SOAP

body.

■ The receiver processes IDAP messages that have correct namespaces; for the

requests with incorrect namespaces, the receiver returns an invalid request

error.

■ The SOAP namespace has the value:

http://schemas.xmlsoap.org/soap/envelope/

■ The IDAP namespace has the value:

http://ns.oracle.com/AQ/schemas/access

IDAP Architecture
Figure 24–2 shows the following components needed to send HTTP messages:

■ A client program that sends XML messages, conforming to IDAP format, to the

AQ Servlet. This can be any HTTP client, such as, Web browsers.

■ The Web server or ServletRunner which hosts the AQ servlet that can

interpret the incoming XML messages, for example, Apache/Jserv or Tomcat.

■ Oracle9i Server/Database. The AQ servlet connects to Oracle9i database to

perform operations on your queues.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-7

IDAP Architecture
Figure 24–2 IDAP Architecture for Performing AQ Operations Using HTTP

XMLType Queue Payloads
You can create queues with payloads that contain XMLType attributes. These can be

used for transmitting and storing messages that contain XML documents. By

defining Oracle objects with XMLType attributes, you can do the following:

■ Store more than one type of XML document in the same queue. The documents

are stored internally as CLOBs.

■ Selectively dequeue messages with XMLType attributes using the operators

existsNode() , extract() , and so on.

■ Define transformations to convert Oracle objects to XMLType.

■ Define rule-based subscribers that query message content using XMLType
operators such as existsNode() and extract() .

Example 24–1 Using AQ and XMLType Queue Payloads: Creating the OverSeas
Shipping Queue Table and Queue and Transforming the Representation

In the BooksOnline application, assume that the Overseas Shipping site represents

the order as SYS.XMLType. The Order Entry site represents the order as an Oracle

object, ORDER_TYP.

The Overseas queue table and queue are created as follows:

BEGIN
dbms_aqadm.create_queue_table(
 queue_table => 'OS_orders_pr_mqtab',
 comment => 'Overseas Shipping MultiConsumer Orders queue table',
 multiple_consumers => TRUE,
 queue_payload_type => 'SYS.XMLTtype',

AQ Client

Oracle9 i
Server

AQ Queue

Web Server

AQ
Servlet

XML
Messages
over HTTP
24-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

IDAP Architecture
 compatible => '8.1');
END;

BEGIN
dbms_aqadm.create_queue (
 queue_name => 'OS_bookedorders_que',
 queue_table => 'OS_orders_pr_mqtab');
END;

Since the representation of orders at the Overseas Shipping site is different from the

representation of orders at the Order Entry site, a transformation is applied before

messages are propagated from the Order Entry site to the Overseas Shipping site.

/* Add a rule-based subscriber (for Overseas Shipping) to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE
 subscriber aq$_agent;
BEGIN
 subscriber := aq$_agent('Overseas_Shipping','OS.OS_bookedorders_que',null);

 dbms_aqadm.add_subscriber(
 queue_name => 'OE.OE_bookedorders_que',
 subscriber => subscriber,
 rule => 'tab.user_data.orderregion = ''INTERNATIONAL''',
 transformation => 'OS.OE2XML');
END;

For more details on defining transformations that convert the type used by the

Order Entry application to the type used by Overseas shipping, see Oracle9i
Application Developer’s Guide - Advanced Queuing the section on Creating

Transformations in Chapter 8.

Example 24–2 Using AQ and XMLType Queue Payloads: Dequeuing Messages

Assume that an application processes orders for customers in Canada. This

application can dequeue messages using the following procedure:

/* Create procedures to enqueue into single-consumer queues: */
create or replace procedure get_canada_orders() as
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data SYS.XMLTtype;
no_messages exception;
pragma exception_init (no_messages, -25228);
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-9

Enqueue Using AQ XML Servlet
new_orders BOOLEAN := TRUE;

begin
 dopt.wait := 1;

/* Specify dequeue condition to select Orders for Canada */
 dopt.deq_condition := 'tab.user_data.extract(
''/ORDER_TYP/CUSTOMER/COUNTRY/text()'').getStringVal()=''CANADA''';

 dopt.consumer_name : = 'Overseas_Shipping';

 WHILE (new_orders) LOOP
 BEGIN
 dbms_aq.dequeue(
 queue_name => 'OS.OS_bookedorders_que',
 dequeue_options => dopt,
 message_properties => mprop,
 payload => deq_order_data,
 msgid => deq_msgid);
 commit;

 dbms_output.put_line(' Order for Canada - Order: ' ||
 deq_order_data.getStringVal());

 EXCEPTION
 WHEN no_messages THEN
 dbms_output.put_line (' ---- NO MORE ORDERS ---- ');
 new_orders := FALSE;
 END;
 END LOOP;
end;

Enqueue Using AQ XML Servlet
You can perform enqueue requests over the Internet using IDAP.

Scenario
In the BooksOnLine application, the Order Entry system uses a priority queue to

store booked orders. Booked orders are propagated to the regional booked orders

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for further information about sending AQ requests using

IDAP.
24-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Enqueue Using AQ XML Servlet
queues. At each region, orders in these regional booked orders queues are

processed in the order of the shipping priorities.

Example 24–3 PL/SQL (DBMS_AQADM Package)

The following calls create the priority queues for the Order Entry application.

/* Create a priority queue table for OE: */
EXECUTE dbms_aqadm.create_queue_table(\
 queue_table => 'OE_orders_pr_mqtab', \
 sort_list =>'priority,enq_time', \
 comment => 'Order Entry Priority \
 MultiConsumer Orders queue table',\
 multiple_consumers => TRUE, \
 queue_payload_type => 'BOLADM.order_typ', \
 compatible => '8.1', \
 primary_instance => 2, \
 secondary_instance => 1);

EXECUTE dbms_aqadm.create_queue (\
 queue_name => 'OE_bookedorders_que', \
 queue_table => 'OE_orders_pr_mqtab');

Assume that a customer, John, wants to send an enqueue request using SOAP. The

XML message will have the following format.

<?xml version="1.0"?>
 <Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
 <producer_options>
 <destination>OE.OE_bookedorders_que</destination>
 </producer_options>

 <message_set>
 <message_count>1</message_count>

 <message>
 <message_number>1</message_number>
 <message_header>
 <correlation>ORDER1</correlation>
 <priority>1</priority>
 <sender_id>
 <agent_name>john</agent_name>
 </sender_id>
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-11

Enqueue Using AQ XML Servlet
 </message_header>

 <message_payload>
 <ORDER_TYP>
 <ORDERNO>100</ORDERNO>
 <STATUS>NEW</STATUS>
 <ORDERTYPE>URGENT</ORDERTYPE>
 <ORDERREGION>EAST</ORDERREGION>
 <CUSTOMER>
 <CUSTNO>1001233</CUSTNO>
 <CUSTID>JOHN</CUSTID>
 <NAME>JOHN DASH</NAME>
 <STREET>100 EXPRESS STREET</STREET>
 <CITY>REDWOOD CITY</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 <COUNTRY>USA</COUNTRY>
 </CUSTOMER>
 <PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
 <ITEMS>
 <ITEMS_ITEM>
 <QUANTITY>10</QUANTITY>
 <ITEM>
 <TITLE>Perl handbook</TITLE>
 <AUTHORS>Randal</AUTHORS>
 <ISBN>345620200</ISBN>
 <PRICE>19</PRICE>
 </ITEM>
 <SUBTOTAL>190</SUBTOTAL>
 </ITEMS_ITEM>
 <ITEMS_ITEM>
 <QUANTITY>10</QUANTITY>
 <ITEM>
 <TITLE>JDBC guide</TITLE>
 <AUTHORS>Taylor</AUTHORS>
 <ISBN>123420212</ISBN>
 <PRICE>59</PRICE>
 </ITEM>
 <SUBTOTAL>590</SUBTOTAL>
 </ITEMS_ITEM>
 </ITEMS>
 <CCNUMBER>NUMBER01</CCNUMBER>
 <ORDER_DATE>08/23/2000 12:45:00</ORDER_DATE>
 </ORDER_TYP>
 </message_payload>
24-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Dequeue Using AQ XML Servlet
 </message>
 </message_set>

 <AQXmlCommit/>
 </AQXmlSend>
 </Body>
</Envelope>

Dequeue Using AQ XML Servlet
You can perform dequeue requests over the Internet using SOAP.

In the BooksOnline scenario, assume that the East shipping application receives

AQ messages with a correlation identifier 'RUSH' over the Internet.

Example 24–4 Receiving and Dequeuing AQ XML Messages

The dequeue request will have the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
 <consumer_options>
 <destination>ES_ES_bookedorders_que</destination>
 <consumer_name>East_Shipping</consumer_name>
 <wait_time>0</wait_time>
 <selector>
 <correlation>RUSH</correlation>
 </selector>
 </consumer_options>

 <AQXmlCommit/>

 </AQXmlReceive>
 </Body>
</Envelope>

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for information about receiving AQ messages using SOAP.
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-13

IDAP and AQ XML Schemas
IDAP and AQ XML Schemas
IDAP exposes a SOAP and AQ XML schema to the client. All documents sent by the

parser are validated against these schemas:

■ SOAP schema — http://schemas/xmlsoap.org/soap/envelope/

■ AQ XML schema — http://ns.oracle.com/AQ/schemas/access

Frequently Asked Questions (FAQs): XML and Advanced Queuing

Can I Store AQ XML Messages with Many PDFs as One Record?
I am exchanging XML documents from one business area to another using Oracle

Advanced Queuing. Each message received or sent includes an XML header, XML

attachment (XML data stream), DTDs, and PDF files. I need to store all this

information, including some imagery files, in the database table, in this case, the

queuetable .

Can I enqueue this message into an Oracle queue table as one record or one piece?

Or do I have to enqueue this message as multiple records, such as one record for

XML data streams as CLOB type, one record for PDF files as RAW type? Then

somehow specify that these sets of records are correlated? Also, I want to ensure

that I dequeue this.

Answer: You can achieve this in the following ways:

■ You can either define an object type with (CLOB, RAW,...) attributes, and store it

as a single message

■ You can use the AQ message grouping feature and store it in multiple

messages. But the message properties will be associated with a group. To use

the message grouping feature, all messages must be the same payload type.

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing,
Chapter 8, for more detail on how to implement structured

message payloads applications using either DBMS_AQADM or

Java (JDBC)

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about DBMS_TRANSFORM.
24-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML and Advanced Queuing
Do I Specify Payload Type as CLOB First, Then Enqueue and Store?
[Follow on question from preceding FAQ] Do I specify the payload type as CLOB

first, then enqueue and store all the pieces, XML message data stream, DTDs, and

PDF,... as a single message payload in the Queue table? If so, how can I separate this

single message into individual pieces when I dequeue this message?

Answer: No. You create an object type, for example:

CREATE TYPE mypayload_type as OBJECT (xmlDataStream CLOB, dtd CLOB, pdf BLOB);

Then store it as a single message.

Can I Add New Recipients After Messages Are Enqueued?
I want to use the queue table to support message assignments. For example, when

other business areas send messages to Oracle, they do not know who should be

assigned to process these messages, but they know the messages are for Human

Resources (HR). So all messages will go to the HR supervisor.

At this point, the message has been enqueued in the queue table. The HR

supervisor is the only recipient of this message, and the entire HR staff have been

pre-defined as subscribers for this queue). Can the HR supervisor add new

recipients, namely additional staff, to the message_properties.recipient_list on the

existing the message in the queue table?

I do not have multiple consumers (recipients) when the messages are enqueued, but

I want to replace the old recipient, or add new recipients after the message has

already been in the queue table. This new message will then be dequeued by the

new recipient. Is this workable? Or do I have to remove the message from old

recipient, then enqueue the same message contents to the new recipient?

Answer: You cannot change the recipient list after the message is enqueued. If you

do not specify a recipient list then subscribers can subscribe to the queue and

dequeue the message.

In your case, the new recipient should be a subscriber to the queue. Otherwise, you

will have to dequeue the message and enqueue it again with the new recipient.

How Does Oracle Enqueue and Dequeue and Process XML Messages?
In an OTN document, it says that an Oracle database can enqueue and dequeue

XML messages and process them. How does it do this?
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-15

Frequently Asked Questions (FAQs): XML and Advanced Queuing
Do I have to use XML SQL Utility (XSU) in order to insert an XML file into a table

before processing it, or can I enqueue an XML file directly, parse it, and dispatch its

messages through the AQ process? Must I use XML SQL Utility every time I want

to INSERT or UPDATE XML data into Oracle9i Database?

Answer: AQ supports enqueing and dequeing objects. These objects can have an

attribute of type XMLType containing an XML Document, as well as other interested

“factored out” metadata attributes that might make sense to send along with the

message. Refer to the latest AQ document, Oracle9i Application Developer’s Guide -
Advanced Queuing to get specific details and see more examples.

How Can I Parse Messages with XML Content from AQ Queues?
I need a tool to parse messages with XML content, from an AQ queue and then

update tables and fields in an ODS (Operational Data Store). In short, I want to

retrieve and parse XML documents and map specific fields to database tables and

columns. Is Oracle9i Text a solution?

I can use XML SQL Utility (XSU) if I go with a custom solution. My main

concentration is supply-chain. I want to get metadata information such as, AQ

enqueue/dequeue times, JMS header information,.... based on queries on certain

XML tag values. Can I just store the XML in a CLOB and issue queries using

Oracle9i Text?

Answer: The easiest way to do this is using Oracle XML Parser for Java and Java

Stored Procedures in tandem with AQ inside Oracle9i.

Regarding the use of XSU:

■ If you store XML as CLOBs then you can definitely search it using Oracle9i Text

(aka interMedia Text), but this only helps you find a particular message that

matches a criteria.

■ If you need to do aggregation operations over the metadata, view the metadata

from existing relational tools, or use normal SQL predicates on the metadata,

then having it “only” stored as XML in a CLOB is not going to be good enough.

You can combine Oracle9i Text XML searching with some amount of redundant

metadata storage as “factored out” columns and use SQL statements that combine

normal SQL predicates with the Oracle9i Text CONTAINS() clause to have the best

of both.
24-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML and Advanced Queuing
Can I Prevent the Listener from Stopping Until the XML Document Is Processed?
I receive XML messages from clients as messages and need to process them as soon

as they come in. Each XML document takes about 15 seconds to process. I am using

PL/SQL. One PL/SQL procedure starts the listener and dequeues the message and

calls another procedure to process the XML document. The problem is that the

listener is held up until the XML document is processed. Meanwhile messages

accumulate in the queue.

What is the best way to handle this? Is there a way for the listener program to call

the XML processing procedure asynchronously and return to listening? Java is not

an option at this point.

Answer: After receiving the message, you can submit a job using the DBMS_JOB
package. The job will be invoked asynchronously in a different database session.

Oracle9i has added PL/SQL callbacks in the AQ notification framework. This

allows you register a PL/SQL callback which is invoked asynchronously when a

message shows up in a queue.

How Can I Use HTTPS with AQ?
I need to send XML messages to suppliers using HTTPS and get a response back.

Sending a message using HTTP does not appear to much of a problem using

something like java.net.URLConnection , however there does not seem to be

anything about making a HTTPS connection. Products like Portal and OC4J seem to

have an HTTP client in the source code does Oracle/anyone have one for HTTPS

connections which can be reused?

Answer: You can use Internet access functionality of Oracle9i AQ. Using this

functionality, you can enqueue and dequeue messages over HTTP(S) securely and

transactionally using XML. You can get more details on this functionality at:

http://otn.oracle.com/products/aq

What Are the Options for Storing XML in AQ Message Payloads?
When storing XML in AQ message payloads, is there any other way of natively

doing this other than having an ADT as the payload with sys.xmltype as part of the

ADT? For example, create or replace type object xml_data_typ AS object (xml_

See Also: Chapter 7, "Searching XML Data with Oracle Text".
Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams 24-17

Frequently Asked Questions (FAQs): XML and Advanced Queuing
data sys.XMLType) ; My understanding is that you can ONLY have either a

RAW or ADT as message payloads.

Answer: In Oracle9.0.1, this is the only way to store XMLTypes in queues. In

Oracle9i Release 2 (9.2), you can create queues with payload and attributes as

XMLType.

Can We Compare IDAP and SOAP?
Answer: IDAP is the SOAP specification for AQ operations. IDAP is the XML

specification for AQ operations. SOAP defines a generic mechanism to invoke a

service. IDAP defines these mechanisms to perform AQ operations.

IDAP in addition has the following key properties not defined by SOAP:

■ Transactional behavior. You can perform AQ operations in a transactional

manner. You transaction can span multiple IDAP requests.

■ Security. All the IDAP operations can be done only by authorized and

authenticated users.
24-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PartVIII

 Oracle XML DB Case Studies

Part VIII of this manual describes Oracle XML DB case studies and contains the

following chapters:

■ Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve and Display

XML Documents"

■ Chapter 26, "Oracle XML DB Basic Demo"

Oracle XML DB Case Study: Web Services Retrieve and Display XML Do
25

Oracle XML DB Case Study: Web Services

Retrieve and Display XML Documents

This chapter describes how you can access XML documents stored in Oracle XML

DB Repository through Web Services. It contains the following sections:

■ XML DB Web Services Case Study: Overview

■ Running XML DB Web Services Case Study: Implementation Steps

■ XML DB Web Services: Calling Sequence

■ XDBServices.java

■ getPOXMLServlet.java
cuments 25-1

XML DB Web Services Case Study: Overview
XML DB Web Services Case Study: Overview
This case study illustrates how you can use Web Services to fetch XML purchase

order (PO) documents stored in XML DB. Based on the PO number you enter from

the Browser, the application uses a Java servlet to invoke a Web Service that in turn

accesses XML DB and invokes Java API for XMLType. SQL queries are processed

and the application retrieves XML documents from XML DB as Java strings for

displaying on a Browser.

What Happens When You Enter a PO Number?
This application is invoked when you enter a PO number from a Browser. See

Figure 25–1.

Figure 25–1 Entering a Purchase Order (PO) Number

Oracle XML Db Web Services: Main Components
Figure 25–2 shows the main components used in the XML DB Web Services

application:

■ A Browser

■ SOAP client

Note:

■ This case study is intended to run on Internet Explorer 6.0 or

higher.

■ See also Chapter 26, "Oracle XML DB Basic Demo" for further

examples of how PO XML documents can be stored, accessed,

and processed in Oracle XML DB.
25-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
■ Web Services Server

■ Oracle XML DB on Oracle9i

Figure 25–2 XML DB Web Services Case Study: Main Components

Running XML DB Web Services Case Study: Implementation Steps
Follow these steps when running the XML DB Web Services case study.

Before You Run this Case Study Demo
Before you run this XML DB Web Services case study, carry out the following:

■ Ensure that you have Internet Explorer 6.0 or higher installed.

Browser

Oracle9 iAS or
other SOAP client

eg. Web Server

Oracle9 iAS Web
Services (SOAP)

Server

User enters PO Number

PO is retrieved and displayed in XML

1

2

SOAP/HTTP

JDBC

Oracle
XML DB

Oracle9 i
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-3

Running XML DB Web Services Case Study: Implementation Steps
■ Use Oracle9i JDeveloper to generate the Web Services files you need.

Figure 25–3 shows Oracle9i JDeveloper Java Bean Wizard. Use this to generate

the following three files used to access Web Services:

■ WSDL document, XDBServicesService.wsdl. See

"XDBServicesService.wsdl" on page 25-4.

■ Deployment Description, XDBServicesDeploymentDescriptor.dd.
See "XDBServicesDeploymentDescriptor.dd" on page 25-6.

■ Web Services client stub, XDBServicesStub.java . See

"XDBServicesStub.java" on page 25-6.

Listings of these three files are provided in the following paragraphs.

Figure 25–3 Using Oracle9i JDeveloper Java Bean Wizard

XDBServicesService.wsdl
<?xml version="1.0" ?>
- <!-- Generated by the Oracle9i JDeveloper Web Services WSDL Generator -->
- <!-- Date Created: Mon Jul 15 16:34:24 PDT 2002-->
- <definitions name=" XDBServices "
 targetNamespace=" http://www.oracle.com/jdeveloper/generated/XDBServices "
 xmlns="http://schemas.xmlsoap.org/wsdl/"
25-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.oracle.com/jdeveloper/generated/XDBServices"
 xmlns:ns1="http://www.oracle.com/jdeveloper/generated/XDBServices/schema">
- <types>
 <schema
 targetNamespace=" http://www.oracle.com/jdeveloper/generated/XDBServices/schema "
 xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" />
</types>
- <message name=" getPOFromNumber0Request ">
 <part name=" PONumber" type=" xsd:string " />
 </message>
- <message name=" getPOFromNumber0Response ">
 <part name=" return " type=" xsd:string " />
 </message>
- <message name=" getPOXML1Request ">
 <part name=" PONumber" type=" xsd:string " />
 </message>
- <message name=" getPOXML1Response ">
 <part name=" return " type=" xsd:string " />
 </message>
- <portType name=" XDBServicesPortType ">
- <operation name=" getPOFromNumber ">
<input name=" getPOFromNumber0Request " message=" tns:getPOFromNumber0Request " />
<output name=" getPOFromNumber0Response " message=" tns:getPOFromNumber0Response "
/>
</operation>
- <operation name=" getPOXML">
 <input name=" getPOXML1Request " message=" tns:getPOXML1Request " />
 <output name=" getPOXML1Response " message=" tns:getPOXML1Response " />
 </operation>
</portType>
- <binding name=" XDBServicesBinding " type=" tns:XDBServicesPortType ">
 <soap:binding style=" rpc " transport=" http://schemas.xmlsoap.org/soap/http " />
- <operation name=" getPOFromNumber ">
 <soap:operation soapAction="" style=" rpc " />
- <input name=" getPOFromNumber0Request ">
 <soap:body use=" encoded " namespace=" urn:POFetcher "
encodingStyle=" http://schemas.xmlsoap.org/soap/encoding/ " />
</input>
- <output name=" getPOFromNumber0Response ">
<soap:body use=" encoded " namespace=" urn:POFetcher "
encodingStyle=" http://schemas.xmlsoap.org/soap/encoding/ " />
</output>
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-5

Running XML DB Web Services Case Study: Implementation Steps
</operation>
- <operation name=" getPOXML">
 <soap:operation soapAction="" style=" rpc " />
- <input name=" getPOXML1Request ">
 <soap:body use=" encoded " namespace=" urn:POFetcher "
 encodingStyle=" http://schemas.xmlsoap.org/soap/encoding/ " />
 </input>
- <output name=" getPOXML1Response ">
 <soap:body use=" encoded " namespace=" urn:POFetcher "
 encodingStyle=" http://schemas.xmlsoap.org/soap/encoding/ " />
</output>
</operation>
</binding>
- <service name=" XDBServices ">
- <port name=" XDBServicesPort " binding=" tns:XDBServicesBinding ">
 <soap:address
 location=" http://dlsun653.us.oracle.com:7070/soap/servlet/rpcrouter " />
 </port>
 </service>
</definitions>

XDBServicesDeploymentDescriptor.dd
<?xml version="1.0" ?>
- <!-- Generated by the Oracle9i JDeveloper Web Services Deployment Descriptor
Generator -->
- <!-- This Deployment Descriptor file is for use with the Oracle9iAS Release 2
/ Apache 2.2 SOAP Server SOAP Server -->
- <!-- Date Created: Mon Jul 15 16:34:26 PDT 2002-->
 - <isd:service id="urn:POFetcher"
 xmlns:isd="http://xml.apache.org/xml-soap/deployment">
 - <isd:provider type=" java " methods=" getPOFromNumber getPOXML "
 scope=" Request ">
 <isd:java class=" XDBServices " static=" false " />
 </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

XDBServicesStub.java
package mypackage;
import oracle.soap.transport.http.OracleSOAPHTTPConnection;
import java.net.URL;
import org.apache.soap.Constants;
import org.apache.soap.Fault;
25-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
import org.apache.soap.SOAPException;
import org.apache.soap.rpc.Call;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;
import java.util.Vector;
import java.util.Properties;
/**
 * Generated by the Oracle9i JDeveloper Web Services Stub/Skeleton Generator.
 * Date Created: Mon Jul 15 16:36:21 PDT 2002
 */

public class XDBServicesStub
{
 public String endpoint = "http://localhost:7070/soap/servlet/rpcrouter";
 private OracleSOAPHTTPConnection m_httpConnection = null;

 public XDBServicesStub()
 {
 m_httpConnection = new OracleSOAPHTTPConnection();
 }

 public String getPOFromNumber(String PONumber) throws Exception
 {
 String returnVal = null;

 URL endpointURL = new URL(endpoint);
 Call call = new Call();
 call.setSOAPTransport(m_httpConnection);
 call.setTargetObjectURI("urn:POFetcher");
 call.setMethodName("getPOFromNumber");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 Vector params = new Vector();
 params.addElement(new Parameter("PONumber", String.class, PONumber, null));
 call.setParams(params);

 Response response = call.invoke(endpointURL, "");

 if (!response.generatedFault())
 {
 Parameter result = response.getReturnValue();
 returnVal = (String)result.getValue();
 }
 else
 {
 Fault fault = response.getFault();
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-7

Running XML DB Web Services Case Study: Implementation Steps
 throw new SOAPException(fault.getFaultCode(), fault.getFaultString());
 }

 return returnVal;
 }

 public String getPOXML(String PONumber) throws Exception
 {
 String returnVal = null;

 URL endpointURL = new URL(endpoint);
 Call call = new Call();
 call.setSOAPTransport(m_httpConnection);
 call.setTargetObjectURI("urn:POFetcher");
 call.setMethodName("getPOXML");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 Vector params = new Vector();
 params.addElement(new Parameter("PONumber", String.class, PONumber, null));
 call.setParams(params);

 Response response = call.invoke(endpointURL, "");

 if (!response.generatedFault())
 {
 Parameter result = response.getReturnValue();
 returnVal = (String)result.getValue();
 }
 else
 {
 Fault fault = response.getFault();
 throw new SOAPException(fault.getFaultCode(), fault.getFaultString());
 }

 return returnVal;
 }

 public void setMaintainSession(boolean maintainSession)
 {
 m_httpConnection.setMaintainSession(maintainSession);
 }

 public boolean getMaintainSession()
 {
 return m_httpConnection.getMaintainSession();
 }
25-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
 public void setTransportProperties(Properties props)
 {
 m_httpConnection.setProperties(props);
 }

 public Properties getTransportProperties()
 {
 return m_httpConnection.getProperties();
 }
}

Steps for Implementing the XML DB Web Services Case Study
Figure 25–4 lists the steps needed to implement this application.

Figure 25–4 Oracle XML DB Web Services Case Study: Implementation Steps

Implement XDBServices.java1 This invokes Java DOM API for XMLType

Implement getPOXMLServlet.java2 This calls XDBServicesStub.java

Deploy XDBServices class to the Oracle9 iAS SOAP Server3

Deploy displayPOXML.html , getServlet , and XDBServicesStub
to any client-side Web Server with a JSP/Servlet engine4

From your Internet Explorer browser, displays the deployed HTML page
(displayPOXML.html). Enter a PO number and click Submit Query.5

The requested PO is retrieved and displayed in XML on your browser6
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-9

Running XML DB Web Services Case Study: Implementation Steps
1. Run XDBServices.java
XDBServices.java accesses XML DB using Java DOM API for XMLType. This

Java Bean also:

■ Formats the XMLType query string

■ Connects to XML DB using a JDBC thick driver

■ Retrieves an XMLType instance

■ Returns the required XML PO document as a Java string

XDBServices.java implements the following actions:

1. Imports the Java DOM API for XMLType:

import oracle.xdb.XMLType;

Java DOM API for XMLType handles all kinds of valid XML documents. It

presents to the application a uniform view of the XML document regardless of

whether it is XML schema-based or non- schema-based, whatever the

underlying storage in Oracle XML DB. Java DOM API works on client and

server.

2. Formats the resulting query string:

static String qryXMLStr = "select value(x) from purchaseorder x where
existsNode(value(x),'/PurchaseOrder[Reference=\"PO_NUMBER\"]') = 1 ";

 public String getPOXML(String PONumber) throws Exception
 {
 String res = null;
 XMLType xt = null;
 XMLType xt1 = null;

3. Connects to XML DB using JDBC thick driver:

System.out.println("Driver registering...");
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 System.out.println("Driver registered");

 System.out.println("Connecting...");
 Connection conn = DriverManager.getConnection(conStr, user, pass);
 Hashtable map = (Hashtable) ((OracleConnection)conn).getTypeMap ();
 map.put ("SYS.XMLTYPE", Class.forName ("oracle.xdb.XMLTypeFactory"));
 System.out.println("Connection obtained");
25-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
4. Retrieves an XMLType instance:

//retrieve PurchaseOrder xml documnet from database
 System.out.println("Generating XMLType object ...");
 xt = (XMLType)orset.getObject(1);
 res = xt.getStringVal();
 System.out.println("Print out xt as String ...");
 System.out.println(res);
 System.out.println("##Results printed");
 }

5. Returns the XML PO document as a Java string:

return res;

2. Implement GetPOXMLServlet.java
GetPOXMLServlet.java performs the following tasks:

■ Accepts the user’s PO number entered at the Browser

■ Calls XDBServiceStub.java

■ Fetches the PO by invoking Web Service through XDBServices.java

■ Sends the PO to be displayed on the Browser

3. Deploy XDBServices Class to the Oracle9iAS/Web Services (SOAP) Server
To run this application you need to actually deploy the

XDBServicesDeploymentDescriptor.dd .

XDBServicesDeploymentDescriptor.dd
<?xml version="1.0" ?>
- <!-- Generated by the Oracle9i JDeveloper Web Services Deployment Descriptor
Generator -->
- <!-- This Deployment Descriptor file is for use with the Oracle9iAS Release 2
/ Apache 2.2 SOAP Server SOAP Server -->
- <!-- Date Created: Mon Jul 15 16:34:26 PDT 2002-->
 - <isd:service id="urn:POFetcher"

See Also: "XDBServices.java" on page 25-15 for the detailed

listing of XDBServices.java.

See Also: "getPOXMLServlet.java" on page 25-19 for the detailed

listing of getPOXMLServlet.java.
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-11

Running XML DB Web Services Case Study: Implementation Steps
 xmlns:isd="http://xml.apache.org/xml-soap/deployment">
 - <isd:provider type=" java " methods=" getPOFromNumber getPOXML "
 scope=" Request ">
 <isd:java class=" XDBServices " static=" false " />
 </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

Web Services: Deployed Service Information for POFetcher Service
Table 25–1 lists the Web Services POFetcher properties. The application uses one

of POFetcher’s method getPOXML. It uses XDBServices class to access Oracle

XML DB.

4. Deploy displayPOXML.html to Display Results on Client-Side Web Server
Deploy displayPOXML.html and Java classes, GetPOXMLServlet and

XDBServicesStub , to any client-side web server with a JSP/Servlet engine. See

Figure 25–5.

See Also: Oracle9i Java Developer’s Guide for a detailed description on
how to deploy a Web Service.

Table 25–1 urn:POFetcher Service Deployment Descriptor

Property Details

ID urn:POFetcher

Scope Application

Provider Type java

Provider Class XDBServices

Use Static Class false

Methods getPOFromNumber, getPOXML
25-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Running XML DB Web Services Case Study: Implementation Steps
Figure 25–5 Results of Deploying displayPOXML.html

5. Enter a PO Number and See the Retrieved PO Displayed
From your Internet Explorer Browser window, enter a PO number and click Submit

Query. Figure 25–6 shows the PO number entry field.
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-13

XML DB Web Services: Calling Sequence
Figure 25–6 Entering a Purchase Order (PO) Number

The requested PO is retrieved through the POFetcher Web Service and displayed

in XML on your Internet Explorer Browser.

XML DB Web Services: Calling Sequence
Figure 25–7 illustrates schematically XML DB Web Service application’s calling

sequence.
25-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XDBServices.java
Figure 25–7 XML DB Web Services: Calling Sequence

XDBServices.java
Here is full code listing for XDBServices.java . Its calling sequence was

explained in the preceding paragraphs:

/*
 XDBServices.java:

 DESCRIPTION:
 The server Java bean that provides the XML DB web services to fetch
 a user-specified PO.

 MODIFIED (MM/DD/YYYY)
 Geoff Lee 07/15/2002 - Cleaned up for viewlet recording

getPOXMLServlet.java is
executed and calls XDBServicesStub.java POFetcher Web

Services Identifier

** Enter PO number at browser:

** Requested PO is displayed at the browser in XML

SOAP Client:

XDBServices.java invokes GetPOXML method

SOAP Server:

** XML results are retrieved from XML DB Repository:

SOAP Server:

SOAP Client:

** Results are returned from the SOAP Server

** Results are returned to the SOAP Server
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-15

XDBServices.java
 */

import java.sql.*;
import java.io.*;
import java.util.Hashtable;

import oracle.jdbc.driver.*;
import oracle.sql.*;

import oracle.xdb.XMLType;

public class XDBServices
{
 static String conStr = "jdbc:oracle:oci8:@";
 static String user = "scott";
 static String pass = "tiger";

 static String qryXMLStr = "select value(x) from purchaseorder x where
existsNode(value(x),'/PurchaseOrder[Reference=\"PO_NUMBER\"]') = 1 ";

 static String qryStr = "select
x.transform(xdburitype('/public/SCOTT/xsl/po.xsl').getXML()) from purchaseorder
x where existsNode(value(x),'/PurchaseOrder[Reference=\"PO_NUMBER\"]') = 1 ";

 public String getPOFromNumber (String PONumber) throws Exception
 {
 String res = null;
 XMLType xt = null;
 XMLType xt1 = null;

 try{

 // Replace the PO_NUMBER placeholder with the input
 int po_start = qryStr.indexOf ("PO_NUMBER");
 String poQryStr = new StringBuffer(qryStr).replace(po_start, po_start +
9, PONumber).toString();
 System.out.println("poQryStr="+ poQryStr);

 System.out.println("Driver registering...");
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 System.out.println("Driver registered");

 System.out.println("Connecting...");
 Connection conn = DriverManager.getConnection(conStr, user, pass);
 Hashtable map = (Hashtable) ((OracleConnection)conn).getTypeMap ();
25-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XDBServices.java
 map.put ("SYS.XMLTYPE", Class.forName ("oracle.xdb.XMLTypeFactory"));
 System.out.println("Connection obtained");

 System.out.println("Statement preparing...");
 OraclePreparedStatement stmt =
(OraclePreparedStatement)conn.prepareStatement (poQryStr);
 System.out.println("Statement prepared");

 System.out.println("Query executing...");
 ResultSet rset = stmt.executeQuery(poQryStr);
 System.out.println("Query executed");
 OracleResultSet orset = (OracleResultSet) rset;
 System.out.println("ResultSet casted");

 while (orset.next())
 {
 //retrieve PurchaseOrder xml documnet from database
 System.out.println("Generating XMLType object ...");
 xt = (XMLType)orset.getObject(1);
 res = xt.getStringVal();

 System.out.println("Print out xt as String ...");
 System.out.println(res);
 System.out.println("##Results printed");
 }

 //close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();

 }
 catch(Exception e)
 {
 e.printStackTrace(System.out);
 }

 return res;

 }
 //
 // This method returns the PO in XML format
 //
 public String getPOXML (String PONumber) throws Exception
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-17

XDBServices.java
 {
 String res = null;
 XMLType xt = null;
 XMLType xt1 = null;

 try{
 // Replace the PO_NUMBER placeholder with the input
 int po_start = qryXMLStr.indexOf ("PO_NUMBER");

String poQryStr = new StringBuffer(qryXMLStr).replace(po_start, po_start
+ 9, PONumber).toString();

 System.out.println("poQryStr="+ poQryStr);

 System.out.println("Driver registering...");
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 System.out.println("Driver registered");

 System.out.println("Connecting...");
 Connection conn = DriverManager.getConnection(conStr, user, pass);
 Hashtable map = (Hashtable) ((OracleConnection)conn).getTypeMap ();
 map.put ("SYS.XMLTYPE", Class.forName ("oracle.xdb.XMLTypeFactory"));
 System.out.println("Connection obtained");

 System.out.println("Statement preparing...");
 OraclePreparedStatement stmt =
(OraclePreparedStatement)conn.prepareStatement (poQryStr);
 System.out.println("Statement prepared");

 System.out.println("Query executing...");
 ResultSet rset = stmt.executeQuery(poQryStr);
 System.out.println("Query executed");
 OracleResultSet orset = (OracleResultSet) rset;
 System.out.println("ResultSet casted");

 while (orset.next())
 {
 //retrieve PurchaseOrder xml documnet from database
 System.out.println("Generating XMLType object ...");
 xt = (XMLType)orset.getObject(1);
 res = xt.getStringVal();

 System.out.println("Print out xt as String ...");
 System.out.println(res);
 System.out.println("##Results printed");
 }
25-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

getPOXMLServlet.java
 //close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();

 }
 catch(Exception e)
 {
 e.printStackTrace(System.out);
 }

 return res;
 }
}

getPOXMLServlet.java
Here is the detailed listing of getPOXMLServlet.java:

/*
 GetPOServlet.java:

 DESCRIPTION:
 The Java servlet that
 1. Accepts a user-specified PO number
 2. Calls the client Java bean of the web service
 3. Display the PO fetched from the XML DB by the 'POFetched' web service

 */

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import XDBServicesStub;

public class GetPOServlet extends HttpServlet
{
 private static final String CONTENT_TYPE = "text/html; charset=windows-1252";
 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents 25-19

getPOXMLServlet.java
throws ServletException, IOException
 {
 String PONumber = "";
 String poResult = "";
 try
 {
 PONumber = request.getParameter("PONumberSelect");
 XDBServicesStub poBean = new XDBServicesStub();
 poResult = poBean.GetPO(PONumber);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(poResult);
 out.close();
 }

 public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
 {
 String PONumber = "";
 String poResult = "";
 try
 {
 PONumber = request.getParameter("PONumberSelect");
 XDBServicesStub poBean = new XDBServicesStub();
 poResult = poBean.GetPO(PONumber);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(poResult);
 out.close();
 }
}

25-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Ba
26

Oracle XML DB Basic Demo

This chapter describes how to install and use the Oracle XML DB Basic Demo. It

contains the following sections:

■ Prerequisites for Running the XML DB Basic Demo

■ Installing XML DB Basic Demo

■ What is Oracle XML DB?

■ Starting the XML DB Basic Demo

■ 0.1 XML DB Demo: Initial Setup (Run Once)

■ 0.2 XML DB Demo: Resetting the Demo

■ 1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support

■ 2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML

■ 3.0 XML DB Demo: How XML Files Conform to the XML Schema

■ 4.0 XML DB Demo: Simple XPath Queries Against XML Documents

■ 5.0 XML DB Demo: Using HTTP to Access XML Content

■ 6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL

■ 7.0 XML DB Demo: Using Views to Access XML from Relational Tools

■ 8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming

Content Using XSL

■ 9.0 XML DB Demo: OracleText Examples
sic Demo 26-1

Prerequisites for Running the XML DB Basic Demo
Prerequisites for Running the XML DB Basic Demo
You can also view and run this XML DB demonstration (demo) from:

http://otn.oracle.com/tech/xml/content.html

Before you run the XML DB Basio demo ensure you have installed the following

software:

Non-Oracle Software
Before installing and running the XML DB Basic demo, it is recommended that you

install the following non-Oracle software:

■ XMLSpy: XMLSpy is an XML Schema editor from Altova. If you do not have a

license for this product you can download an evaluation copy from

http://www.altova.com .

■ WS_FTP: This is a graphical FTP client from Ipswitch Software. The

demonstration is based on the LE version of this product. This can be

downloaded from http://www.ftpplanet.com/download.htm .

■ Microsoft cscript interpreter version 5.6 or later. You can verify the version of

cscript installed on your machine by typing the command cscript at a DOS

command prompt. The cscript processor is used to create shortcuts used during

the demonstration and to copy files from the install directory structure to the

demonstration directory structure. You should be able to download the

software from:

http://msdn.microsoft.com/downloads/default.asp?URL=/downl
oads/sample.asp?url=/msdn-files/027/001/733/msdncomposited
oc.xml

■ Microsoft DOM control and XMLParser for VBScript. This is used by the

installation script to process the configuration files. At the time of writing the

latest version of this software can be downloaded from:

http://msdn.microsoft.com/downloads/default.asp?url=/downl
oads/sample.asp?url=/msdn-files/027/001/766/msdncomposited
oc.xml

■ Microsoft Internet Explorer 6.0 with the latest service packs is strongly

recommended. You cannot use any version of Netscape for this demonstration.

Internet Explorer 5.5 has a number of serious page caching issues which will

mean that some sections of the demonstration will not work as expected.
26-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Prerequisites for Running the XML DB Basic Demo
■ Microsoft Office 2000 or Microsoft Office XP. The demonstration makes use of

Microsoft Word. Notepad or WordPad cannot be substituted as they are not

WebDAV enabled.

Oracle Software
Before installing and running the XML DB demo, it is recommended that you install

the following Oracle software:

■ Oracle Client (SQL*PLUS and Oracle Net Services Oracle9i Release 2 (9.2.0.1.0)

or later. To run this with an Oracle9i Release 2 (9.2.0.2.0) database you must

have an Oracle9i Release 2 (9.2.0.2.0) SQL*PLUS client installed. This

demonstration can be run against a remote database, however SQL*PLUS and

Oracle Net Services must be installed on the client machine.

Database SQL*NET and XML DB Configuration
Before starting the installation verify that Oracle Net Services, FTP, and HTTP are

correctly configured using the following steps:

1. Open a Windows Command Prompt session, change directory to the

basicDemo directory, and use SQL*PLUS to connect to the target database as

“SYS”.

 c:\...\BasicDemo>sqlplus "sys@ORCL92 as sysdba"

2. Verify that the SCOTT schema has been created and that EMP and DEPT tables

exist. If the SCOTT schema is not currently loaded it can be created using:

SQL> @?\rdbms\admin\utlsampl.sql

3. Confirm that Oracle XML DB is installed using:

SQL> set long 100000

SQL> set pagesize 0
SQL> select XDBUritype('/xdbconfig.xml').getXML()
 2 from dual
 3 /

Note: You will need to supply an appropriate TNSAlias in place

of ORCL92.
Oracle XML DB Basic Demo 26-3

Prerequisites for Running the XML DB Basic Demo
If XML DB is correctly installed XML DB configuration documents will be

displayed.

4. Install the XDB_UTILITY package by running the following script:

C:\...\basicDemo>sqlplus "sys@ORCL92 as sysdba"

SQL*Plus: Release 9.2.0.1.0 - Production on Fri Aug 16 12:09:42 2002

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Enter password:
Connected to:
Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production With the
Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

SQL> @SQL/xdbUtility

View created.

PL/SQL procedure successfully completed.

Package created.
No errors.

Package body created.
No errors.

Synonym created.
Grant succeeded.

SQL>

5. Grant your target user execute privileges on the XDB_PORTS package:

SQL> grant execute on XDB_UTILITY to SCOTT
 2 /

6. Verify the current FTP and HTTP port settings on your system by selecting from

the XDB_DATABASE_SUMMARY view:

SQL> set long 10000
SQL> select value(x) from XDB_DATABASE_SUMMARY (x)
 2 /
26-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Prerequisites for Running the XML DB Basic Demo
This should generate the following output:

VALUE(X)

<Database Name="ORCL92" HTTP="8080" FTP="2100">
 <Services>
 <ServiceName>ORCL92.xp.mark.drake.oracle.com</ServiceName>
 </Services>
 <Hosts>
 <HostName>MDRAKE-LAP</HostName>
 </Hosts>
</Database>

7. If the port numbers shown are not the required ports, you can use the following

procedure to reconfigure the ports:

■ FTP:

SQL> call XDB_UTILITY.SET_FTP_PORT(nnnn);

■ HTTP:

SQL> call XDB_UTILITY.SET_HTTP_PORT(nnnn);

In these preceding examples nnnn represents the target port number. The

chosen FTP and HTTP port numbers cannot:

■ Be the same value

■ Be in by any other service on the system

In general the selected port numbers should not be privileged port numbers

(0-1023). After resetting the port numbers validate the new numbers have been

accepted by repeating step 4.

8. Verify that there are no HTTP or FTP port conflicts with other database

instances running on the same host. You can do this by checking the status of

the database Listener using the following command:

C:\TEMP>lsnrctl status

Note: The preceding example shows the default XML DB port

numbers set when XML DB is installed. These may not match the

values in your environment.
Oracle XML DB Basic Demo 26-5

Prerequisites for Running the XML DB Basic Demo
If you are running against a remote database you should check the status from a

DOS Command Prompt session or Telnet session attached to the remote

machine.

9. Examine the output of the status command. Verify that the Listener is

monitoring HTTP and FTP requests on the port numbers identified in step 4.

The Status command should generate output similar to the following:

LSNRCTL for 32-bit Windows: Version 9.2.0.1.0 - Production on 05-AUG-2002
16:01:37
Copyright (c) 1991, 2002, Oracle Corporation. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC0)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for 32-bit Windows: Version 9.2.0.1.0 -
Production
Start Date 03-AUG-2002 21:45:08
Uptime 1 days 18 hr. 16 min. 28 sec
Trace Level off
Security OFF
SNMP OFF
Listener Parameter File C:\oracle\ora92\network\admin\listener.ora
Listener Log File C:\oracle\ora92\network\log\listener.log
Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC0ipc)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mdrake-lap)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mdrake-lap)(PORT=8080))
 (Presentation=HTTP)(Session=RAW))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mdrake-lap)(PORT=2100))
 (Presentation=FTP)(Session=RAW))
Services Summary...
Service "ORCL92.xp.mark.drake.oracle.com" has 2 instance(s).
Instance "ORCL92", status UNKNOWN, has 1 handler(s) for this service...
Instance "ORCL92", status READY, has 2 handler(s) for this service...
Service "ORCL92XDB.xp.mark.drake.oracle.com" has 1 instance(s).
Instance "ORCL92", status READY, has 1 handler(s) for this service...
Service "PLSExtProc" has 1 instance(s).
Instance "PLSExtProc", status UNKNOWN, has 1 handler(s) for this service...
The command completed successfully

If the output from the Status command shows multiple entries for the HTTP

and FTP presentations, check that no port number appears more than once. If a

given port number appears more than once, it means that two or more database
26-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Prerequisites for Running the XML DB Basic Demo
instances are trying to service that port. This is not permitted. All of the

database instances running on a given host must be assigned unique FTP and

HTTP port numbers.

10. If multiple database instances have been configured to service the same port,

ensure that unique port numbers are assigned for each instance.

Connect to each instance in turn, and repeat steps 4, 5, 6, and 7, providing

appropriate values for the FTP and HTTP ports. You can stop a database from

servicing FTP and HTTP requests by setting the port number to 0. Once all of

the database instances have been reconfigured, use the Listener Status
command to check that each database instance has been reconfigured to service

unique FTP and HTTP port numbers.

Verify SQL*NET and XML DB Configuration
Verify that Oracle Net Services (NET*8), FTP, and HTTP protocols are configured as

expected using the following procedure. This example assumes that the TNSALIAS
ORCL92 can be used to establish a connection to the target database.

1. Verify the FTP configuration by connecting to the target database using FTP

with the following commands:

C:\temp >ftp -n
ftp> open localhost 2100
Connected to mdrake-lap.
220 mdrake-lap FTP Server (Oracle XML DB/Oracle9i Enterprise Edition Release
9.2.0.1.0 - Production) ready.
ftp> user scott tiger
331 pass required for SCOTT
230 SCOTT logged in

When connecting to the FTP Server ensure that you replace:

■ localhost with the name of the server hosting the database instance

■ 2100 with the value of the target FTP port.

2. Retrieve the contents of databaseSummary.xml file using the following

commands:

ftp> get /sys/databaseSummary.xml

200 PORT Command successful
150 ASCII Data Connection
<Database Name="ORCL92" HTTP="8080"
Oracle XML DB Basic Demo 26-7

Installing XML DB Basic Demo
FTP="2100"><Services><ServiceName>ORCL92.xp.mark.drake.oracle.com</ServiceNa
me></Services><Hosts><HostName>MDRAKE-LAP</HostName></Hosts></Database>226
ASCII Transfer Complete
ftp: 183 bytes received in 0.01Seconds 18.30Kbytes/sec.
ftp>

3. Verify the HTTP configuration by launching Internet Explorer and entering the

URL contained in the HTTP tag into the address bar. For example:

http://MDRAKE-LAP:8080/sys/databaseSummary.xml

The Browser will prompt for a username and password. Enter the name and

password of the database user that will be used when running the XML DB

Basic Demo. If the HTTP configuration is correct the Browser should display the

contents of the file:

- <Database Name="ORCL92" HTTP="8080" FTP="2100">
- <Services>
 <ServiceName>ORCL92.xp.mark.drake.oracle.com</ServiceName>
 </Services>
- <Hosts>
 <HostName>MDRAKE-LAP</HostName>
 </Hosts>
 </Database>

Installing XML DB Basic Demo
To install XML DB Basic Demo unzip the file XDBBasicDemo.zip into a folder of

your choice. When you unzip the installation file it creates folder basicDemo /.

This folder contains a sub-folder install/ . which in turn contains file

install.vbs . install.vbs installs the XML DB Basic Demo.

Open a DOS Command Prompt session in the basicDemo/ directory. The

following information is required in order to install this XML DB demonstration:

■ The correct path for the client side ORACLE_HOME.

■ The name of a TNSALIAS that can be used to establish an Oracle Net Services

connection to the target database.

■ The hostname and port numbers required to establish HTTP and FTP

connections to the target database.

■ The username and password for a user who has been granted CONNECT and

RESOURCE privileges on the target database.
26-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Installing XML DB Basic Demo
■ The correct path to the installed copy of WS_FTP.

■ The correct path to the installed copy of Microsoft Word.

Editing installParameters.xml
install/ folder also contains file installParameters.xml that drives the

installation process. This file contains arguments used to tailor the installation.

1. Edit tinstallParameters.xml using a text or XML editor. The file is simple

enough that it can easily be edited in Notepad. The file has the following

format:

<demoConfig>
 <oracleHome>c:\oracle\ora92</oracleHome>
 <oracleUser>SCOTT</oracleUser>
 <oraclePassword>TIGER</oraclePassword>
 <oracleSID>ORCL92</oracleSID>
 <sqlPort>1521</sqlPort>
 <listenerName>LISTENER</listenerName>
 <hostName>localhost</hostName>
 <httpPort>8080</httpPort>
 <ftpPort>2100</ftpPort>
 <msWordPath>
 c:\Program Files\Microsoft Office\Office\WINWORD.EXE
 </msWordPath>
 <ftpPath>c:\Program Files\WS_FTP\WS_FTP95.exe</ftpPath>
 <shortCutFolderName>XML DB Basic Demo</shortCutFolderName>
</demoConfig>

2. Make any changes required. Pay special attention to the values for:

■ <oracleHome>

■ <oracleSID>

■ <httpPort>

■ <ftpPort>

3. Save the file. After editing installationParameters.xml file verify that

the file still contains well-formed XML by opening it in Internet Explorer.

Running the Installation Script
Carry out these steps to run the XML DB demo installation script:
Oracle XML DB Basic Demo 26-9

Installing XML DB Basic Demo
1. Run the installation script by double-clicking the install.vbs script. See

Figure 26–1. The script prompts you for confirmation before starting the

configuration process:

Figure 26–1 Prompting You for Confirmation

2. Click OK to configure the demo.

At the end of the installation process the script will report installation complete.

Figure 26–2 Installation Complete

3. Click OK to complete installation of the demonstration.

Note: If it turns out that the values supplied using

installParameters.xml were not correct, they can be correct by

editing the file and then re-executing the install.vbs script.
26-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

What is Oracle XML DB?
What is Oracle XML DB?
Oracle XML DB is the term for set of features in Oracle9i Release 2 (9.2) database

that deliver high-performance storage and retrieval of XML. These features allow

the database to absorb the W3C XML data model. The technology included with

Oracle9i Release 2 means that the database is now a native XML database in

addition to being the most complete relational database.

New Methods for Navigating and Querying XML
Oracle XML DB provides organization with a storage independent, content

independent, and programming language independent infrastructure to store and

manage XML data. It also provides new methods for navigating and querying XML

content stored inside the database. With Oracle XML DB, you get all the advantages

of relational database technology and XML technology at the same time.

Several Options for Storing XML in the Database
Oracle XML DB offers a number of options for managing how XML documents will

be stored in the database. Options include:

■ Unstructured storage, where the document is simply stored as a CLOB

■ Structured storage, where the XML document is shredded into a set of objects

Fully Supports XPath Access Methods
As anyone who has worked with XML quickly realizes, XML is closely tied to

hierarchical metaphors. The standard mechanism used to query or access content

contained in an XML Document is XPath. XPath is a W3C standard that defines a

language for addressing parts of an XML document. XPath uses a path-based

notation to navigate through the hierarchical structure of an XML document. When

an XML document needs to refer to another XML document, the standard way to

reference the target document is using a URL. Like XPath, URLs uses a path-based

notation to identify the document in question. Oracle XML DB provides full

support for these access methods.

Use XPath Expressions to Query and Update XML
A number of the features provided by Oracle XML DB allow you to use XPath

expressions to query and update content in XML Documents. Oracle XML DB also

includes a simple, light-weight, Repository that allows the relationships between

XML documents to be expressed using a URL. This Repository also makes it
Oracle XML DB Basic Demo 26-11

Starting the XML DB Basic Demo
possible to access XML content using a URL. This means that you have the option

of accessing XML objects using both relational and hierarchical mechanisms.

Oracle XML DB Components
The major components of Oracle XML DB are:

■ XMLType: A native server data-type that allows the database to understand that

a column or table contains XML, in the same way that the DATE data-type

allows the database to understand that a column contains a date. XMLType also

provide methods that allow common operations such as XML schema

validation and XSL Transformation to be performed on XML content.

■ XMLSchema: Oracle XML DB provides full support for the W3C XML Schema

Recommendation. Once an XML schema has been registered with Oracle XML

DB, any instance document can be validated against the XML schema. The XML

schema is also be used to define how instance documents that conform to the

schema should be stored in the database.

■ XML DB Repository: Oracle XML DB Repository makes it possible to use URLs

to define the relationships between XML documents and to access the contents

of documents using a path based metaphor. This is important for those

applications that view XML content using a document-centric approach. Oracle

XML DB also adds native support for the HTTP, FTP, and WebDAV protocols

allowing standard clients, such as Windows Explorer and Microsoft Office to

directly access XML content stored in Oracle XML DB. The Repository also

provides support for basic versioning and access control based on the IETF

WebDAV standard.

■ SQL/XML: Oracle XML DB also provides an implementation of many of the

operators that will incorporated into the forthcoming SQL/XML standard.

These operators fall into two categories:

■ A set of operators that make it possible to query and access XML content as

part of normal SQL operation.

■ A set of operators that provide an industry standard metaphor for

generating XML from the result of a SQL SELECT statement.

Starting the XML DB Basic Demo
To start the XML DBBasic Demo, open the folder XML DB Basic Demo . If the

demo has been installed correctly this folder will be located on your Desktop.

Figure 26–3 displays the icons you will see when you open the BasicDemo/ folder.
26-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

0.1 XML DB Demo: Initial Setup (Run Once)
Figure 26–3 XML DB basic Demo Folder Icons

As you can see, the icons in this folder are numbered. The demonstration is given

by clicking on each of the icons in this folder in turn.

0.1 XML DB Demo: Initial Setup (Run Once)
Before giving the demonstration for the first time you must run this script.

This script does not need to be run again unless the database is dropped and

re-created. The script does the following:

■ Creates global database objects that are used elsewhere in the demonstration
Oracle XML DB Basic Demo 26-13

0.2 XML DB Demo: Resetting the Demo
■ Creates the ‘/home’ folder,

■ Sets the appropriate ACL on the folder

■ Ensures that all necessary permission have been granted to the target user

Some of these operations may generate errors if the demo is run as user SCOTT. You

can ignore these.

0.2 XML DB Demo: Resetting the Demo
Prior to giving the demonstration it is necessary to run this script. This script will

remove all files under the chosen user’s home folder and ensure that the

environment is clean. Operations like deleteSchema() may generate errors.

These can be safely ignored.

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
This step demonstrates the native WebDAV support included as part of Oracle XML

DB. Click the 1.0 localhost icon to open a Web Folders (WebDAV) session to XML

DB Repository. You will be prompted for username and password. Enter the

appropriate database user and password and click OK. Figure 26–4 shows the

displayed window.
26-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
Figure 26–4 XML DB on Localhost

Key Points:

■ WebDAV is an IETF standard that defines a set of extensions to the HTTP

protocol that allow an HTTP Server to act as a file server for a DAV enabled

client.

■ Windows Explorer can connect directly to the XML DB Repository using the

WebDAV protocol. No Oracle or Microsoft specific software has been installed

in order make this work. The location shown in the address path is an HTTP

based URL. Since Windows Explorer knows that is talking to a WebDAV server

it displays the content of the folder as a File System.

■ The benefit of providing WebDAV support as part of Oracle XML DB is that it

allows standard clients, which understand the WebDAV protocol, to access and

store XML content in Oracle XML DB with out requiring any special adaptors

or plugs-in technology”

■ From a database perspective there are no new moving pieces required. The

database and TNS listener support FTP, HTTP and WebDAV in just the same

manner as they support Oracle Net Services (NET*8). The listener receives FTP

or HTTP requests in the same way that it receives Oracle Net Services (NET*8)
Oracle XML DB Basic Demo 26-15

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
requests and hands them off to a shared server process which services the

request.

This can be shown by opening a command window on the server machine and

issuing the command:

c:\temp> lsnrclt status

Open the home folder. This should contain a folder called SCOTT/, assuming

that SCOTT was the name of the demonstration user. Open the SCOTT/ folder.

The SCOTT/ folder should be empty. Create a new folder by using right mouse

button. Select New -> Folder.

Figure 26–5 Creating a New Folder

Give the new folder a clearly identifiable name.

Key Points:

■ End users can work with the Oracle XML DB Repository using the tools

and interfaces that they are already familiar with.

Do not close the window at this point.
26-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
1.1 Using SQL to Make Directories
This step demonstrates that Oracle XML DB Repository can be accessed and

updated from SQL, as well as through protocols. It also shows that, when accessed

using SQL, Repository operations are transactional.

1. Execute the SQL script by clicking on the icon 1.1 Make Directories.

Figure 26–6 Making Directories

The script create a set of folders inside folder /home/SCOTT .

2. Do not close the SQL*PLUS session at this point.

Key Points:

■ Oracle XML DB Repository SQL as well as standard protocols such as

WebDAV and FTP will be used to access and manipulate the Repository.
Oracle XML DB Basic Demo 26-17

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
■ PL/SQL package DBMS_XDB can be used to perform operations on the

Repository from SQL. This means that any program that can call a PL/SQL

procedure can work with Oracle XML DB Repository.

3. Click the window containing the WebDAV view of /home/SCOTT . Click the

Refresh option. Note that the folders that were created by executing the

PL/SQL script are NOT visible, even after refreshing the display.

Key points:

■ This is the expected behavior. PL/SQL operations are transactional, and the

transaction has not been committed. Consequently the changes made in the

PL/SQL session are not visible to other users.

4. Click the Window containing the SQL*PLUS session and commit the

transaction. Close the SQL*PLUS window.

5. Click the window containing the WebDAV view of /home/SCOTT . Click the

Refresh option. Note that the folders created by executing the PL/SQL script

are now visible.
26-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
Figure 26–7 Executing the PL/SQL Script: Folders are Visible

6. Close the SQL*PLUS window by typing QUIT at the SQL> prompt. Close the

WebDav window.

1.2 Using FTP to Load Configuration Files
This shows how a standard FTP client can load documents into Oracle XML DB

Repository. This step assumes that you are using WS_FTP95 from Ipswitch

software. The reason this client was used is that it can be configured to make it easy

to run the demonstration. In practice any FTP client can be used. If you choose to

use WS_FTP ensure that you have a legal license.

1. Click the 1.2 Load Configuration Files icon to open the FTP Client and establish

an FTP connection to XML DB Repository.
Oracle XML DB Basic Demo 26-19

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
Figure 26–8 Loading Configuration Files

2. Enter the database user’s password and click OK. The FTP Client will connect

to the database. The dialog in Figure 26–8 is displayed:

3. Enter the password for your user and click OK. After entering the password the

window in Figure 26–9 is displayed.
26-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
Figure 26–9 Displaying the FTP Client

4. Click the SCOTT folder in Local System pane, and then click the lower arrow to

transfer the SCOTT folder from the local hard drive to Oracle XML DB

Repository. If prompted to confirm the operation do so. When the operation has

completed click Exit.

If you choose to use a different FTP tool then you need to ensure that all the

files and folders under local SCOTT folder are copied to the /home/SCOTT

folder in Oracle XML DB Repository. The local version of the SCOTT folder is

located in basicDemo\LOCAL\Configuration Files .

Key Points:

■ A standard FTP Client, which has no knowledge of Oracle or the Oracle

XML DB has been used to upload a set of documents into Oracle XML DB

Repository.

■ This procedure uploaded a directory tree containing an XML schema

document, an HTML page, and a couple of XSLT style sheets.

■ The Oracle XML DB repository can be used to store non XML content, such

as HTML files, JPEG images, word documents etc, as well as Schema based

and non-Schema based XML content.
Oracle XML DB Basic Demo 26-21

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
5. Close the FTP Client by clicking on the Exit button.

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
This step introduces the concept of XML Schema and Oracle XML DB’s ability to

shred and store XML documents using structured storage based on SQL99 object

types. It uses XMLSpy from Altova.

Key Points:

■ Oracle XML DB supports the W3C XML Schema Recommendation.

■ The W3C XML Schema Recommendation provides a specification for an

XML language that can be used to define the structure of a set of XML

documents. An XML schema definition is itself an XML document that is

compliant with a well known XMLSchema defined by the W3C, known as

the Schema for Schemas.

■ XML Schema allows for strong typing of the elements and attributes in a

document. It defines 47 scalar data types. The base set of types defined by

XMLSchema can be extended using object-oriented techniques such as

inheritance and extension to define more complex types.

■ The most common usage of an XML schema is as a mechanism for

validating that a set of XML instance documents conform with the XML

Schema. Oracle XML DB can use XML schema in this manner.

■ Oracle XML DB represents XML as instances of the XMLType data type. The

XMLType makes the database XML aware and provides a convenient

abstraction for storing, retrieving, querying and manipulating XML.

Oracle XML DB provides two options for storing XML in the database:

* The first, referred to as Unstructured Storage, uses the CLOB data type to

persist the XML as a string of bytes in the database.

* The second, referred to as Structured Storage, involves shredding the

XML and then persisting the content as a set of SQL objects. These

objects are based on the SQL’99 object standard.

– Structured storage is only available when the XML conforms with an

XML schema. Oracle XML DB uses the XML schema to generate the set

of SQL objects required to persist the content of the instance

documents.
26-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
– Structured storage provides a number of advantages for managing

XML. These include optimized memory management, reduced storage

requirements, b-tree indexing over collections, and partial, in-place

updates. These advantages are at a cost of increased overhead during

ingestion and retrieval.

■ Database administrators and Application developers can tune performance by

annotating the XML schema to control how collections are managed.

In this demo, one of the documents loaded into the database was an XML schema.

This step uses XMLSpy to demonstrate the key features of Oracle XML DB’s

support for the W3C XML Schema Recommendation.

1. Click the icon to launch XMLSpy. Click the + sign next to the DTD/Schemas

entry in the Project Window. This branch should contain an item called

http://mdrake-lap:8080/home/SCOTT/xsd/purchaseOrder.xsd .

Double click this item to open it.

2. You will be prompted for the database password.

Enter the password and Click OK.

XMLSpy displays a graphical representation of the elements and types defined

by the PurchaseOrder XML schema.
Oracle XML DB Basic Demo 26-23

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
Figure 26–10 XMLSpy’s Graphical Representation of Elements and Types Defined by
the XML Schema

3. Click the control button next to the PurchaseOrder element. Then click the +

sign next to the lineItems element, followed by the + sign next to the

lineItem element. Finally click the part element.

At this point XMLSpy displays a graphical representation of the PurchaseOrder

XML schema.
26-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
Figure 26–11 XMLSpy Displays the PurchaseOrder XML Schema

Key Points:

■ XMLSpy supports both WebDAV and FTP protocols. This allows XMLSpy

to directly access content stored in Oracle XML DB.

■ The global element PurchaseOrder is an instance of the complexType

PurchseOrderType . PurchaseOrderType defines a set of elements that

make up a PurchaseOrder document. One of these is LineItems which

contains a collection of LineItem elements.

■ Each LineItem elements consists of two elements, Description and

Part.
Oracle XML DB Basic Demo 26-25

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
■ Part element has attributes Id , Quantity, and UnitPrice .

■ The PurchaseOrder schema is a relatively simple XML schema that

demonstrates the key features of a typical XML document. What is being

viewed here is a graphical representation of the XML schema.

4. Click the control button on the Toolbar to switch to the textual view of the XML

schema. This displays the XML schema, in its native form. It is an XML

document that conforms to the Schema for Schema defined by the W3C XML

Schema committee.

Figure 26–12 XML Schema Displayed in Native Form, an XML Document

Key Points:
26-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
■ This XML schema defines two namespaces:

* http://www.w3c.org/2001/XMLSchema , is the namespace

reserved by the W3C consortium for the Schema for Schemas. This

namespace is used to define the structure of the XML document.

* http://xmlns.oracle.com/xdb is the namespace reserved by

Oracle for Oracle XML DB annotations schema annotations. This

namespace is used to add annotations to the schema that control how

the instance documents will be stored in the database.

The annotation mechanism is the W3C approved mechanism for adding

Vendor-specific information to a W3C XML Schema.

■ Oracle XML DB can register a schema which contains no annotations. It

makes use a set of default assumptions to register the Schema. The

annotations provide the application developer or database administrator

with the ability to override these assumptions.

■ Annotations can be used to override the following:

* The naming of Tables, SQL Objects and SQL Attributes.

* How collections are managed

* The mapping between XMLSchema data types and SQL data types.

■ In this schema the following annotations are being used:

* The defaultTable annotation is used in the PurchaseOrder
element to define that XML documents, compliant with this schema

will be stored in a table called PURCHASEORDER.

* The SQLType annotation is used to provide an explicit name for the

SQL Type that will be generated form the complexType

PurchaseOrderType .

5. Click the control button on the Toolbar to switch back to the graphical view of

the XML schema.
Oracle XML DB Basic Demo 26-27

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
Figure 26–13 A Graphical View of XML Schema

Key Points:

■ XMLSpy provides an Oracle tab that allows Oracle XML DB schema

annotations to be entered while working in graphical editing mode.

6. Click the icon next to the PurchaseOrderType complexType.

7. Do not close this window yet.

2.1 Registering XML Schema
This step demonstrates how to make Oracle XML DB aware of an XML schema. At

this point in the demonstration the XML schema has simply been stored in the
26-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
Oracle XML DB Repository. The database is not aware of the existence of the XML

schema.

1. Execute the SQL script by clicking on the 2.1 Register XML Schema icon.

Figure 26–14 Executing the dbms_xmlschema.registerSchema Script

Key Points:

■ The XML schema is registered under a URL. The URL is the URL that an

XML instance document will use to identify itself as a member of the class

defined by the XML schema.

■ The method for identifying an XML document as a member of the class of

documents defined by the XML schema is defined by the W3C XML

Schema Working Group.

See Also: Chapter 5, "Structured Mapping of XMLType"
Oracle XML DB Basic Demo 26-29

2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
■ The URL is simply a key used to associate the instance document with the

registered XML schema. Oracle XML DB does need to be able to access the

URL.

■ The registerSchema() procedure is responsible for creating all of the

objects and type defined by the XML schema.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

2.2 Objects Are Created With XML Schema Registration
This step shows some of the objects created as a result of registering the XML

schema.

1. Execute the SQL script by clicking on the 2.1 Show Objects Icon.

Figure 26–15 Using DESCRIBE to List Objects Created During XML Schema
Registration
26-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Key Points:

■ The PurchaseOrder table is an Object table. Each row in the table is

represented by an Object. The Object in question is an XMLType.

■ The table manages XML documents with a root node of PurchaseOrder .

The definition of a PurchaseOrder element is defined by the XML schema

registered under the URL

http://mdrake-lap:8080/home/SCOTT/xdb/purchaseOrder.xsd

■ Scrolling the display to the right to show that each PurchaseOrder

document is stored object-relationally as an instance of the XDBPO_TYPE
object.

■ The SQL attributes of the XDBPO_TYPE object are derived from the

elements and attributes defined by the complexType

PurchaseOrderType .

2. Click the XMLSpy window. Compare the SQL*PLUS description of the XDBPO_
TYPE with XMLSpy’s graphical representation of the complexType.

3. Close the SQL*PLUS window by typing QUIT at the SQL> prompt. Close

XMLSpy.

3.0 XML DB Demo: How XML Files Conform to the XML Schema
This step demonstrates that the sampleData folders on your local hard-drive

contain instance documents that conform with the registered XML schema.

1. Click the 3.0 Sample Files icon to open the sampleData folder. Open folder

1999 . Open the folder Apr . Right click the document

ADAMS-20011127121040988PST.xml and select Open.

This should launch Internet Explorer and display the document. If the

document opens with some other application use the FolderOptions feature

of Windows Explorer to adjust the file association.
Oracle XML DB Basic Demo 26-31

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Figure 26–16 Displaying Document ADAMS-2011127121040988PST.xml

Key Points:

■ The file is compliant with the XML schema.

■ The noNamespaceSchemaLocation attribute is used to identify the

document as an instance of the class of documents defined by the XML

schema.
26-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
2. Close Internet Explorer and the sampleData/1999/Apr window. Re-Open the

Demonstration Folder, located on your Windows Desktop.

3.1 Using FTP to Load Instance Documents
This step involves using FTP to copy the 1999 folder tree into Oracle XML DB

Repository. It demonstrates how Oracle XML DB recognizes the documents as

instances of the registered XML schema, and processes them accordingly.

1. Click this icon to open the FTP Client and establish an FTP connection to XML

DB Repository. Enter the database user’s password when prompted and click

OK. After entering the password the following window is displayed.

Figure 26–17 Using FTP to Copy 1999 Structure to Oracle XML DB Repository

2. Click the 1999 folder in the Local System pane, and then click the lower arrow

to copy the 1999 folder, and all of it’s subfolders from the local hard drive to

the home/SCOTT/purchaseOrders folder in Oracle XML DB Repository.

When the operation has completed click Exit.

Key Points:
Oracle XML DB Basic Demo 26-33

3.0 XML DB Demo: How XML Files Conform to the XML Schema
■ A standard FTP client has been used to load content directly into the Oracle

database. No additional moving parts or servers were required. This is

possible because Oracle XML DB supports FTP and HTTP/WebDAV, a set

of protocols understood by the database.

■ Since the root node of each document included a

noNameSpaceSchemaLocation attribute that identified them as a

instance of the registered XML schema, the documents were shredded and

stored as a set of objects in the database.

3. Close the FTP client by clicking the EXIT button.

3.2 Using SQL to Add Constraints to XML Data
This step involves showing how you can leverage SQL functionality when storing

XML documents in Oracle XML DB. Adding constraints to the table constrains the

XML data. This step also enables full XML schema validation of the XML

documents.

Key Points:

■ XML schema is powerful. This release of Oracle XML DB supports version 1.0

of the XML Schema Recommendation. However there are some fairly simple

concepts that cannot be expressed using XML schema. These include:

■ Specifying that the value of an element or attribute has to be unique across

a collection of documents. In SQL terms, a simple UNIQUE constraint.

■ Specifying that the value of some element or attribute must match a value

in another document, or even some non-XML schema-based data store such

as a relational table or LDAP directory.

■ By using Oracle XML DB to manage XML you can leverage the power of SQL to

address these shortcomings. In SQL terms, a simple FOREIGN KEY constraint.

■ Oracle XML DB does not automatically perform full schema-validation of

documents as they are inserted into the database. Full schema-validation is

optional.

■ By default, Oracle XML DB performs a light weight validation of each

document. It checks that mandatory elements and attributes are

present, and that number of elements within a collection is compliant with

See Also: Chapter 4, "Using XMLType"
26-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
the values defined in the XML schema, and that enumerations are

complied with.

■ It does not check pattern matches, minimum lengths,... This is a

performance optimization. Schema-validation is a fairly CPU intensive

operation, and it was felt that many applications would choose to perform

full validation on the document before inserting it into the database, so it

would be sub-optimal for the database to immediately validate the

document again.

■ Full XML schema-validation can be enabled on a schema by schema basis

using a CHECK CONSTRAINT or Trigger.

1. Execute the SQL script by clicking on the 3.2 Add Constraints icon.
Oracle XML DB Basic Demo 26-35

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Figure 26–18 Adding Constraints and Creating Triggers

Key Points:

■ Currently SQL’99 Object syntax has to be used when defining constraints. A

future release of Oracle XML DB will allow constraints to be defined using

more intuitive XPath expressions.

■ The contents of a row in an XMLType table has to referred to as SYS_NC_
ROWINFO$ from within a Trigger.
26-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
■ Schema-validation is performed by invoking the schemaValidate()
method on the XMLType. Using a Trigger makes it possible to for the

validation to return meaningful error messages, and for you to catch these

errors and attempt corrective action where appropriate.

■ The first constraint ensures that the value of the element identified by the

XPath expression /PurchaseOrder/Reference is unique across all

PurchaseOrder documents stored in the PURCHASEORDER table.

■ The second constraint ensures that the value of the element identified by

the XPath expression /PurchaseOrder/User can be found in the

ENAME column of the table SCOTT.EMP.

■ The Trigger ensures that full XML schema-validation takes place on every

document loaded in table PURCHASEORDER.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

3.3 Using FTP to Upload XML Documents that Attempt to Violate the Constraints
This step involves using FTP to (attempt to) upload a set of documents that violate

constraints created in the previous step.

1. Click the 3.3 Violate Constraints icon to open the FTP Client and establish an

FTP connection to XML DB Repository.

2. Enter the database user’s password when prompted and click OK. After

entering the password the following window is displayed.
Oracle XML DB Basic Demo 26-37

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Figure 26–19 Opening the FTP Client to Establish an FTP Connection

3. Click the Duplicate ADA~ file in Local System pane, and then click the lower

arrow to copy the document copy to the purchaseOrders folder in Oracle

XML DB Repository:
26-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Figure 26–20 FTP Error Caused From Violating the UNIQUE Constraint

When the document is uploaded the following error is displayed:

ORA-00604: error occurred at recursive SQL level 1
ORA-00001: unique constraint (SCOTT.REFERENCE_IS_UNIQUE) violated

Uploading this document resulted in a violation of the REFERENCE_IS_
UNIQUE constraint created in step 3.2. This is because the value of the node

PurchaseOrder/Reference/text() in this document is identical to the

value of the node in one of the documents that was loaded during step 3.1.

Consequently the operation fails.

4. Next, click the HACKER-200111~ file in Local System pane, and then click the

View button.

5. Click the lower arrow to copy the document copy to the purchaseOrders
folder in Oracle XML DB Repository.

Note: The value of the node /PurchaseOrder/User/text() is

“HACKER”.
Oracle XML DB Basic Demo 26-39

3.0 XML DB Demo: How XML Files Conform to the XML Schema
Figure 26–21 FTP Error Caused From Violating the USER_IS_VALID Constraint

When the document is uploaded the following error is displayed

ORA-00604: error occurred at recursive SQL level 1
ORA-02291: integrity constraint (SCOTT.USER_IS_VALID) violated - parent key
not found

Uploading this document resulted in a violation of the USER_IS_VALID
constraint created in step 3.2. This is because the value of the node

PurchaseOrder/User/text() in this document is “HACKER”, and this

value was not found in the ENAME column in SCOTT.EMP. Consequently the

operation fails.

6. Next, click the Invalid Purch~ file in Local System pane, and then click the View

button.

Note: The value of the node

/PurchaseOrder/Reference/text() is
“ADAMS-20011127PST” .
26-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3.0 XML DB Demo: How XML Files Conform to the XML Schema
7. Click the lower arrow to copy the document copy to the purchaseOrders
folder in Oracle XML DB Repository.

Figure 26–22 FTP Error Caused From Firing the VALIDATE_PURCHASEORDER
Trigger

When the document is uploaded the following error is displayed

ORA-00604: error occurred at recursive SQL level 1
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "ADAMS-20011127PST" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 0
ORA-06512: at "SCOTT.VALIDATE_PURCHASEORDER", line 5
ORA-04088: error during execution of trigger 'SCOTT.VALIDATE_PURCHASEORDER'

Uploading this document resulted in the VALIDATE_PURCHASEORDER Trigger

being fired. The XML schema=validation processing performed in the Trigger

detected that the value of the node /PurchaseOrder/Reference/text()
did not conform to the rules set out in the XML schema. The schema defines

that the minimum length of this node should be 18 characters. Since the
Oracle XML DB Basic Demo 26-41

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
document is not a valid instance of the class of documents defined by the XML

schema, the operation fails.

Key Points:

■ Can use constraints and triggers to enforce integrity of XML documents. By

using the database to manage XML you receive the power of SQL combined

with the flexibility of XML.

■ Constraints and triggers are enforced even when protocols are used to

upload content into the database.

■ By storing XML documents in Oracle XML DB, organizations can bring the

Reliability, Availability, Scalability and Security of the Oracle database to

bear on XML content.

8. Close the FTP Client by clicking on the EXIT button.

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
This step demonstrates ways to execute simple XPath queries against XML

documents.

1. Execute the SQL script by clicking on the 4.0 Simple Queries icon.

See Also: Chapter 4, "Using XMLType"
26-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Figure 26–23 Using existsNode() in the WHERE Clause to Restrict Which Documents
Are Returned

Key Points:

■ Simple Queries can be stated using familiar SQL syntax.

■ The existsNode() SQL/XML operator can be used in the WHERE clause

to restrict the set of documents returned by a query. existsNode()
Oracle XML DB Basic Demo 26-43

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
applies an XPath expression to an XML document and returns true (1) or

false (0) depending on whether or not the document contains a node that

matches the XPath expression.

■ XPath is a W3C standard for querying and accessing the content of an XML

document and is a familiar syntax to XML programmers and authors.

■ The first example shows how to find the number of PurchaseOrder

documents by counting the number of rows in the PurchaseOrder table.

There will be one row in the table for each document.

■ The second example shows how to use the existsNode() function and a

simple XPath expression to find the number of PurchaseOrder

documents where the value of the node PurchaseOrder/User/text()
contains the value “SMITH”.

■ The third example shows how to use the value() operator to display the

entire contents of a document stored as a row in an XMLType (object)

table. It also show how to use the existsNode() operator to restrict the

result to the row where the node /PurchaseOrder/Reference/text()
contains the value “ADAMS-20011127121040988PST”.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

4.1 More Complex XPath Queries on XML Documents
This example shows how to use the extractValue() clause to get the value of a

node in a document based on an XPath expression. It also shows that Oracle XML

DB is capable of evaluating complex XPath expressions that involve deep

navigation of an XML document.

1. Execute the SQL script by clicking on the 4.1 Simple Queries (2) icon.
26-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Figure 26–24 Using extractValue() to Get a Node Value Based on an XPath
Expression

Key Points:

■ The existsNode() function is used to restrict the set of documents

returned by the query to those that by that contain a lineItem element

that contains a part element with an Id attribute containing the value

“037429139523”.

The lineItem element occurs multiple times within each document.

■ Since the XPath

/PurchaseOrder/LineItems/LineItem/Part[@Id="03742913952
3"] does not explicitly identify which occurrences to search, all instances

of the lineItem element are searched to see if they meet the specified

condition.

■ The extractValue() function is used to return just the value of the node

identified by the XPath expression:

/PurchaseOrder/Reference/text()

■ Oracle XML DB is able to efficiently evaluate complex XPath expressions.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.
Oracle XML DB Basic Demo 26-45

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
4.2 EXPLAIN Plan of Queries on XML Tables
This step looks at the EXPLAIN plans generated by executing queries against tables

of XML documents.

1. Execute the SQL script by clicking on the 4.2 Explain Plan (1) icon.

Figure 26–25 EXPLAIN Plan of Query to Retrieve XPath Node Documents
26-46 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Key Points:

■ This EXPLAIN plan shows the query for retrieving documents that contain

a node identified by XPath:

/PurchaseOrder[Reference="ALLEN-2001101709512118PDT .

■ The query is resolved using a UNIQUE index. The UNIQUE index was

created when the UNIQUE constraint was added to the table.

■ Query Rewrite allows the XPath expression to be translated into an indexed

access. Since the XML schema for the document is known, and the storage

model derived from the XML schema is known, Oracle XML DB can

re-write the XPath expression into an object-relational SQL query against

the underlying object model.

■ The Oracle Optimizer can then optimize that query and evaluate the

optimal plan for returning the result set.

Figure 26–26 EXPLAIN Plan for Query Counting Number of Documents at Node
Oracle XML DB Basic Demo 26-47

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Key Points:

■ This EXPLAIN plan shows the query for counting the number of

documents which contain a node identified by the XPath expression

“/PurchaseOrder[User="SMITH"]” .

■ The query is resolved using a table scan. This is fine with 168 documents

that make up the sample data used in this demonstration, but not

acceptable in a real world scenario where the table could contain millions of

documents.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

4.3 Using extractValue() and an XPath Expression to Create XML Indexes
This step looks at how to use an XPath expression to create an index. You can

eliminate the table scan by building an index to support the second query in the

previous example.

1. Execute the SQL script by clicking on the 4.3 Create XML Indexes icon or

similar.

Figure 26–27 Creating an Index Using extractValue() and XPath Notation
26-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Key Points:

■ To eliminate the table scan build an index for resolving the query.

■ The index is defined using the same XPath notation used to express the

query.

■ The index is not a function-based index. Query Rewrite helps map the

XPath expression supplied in the CREATE INDEX statement on the

appropriate attribute(s) of the underlying object(s). A conventional B-Tree

index is then created on these attributes.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

4.4 Using EXPLAIN Plan to Determine if the Index is Being Used
This step demonstrates that the newly created index is used to resolve the query.

1. Execute the SQL script by clicking on the 4.4 Explain Plan (2) Icon.
Oracle XML DB Basic Demo 26-49

4.0 XML DB Demo: Simple XPath Queries Against XML Documents
Figure 26–28 Running an EXPLAIN Plan to Determine if the New Index is Being Used

Key Points:

■ The new index is used automatically. The application did not need

re-writing.

■ For the database administrator nothing changes. The same skills are still

required. Create the indexes required to allow queries to execute efficiently.

Monitor index usage. Drop indexes that are not contributing to query

performance.
26-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

5.0 XML DB Demo: Using HTTP to Access XML Content
Previous steps have shown how FTP can be used to load XML content in Oracle

XML DB, and how the content can be accessed using the familiar SQL Table/Row

metaphor. This step shows how HTTP protocol can be used to access content stored

in Oracle XML DB using a Path-based (Folder/File) metaphor.

1. Click the 5.0 ADAMS-2001... icon to launch Internet Explorer and display the

target document. When prompted, enter the database username and password.

See Also: Chapter 4, "Using XMLType"
Oracle XML DB Basic Demo 26-51

5.0 XML DB Demo: Using HTTP to Access XML Content
Figure 26–29 Using HTTP: Accessing XML Content

The PurchaseOrder document is displayed on the Browser. See Figure 26–30.
26-52 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
Figure 26–30 PurchaseOrder XML Document is Displayed

Key Points:

■ Oracle XML DB allows access to content using both the SQL-centric,

Table/Row metaphor the document-centric Folder/File metaphor.

■ Content can be accessed direct from a Web Browser using a simple URL.

■ Oracle XML DB provides native support for HTTP protocol. No Web

Servers, plug-in technology, adaptors or controls are required to enable this

functionality.
Oracle XML DB Basic Demo 26-53

5.0 XML DB Demo: Using HTTP to Access XML Content
■ Protocol support can be turned off if required

■ Protocol support is based on the same architecture as SQL*NET shared

server mode, namely the Oracle Listener and Shared Server Mode server.

2. Do not close the Browser window at this point.

5.1 SQL Can Display the Retrieved XML Document Through XDBUriServlet
This step demonstrates that the File/Folder metaphor can be used to access content

even when working in SQL.

1. Execute the SQL script by clicking on the 5.1 Show Document(1) icon.
26-54 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
Figure 26–31 Accessing Content by Specifying Files/Folders

Key Points:

■ Path-based access to content is also available from SQL. The XDBUriType
makes it possible to use a path-based metaphor to access content stored in

Oracle XML DB Repository.

■ XDBUriType provides a set of methods that make it possible to access

different types of contents. Any path provided to XDBUriType is assumed

to originate from the root of Oracle XML DB Repository.

2. Do not close the SQL*PLUS window at this point
Oracle XML DB Basic Demo 26-55

5.0 XML DB Demo: Using HTTP to Access XML Content
5.2 Editing XML Documents with WebDAV-Enabled Tools
This step illustrates Oracle XML DB’s WebDAV support and how you can use

standard WebDAV-enabled tools to access and update content stored in the

Repository.

1. Click the 5.2 Edit Document icon to launch Microsoft Word and open the target

document. When prompted enter the required username and password. If

prompted for file conversion or character set conversion select the default

values recommended by Word. The document will display in Word.

Figure 26–32 Using WebDAV Tools Such as Microsoft Word to Edit an XML Document
26-56 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
Use Microsoft Word to edit the document. Update the value of the node

/PurchaseOrder/Actions[1]/Action/User/text() to “VISHU”. Be

very careful when typing the value VISHU, as later steps in the demonstration

depend on your making this change correctly. Save the changed document.

Key Points:

■ Microsoft Word, or any other WebDAV-enabled product can be used to

access and update content stored in Oracle XML DB Repository. Since

Oracle and Microsoft have both chosen to support on open, industry

standard, the two products work with each other ‘Out-of-the-Box’.

■ Other vendors such as Macromedia, Adobe, and Altova, have incorporated

support for the WebDAV protocol into their products. This means that all of

these products can work with content stored in Oracle XML DB Repository.

5.3 Displaying and Verifying Updates Made to XML Documents, Using SQL
This step shows that the changes made using Microsoft Word are visible from SQL.

1. If the window from step 5.1 is still open simply type a ‘/’ character to re-execute

the query. If the window from step 5.1 has been closed, click the 5.3 Show
Document (2) icon to execute the query.

Note: You cannot use Notepad or WordPad currently. You must

use a WebDAV aware editor such as Word/2000 or Word/XP.
Oracle XML DB Basic Demo 26-57

5.0 XML DB Demo: Using HTTP to Access XML Content
Figure 26–33 Changes Made Using Microsoft Word Are Also Visible Using SQL!

Key Points:

■ You were able to use Microsoft Word to edit content stored in Oracle XML

DB.

■ Changes made using Microsoft Word are immediately visible from SQL.

Each operation performed using a DAV-based client is an independent

transaction.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.
26-58 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
5.4 Updating XML Documents Using SQL
This step shows how an XML Document can be updated using SQL. It shows the

use of the updateXML() function to update the contents of an XML document

stored as XMLType. It refers to the target node using an XPath expression.

1. Execute the SQL script by clicking on the 5.4 Update Document icon.

Figure 26–34 Updating an XML Document Using updateXML() and an XPath
Expression in the WHERE Clause

Key Points:

■ The updateXML() function can be used to update the contents of an XML

document stored as an XMLType.

See Also: Chapter 4, "Using XMLType"

Note: For this step to work correctly Step 5.2 must have been

successfully completed.
Oracle XML DB Basic Demo 26-59

5.0 XML DB Demo: Using HTTP to Access XML Content
■ updateXML() uses an XPath expression to identify the element, attribute

or node that is to be updated.

■ updateXML() works with both XML schema-based and non-schema based

content.

For XML schema-based content, Query Rewrite allows updateXML() to

perform in-place updates. If the XPath expression can be mapped onto an

attribute of one of the underlying SQL Objects the update is performed as

an SQL operation.

■ updateXML() is a much more efficient way of updating XML

schema-based documents.

* When Microsoft Word updates a document, Oracle XML DB cannot tell

which parts of the document were altered. Consequently it is forced to

parse the entire document and update all of the database objects based

on the new document.

* When updateXML() updates a document, only the parts of the

document that change are updated.

* When updateXML() is used to update non-schema-based XML the

update is done by instantiating a DOM and performing the update on

the DOM. The DOM is then printed, and written back to the underlying

CLOB storage.

■ Changes made with updateXML() are just like any other changes made

using SQL. They must be committed before they become visible to other

database users.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

5.5 Displaying Changes Made to an XML Document Using Both XML and SQL
This step shows the duality of the SQL and XML approaches.

1. If the window from step 5.0 is still open use ctrl-refresh to reload the contents of

the Browser. If the window from step 5.1 has been closed, click the 5.5
ADAMS-200111... icon to open the Browser and display the document.
26-60 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

5.0 XML DB Demo: Using HTTP to Access XML Content
Figure 26–35 Interoperability of XML and SQL: Accessing XML Content Using SQL

Key Points:

■ Both the changes made using Microsoft Word and the change made using

SQL are visible in the refreshed page.

■ Oracle XML DB provide full XML/SQL duality and interoperability. XML

content can be accessed and updated using both a document-centric

file/folder metaphor, and a SQL-centric table/row metaphor.

■ Changes made using one approach are available to the other approach as

soon as the transaction is committed.

2. Close the Browser Window.
Oracle XML DB Basic Demo 26-61

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
This step provides more detail about Oracle XML DB Repository and shows how

SQL programmers can use RESOURCE_VIEW to query the Repository contents.

Key Points:

■ Oracle XML DB repository is managed as a set of tables in the XML DB schema.

These tables contain the metadata for all documents stored in the Repository.

The XML DB Schema is a locked database account. The tables in this schema

should never be accessed directly.

■ All non-XML documents, plus all non-XML schema- based XML, is stored

directly in Oracle XML DB Repository tables.

■ XML schema-based XML is stored in the default tables specified when the XML

schema was registered. Typically these tables are located in the database

schema owned by the user registering the XML schema.

■ The contents of the Oracle XML DB Repository are exposed to the SQL

programmer using two views: RESOURCE_VIEW and PATH_VIEW. Public

synonyms make these views available to all database users. Oracle XML DB

also provides a set of SQL functions that allow for efficient, path-based queries

against the contents of Oracle XML DB Repository.

■ Oracle XML DB leverages the Oracle database’s extensible indexing

capability to define a new domain index, called the Hierarchical Index.

* This index is used to efficiently resolve path-based queries against

Oracle XML DB Repository.

* The Hierarchical Index allows path-based queries to be resolved

without having to utilize expensive connect by operations.

■ The default metadata maintained by Oracle XML DB is compliant with the IETF

WebDAV standard.

■ WebDAV defines the set of metadata that a WebDAV compliant server must

maintain. It also defines that WebDAV client and WebDAV server will

use XML to exchange information. It does not define how the metadata will

be persisted by WebDAV server.

For XML DB the metadata is simply persisted as a set of XML documents

compliant with the Oracle XML DB XDBResource XML schema.

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"
26-62 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
■ There is one Resource document for each file or folder in Oracle XML DB

Repository.

■ Documents stored in Oracle XML DB Repository are protected by an Access

Control Lists (ACL)- based security mechanism. To access a document a user

must be granted a minimum of READ access to the document.

■ The current implementation of ACLs in Oracle XML DB is compliant with,

but not a complete implementation of the proposed WebDAV ACL

specification

■ When the Repository is accessed using SQL, ACL-level security is enforced

using the database row-level security feature.

■ XML DB Repository has very rudimentary versioning capabilities. A future

release of the Repository will implement DELTA-V, the WebDAV versioning

specification.

1. Execute the SQL script by clicking the 5.0 Resource_Views Query (1) icon.
Oracle XML DB Basic Demo 26-63

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
Figure 26–36 Querying RESOURCE_VIEW Using EQUALS_PATH()

Key Points:

■ The RESOURCE_VIEW provides the primary public view of Oracle XML DB

Repository. It contains 1 row for each document or folder in the Repository.

Each row contains 2 columns, RES and ANY_PATH:

* RES is an XML document containing the meta data about a document

stored in the Repository.

* ANY_PATH contains a valid path, from the root of the Repository that

the current user can use to access the document.

■ RESOURCE_VIEW and PATH_VIEW can be accessed just like any other

views. For instance to count the document of documents in the

Repository simply count the number of rows in the RESOURCE_VIEW.
26-64 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
* ACL-based security ensures that the query “select count(*) from
RESOURCE_VIEW” returns the number of documents that the user has

access to.

■ Functions such as UNDER_PATHmake it easy to efficiently restrict a query to

a particular sub-tree of the Repository.

Figure 26–37 Using EQUALS_PATH() to Retrieve Metadata About the purchaseOrder
Folder Through RESOURCE_VIEW
Oracle XML DB Basic Demo 26-65

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
Key Points:

■ The RES column contains an XML document that conforms with the

XDBResource XML schema. This schema defines the set of metadata required

to implement the IETF WebDAV standard.

■ The example uses the EQUALS_PATH() function to retrieve the metadata for

the user’s purchaseOrder folder.

■ The available metadata includes items like DisplayName , Creator , Owner,
LastModifier , CreationDate , and ModificationDate .

■ The resource can be accessed just like any other XML document stored in

Oracle XML DB. extractValue() and existsNode() can be used for

performing queries against the RESOURCE_VIEW.
26-66 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
Figure 26–38 Using extractValue() and UNDER_PATH() to Walk the Directory Tree
Starting at the purchaseOrder Folder

Key Points:

■ extractValue() can be used to access the metadata. Operations that

involve updating the metadata, such as changing the owner of a document

can be performed using updateXML() .
Oracle XML DB Basic Demo 26-67

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
■ Queries against the set of resources managed by a repository can be

performed using functions like existsNode() , UNDER_PATH() and

EQUALS_PATH().

This example uses extractValue() and UNDER_PATH() to walk the directory

tree starting from the user’s purchaseOrders/ folder.

1. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

6.1 XPath-Based Querying of RESOURCE_VIEWS Using Hierarchical Indexing
This demonstrates how you can query against XML DB Repository and use the

Hierarchical Index feature to efficiently resolve path-based queries.

1. Execute the SQL script by clicking the 6.1 Resource View Queries (2) icon.

Figure 26–39 Using Standard SQL Syntax to Search the Repository
26-68 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
Key Points:

■ Standard SQL Syntax and operators can be used to search the Repository.

■ The first example shows the use of the SQL-like operator to search for all

XSL documents, for example, documents with a file extension of “.xsl”.

■ The second example shows a slightly more complex WHERE clause that

searches for all documents starting with “ADAMS” but uses the UNDER_
PATH() function to restrict the result to those document under the user’s

purchaseOrders folder.

Figure 26–40 Querying on RESOURCE_VIEW Joined with XML Tables to Retrieve
Metadata

Key Points:

■ Oracle XML DB supports queries that involve operations on

system-maintained metadata values such as Owner or

ModificationDate , as well as XML content. This is achieved by joining

the RESOURCE_VIEW with the tables that contain the XML content.

■ This example joins the PURCHASEORDERtable with the RESOURCE_VIEWto
obtain a path to each row in returned by the query.

* This technique effectively generates a URL for each row in an XMLType
table returned by a query.

* Combining this approach with the Oracle XML DB’s ability to service

HTTP requests greatly simplifies the process of writing Web-based

applications.
Oracle XML DB Basic Demo 26-69

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

Figure 26–41 EXPLAIN Plan Showing How Hierarchical Index Resolved Path-Based
Query Efficiently

Key Points:

■ The EXPLAIN plan output shows the Hierarchical Index is used to resolve

path-based queries in an efficient manner, without the use of connect-by

processing.

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
This step demonstrates how tools and products that only understand the relational

view of data can access XML content managed by Oracle XML DB.
26-70 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
Key Points:

■ There are many tools (and application developers) and products that can

access relational data, but which do not understand how data is stored in

an XML File.

■ Oracle XML DB allows relational views to be defined over XML content,

making XML content available to these tools.

1. Execute the SQL script by clicking on the 7.0 Make Views icon.

Figure 26–42 Creating a View Using CREATE VIEW and XPath Expressions

Key Points:

■ The view is created using a simple CREATE VIEW statement that uses

XPath expressions to map text nodes or attribute values in the XML

document to columns declared in the CREATE VIEW statement.
Oracle XML DB Basic Demo 26-71

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
■ This example creates a PURCHASE_ORDER_MASTER_VIEWthat contains one

row for each document in the PURCHASEORDER table.

Figure 26–43 Creating Purchase_Order_Master_View with one Row for Each
Document in PurchaseOrders Table

Key Points:

■ Relational views can also be used to expose the members of a collection of

elements as a set of rows.

■ This example creates a view called PURCHASE_ORDER_DETAIL_VIEW that

exposes the contents of the lineitem elements as a set of rows. The view

will contain one row for each lineitem element in the PURCHASEORDER
table.

■ The first step uses the extractValue() function to generate an XML

Fragment from each document in the PURCHASEORDER table. An XML

Fragment is an XML document containing multiple root level nodes. In this

case the XML Fragment will consist of a set of lineitem nodes. The

fragment will contain one root level node for each member of the

lineitem s collection.

■ The next step uses the XMLSequence() function to create a separate row

from each of the root level nodes in the Fragment.
26-72 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
■ The final step is to use the SQL TABLE operator to turn the set of rows into

a table that can be used in the FROM clause of a SELECT statement.

■ There is an implicit correlated join between the PURCHASEORDER table and

the set of rows generated by the TABLE operator.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

7.1 Relational Views of XML Act Like Other Views
This step demonstrates that relational views over XML look and behave like

relational views over other data.

1. Execute the SQL script by clicking on the 7.1 Query Views icon.
Oracle XML DB Basic Demo 26-73

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
Figure 26–44 Querying XMLType Views Using Standard SQL

Key Points:

■ These are simple, basic SQL queries. The developer or end user does need

to know that content in these Views is coming from an XMLType table. The

tool or person creating the query does not need to understand the

XML-specific operators and syntax required to access XML content.

■ Query Rewrite will ensure that the SQL queries are executed against the

underlying object store.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.
26-74 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

7.0 XML DB Demo: Using Views to Access XML from Relational Tools
7.2 Querying Using Rollup
This step demonstrates how using relational views over XML you can use any

SQL-based feature of the Oracle database against content managed by Oracle XML

DB.

1. Execute the SQL script by clicking the 7.2 Rollup Query icon.

Figure 26–45 Applying Roll Up Queries to XML Content

Key Points:

■ Oracle XML DB makes it possible to apply advanced SQL features, such as

roll-up queries to XML Content.

■ The rollup feature itself is not XML aware, but the ability to create relational

views allows such features to be used for XML content.
Oracle XML DB Basic Demo 26-75

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

8.0 XML DB Demo: Accessing Content Using DBUriServlet;
Transforming Content Using XSL

This step demonstrates both how you can use DBUriServlet to access content

using a Schema/Table metaphor. This also shows Oracle XML DB’s ability to

perform XSL transformations.

1. Click the 8.0 DBUri and XSL Examples icon to launch Internet Explorer. If

prompted for a username and password enter the database user’s username

and password.

This launches Internet Explorer and uses a Repository-based URL to display the

contents of the document “ADAMS-20011127121040988PST.xml ”. The URL

uses Oracle XML DB’s HTTP Server to display the content based on a resource

in Oracle XML DB Repository.

2. Click Favorites, and then click XML DB Basic Demo

This displays a set of internet shortcuts used during the next phase of the

demonstration.
26-76 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–46 Launching Internet Explorer and a Repository-Based URL to Display
XML Content

Key Points:

■ The content has been displayed based on a URL that uses a Folder/File

metaphor to identify the resource that points at the required content.

3. Do not close the Browser window at this point.

8.1 PurchaseOrder Raw XML
This step demonstrates Oracle XML DB’s DBUriServlet .

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.1
PurchaseOrder Raw XML. This displays the same Purchase Order document.

However this document is identified using a DBURI-based path similar to the

following:

See Also: Chapter 12, "Creating and Accessing Data Through

URLs"
Oracle XML DB Basic Demo 26-77

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
http://mdrake-lap:8080/oradb/SCOTT/PURCHASEORDER/ROW
/PurchaseOrder[Reference="ADAMS-20011127121040988PST"]
?contenttype=text/xml

Figure 26–47 Using DBUriServlet and DBUriType to Select Rows from an XML
Document, Based on a URL.

Key Points:

■ The DBUriServlet leverages the DBUriType feature of Oracle XML DB.

The DBUriType allows a row in a table to be identified using a URL which
26-78 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
consists of a Schema, Table, Row and Column. XPath like syntax allows the

URL to be extended to subset which rows in the target table match the URL.

* The DBUriType returns the selected row or rows as an XML document.

* The DBUriServlet leverages Oracle XML DB’s native HTTP

capabilities to allow a Browser to use a DBUri to access any row in the

database.

■ This example shows accessing a row in the PurchaseOrder XMLType
table using a DBUri . The URI consists of the following components:

* /oradb : The default mount point for the DBUriServlet

* /SCOTT: The database schema name

* /PURCHASEORDER: The table name

* /ROW: The default Row separator

* /PurchaseOrder : The root node of the document in question

* [Reference="ADAMS-20011127121040988PST"] : An XPath

expression that determines which row or rows should be returned.

* ?contenttype=text/xml : The contenttype parameter allows the

developer to specify the MIME type to be returned to the Browser.

■ For an XMLType table or view, the DBUriServlet allows an XPath

expression to be used to determine which rows in the table are returned.

This is very similar in functionality to the W3C XPOINTER

Recommendation.

■ For a Relational table or view the DBUriServlet allows an XPath-like

expression, based on the columns in the table, to determine which rows

should be included in the resulting document.

2. Do not close the Browser window at this point.

8.2 Using Standard XSL Style Sheets to Transform XML Documents to HTML
This step shows a Standard style sheet that can be used to transform the

PurchaseOrder document from XML to HTML.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.2
PurchaseOrder XSL Style sheet. This displays an XSL style sheet that can be

used with the Purchase Order XML documents.
Oracle XML DB Basic Demo 26-79

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–48 Style Sheet for use with PurchaseOrder XML Documents

Key Points:

■ Most end-users do not want to deal with XML. They want to see

information formatted into HTML The standard mechanism for converting

an XML document into HTML is a Style sheet, compliant with the W3C

XSLT Recommendation.

■ The Style sheet is a standard W3C XSL Style sheet. There is nothing

Oracle-specific about this Style sheet.

■ To create HTML from XML, an XSLT processor is required. The processor

takes the XML, and the instructions contained in the Style sheet and uses

them to generate HTML.

XSL allows display logic to be separated from processing logic. Different

Style sheets can be used to format a given XML document different ways.

For instance one Style sheet could format a document for display in a PC

Browser, another Style sheet could format the same document for display

on a WAP-enabled phone.
26-80 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
In this example the Style sheet was loaded into Oracle XML DB Repository so

that the database can perform the XSLT processing.

2. Do not close the Browser window at this point.

8.3 Transforming PurchaseOrder Using XSLT
This step shows Oracle XML DB’s Style sheet processor being used to transform a

PurchaseOrder document from XML into HTML.

Key Points:

■ Oracle XML DB includes a XSLT style sheet processing engine linked to the

database.

■ The XSLT processor can leverage Oracle XML DB performance optimizations

such as the Lazily Loaded DOM. These optimizations greatly reduce the

amount of parsing and memory overhead associated with performing XSL

Transformation.

■ In conventional XSL processing the first step is to create a DOM, (the in

memory representation of an XML document). The DOM is then passed to XSL

processor which uses the DOM API to obtain the information contained in the

document and format it as HTML. There are a number of problems associated

with the standard method of performing XSL transformation.

■ The act of creating the DOM can be both processor and memory intensive.

The In-Memory representation of an XML document can be several times

the size of the original document.

■ For entire document must be parsed and converted into a DOM structure

before XSLT processing can commence. This can be very in-efficient if only

a small part of the document is going to be included in the generated

output.

■ For XML schema-based content the XML schema must also be parsed and

loaded into memory.

■ Oracle XML DB addresses these issues. When transforming XML schema-based

content the XSLT processor is presented with an instance of the Oracle XML DB

lazily loaded virtual DOM. The XML DB DOM allows the XSLT processor to

See Also: Chapter 6, "Transforming and Validating XMLType

Data"
Oracle XML DB Basic Demo 26-81

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
use the conventional DOM APIs to perform the transformation. However the

XML DB DOM has a number of advantages over a traditional DOM:

■ The DOM is loaded directly from disk. No parsing is required in order to

load the DOM. DOM memory usage is reduced, as only the part of the

document being processed is loaded into the DOM.

■ As processing continues other parts of the document will be loaded on

demand. A paging mechanism is used to manage the overall size of the

DOM.

■ Any XML schemas will be accessed from the Oracle XML DB schema cache.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.3
PurchaseOrder XSL Transform This displays the result of transforming the

PurchaseOrder document with the XSL style sheet.

Figure 26–49 Transforming the XML PurchaseOrder Document Using the XSL Style
sheet
26-82 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Key Points:

■ Style sheet processing is performed by XSLT processor incorporated into

the database.

■ The Stylesheet processor can be invoked from DBUriServlet by supplying

the transform=parameter as part of the URL. The value of the transform
parameter is a URL that identifies the Style sheet to be used when

performing the transformation.

■ The XSLT processor can also be invoked from SQL using XMLType’s

transform() method or the SQL xmltransform() function. The

transformation is performed by Oracle XML DB XSLT processor at the

database level.

■ Style sheet processing is able to leverage Oracle XML DB optimizations

such as the Lazily Loaded DOM. This makes XSLT processing much more

efficient.

■ The preceding example includes all of the information from the target

document. However image generated is a summary document based on

XSLT transformation of XML documents.

* In a conventional system, each document required would have to

parsed, converted into a DOM and then processed.

* With Oracle XML DB, assuming the summary did not contain

information from the lineItem elements, these would never be loaded

as part of the XSLT processing.

2. Do not close the Browser window at this point.]

8.4 Creating XMLType Views with SQL
This step introduces you to SQL/XML (SQLX) operators and functions used to

create XMLType views and generate XML from an SQL query.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.4
DEPTVIEW Definition.

2. This displays an HTML page showing the definition of the DEPTVIEW XMLType
view.

See Also: Chapter 11, "XMLType Views"
Oracle XML DB Basic Demo 26-83

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–50 HTML Page Showing XMLType View DEPTVIEW

Key Points:

■ SQL/XML is an ANSI/ISO standard. It falls into two main sections.

■ The first provides functions and operators for inserting, querying and

updating XML documents as part of a SQL operation, and for including an

XML document, or parts of an XML document in the resultset returned by a

SQL operation

■ The second provides functions for generating an XML document from a

query against relational tables.

■ The SQL/XML standard is being developed by Oracle, IBM, Microsoft, and

other interested parties.
26-84 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
■ This example shows how to use SQL/XML functions to generate an XMLType
view, which provides a persistent XML View of the contents of the EMP and

DEPT tables in the SCOTT sample schema.

■ The view will consist of a collection of Department nodes. Each Department

will contain elements DNAME and LOC, as well as collection of Employee nodes

containing the details of each employee in the department.

■ The SQL/XML operators have been designed to make it easy to generate any

shape of XML from a SQL result set.

■ XMLForest() is so named because it contains a collection of “Trees”.

■ Unlike other vendors, Oracle takes the SQL /XML operators into account when

determining which plan to use to resolve a query. This may result in the query

plan selected when generating XML to be different from the query plan selected

when generating the equivalent tabular resultset.

■ Other vendors implement SQL/XML by creating a DOM based on the

SQL/XML operators, and then executing a conventional relational query,

forcing the result into the DOM, and then printing the DOM. This is much less

efficient for a number of reasons:

■ The database is not able to consider the shape of the required output when

determining the query plan

■ The tabular result set has to be forced into a DOM structure before the

required result set can be generated. This results in significant memory and

processing overhead.

3. Do not close the Browser window at this point.

8.5 Displaying DEPTVIEW Raw XML Using DBUriServlet
This step shows how to use DBUriServle to display DEPTVIEW contents.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.5
Display DEPTVIEW. This displays the contents of the DEPTVIEW XMLType
view.
Oracle XML DB Basic Demo 26-85

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–51 DEPTVIEW Contents

Key Points:

■ The XMLType view exposes DEPT and EMP as a single XML document.

■ There is one <ROW> element in the generated document for each row selected

from DEPT table.

■ The shape of the XML document is defined by the SQL/XML operators used in

the view definition.

8.6 Transforming DEPTVIEW From XML to HTML Using a Style Sheet
This step shows how to use a Style sheet to transform a PurchaseOrder document

from XML to HTML.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.6
DEPTVIEW style sheet This displays an XSL style sheet that can be used with

view DEPTVIEW.

See Also: Chapter 12, "Creating and Accessing Data Through

URLs"
26-86 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–52 XSL Style Sheet for Use with DEPTVIEW

Key Points:

■ The style sheet is a standard W3C compliant XSLT style sheet. There is nothing

Oracle-specific about it.

Do not close the Browser window at this point.

8.7 Displaying the Transformed DEPTVIEW After XSL Transformation
This step shows how you can use a Style sheet to transform a PurchaseOrder

document from XML to HTML.

1. Open the XML DB Basic Demo item in the Favorites menu and select item 8.7
DEPTVIEW with XSL Transformation. This displays the result of transforming

the PurchaseOrder document with the XSL style sheet.
Oracle XML DB Basic Demo 26-87

8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
Figure 26–53 A Style Sheet for Transforming PurchaseOrder Documents from XML to
HTML

Key Points:

■ Oracle XML DB makes it easy to display the contents of relational tables

such as DEPT and EMP as an HTML document.

■ Use the SQL/XML operators to create an XMLType view that format the

contents of the relational tables as an XML document then apply an XSLT

style sheet to transform the XML document into HTML.

■ No procedural coding, servlets, or other application components need be

created or installed to achieve this functionality.

2. Close the Browser window.
26-88 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

9.0 XML DB Demo: OracleText Examples
9.0 XML DB Demo: OracleText Examples
This step illustrates how OracleText functionality can be applied to XML content

stored in Oracle XML DB using Structured Storage techniques.

1. Execute the SQL script by clicking on the 9.0 Oracle Text Examples icon.

Figure 26–54 Searching a PurchaseOrders Table by Using Oracle Text’s contains()
Operator

Key Points:

■ Oracle XML DB allows Oracle Text indexes to be created on XML content

stored in the database using Structured Storage Techniques.

■ Two kinds o OracleText indexes are allowed:
Oracle XML DB Basic Demo 26-89

9.0 XML DB Demo: OracleText Examples
* ctxsys.ctxxpath . This can be used to speed up the existsNode()
function.

* ctxsys.conte. This allows for a full text search on XML content.

■ By default existsNode() looks for a B-Tree or function-based index and

then is used to resolve the query. If no such index exists it performs a

functional evaluation of each document in the table to see if it contains a

node that matches the supplied XPath expression.

■ If a ctxsys.ctxxpath index has been created then existsNode() uses

this index as a primary filter when resolving an XPath expression that

cannot be resolved with a B-Tree or function-based Index. This is much

faster than performing a functional evaluation of every document in the

table.

■ The example shows creating a full text (ctxsys.context) index on the

PURCHASEORDER table and then using the Oracle Text contains()
function to perform a Text-based search over the PurchaseOrder XML

documents.

2. Close the SQL*PLUS window by typing QUIT at the SQL> prompt.

See Also: Chapter 7, "Searching XML Data with Oracle Text"
26-90 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Installing and Configuring Oracle XM
A

Installing and Configuring Oracle XML DB

This appendix describes the ways you can manage and configure your Oracle XML

DB applications. It contains the following sections:

■ Installing Oracle XML DB

■ Installing or Reinstalling Oracle XML DB from Scratch

■ Upgrading an Existing Oracle XML DB Installation

■ Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)

■ Configuring Oracle XML DB

■ Oracle XML DB Configuration File, xdbconfig.xml

■ Oracle XML DB Configuration Example

■ Oracle XML DB Configuration API
L DB A-1

Installing Oracle XML DB
Installing Oracle XML DB
You will need to install Oracle XML DB under the following conditions:

■ "Installing or Reinstalling Oracle XML DB from Scratch" on page A-2

■ "Upgrading an Existing Oracle XML DB Installation" on page A-5

Installing or Reinstalling Oracle XML DB from Scratch
You can perform a new installation of Oracle XML DB with or without Database

Configuration Assistant (DBCA):

Installing a New Oracle XML DB with DBCA
Oracle XML DB is part of the seed database and installed by DBCA as part of

database installation by default. No additional steps are required to install Oracle

XML DB, however, if you choose to install “Customized” database, you can

configure Oracle XML DB tablespace and FTP, HTTP, and WebDAV port numbers.

By default DBCA performs the following tasks:

■ Creates an Oracle XML DB tablespace for Oracle XML DB Repository

■ Enables all protocol access

■ Configures FTP at port 2100

■ Configures HTTP/WebDAV at port 8080

The Oracle XML DB tablespace holds the data that is stored in Oracle XML DB

Repository. This includes data that is stored in the Repository using:

■ SQL, for example using resource_view and path_view

■ Protocols such as FTP, HTTP, and WebDAV

You can store data in tables outside this tablespace and access the data through the

Repository by having REFs to that data stored in the tables in this tablespace.

CAUTION: The Oracle XML DB tablespace should not be
dropped. If dropped it renders all Repository data inaccessible.
A-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Installing or Reinstalling Oracle XML DB from Scratch
Dynamic Protocol Registration Registers FTP and HTTP Services with Local Listener
Oracle XML DB installation, includes a dynamic protocol registration that registers

FTP and HTTP services with the local Listener. You can perform start, stop, and

query with "lsnrctl". For example:

■ start: lsnrctl start

■ stop: lsnrctl stop

■ query: lsnrctl status

Changing FTP or HTTP Port Numbers
To change FTP or HTTP port numbers, update the tags <ftp-port> and

<http-port> in file, /xdbconfig.xml in Oracle XML DB Repository.

After updating the port numbers dynamic protocol registration automatically stops

FTP/HTTP service on old port numbers and starts them on new port numbers if the

local Listener is up. If local Listener is not up, restart the Listener after updating the

port numbers.

Post Installation
As explained in the previous section, Oracle XML DB uses dynamic protocol

registration to setup FTP and HTTP listener services with the local Listener. So,

make certain that the Listener is up when accessing Oracle XML DB protocols.

To allow for unauthenticated access to your Oracle XML DB Repository data

through HTTP, you must unlock the ANONYMOUS user account.

See Also: Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

for a description of how to update /xdbconfig.xml .

Note: If the Listener is running on a non-standard port (for

example, not 1521) then in order for the protocols to register with

the correct listener the init.ora file must contain a

local_listener entry. This references a TNSNAME entry that

points to the correct listener. After editing the init.ora parameter

you must regenerate the SPFILE entry using CREATE SPFILE.
Installing and Configuring Oracle XML DB A-3

Installing or Reinstalling Oracle XML DB from Scratch
Installing a New Oracle XML DB Manually Without DBCA
After the database installation, you must run the following SQL scripts in

rdbms/admin connecting to SYS to install Oracle XML DB after creating a new

tablespace for Oracle XML DB Repository. Here is the syntax for this:

catqm.sql <xdb_pass> <XDB_TS_NAME> <TEMP_TS_NAME> #Create the tables and views
needed to run XML DB

For example:

catqm.sql change_on_install XDB TEMP

Reconnect to SYS again and run the following:

catxdbj.sql #Load xdb java library

Post Installation
After the manual installation, carry out these tasks:

1. Add the following dispatcher entry to the init.ora file:

dispatchers="(PROTOCOL=TCP) (SERVICE=<sid>XDB)"

2. Restart database and listener to enable Oracle XML DB protocol access.

3. To allow for unauthenticated access to your Oracle XML DB Repository data

through HTTP, you must also unlock the ANONYMOUS user account.

Reinstalling Oracle XML DB
To reinstall Oracle XML DB, run following SQL commands connecting to SYS to

drop Oracle XML DB user and tablespace:

drop user xdb cascade;
alter tablespace <XDB_TS_NAME> offline;
drop tablespace <XDB_TS_NAME> including contents;

Note: Make sure that the database is started with Oracle9i Release

2 (9.2.0) compatibility or higher.

Note: All user data stored in Oracle XML DB Repository is also

lost when you drop xdb user!
A-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
Install Oracle XML DB manually as described in "Installing a New Oracle XML DB

Manually Without DBCA" on page A-4.

Upgrading an Existing Oracle XML DB Installation
Run the script, catproc.sql , as always.

As a post upgrade step, if you want Oracle XML DB functionality, you must install

Oracle XML DB manually as described in "Installing a New Oracle XML DB

Manually Without DBCA" on page A-2.

Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
Oracle9i Release 2 (9.2.0.2) patchset for the Oracle9i Release 2 (9.2) database is a

required upgrade for users of Oracle XML DB Release 2 (9.2.0.1). Oracle XML DB

requires schema based XMLType tables and columns from release 9.2.0.1 to be

migrated to release 9.2.0.2. This mandatory migration is done automatically as part

of the database upgrade process. The migration is transparent except for a few

restrictions.

■ You cannot use Database Upgrade Assistant to directly upgrade to release

9.2.0.2. It can only be used to upgrade to a major or minor release and not to a

patchset release. Hence the upgrade process has to be carried out manually.

■ The manual upgrade steps are detailed in "Chapter 3 - Upgrading a database to

the new Oracle9i Release" in the Oracle9i Database Migration. The steps required

to upgrade to 9.2.0.2 are identical. The only difference is in step 14.

■ Steps 1-13 are the same. Check the system requirements and startup the

database in MIGRATE mode.

■ Step 14 : Run catpatch.sql. This script created and alters certain dictionary

tables. It also runs the catalog.sql and catproc.sql scripts that come with the

new 9.2.0.2 release, which create the system catalog views and all the

necessary packages for using PL/SQL.

■ Steps 15-21 are the same.

At this point, Oracle XML DB is automatically upgraded and schema based

XML data is migrated to a new format usable by the new release Oracle9i

Release 2 (9.2.0.2). Verify that all components are valid and have been upgraded

to the new release:

SQL> SELECT comp_id, version, status FROM dba_registry;
Installing and Configuring Oracle XML DB A-5

Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
Migrating Data From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
If you are migrating your data, follow these important instructions:

Before the Upgrade
You must back up all your XML schema-based data that is stored as

object-relational. This minimizes any data-corruption during the migration process

by deleting the corrupted rows and reloading the XML from scratch.

Also, before the upgrade, you must ensure that all XML schema-based XMLType
rows and columns stored as object-relational are schema-valid. In Release 2 (9.2.0.1),

Oracle XML DB did not perform rigorous checks that an XML document being

inserted into a table was valid against its XML schema. However, in Release 2

(9.2.0.2), certain aspects of data storage rely on the schema-validity of XML

documents stored. For this reason, non-conforming XML documents stored using

Release 2 (9.2.0.1) may not migrate to Release 2 (9.2.0.2).

When is Data Non-Migratable to Release 2 (9.2.0.2)?
There are two instances where an XML schema-based document cannot be migrated

to Release 2 (9.2.0.2). If your data falls in either of these two categories, Oracle

recommends that you do the following:

1. Save all documents conforming to the non-migrated XML schema as text XML

2. Unregister the XML schema before upgrading

3. Re-register the XML schema

4. Reload the documents after the upgrade is complete.

Note: If you have the ability to restore all your XML schema and

documents from scratch, Oracle strongly recommends that you

uninstall XML DB before the upgrade, then reinstall XML DB and

reload all data after the upgrade has succeeded. This approach has

two benefits: the risk of an unsuccessful migration of the user's

XML data is eliminated, and all optimizations coded into Release 2

(9.2.0.2) will be used to their fullest extent if the data is freshly

loaded into the database post-migration rather than if it is migrated

from the Release 2 (9.2.0.1) format.
A-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
If you try to migrate data that falls under one of the two following categories, an

error is logged in the trace file for each row that fails migration.

You Cannot Migrate a Document with anyType Element in the XML Schema The first type of

XML document that cannot be migrated is one whose XML schema contains the

anyType element. Due to storage limitations for anyType in Release 2 (9.2.0.1),

Oracle changed the storage format of anyType in Release 2 (9.2.0.2) so that XML

documents with one or more non-NULL anyType element cannot be migrated.

You Cannot Migrate a Document with SubTyped Element Namespace Different from its Parent
Element Namespace The second type of XML document that cannot be migrated is

one whose XML schema contains a subtyped element with a namespace that differs

from the namespace of its parent element. This is because in Release 2 (9.2.0.1),

Oracle XML DB required and assumed the namespace of the subtyped element to

be that of its parent's namespace, and thus the real namespace of the subtyped

element was lost during the storage phase. For this reason, you cannot migrate

these XML schema, along with their conforming XML documents, to Release 2

(9.2.0.2).

The Release 2 (9.2.0.2) Oracle XML DB Upgrade Process
The migration of XMLType data happens transparently within the upgrade script

catpatch.sql .

Errors occurring during Oracle XML DB migration are reported to the trace file,

along with the table name and ROWID of the row for which the migration failed. If

an error occurs during migration of a row, the migration script simply reports the

error to the trace file and continues migrating the next row. In other words, the

script is not interrupted by errors.

If all rows are successfully migrated, Oracle XML DB is ready to use once the

database has been restarted.

Oracle XMl DB: Error Handling When Migrating to Release 2 (9.2.0.2)
If the trace file shows that errors occurred during migration of one or more

XMLType rows, the remainder of Oracle XML DB should remain usable despite the

lack of completion. If you later try to access an non-migrated row, Oracle throws an

ORA-1038 error. You can delete non-migrated rows from XMLType tables without

harm.

See Also: for instructions on running this script.
Installing and Configuring Oracle XML DB A-7

Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
When a row is migrated and does not produce an error yet yields the row unusable

after the upgrade is complete, you should delete the row then restore it using the

raw XML data, assuming that a backup was taken prior to upgrade.

Even after upgrade, any XMLType table, migrated or not, can be re-run through the

migration engine. This may be useful when a particular XMLType row fails to be

migrated as a part of catpatch.sql , but you have since taken some action to

make the migration run successfully.

Summary of Functions that Trigger Migration of a Table
Table A–1 lists the migration procedures available from XDB.DBMS_XDB package

after upgrading to Release 2 (9.2.0.2).

Table A–1 XDB.DBMS_XDB Package Release 2 (9.2.0.2) Migration Procedures

PROCEDURE Description

MigrateColumnFrom9201 Migrates one XMLType column from Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
format. The column must exist inside an object table and must be of type
XMLType, XML schema-based, and stored in object-relational format. An exclusive
lock is taken on the table before the column is migrated.

PARAMETERS: owner (IN) - Database user who owns the XMLType table,
table_name (IN) - Name of the table, column_name (IN) - Name of the XMLType
column within the table, For example: "FOO"."BAR"

Syntax:

MigrateColumnFrom9201(owner IN VARCHAR2, table_name IN VARCHAR2, column_name IN
VARCHAR2)

MigrateTableFrom9201 Migrates one XMLType table from the 9.2.0.1 format to the 9.2.0.2 format. The table
must have XMLType as its rowtype, and the XMLType row must be schema-based
and stored in object-relational format. An exclusive lock is taken on the table
before it is operated on.

PARAMETERS: owner (IN) - Database user who owns the XMLType table,
table_name (IN) - Name of the XMLType table.

Syntax:

MigrateTableFrom9201(owner IN VARCHAR2, table_name IN VARCHAR2);

MigrateAllXmlFrom9201 Migrates all object-relational XMLType tables and XMLType columns from the
9.2.0.1 format to the 9.2.0.2 format. An exclusive lock is taken each table before it is
operated on.

PARAMETERS: None.

Syntax:

MigrateAllXmlFrom9201;
A-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Configuration File, xdbconfig.xml
Configuring Oracle XML DB
The following sections describe how to configure Oracle XML DB. You can also

configure Oracle XML DB using Oracle Enterprise Manager.

Oracle XML DB is managed through a configuration resource stored in Oracle XML

DB Repository, /sys/xdbconfig.xml .

The Oracle XML DB configuration file is alterable at runtime. Simply updating the

configuration file, causes a new version of the file to be generated. At the start of

each session, the current version of the configuration is bound to that session. The

session will use this configuration for its life, unless you invoke an explicit call to

refresh to the latest configuration.

Oracle XML DB Configuration File, xdbconfig.xml
Oracle XML DB configuration is stored as an XML resource, /xdbconfig.xml
conforming to the Oracle XML DB configuration XML schema:

http://xmlns.oracle.com/xdb/xdbconfig.xsd

To configure or modify the configuration of Oracle XML DB, update the

/xdbconfig.xml file by inserting, removing, or editing the appropriate XML

elements in xdbconfig.xml .

Oracle XML DB configuration XML schema has the following structure:

Top Level Tag <xdbconfig>
A top level tag, <xdbconfig> is divided into two sections:

■ <sysconfig> This keeps system-specific, built-in parameters.

■ <userconfig> This allows users to store new custom parameters.

The following describes the syntax:

<xdbconfig>
 <sysconfig> ... </sysconfig>
 <userconfig> ... </userconfig>
</xdbconfig>

See Also: Chapter 21, "Managing Oracle XML DB Using Oracle

Enterprise Manager"
Installing and Configuring Oracle XML DB A-9

Oracle XML DB Configuration File, xdbconfig.xml
<sysconfig>
The <sysconfig> section is further subdivided as follows:

<sysconfig>
 General parameters
 <protocolconfig> ... </protocolconfig>
</sysconfig>

It stores several general parameters that apply to all Oracle XML DB, for example,

the maximum age for an ACL, whether Oracle XML DB should be case sensitive,

and so on.

Protocol-specific parameters are grouped inside the <protocolconfig> tag.

<userconfig>
The <userconfig> section contains any parameters that you may want to add.

<protocolconfig>
The structure of the <protocolconfig> section is as follows:

<protocolconfig>
 <common> ... </common>
 <httpconfig> ... </httpconfig>
 <ftpconfig> ... </ftpconfig>
</protocolconfig>

Under <common> Oracle9i stores parameters that apply to all protocols, such as

MIME type information. There are also HTTP and FTP specific parameters under

sections <httpconfig> and <ftpconfig> respectively.

<httpconfig>
Inside <httpconfig> there is a further subsection, <webappconfig> that

corresponds to Web-based applications. It includes Web application specific

parameters, for example, icon name, display name for the application, list of

servlets in Oracle XML DB, and so on.
A-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Configuration Example
Oracle XML DB Configuration Example
The following is a sample Oracle XML DB configuration file:

Example A–1 Oracle XML DB Configuration File

<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdbconfig.xsd
 http://xmlns.oracle.com/xdb/xdbconfig.xsd">
 <sysconfig>
 <acl-max-age>900</acl-max-age>
 <invalid-pathname-chars>,</invalid-pathname-chars>
 <call-timeout>300</call-timeout>
 <max-session-use>100</max-session-use>
 <default-lock-timeout>3600</default-lock-timeout>
 <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
 <xdbcore-log-level>1</xdbcore-log-level>

 <protocolconfig>
 <common>
 <extension-mappings>
 <mime-mappings>
 <mime-mapping>
 <extension>au</extension>
 <mime-type>audio/basic</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>avi</extension>
 <mime-type>video/x-msvideo</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>bin</extension>
 <mime-type>application/octet-stream</mime-type>
 </mime-mapping>

See Also:

■ Chapter 19, "Using FTP, HTTP, and WebDAV Protocols",

Table 19–1, Table 19–2, and Table 19–3, for a list of protocol

configuration parameters.

■ Chapter 20, "Writing Oracle XML DB Applications in Java",

"Configuring the Oracle XML DB Example Servlet" on

page 20-12.
Installing and Configuring Oracle XML DB A-11

Oracle XML DB Configuration Example
 <lang-mappings>
 <lang-mapping>
 <extension>en</extension>
 <lang>english</lang>
 </lang-mapping>
 </lang-mappings>

 <charset-mappings>
 </charset-mappings>

 <encoding-mappings>
 <encoding-mapping>
 <extension>gzip</extension>
 <encoding>zip file</encoding>
 </encoding-mapping>
 <encoding-mapping>
 <extension>tar</extension>
 <encoding>tar file</encoding>
 </encoding-mapping>
 </encoding-mappings>
 </extension-mappings>

 <session-pool-size>50</session-pool-size>
 <session-timeout>6000</session-timeout>
 </common>

 <ftpconfig>
 <ftp-port>2100</ftp-port>
 <ftp-listener>local_listener</ftp-listener>
 <ftp-protocol>tcp</ftp-protocol>
 <logfile-path>/sys/log/ftplog.xml</logfile-path>
 <log-level>0</log-level>
 <session-timeout>6000</session-timeout>
 </ftpconfig>

 <httpconfig>
 <http-port>8080</http-port>
 <http-listener>local_listener</http-listener>
 <http-protocol>tcp</http-protocol>
 <session-timeout>6000</session-timeout>
 <server-name>XDB HTTP Server</server-name>
 <max-header-size>16384</max-header-size>
 <max-request-body>2000000000</max-request-body>
 <logfile-path>/sys/log/httplog.xml</logfile-path>
A-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Configuration Example
 <log-level>0</log-level>
 <servlet-realm>Basic realm="XDB"</servlet-realm>
 <webappconfig>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 </welcome-file-list>
 <error-pages>
 </error-pages>
 <servletconfig>
 <servlet-mappings>
 <servlet-mapping>
 <servlet-pattern>/oradb/*</servlet-pattern>
 <servlet-name>DBURIServlet</servlet-name>
 </servlet-mapping>
 </servlet-mappings>

 <servlet-list>
 <servlet>
 <servlet-name>DBURIServlet</servlet-name>
 <display-name>DBURI</display-name>
 <servlet-language>C</servlet-language>
 <description>Servlet for accessing DBURIs</description>
 <security-role-ref>
 <role-name>authenticatedUser</role-name>
 <role-link>authenticatedUser</role-link>
 </security-role-ref>
 </servlet>
 </servlet-list>
 </servletconfig>
 </webappconfig>
 </httpconfig>
 </protocolconfig>
 </sysconfig>

 <userconfig><numusers>40</numusers></userconfig>

</xdbconfig>
Installing and Configuring Oracle XML DB A-13

Oracle XML DB Configuration API
Oracle XML DB Configuration API
The Oracle XML DB Configuration API can be accessed just like any other XML

schema-based resource in the hierarchy. It can be accessed and manipulated using

FTP, HTTP, WebDav, Oracle Enterprise Manager, or any of the resource and DOM

APIs for Java or PL/SQL.

For convenience, there is a PL/SQL API provided as part of the DBMS_XDB package

for configuration access. It exposes the following functions:

Get Configuration, cfg_get()
The cfg_get() function returns a copy of the configuration as an XMLType:

DBMS_XDB.CFG_GET() RETURN SYS.XMLTYPE

cfg_get() is auto-commit.

Update Configuration, cfg_update()
The cfg_update() function updates the configuration with a new one:

DBMS_XDB.CFG_UPDATE(newconfig SYS.XMLTYPE)

Example A–2 Updating the Configuration File Using cfg_update() and cfg_get()

If you have a few parameters to update in the configuration file, you can use the

following:

BEGIN
DBMS_XDB.CFG_UPDATE(UPDATEXML(UPDATEXML
 (DBMS_XDB.CFG_GET(),
 /xdbconfig/descendant::ftp-port/text()', '2121'),
 '/xdbconfig/descendant::http-port/text()',
 19090'))
END;
/

If you have many parameters to update, the preceding example may prove too

cumbersome. Use instead FTP, HTTP, or Oracle Enterprise Manager.
A-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Configuration API
Refresh Configuration, cfg_refresh()
The cfg_refresh() function updates the configuration snapshot to correspond to

the latest version on disk at that instant:

DBMS_XDB.CFG_REFRESH()

Typically, cfg_refresh() is called in one of the following scenarios:

■ You have modified the configuration and now want the session to pick up the

latest version of the configuration information.

■ It has been a long running session, the configuration has been modified by a

concurrent session, and you want the current session to pick up the latest

version of the configuration information.

■ If updates to the configuration are made, Oracle XML DB Configuration API is

aware of them.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
the chapter on DBMS_XDB
Installing and Configuring Oracle XML DB A-15

Oracle XML DB Configuration API
A-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema P
B

XML Schema Primer

This appendix includes introductory information about the W3C XML Schema

Recommendation. It contains the following sections:

■ Introducing XML Schema

■ XML Schema Components

■ Simple Types

■ Anonymous Type Definitions

■ Element Content

■ Annotations

■ Building Content Models

■ Attribute Groups

■ Nil Values

■ Building Content Models

■ XML Schema Example, PurchaseOrder.xsd
rimer B-1

Introducing XML Schema
Introducing XML Schema
Parts of this introduction are extracted from W3C XML Schema notes.

An XML schema (referred to in this appendix as schema) defines a class of XML

documents. The term “instance document” is often used to describe an XML

document that conforms to a particular XML schema. However, neither instances

nor schemas need to exist as documents, they may exist as streams of bytes sent

between applications, as fields in a database record, or as collections of XML Infoset

“Information Items”. But to simplify the description in this appendix, instances and

schemas are referred to as if they are documents and files.

Purchase Order, po.xml
Consider the following instance document in an XML file po.xml . It describes a

purchase order generated by a home products ordering and billing application:

<?xml version="1.0"?>
 <purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>

See Also:

■ http://www.w3.org/TR/xmlschema-0/ Primer

■ http://www.w3.org/TR/xmlschema-1/ Structures

■ http://www.w3.org/TR/xmlschema-2/ Datatypes

■ http://w3.org/XML/Schema

■ http://www.oasis-open.org/cover/schemas.html

■ http://www.xml.com/pub/a/2000/11/29/schemas/part1
.html
B-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing XML Schema
 </billTo>
 <comment>Hurry, my lawn is going wild!</comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

The purchase order consists of a main element, purchaseOrder , and the

subelements shipTo , billTo , comment , and items . These subelements (except

comment) in turn contain other subelements, and so on, until a subelement such as

USPrice contains a number rather than any subelements.

■ Complex Type Elements. Elements that contain subelements or carry attributes

are said to have complex types

■ Simple Type Elements. Elements that contain numbers (and strings, and dates,

and so on) but do not contain any subelements are said to have simple types.

Some elements have attributes; attributes always have simple types.

The complex types in the instance document, and some simple types, are defined in

the purchase order schema. The other simple types are defined as part of XML

Schema's repertoire of built-in simple types.

Association Between the Instance Document and Purchase Order Schema
The purchase order schema is not mentioned in the XML instance document. An

instance is not actually required to reference an XML schema, and although many

will. It is assumed that any processor of the instance document can obtain the

purchase order XML schema without any information from the instance document.

Later, you will see the explicit mechanisms for associating instances and XML

schemas.
XML Schema Primer B-3

Introducing XML Schema
Purchase Order Schema, po.xsd
The purchase order schema is contained in the file po.xsd :

Purchase Order Schema, po.xsd
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name=" PurchaseOrderType ">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name=" USAddress ">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"fixed="US"/>
</xsd:complexType>

<xsd:complexType name=" Items ">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
B-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing XML Schema
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>

 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>
</xsd:schema>

The purchase order schema consists of a schema element and a variety of

subelements, most notably elements, complexType , and simpleType which

determine the appearance of elements and their content in the XML instance

documents.

Prefix xsd:
Each of the elements in the schema has a prefix xsd: which is associated with the

XML Schema namespace through the declaration,

xmlns:xsd="http://www.w3.org/2001/XMLSchema" , that appears in the

schema element. The prefix xsd: is used by convention to denote the XML Schema

namespace, although any prefix can be used. The same prefix, and hence the same

association, also appears on the names of built-in simple types, such as,

xsd:string . This identifies the elements and simple types as belonging to the

vocabulary of the XML Schema language rather than the vocabulary of the schema

author. For clarity, this description uses the names of elements and simple types, for

example, simpleType , and omits the prefix.
XML Schema Primer B-5

XML Schema Components
XML Schema Components
Schema component is the generic term for the building blocks that comprise the

abstract data model of the schema. An XML Schema is a set of ·schema

components·. There are 13 kinds of component in all, falling into three groups.

Primary Components
The primary components, which may (type definitions) or must (element and

attribute declarations) have names are as follows:

■ Simple type definitions

■ Complex type definitions

■ Attribute declarations

■ Element declarations

Secondary Components
The secondary components, which must have names, are as follows:

■ Attribute group definitions

■ Identity-constraint definitions

■ Model group definitions

■ Notation declarations

Helper Components
Finally, the “helper” components provide small parts of other components; they are

not independent of their context:

■ Annotations

■ Model groups

■ Particles

■ Wildcards

■ Attribute Uses

Complex Type Definitions, Element and Attribute Declarations
In XML Schema, there is a basic difference between complex and simple types:
B-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Components
■ Complex types, allow elements in their content and may carry attributes

■ Simple types, cannot have element content and cannot carry attributes.

There is also a major distinction between the following:

■ Definitions which create new types (both simple and complex)

■ Declarations which enable elements and attributes with specific names and types

(both simple and complex) to appear in document instances

This section defines complex types and declares elements and attributes that appear

within them.

New complex types are defined using the complexType element and such

definitions typically contain a set of element declarations, element references, and

attribute declarations. The declarations are not themselves types, but rather an

association between a name and the constraints which govern the appearance of

that name in documents governed by the associated schema. Elements are declared

using the element element, and attributes are declared using the attribute
element.

Defining the USAddress Type
For example, USAddress is defined as a complex type, and within the definition of

USAddress you see five element declarations and one attribute declaration:

<xsd:complexType name=" USAddress " >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

Hence any element appearing in an instance whose type is declared to be

USAddress , such as, shipTo in po.xml , must consist of five elements and one

attribute. These elements must:

■ Be called name, street , city , state , and zip as specified by the values of

the declarations' name attributes

■ Appear in the same sequence (order) in which they are declared. The first four

of these elements will each contain a string, and the fifth will contain a number.
XML Schema Primer B-7

XML Schema Components
The element whose type is declared to be USAddress may appear with an

attribute called country which must contain the string US.

The USAddress definition contains only declarations involving the simple types:

string, decimal, and NMTOKEN.

Defining PurchaseOrderType
In contrast, the PurchaseOrderType definition contains element declarations

involving complex types, such as, USAddress , although both declarations use the

same type attribute to identify the type, regardless of whether the type is simple or

complex.

<xsd:complexType name=" PurchaseOrderType ">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

In defining PurchaseOrderType , two of the element declarations, for shipTo
and billTo , associate different element names with the same complex type, namely

USAddress . The consequence of this definition is that any element appearing in an

instance document, such as, po.xml , whose type is declared to be

PurchaseOrderType must consist of elements named shipTo and billTo , each

containing the five subelements (name, street , city , state , and zip) that were

declared as part of USAddress . The shipTo and billTo elements may also carry

the country attribute that was declared as part of USAddress .

The PurchaseOrderType definition contains an orderDate attribute declaration

which, like the country attribute declaration, identifies a simple type. In fact, all
attribute declarations must reference simple types because, unlike element

declarations, attributes cannot contain other elements or other attributes.

The element declarations we have described so far have each associated a name

with an existing type definition. Sometimes it is preferable to use an existing

element rather than declare a new element, for example:

<xsd:element ref="comment" minOccurs="0"/>

This declaration references an existing element, comment , declared elsewhere in the

purchase order schema. In general, the value of the ref attribute must reference a
B-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Components
global element, on other words, one that has been declared under schema rather

than as part of a complex type definition. The consequence of this declaration is that

an element called comment may appear in an instance document, and its content

must be consistent with that element's type, in this case, string.

Occurrence Constraints: minOccurs and maxOccurs
The comment element is optional in PurchaseOrderType because the value of the

minOccurs attribute in its declaration is 0. In general, an element is required to

appear when the value of minOccurs is 1 or more. The maximum number of times

an element may appear is determined by the value of a maxOccurs attribute in its

declaration. This value may be a positive integer such as 41, or the term unbounded

to indicate there is no maximum number of occurrences. The default value for both

the minOccurs and the maxOccurs attributes is 1.

Thus, when an element such as comment is declared without a maxOccurs
attribute, the element may not occur more than once. If you specify a value for only

the minOccurs attribute, make certain that it is less than or equal to the default

value of maxOccurs , that is, it is 0 or 1.

Similarly, if you specify a value for only the maxOccurs attribute, it must be greater

than or equal to the default value of minOccurs , that is, 1 or more. If both

attributes are omitted, the element must appear exactly once.

Attributes may appear once or not at all, but no other number of times, and so the

syntax for specifying occurrences of attributes is different from the syntax for

elements. In particular, attributes can be declared with a use attribute to indicate

whether the attribute is required , optional , or even prohibited . Recall for

example, the partNum attribute declaration in po.xsd:

<xsd:attribute name="partNum" type="SKU" use="required"/>

Default Attributes
Default values of both attributes and elements are declared using the default

attribute, although this attribute has a slightly different consequence in each case.

When an attribute is declared with a default value, the value of the attribute is

whatever value appears as the attribute's value in an instance document; if the

attribute does not appear in the instance document, the schema processor provides

the attribute with a value equal to that of the default attribute.
XML Schema Primer B-9

XML Schema Components
Default Elements
The schema processor treats defaulted elements slightly differently. When an

element is declared with a default value, the value of the element is whatever value

appears as the element's content in the instance document.

If the element appears without any content, the schema processor provides the

element with a value equal to that of the default attribute. However, if the element

does not appear in the instance document, the schema processor does not provide

the element at all.

In summary, the differences between element and attribute defaults can be stated

as:

■ Default attribute values apply when attributes are missing

■ Default element values apply when elements are empty

The fixed attribute is used in both attribute and element declarations to ensure that

the attributes and elements are set to particular values. For example, po.xsd
contains a declaration for the country attribute, which is declared with a fixed value

US. This declaration means that the appearance of a country attribute in an

instance document is optional (the default value of use is optional), although if the

attribute does appear, its value must be US, and if the attribute does not appear, the

schema processor will provide a country attribute with the value US.

Table B–1 summarizes the attribute values used in element and attribute

declarations to constrain their occurrences.

Note: Default values for attributes only make sense if the

attributes themselves are optional, and so it is an error to specify

both a default value and anything other than a value of optional for

use.

Note: The concepts of a fixed value and a default value are

mutually exclusive, and so it is an error for a declaration to contain

both fixed and default attributes.
B-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Components
Global Elements and Attributes
Global elements, and global attributes, are created by declarations that appear as

the children of the schema element. Once declared, a global element or a global

attribute can be referenced in one or more declarations using the ref attribute as

described in the preceding section.

A declaration that references a global element enables the referenced element to

appear in the instance document in the context of the referencing declaration. So,

for example, the comment element appears in po.xml at the same level as the

shipTo , billTo and items elements because the declaration that references

comment appears in the complex type definition at the same level as the

declarations of the other three elements.

Table B–1 Occurrence Constraints for XML Schema Elements and Attributes

Elements

(minOccurs, maxOccurs)

fixed, default

Attributes

use, fixed,default

 Notes

(1, 1) -, - required, -, - element/attribute must appear once, it may have any value

(1, 1) 37, - required, 37, - element/attribute must appear once, its value must be 37

(2, unbounded) 37, - n/a element must appear twice or more, its value must be 37; in
general, minOccurs and maxOccurs values may be positive
integers, and maxOccurs value may also be “unbounded”

(0, 1) -, - optional, -, - element/attribute may appear once, it may have any value

(0, 1) 37, - optional, 37, - element/attribute may appear once, if it does appear its
value must be 37, if it does not appear its value is 37

(0, 1) -, 37 optional, -, 37 element/attribute may appear once; if it does not appear its
value is 37, otherwise its value is that given

(0, 2) -, 37 n/a element may appear once, twice, or not at all; if the element
does not appear it is not provided; if it does appear and it is
empty, its value is 37; otherwise its value is that given; in
general, minOccurs and maxOccurs values may be positive
integers, and maxOccurs value may also be “unbounded”

(0, 0) -, - prohibited, -, - element/attribute must not appear

Note: Neither minOccurs , maxOccurs , nor use may appear in

the declarations of global elements and attributes.
XML Schema Primer B-11

XML Schema Components
The declaration of a global element also enables the element to appear at the

top-level of an instance document. Hence purchaseOrder , which is declared as a

global element in po.xsd , can appear as the top-level element in po.xml .

Caveats: One caveat is that global declarations cannot contain references; global

declarations must identify simple and complex types directly. Global declarations

cannot contain the ref attribute, they must use the type attribute, or, be followed

by an anonymous type definition.

A second caveat is that cardinality constraints cannot be placed on global

declarations, although they can be placed on local declarations that reference global

declarations. In other words, global declarations cannot contain the attributes

minOccurs , maxOccurs , or use .

Naming Conflicts
The preceding section described how to:

■ Define new complex types, such as, PurchaseOrderType

■ Declare elements, such as, purchaseOrder

■ Declare attributes, such as, orderDate

These involve naming. If two things are given the same name, in general, the more

similar the two things are, the more likely there will be a naming conflict.

For example:

If the two things are both types, say a complex type called USStates and a simple

type called USStates , there is a conflict.

If the two things are a type and an element or attribute, such as when defining a

complex type called USAddress and declaring an element called USAddress , there

is no conflict.

If the two things are elements within different types, that is, not global elements,

say declare one element called name as part of the USAddress type and a second

element called name as part of the Item type, there is no conflict. Such elements are

sometimes called local element declarations.

Note: This rationale also allows a comment element to appear as

the top-level element in a document like po.xml .
B-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Simple Types
If the two things are both types and you define one and XML Schema has defined

the other, say you define a simple type called decimal , there is no conflict. The

reason for the apparent contradiction in the last example is that the two types

belong to different namespaces. Namespaces are described in "Introducing the W3C

Namespaces in XML Recommendation" on page C-18.

Simple Types
The purchase order schema declares several elements and attributes that have

simple types. Some of these simple types, such as string and decimal, are built into

XML Schema, while others are derived from the built-in's.

For example, the partNum attribute has a type called SKU(Stock Keeping Unit) that

is derived from string. Both built-in simple types and their derivations can be used

in all element and attribute declarations. Table B–2 lists all the simple types built

into XML Schema, along with examples of the different types.

Table B–2 Simple Types Built into XML Schema

Simple Type Examples (delimited by commas) Notes

string Confirm this is electric --

normalizedString Confirm this is electric 3

token Confirm this is electric 4

byte -1, 126 2

unsignedByte 0, 126 2

base64Binary GpM7 --

hexBinary 0FB7 --

integer -126789, -1, 0, 1, 126789 2

positiveInteger 1, 126789 2

negativeInteger -126789, -1 2

nonNegativeInteger 0, 1, 126789 2

nonPositiveInteger -126789, -1, 0 2

int -1, 126789675 2

unsignedInt 0, 1267896754 2

long -1, 12678967543233 2
XML Schema Primer B-13

Simple Types
unsignedLong 0, 12678967543233 2

short -1, 12678 2

unsignedShort 0, 12678 2

decimal -1.23, 0, 123.4, 1000.00 2

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
NaN

equivalent to
single-precision 32-bit
floating point, NaN is
“not a number”. Note: 2

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
NaN

 equivalent to
double-precision 64-bit
floating point. Note: 2\

boolean true, false 1, 0 --

time 13:20:00.000, 13:20:00.000-05:00 2

dateTime 1999-05-31T13:20:00.000-05:00 May 31st 1999 at 1.20pm
Eastern Standard Time
which is 5 hours behind
Co-Ordinated Universal
Time, see 2

duration P1Y2M3DT10H30M12.3S 1 year, 2 months, 3 days,
10 hours, 30 minutes, and
12.3 seconds

date 1999-05-31 2

gMonth --05-- May, Notes: 2, 5

gYear 1999 1999, Notes: 2, 5

gYearMonth 1999-02 the month of February
1999, regardless of the
numberof
days. Notes: 2, 5

gDay ---31 the 31st day. Notes: 2, 5

gMonthDay --05-31 every May 31st. Notes: 2,
5

Name shipTo XML 1.0 Name type

QName po:USAddress XML Namespace
QName

Table B–2 Simple Types Built into XML Schema (Cont.)

Simple Type Examples (delimited by commas) Notes
B-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Simple Types
Notes:

(1) To retain compatibility between XML Schema and XML 1.0 DTDs, the simple

types ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN,
NMTOKENS should only be used in attributes.

(2) A value of this type can be represented by more than one lexical format. For

example, 100 and 1.0E2 are both valid float formats representing “one hundred”.

NCName USAddress XML Namespace
NCName, that is,
QName without the
prefix and colon

anyURI http://www.example.com/,
http://www.example.com/doc.ht
ml#ID5

--

language en-GB, en-US, fr valid values for xml:lang
as defined in XML 1.0

ID -- XML 1.0 ID attribute
type, Note: 1

IDREF -- XML 1.0 IDREF attribute
type. Note: 1

IDREFS -- XML 1.0 IDREFS
attribute type, see (1)

ENTITY -- XML 1.0 ENTITY
attribute type. Note: 1

ENTITIES -- XML 1.0 ENTITIES
attribute type. Note: 1

NOTATION -- XML 1.0 NOTATION
attribute type. Note: 1

NMTOKEN US,BrÃ©sil XML 1.0 NMTOKEN
attribute type. Note: 1

NMTOKENS US UK,BrÃ©sil Canada Mexique XML 1.0 NMTOKENS
attribute type, that is, a
whitespace separated list
of NMTOKEN's. Note: 1

Table B–2 Simple Types Built into XML Schema (Cont.)

Simple Type Examples (delimited by commas) Notes
XML Schema Primer B-15

Simple Types
However, rules have been established for this type that define a canonical lexical

format, see XML Schema Part 2.

(3) Newline, tab and carriage-return characters in a normalizedString type are

converted to space characters before schema processing.

(4) As normalizedString, and adjacent space characters are collapsed to a single

space character, and leading and trailing spaces are removed.

(5) The “g” prefix signals time periods in the Gregorian calender.

New simple types are defined by deriving them from existing simple types

(built-in's and derived). In particular, you can derive a new simple type by

restricting an existing simple type, in other words, the legal range of values for the

new type are a subset of the existing type's range of values.

Use the simpleType element to define and name the new simple type. Use the

restriction element to indicate the existing (base) type, and to identify the “facets”

that constrain the range of values. A complete list of facets is provided in Appendix

B of XML Schema Primer, http://www.w3.org/TR/xmlschema-0/ .

Suppose you want to create a new type of integer called myInteger whose range

of values is between 10000 and 99999 (inclusive). Base your definition on the

built-in simple type integer, whose range of values also includes integers less than

10000 and greater than 99999.

To define myInteger , restrict the range of the integer base type by employing two

facets called minInclusive and maxInclusive :

Defining myInteger, Range 10000-99999
<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

The example shows one particular combination of a base type and two facets used

to define myInteger , but a look at the list of built-in simple types and their facets

should suggest other viable combinations.

The purchase order schema contains another, more elaborate, example of a simple

type definition. A new simple type called SKU is derived (by restriction) from the

simple type string. Furthermore, you can constrain the values of SKU using a facet

called pattern in conjunction with the regular expression "\d{3}-[A-Z]{2} "
B-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Simple Types
that is read “three digits followed by a hyphen followed by two upper-case ASCII

letters”:

Defining the Simple Type “SKU”
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

This regular expression language is described more fully in Appendix D of

http://www.w3.org/TR/xmlschema-0/ .

XML Schema defines fifteen facets which are listed in Appendix B of

http://www.w3.org/TR/xmlschema-0/ . Among these, the enumeration facet

is particularly useful and it can be used to constrain the values of almost every

simple type, except the boolean type. The enumeration facet limits a simple type to

a set of distinct values. For example, you can use the enumeration facet to define a

new simple type called USState , derived from string, whose value must be one of

the standard US state abbreviations:

Using the Enumeration Facet
<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <xsd:enumeration value="AR"/>
 <!-- and so on ... -->
 </xsd:restriction>
</xsd:simpleType>

USState would be a good replacement for the string type currently used in the

state element declaration. By making this replacement, the legal values of a state

element, that is, the state subelements of billTo and shipTo , would be limited to

one of AK, AL, AR, and so on. Note that the enumeration values specified for a

particular type must be unique.

List Types
XML Schema has the concept of a list type, in addition to the so-called atomic types

that constitute most of the types listed in Table B–3. Atomic types, list types, and the

union types described in the next section are collectively called simple types. The
XML Schema Primer B-17

Simple Types
value of an atomic type is indivisible from XML Schema's perspective. For example,

the NMTOKEN value US is indivisible in the sense that no part of US, such as the

character “S”, has any meaning by itself. In contrast, list types are comprised of

sequences of atomic types and consequently the parts of a sequence (the “atoms”)

themselves are meaningful. For example, NMTOKENSis a list type, and an element of

this type would be a white-space delimited list of NMTOKEN's, such as “US UK

FR”. XML Schema has three built-in list types:

■ NMTOKENS

■ IDREFS

■ ENTITIES

In addition to using the built-in list types, you can create new list types by

derivation from existing atomic types. You cannot create list types from existing

list types, nor from complex types. For example, to create a list of myInteger's:

Creating a List of myInteger's
<xsd:simpleType name="listOfMyIntType">
 <xsd:list itemType="myInteger"/>
</xsd:simpleType>

And an element in an instance document whose content conforms to

listOfMyIntType is:

<listOfMyInt>20003 15037 95977 95945</listOfMyInt>

Several facets can be applied to list types: length, minLength, maxLength , and

enumeration . For example, to define a list of exactly six US states (SixUSStates),

we first define a new list type called USStateList from USState , and then we

derive SixUSStates by restricting USStateList to only six items:

List Type for Six US States
<xsd:simpleType name="USStateList">
 <xsd:list itemType="USState"/>
</xsd:simpleType>
<xsd:simpleType name="SixUSStates">
 <xsd:restriction base="USStateList">
 <xsd:length value="6"/>
 </xsd:restriction>
</xsd:simpleType>
B-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Simple Types
Elements whose type is SixUSStates must have six items, and each of the six items

must be one of the (atomic) values of the enumerated type USState, for example:

<sixStates>PA NY CA NY LA AK</sixStates>

Note that it is possible to derive a list type from the atomic type string. However, a

string may contain white space, and white space delimits the items in a list type, so

you should be careful using list types whose base type is string. For example,

suppose we have defined a list type with a length facet equal to 3, and base type

string, then the following 3 item list is legal:

Asie Europe Afrique

But the following 3 “item” list is illegal:

Asie Europe AmÃ©rique Latine

Even though "AmÃ©rique Latine" may exist as a single string outside of the list,

when it is included in the list, the whitespace between AmÃ©rique and Latine

effectively creates a fourth item, and so the latter example will not conform to the

3-item list type.

Union Types
Atomic types and list types enable an element or an attribute value to be one or

more instances of one atomic type. In contrast, a union type enables an element or

attribute value to be one or more instances of one type drawn from the union of

multiple atomic and list types. To illustrate, we create a union type for representing

American states as singleton letter abbreviations or lists of numeric codes. The

zipUnion union type is built from one atomic type and one list type:

Union Type for Zipcodes
<xsd:simpleType name="zipUnion">
 <xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

When we define a union type, the memberTypes attribute value is a list of all the

types in the union.

Now, assuming we have declared an element called zips of type zipUnion , valid

instances of the element are:

<zips>CA</zips>
 <zips>95630 95977 95945</zips>
<zips>AK</zips>
XML Schema Primer B-19

Anonymous Type Definitions
Two facets, pattern and enumeration , can be applied to a union type.

Anonymous Type Definitions
Schemas can be constructed by defining sets of named types such as

PurchaseOrderType and then declaring elements such as purchaseOrder that

reference the types using the type= construction. This style of schema construction

is straightforward but it can be unwieldy, especially if you define many types that

are referenced only once and contain very few constraints. In these cases, a type can

be more succinctly defined as an anonymous type which saves the overhead of

having to be named and explicitly referenced.

The definition of the type Items in po.xsd contains two element declarations that

use anonymous types (item and quantity). In general, you can identify

anonymous types by the lack of a type= in an element (or attribute) declaration, and

by the presence of an un-named (simple or complex) type definition:

Two Anonymous Type Definitions
<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name=" item " minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name=" quantity ">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
B-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Element Content
In the case of the item element, it has an anonymous complex type consisting of

the elements productName , quantity , USPrice , comment , and shipDate , and

an attribute called partNum . In the case of the quantity element, it has an

anonymous simple type derived from integer whose value ranges between 1 and

99.

Element Content
The purchase order schema has many examples of elements containing other

elements (for example, items), elements having attributes and containing other

elements (such as, shipTo), and elements containing only a simple type of value

(for example, USPrice). However, we have not seen an element having attributes

but containing only a simple type of value, nor have we seen an element that

contains other elements mixed with character content, nor have we seen an element

that has no content at all. In this section we'll examine these variations in the

content models of elements.

Complex Types from Simple Types
Let us first consider how to declare an element that has an attribute and contains a

simple value. In an instance document, such an element might appear as:

<internationalPrice currency="EUR">423.46</internationalPrice>

The purchase order schema declares a USPrice element that is a starting point:

<xsd:element name="USPrice" type="decimal"/>

Now, how do we add an attribute to this element? As we have said before, simple

types cannot have attributes, and decimal is a simple type.

Therefore, we must define a complex type to carry the attribute declaration. We also

want the content to be simple type decimal. So our original question becomes: How

do we define a complex type that is based on the simple type decimal? The answer

is to derive a new complex type from the simple type decimal:

Deriving a Complex Type from a Simple Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
XML Schema Primer B-21

Element Content
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

We use the complexType element to start the definition of a new (anonymous)

type. To indicate that the content model of the new type contains only character

data and no elements, we use a simpleContent element. Finally, we derive the new

type by extending the simple decimal type. The extension consists of adding a

currency attribute using a standard attribute declaration. (We cover type derivation

in detail in Section 4.) The internationalPrice element declared in this way will

appear in an instance as shown in the example at the beginning of this section.

Mixed Content
The construction of the purchase order schema may be characterized as elements

containing subelements, and the deepest subelements contain character data. XML

Schema also provides for the construction of schemas where character data can

appear alongside subelements, and character data is not confined to the deepest

subelements.

To illustrate, consider the following snippet from a customer letter that uses some of

the same elements as the purchase order:

Snippet of Customer Letter
<letterBody>
 <salutation>Dear Mr.<name>Robert Smith</name>.</salutation>
 Your order of <quantity>1</quantity> <productName>Baby
 Monitor</productName> shipped from our warehouse on
 <shipDate>1999-05-21</shipDate>.
</letterBody>

Notice the text appearing between elements and their child elements. Specifically,

text appears between the elements salutation, quantity, productName and shipDate

which are all children of letterBody, and text appears around the element name

which is the child of a child of letterBody. The following snippet of a schema

declares letterBody:

Snippet of Schema for Customer Letter
<xsd:element name="letterBody">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="salutation">
B-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Element Content
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="quantity" type="xsd:positiveInteger"/>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 <!-- and so on -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The elements appearing in the customer letter are declared, and their types are

defined using the element and complexType element constructions we previously

seen. To enable character data to appear between the child-elements of letterBody,

the mixed attribute on the type definition is set to true.

Note that the mixed model in XML Schema differs fundamentally from the mixed

model in XML 1.0. Under the XML Schema mixed model, the order and number of

child elements appearing in an instance must agree with the order and number of

child elements specified in the model. In contrast, under the XML 1.0 mixed model,

the order and number of child elements appearing in an instance cannot be

constrained. In summary, XML Schema provides full validation of mixed models in

contrast to the partial schema validation provided by XML 1.0.

Empty Content
Now suppose that we want the internationalPrice element to convey both the unit

of currency and the price as attribute values rather than as separate attribute and

content values. For example:

<internationalPrice currency="EUR" value="423.46"/>

Such an element has no content at all; its content model is empty.

An Empty Complex Type
To define a type whose content is empty, we essentially define a type that allows

only elements in its content, but we do not actually declare any elements and so the

type's content model is empty:

<xsd:element name="internationalPrice">
 <xsd:complexType>
XML Schema Primer B-23

Element Content
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

In this example, we define an (anonymous) type having complexContent , that is,

only elements. The complexContent element signals that the intent to restrict or

extend the content model of a complex type, and the restriction of anyType
declares two attributes but does not introduce any element content (see Section 4.4

of the XML Schema Primer, for more details on restriction. The

internationalPrice element declared in this way may legitimately appear in

an instance as shown in the preceding example.

Shorthand for an Empty Complex Type
The preceding syntax for an empty-content element is relatively verbose, and it is

possible to declare the internationalPrice element more compactly:

<xsd:element name=" internationalPrice ">
 <xsd:complexType>
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 /xsd:complexType>
</xsd:element>

This compact syntax works because a complex type defined without any

simpleContent or complexContent is interpreted as shorthand for complex content

that restricts anyType.

AnyType
The anyType represents an abstraction called the ur-type which is the base type

from which all simple and complex types are derived. An anyType type does not

constrain its content in any way. It is possible to use anyType like other types, for

example:

<xsd:element name="anything" type="xsd:anyType"/>

The content of the element declared in this way is unconstrained, so the element

value may be 423.46, but it may be any other sequence of characters as well, or
B-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Annotations
indeed a mixture of characters and elements. In fact, anyType is the default type

when none is specified, so the preceding could also be written as follows:

<xsd:element name="anything"/>

If unconstrained element content is needed, for example in the case of elements

containing prose which requires embedded markup to support internationalization,

then the default declaration or a slightly restricted form of it may be suitable. The

text type described in Section 5.5 is an example of such a type that is suitable for

such purposes.

Annotations
XML Schema provides three elements for annotating schemas for the benefit of both

human readers and applications. In the purchase order schema, we put a basic

schema description and copyright information inside the documentation element,

which is the recommended location for human readable material. We recommend

you use the xml:lang attribute with any documentation elements to indicate the

language of the information. Alternatively, you may indicate the language of all

information in a schema by placing an xml:lang attribute on the schema element.

The appInfo element, which we did not use in the purchase order schema, can be

used to provide information for tools, stylesheets and other applications. An

interesting example using appInfo is a schema that describes the simple types in

XML Schema Part 2: Datatypes.

Information describing this schema, for example, which facets are applicable to

particular simple types, is represented inside appInfo elements, and this

information was used by an application to automatically generate text for the XML

Schema Part 2 document.

Both documentation and appInfo appear as subelements of annotation, which may

itself appear at the beginning of most schema constructions. To illustrate, the

following example shows annotation elements appearing at the beginning of an

element declaration and a complex type definition:

Annotations in Element Declaration & Complex Type Definition
<xsd:element name="internationalPrice">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 element declared with anonymous type
 </xsd:documentation>
 </xsd:annotation>
XML Schema Primer B-25

Building Content Models
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 empty anonymous type with 2 attributes
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

The annotation element may also appear at the beginning of other schema

constructions such as those indicated by the elements schema , simpleType , and

attribute .

Building Content Models
The definitions of complex types in the purchase order schema all declare sequences

of elements that must appear in the instance document. The occurrence of

individual elements declared in the so-called content models of these types may be

optional, as indicated by a 0 value for the attribute minOccurs (for example, in

comment), or be otherwise constrained depending upon the values of minOccurs

and maxOccurs .

XML Schema also provides constraints that apply to groups of elements appearing

in a content model. These constraints mirror those available in XML 1.0 plus some

additional constraints. Note that the constraints do not apply to attributes.

XML Schema enables groups of elements to be defined and named, so that the

elements can be used to build up the content models of complex types (thus

mimicking common usage of parameter entities in XML 1.0). Un-named groups of

elements can also be defined, and along with elements in named groups, they can

be constrained to appear in the same order (sequence) as they are declared.

Alternatively, they can be constrained so that only one of the elements may appear

in an instance.

To illustrate, we introduce two groups into the PurchaseOrderType definition

from the purchase order schema so that purchase orders may contain either

separate shipping and billing addresses, or a single address for those cases in which

the shippee and billee are co-located:
B-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Building Content Models
Nested Choice and Sequence Groups
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="singleUSAddress" type="USAddress"/>
 </xsd:choice>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

 <xsd:group name="shipAndBill">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 </xsd:sequence>
/xsd:group>

The choice group element allows only one of its children to appear in an instance.

One child is an inner group element that references the named group shipAndBill

consisting of the element sequence shipTo, billTo, and the second child is

asingleUSAddress . Hence, in an instance document, the purchaseOrder
element must contain either a shipTo element followed by a billTo element or a

singleUSAddress element. The choice group is followed by the comment and

items element declarations, and both the choice group and the element declarations

are children of a sequence group. The effect of these various groups is that the

address element(s) must be followed by comment and items elements in that order.

There exists a third option for constraining elements in a group: All the elements in

the group may appear once or not at all, and they may appear in any order. The all

group (which provides a simplified version of the SGML &-Connector) is limited to

the top-level of any content model.

Moreover, the group's children must all be individual elements (no groups), and no

element in the content model may appear more than once, that is, the permissible

values of minOccurs and maxOccurs are 0 and 1.

For example, to allow the child elements of purchaseOrder to appear in any order,

we could redefine PurchaseOrderType as:
XML Schema Primer B-27

Building Content Models
An 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

By this definition, a comment element may optionally appear within

purchaseOrder , and it may appear before or after any shipTo, billTo and items
elements, but it can appear only once. Moreover, the stipulations of an all group do

not allow us to declare an element such as comment outside the group as a means

of enabling it to appear more than once. XML Schema stipulates that an all group

must appear as the sole child at the top of a content model. In other words, the

following is illegal:

Illegal Example with an 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Finally, named and un-named groups that appear in content models (represented

by group and choice, sequence, all respectively) may carry minOccurs and

maxOccurs attributes. By combining and nesting the various groups provided by

XML Schema, and by setting the values of minOccurs and maxOccurs , it is

possible to represent any content model expressible with an XML 1.0 DTD.

Furthermore, the all group provides additional expressive power.
B-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Attribute Groups
Attribute Groups
To provide more information about each item in a purchase order, for example, each

item's weight and preferred shipping method, you can add weightKg and shipBy
attribute declarations to the item element's (anonymous) type definition:

Adding Attributes to the Inline Type Definition
<xsd:element name="Item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <!-- add weightKg and shipBy attributes -->
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

Alternatively, you can create a named attribute group containing all the desired

attributes of an item element, and reference this group by name in the item element

declaration:

Adding Attributes Using an Attribute Group
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
XML Schema Primer B-29

Attribute Groups
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>

 <!-- attributeGroup replaces individual declarations -->
 <xsd:attributeGroup ref="ItemDelivery"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:attributeGroup name="ItemDelivery">
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:attributeGroup>

Using an attribute group in this way can improve the readability of schemas, and

facilitates updating schemas because an attribute group can be defined and edited

in one place and referenced in multiple definitions and declarations. These

characteristics of attribute groups make them similar to parameter entities in XML

1.0. Note that an attribute group may contain other attribute groups. Note also that

both attribute declarations and attribute group references must appear at the end of

complex type definitions.
B-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How DTDs and XML Schema Differ
Nil Values
One of the purchase order items listed in po.xml , the Lawnmower, does not have a

shipDate element. Within the context of our scenario, the schema author may

have intended such absences to indicate items not yet shipped. But in general, the

absence of an element does not have any particular meaning: It may indicate that

the information is unknown, or not applicable, or the element may be absent for

some other reason. Sometimes it is desirable to represent an unshipped item,

unknown information, or inapplicable information explicitly with an element,

rather than by an absent element.

For example, it may be desirable to represent a “null” value being sent to or from a

relational database with an element that is present. Such cases can be represented

using XML Schema's nil mechanism which enables an element to appear with or

without a non-nil value.

XML Schema's nil mechanism involves an “out of band” nil signal. In other words,

there is no actual nil value that appears as element content, instead there is an

attribute to indicate that the element content is nil. To illustrate, we modify the

shipDate element declaration so that nils can be signalled:

<xsd:element name="shipDate" type="xsd:date" nillable="true"/>

And to explicitly represent that shipDate has a nil value in the instance document,

we set the nil attribute (from the XML Schema namespace for instances) to true:

<shipDate xsi:nil="true"></shipDate>

The nil attribute is defined as part of the XML Schema namespace for instances,

http://www.w3.org/2001/XMLSchema-instance, and so it must appear in the

instance document with a prefix (such as xsi:) associated with that namespace. (As

with the xsd: prefix, the xsi: prefix is used by convention only.) Note that the nil

mechanism applies only to element values, and not to attribute values. An element

with xsi:nil="true” may not have any element content but it may still carry

attributes.

How DTDs and XML Schema Differ
DTD is a mechanism provided by XML 1.0 for declaring constraints on XML

markup. DTDs enable you to specify the following:

■ Elements that can appear in your XML documents

■ Elements (or sub-elements) that can be in the elements
XML Schema Primer B-31

How DTDs and XML Schema Differ
■ The order in which the elements can appear

The XML Schema language serves a similar purpose to DTDs, but it is more flexible

in specifying XML document constraints and potentially more useful for certain

applications.

XML Example
Consider the XML document:

<?xml version="1.0">
<publisher pubid="ab1234">
 <publish-year>2000</publish-year>
 <title>The Cat in the Hat</title>
 <author>Dr. Seuss</author>
 <artist>Ms. Seuss</artist>
 <isbn>123456781111</isbn>
</publisher>

DTD Example
Consider a typical DTD for the foregoing XML document:

<!ELEMENT publisher (year,title, author+, artist?, isbn)>
<!ELEMENT publisher (year,title, author+, artist?, isbn)>
<!ELEMENT publish-year (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT artist (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
...

XML Schema Example
The XML schema definition equivalent to the preceding DTD example is:

<?xml version="1.0" encoding="UTF-8"?><schema
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="publisher"> <complexType>
 <sequence>
 <element name="publish-year" type="short"/>
 <element name="title" type="string"/>
 <element name="author" type="string" maxOccurs="unbounded"/>
 <element name="artist" type="string" nillable="true" minOccurs="0"/>
 <element name="isbn" type="long"/>
 </sequence>
 <attribute name="pubid" type="hexBinary" use="required"/>
B-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How DTDs and XML Schema Differ
 </complexType>
 </element></schema>

DTD Limitations
DTDs, also known as XML Markup Declarations, are considered deficient in

handling certain applications which include the following:

■ Document authoring and publishing

■ Exchange of metadata

■ E-commerce

■ Inter-database operations

DTD limitations include:

■ No integration with Namespace technology, meaning that users cannot import

and reuse code.

■ No support of datatypes other than character data, a limitation for describing

metadata standards and database schemas.

■ Applications need to specify document structure constraints more flexibly than

the DTD allows for.
XML Schema Primer B-33

How DTDs and XML Schema Differ
XML Schema Features Compared to DTD Features
Table B–3 lists XML Schema features. Note that XML Schema features include DTD

features.

Table B–3 XML Schema Features Compared to DTD Features

XML Schema Feature DTD Features

Built-In Datatypes

XML schemas specify a set of built-in datatypes. Some
of them are defined and called primitive datatypes, and
they form the basis of the type system: string, boolean,
float, decimal, double, duration, dateTime, time, date,
gYearMonth, gYear, gMonthDat, gMonth, gDay,
Base64Binary, HexBinary, anyURI, NOTATION,
QName

Others are derived datatypes that are defined in terms
of primitive types.

DTDs do not support datatypes other than character
strings.

User-Defined Datatypes

Users can derive their own datatypes from the built-in
datatypes. There are three ways of datatype derivation:
restriction, list, and union. Restriction defines a more
restricted datatype by applying constraining facets to
the base type, list simply allows a list of values of its
item type, and union defines a new type whose value
can be of any of its member types.

The publish-year element in the DTD example cannot
be constrained further.

For example, to specify that the value of publish-year
type to be within a specific range:

<element name="publish-year">

 <simpleType>

 <restriction base="short"

 <minInclusive value="1970"/

 <maxInclusive value="2000"/>

 </restriction>

 </simpleType>

 </element>

Constraining facets are: length, minLength, maxLength,
pattern, enumeration, whiteSpace, maxInclusive,
maxExclusive, minInclusive, minExclusive, totalDigits,
fractionDigits

Note that some facets only apply to certain base types.

--
B-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

How DTDs and XML Schema Differ
Occurrence Indicators (Content Model or Structure)

In XML Schema, the structure (called complexType)
of an instance document or element is defined in terms
of model and attribute groups. A model group may
further contain model groups or element particles,
while an attribute group contains attributes.

Wildcards can be used in both model and attribute
groups. There are three types of model group:
sequence, all, and choice, representing the sequence,
conjunction, and disjunction relationships among
particles, respectively. The range of the number of
occurrences of each particle can also be specified.

--

Like the datatype, complexType can be derived from
other types. The derivation method can be either
restriction or extension. The derived type inherits the
content of the base type plus corresponding
modifications. In addition to inheritance, a type
definition can make references to other components.
This feature allows a component to be defined once and
used in many other structures.

The type declaration and definition mechanism in XML
Schema is much more flexible and powerful than in
DTDs.

--

Table B–3 XML Schema Features Compared to DTD Features (Cont.)

XML Schema Feature DTD Features
XML Schema Primer B-35

How DTDs and XML Schema Differ
XML schema can be used to define a class of XML documents.

Instance XML Documents
An instance XML document describes an XML document that conforms to a

particular XML schema. Although these instances and XML schemas need not exist

specifically as documents, they are commonly referred to as files. They may however

exist as any of the following:

■ Streams of bytes

minOccurs, maxOccurs Control by DTDs over the number of child elements
in an element are assigned with the following
symbols:

■ ? = zero or one. In "DTD Example" on page B-32,
artist? implied that artist is optional.

■ * = zero or more.

■ + = one or more in the "DTD Example" on
page B-32, author+ implies that more than one
author is possible.

■ (none) = exactly one.

Identity Constraints

XML Schema extends the concept of the XML
ID/IDREF mechanism with the declarations of unique,
key and keyref. They are part of the type definition and
allow not only attributes, but also element content as
keys. Each constraint has a scope. Constraint
comparison is in terms of their value rather than lexical
strings.

 None.

Import/Export Mechanisms (Schema Import,
Inclusion and Modification)

All components of a schema need not be defined in a
single schema file. XML Schema provides a mechanism
for assembling multiple XML schemas. Import is used
to integrate XML schemas that use different
namespaces, while inclusion is used to add
components that have the same namespace. When
components are included, they can be modified using
redefinition.

You cannot use constructs defined in external
schemas.

Table B–3 XML Schema Features Compared to DTD Features (Cont.)

XML Schema Feature DTD Features
B-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Example, PurchaseOrder.xsd
■ Fields in a database record

■ Collections of XML Infoset information items

Oracle XML DB supports the W3C XML Schema Recommendation specifications of

May 2, 2001: http://www.w3.org/2001/XMLSchema

Converting Existing DTDs to XML Schema?
Some XML editors, such as XMLSpy, facilitate the conversion of existing DTDs to

XML schemas, however you will still need to add further typing and validation

declarations to the resulting XML schema definition file before it will be useful or

can be used as an XML schema.

XML Schema Example, PurchaseOrder.xsd
The following example PurchaseOrder.xsd, is a W3C XML Schema example, in its

native form, as an XML Document. PurchaseOrder.xsd XML schema is used for the

examples described in Chapter 3, "Using Oracle XML DB":

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="ActionsType" >
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4" >
 <xs:complexType >
 <xs:sequence>
 <xs:element ref="User"/>
 <xs:element ref="Date"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectType" >
 <xs:all>
 <xs:element ref="User" minOccurs="0"/>
 <xs:element ref="Date" minOccurs="0"/>
 <xs:element ref="Comments" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType" >
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="address"/>
XML Schema Primer B-37

XML Schema Example, PurchaseOrder.xsd
 <xs:element ref="telephone"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemsType" >
 <xs:sequence>
 <xs:element name="LineItem"
 type="LineItemType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemType" >
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Part"/>
 </xs:sequence>
 <xs:attribute name="ItemNumber" type="xs:integer"/>
 </xs:complexType>
 <!--

 -->
 <xs:element name="PurchaseOrder" >
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Reference"/>
 <xs:element name="Actions"
 type="ActionsType"/>
 <xs:element name="Reject" I
 type="RejectType"
 minOccurs="0"/>
 <xs:element ref="Requestor"/>
 <xs:element ref="User"/>
 <xs:element ref="CostCenter"/>
 <xs:element name="ShippingInstructions"
 type="ShippingInstructionsType"/>
 <xs:element ref="SpecialInstructions"/>
 <xs:element name="LineItems"
 type="LineItemsType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="money">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 <xs:totalDigits value="12"/>
 </xs:restriction>
B-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Example, PurchaseOrder.xsd
 </xs:simpleType>
 <xs:simpleType name="quantity">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="4"/>
 <xs:totalDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="User" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Requestor" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Reference" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="26"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CostCenter" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Vendor" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
XML Schema Primer B-39

XML Schema Example, PurchaseOrder.xsd
 </xs:simpleType>
 </xs:element>
 <xs:element name="PONumber" >
 <xs:simpleType>
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SpecialInstructions" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="name" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="address" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="telephone" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="24"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Date" type="xs:date" />
 <xs:element name="Comments" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="2048"/>
B-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema Example, PurchaseOrder.xsd
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Description" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Part" >
 <xs:complexType>
 <xs:attribute name="Id" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="12"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="money"/>
 <xs:attribute name="UnitPrice" type="quantity"/>
 </xs:complexType>
 </xs:element>
</xs:schema>
XML Schema Primer B-41

XML Schema Example, PurchaseOrder.xsd
B-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XPath and Namespace P
C

XPath and Namespace Primer

This appendix describes introductory information about the W3C XPath

Recommendation, Namespace Recommendation, and the Information Set (infoset).

It contains the following sections:

■ Introducing the W3C XML Path Language (XPath) 1.0 Recommendation

■ The XPath Expression

■ Location Paths

■ XPath 1.0 Data Model

■ Introducing the W3C XML Path Language (XPath) 2.0 Working Draft

■ Introducing the W3C Namespaces in XML Recommendation

■ Introducing the W3C XML Information Set
rimer C-1

Introducing the W3C XML Path Language (XPath) 1.0 Recommendation
Introducing the W3C XML Path Language (XPath) 1.0 Recommendation
XML Path Language (XPath) is a language for addressing parts of an XML

document, designed to be used by both XSLT and XPointer. It can be used as a

searching or query language as well as in hypertext linking. Parts of this brief XPath

primer are extracted from the W3C XPath Recommendation.

XPath also facilities the manipulation of strings, numbers and booleans.

XPath uses a compact, non-XML syntax to facilitate use of XPath in URIs and XML

attribute values. XPath operates on the abstract, logical structure of an XML

document, rather than its surface syntax. It gets its name from its use of a path

notation as in URLs for navigating through the hierarchical structure of an XML

document.

In addition to its use for addressing, XPath is also designed so that it has a natural

subset that can be used for matching, that is, testing whether or not a node matches

a pattern. This use of XPath is described in the W3C XSLT Recommendation.

XPath Models an XML Document as a Tree of Nodes
XPath models an XML document as a tree of nodes. There are different types of

nodes, including element nodes, attribute nodes, and text nodes. XPath defines a

way to compute a string-value for each type of node. Some types of nodes also have

names. XPath fully supports XML Namespaces. Thus, the name of a node is

modeled as a pair consisting of a local part and a possibly null namespace URI; this

is called an expanded-name. The data model is described in detail in "XPath 1.0

Data Model" on page C-10. A summary of XML Namespaces is provided in

"Introducing the W3C Namespaces in XML Recommendation" on page C-18.

Note: In this release, Oracle XML DB supports a subset of the

XPath 1.0 Recommendation. It does not support XPaths that return

booleans, numbers, or strings. However, Oracle XML DB does

support these XPath types within predicates.
C-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

The XPath Expression
The XPath Expression
The primary syntactic construct in XPath is the expression. An expression matches

the production Expr . An expression is evaluated to yield an object, which has one

of the following four basic types:

■ node-set (an unordered collection of nodes without duplicates)

■ boolean (true or false)

■ number (a floating-point number)

■ string (a sequence of UCS characters)

Evaluating Expressions with Respect to a Context
Expression evaluation occurs with respect to a context. XSLT and XPointer specify

how the context is determined for XPath expressions used in XSLT and XPointer

respectively. The context consists of the following:

■ Node, the context node

■ Pair of nonzero positive integers, context position and context size. Context

position is always less than or equal to the context size.

■ Set of variable bindings. These consist of a mapping from variable names to

variable values. The value of a variable is an object, which can be of any of the

types possible for the value of an expression, can also be of additional types not

specified here.

See Also:

■ http://www.w3.org/TR/xpath

■ http://www.w3.org/TR/xpath20/

■ http://www.zvon.org/xxl/XPathTutorial/General/exa
mples.html

■ http://www.mulberrytech.com/quickref/XSLTquickref
.pdf

■ http://www.oreilly.com/catalog/xmlnut/chapter/ch0
9.html

■ http://www.w3.org/TR/2002/NOTE-unicode-xml-200202
18/ for information about using unicode in XML.
XPath and Namespace Primer C-3

The XPath Expression
■ Function library. This consists of a mapping from function names to functions.

Each function takes zero or more arguments and returns a single result. See the

XPath Recommendation for the core function library definition, that all XPath

implementations must support. For a function in the core function library,

arguments and result are of the four basic types:

– Node Set functions

– String Functions

– Boolean functions

– Number functions

Both XSLT and XPointer extend XPath by defining additional functions; some of

these functions operate on the four basic types; others operate on additional

data types defined by XSLT and XPointer.

■ Set of namespace declarations in scope for the expression. These consist of a

mapping from prefixes to namespace URIs.

Evaluating Subexpressions
The variable bindings, function library, and namespace declarations used to

evaluate a subexpression are always the same as those used to evaluate the

containing expression.

The context node, context position, and context size used to evaluate a

subexpression are sometimes different from those used to evaluate the containing

expression. Several kinds of expressions change the context node; only predicates

change the context position and context size. When the evaluation of a kind of

expression is described, it will always be explicitly stated if the context node,

context position, and context size change for the evaluation of subexpressions; if

nothing is said about the context node, context position, and context size, they

remain unchanged for the evaluation of subexpressions of that kind of expression.

XPath Expressions Often Occur in XML Attributes
The grammar specified here applies to the attribute value after XML 1.0

normalization. So, for example, if the grammar uses the character <, this must not

appear in the XML source as < but must be quoted according to XML 1.0 rules by,

for example, entering it as < .

Within expressions, literal strings are delimited by single or double quotation

marks, which are also used to delimit XML attributes. To avoid a quotation mark in
C-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Location Paths
an expression being interpreted by the XML processor as terminating the attribute

value:

■ The quotation mark can be entered as a character reference (" or

')

■ The expression can use single quotation marks if the XML attribute is delimited

with double quotation marks or vice-versa

Location Paths
One important kind of expression is a location path. A location path is the ’route’ to

be taken. The route can consist of directions and several steps, each step being

separated by a ’/’.

A location path selects a set of nodes relative to the context node. The result of

evaluating an expression that is a location path is the node-set containing the nodes

selected by the location path.

Location paths can recursively contain expressions used to filter sets of nodes. A

location path matches the production LocationPath .

Expressions are parsed by first dividing the character string to be parsed into tokens

and then parsing the resulting sequence of tokens. Whitespace can be freely used

between tokens.

Although location paths are not the most general grammatical construct in the

XPath language (a LocationPath is a special case of an Expr), they are the most

important construct.

Location Path Syntax Abbreviations
Every location path can be expressed using a straightforward but rather verbose

syntax. There are also a number of syntactic abbreviations that allow common cases

to be expressed concisely. The next sections:

■ "Location Path Examples Using Unabbreviated Syntax" on page C-5 describes

the semantics of location paths using the unabbreviated syntax

■ "Location Path Examples Using Abbreviated Syntax" on page C-7 describes the

unabbreviated syntax

Location Path Examples Using Unabbreviated Syntax
Table C–1 lists examples of location paths using the unabbreviated syntax.
XPath and Namespace Primer C-5

Location Paths
Table C–1 XPath: Location Path Examples Using Unabbreviated Syntax

Unabbreviated Location Path Description

child::para Selects the para element children of the context node

child::* Selects all element children of the context node

child::text() Selects all text node children of the context node

child::node() Selects all the children of the context node, whatever their
node type

attribute::name Selects the name attribute of the context node

attribute::* Selects all the attributes of the context

nodedescendant::para Selects the para element descendants of the context node

ancestor::div Selects all div ancestors of the context node

ancestor-or-self::div Selects the div ancestors of the context node and, if the
context node is a div element, the context node as well

descendant-or-self::para Selects the para element descendants of the context node and,
if the context node is a para element, the context node as well

self::para Selects the context node if it is a para element, and otherwise
selects nothing

child::chapter/descendant::para Selects the para element descendants of the chapter element
children of the context node

child::*/child::para Selects all para grandchildren of the context node

/ Selects the document root which is always the parent of the
document element

/descendant::para Selects all the para elements in the same document as the
context node

/descendant::olist/child::item Selects all the item elements that have an olist parent and that
are in the same document as the context node

child::para[position()=1] Selects the first para child of the context node

child::para[position()=last()] Selects the last para child of the context node

child::para[position()=last()-1] Selects the last but one para child of the context node

child::para[position()>1] Selects all the para children of the context node other than the
first para child of the context node

following-sibling::chapter[position()=1] Selects the next chapter sibling of the context node

preceding-sibling::chapter[position()=1] Selects the previous chapter sibling of the context node
C-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Location Paths
Location Path Examples Using Abbreviated Syntax
Table C–2 lists examples of location paths using abbreviated syntax.

/descendant::figure[position()=42] Selects the forty-second figure element in the document

/child::doc/child::chapter[position()=5]/child::section
[position()=2]

Selects the second section of the fifth chapter of the doc
document element

child::para[attribute::type="warning"] Selects all para children of the context node that have a type
attribute with value warning

child::para[attribute::type='warning'][position()=5] Selects the fifth para child of the context node that has a type
attribute with value warning

child::para[position()=5][attribute::type= "warning"] Selects the fifth para child of the context node if that child has
a type attribute with value warning

child::chapter[child::title='Introduction'] Selects the chapter children of the context node that have one
or more title children with string-value equal to Introduction

child::chapter[child::title] Selects the chapter children of the context node that have one
or more title children

child::*[self::chapter or self::appendix] Selects the chapter and appendix children of the context node

child::*[self::chapter or self::appendix][position()=last()] Selects the last chapter or appendix child of the context node

Table C–2 XPath: Location Path Examples Using Abbreviated Syntax

Abbreviated Location Path Description

para Selects the para element children of the context node

* Selects all element children of the context node

text() Selects all text node children of the context node

@name Selects the name attribute of the context node

@* Selects all the attributes of the context node

para[1] Selects the first para child of the context node

para[last()] Selects the last para child of the context node

*/para Selects all para grandchildren of the context node

/doc/chapter[5]/section[2] Selects the second section of the fifth chapter of the doc

Table C–1 XPath: Location Path Examples Using Unabbreviated Syntax (Cont.)

Unabbreviated Location Path Description
XPath and Namespace Primer C-7

Location Paths
The most important abbreviation is that child:: can be omitted from a location

step. In effect, child is the default axis. For example, a location path div/para is

short for child::div/child::para .

Attribute Abbreviation @
There is also an abbreviation for attributes: attribute:: can be abbreviated to @.

For example, a location path para[@type="warning"] is short for

child::para[attribute::type="warning"] and so selects para children

with a type attribute with value equal to warning.

chapter//para Selects the para element descendants of the chapter element
children of the context node

//para Selects all the para descendants of the document root and
thus selects all para elements in the same document as the
context node

//olist/item Selects all the item elements in the same document as the
context node that have an olist parent

 . Selects the context node

.//para Selects the para element descendants of the context node

.. Selects the parent of the context node

../@lang Selects the lang attribute of the parent of the context node

para[@type="warning"] Selects all para children of the context node that have a type
attribute with value warning

para[@type="warning"][5] Selects the fifth para child of the context node that has a type
attribute with value warning

para[5][@type="warning"] Selects the fifth para child of the context node if that child has
a type attribute with value warning

chapter[title="Introduction"] Selects the chapter children of the context node that have one
or more title children with string-value equal to Introduction

chapter[title] Selects the chapter children of the context node that have one
or more title children

employee[@secretary and @assistant] Selects all the employee children of the context node that
have both a secretary attribute and an assistant attribute

Table C–2 XPath: Location Path Examples Using Abbreviated Syntax (Cont.)

Abbreviated Location Path Description
C-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Location Paths
Path Abbreviation //
// is short for /descendant-or-self::node()/ . For example, //para is short

for /descendant-or-self::node()/child::para and so will select any para

element in the document (even a para element that is a document element will be

selected by //para since the document element node is a child of the root node);

div//para is short for div/descendant-or-self::node()/child::para
and so will select all para descendants of div children.

Location Step Abbreviation .
A location step of . is short for self::node() . This is particularly useful in

conjunction with // . For example, the location path .//para is short for:

self::node()/descendant-or-self::node()/child::para

and so will select all para descendant elements of the context node.

Location Step Abbreviation ..
Similarly, a location step of .. is short for parent::node() . For example,

../title is short for:

parent::node()/child::title

and so will select the title children of the parent of the context node.

Abbreviation Summary
AbbreviatedAbsoluteLocationPath ::= '//' RelativeLocationPath

AbbreviatedRelativeLocationPath ::= RelativeLocationPath '//' Step

AbbreviatedStep ::= '.' | '..'

AbbreviatedAxisSpecifier ::= '@'?

Relative and Absolute Location Paths
There are two kinds of location path:

Note: Location path //para[1] does not mean the same as the

location path /descendant::para[1] . The latter selects the first

descendant para element; the former selects all descendant para

elements that are the first para children of their parents.
XPath and Namespace Primer C-9

XPath 1.0 Data Model
■ Relative location paths. A relative location path consists of a sequence of one or

more location steps separated by /. The steps in a relative location path are

composed together from left to right. Each step in turn selects a set of nodes

relative to a context node. An initial sequence of steps is composed together

with a following step as follows. The initial sequence of steps selects a set of

nodes relative to a context node. Each node in that set is used as a context node

for the following step. The sets of nodes identified by that step are unioned

together. The set of nodes identified by the composition of the steps is this

union.

For example, child::div/child::para selects the para element children of

the div element children of the context node, or, in other words, the para

element grandchildren that have div parents.

■ Absolute location paths. An absolute location path consists of / optionally

followed by a relative location path. A / by itself selects the root node of the

document containing the context node. If it is followed by a relative location

path, then the location path selects the set of nodes that would be selected by

the relative location path relative to the root node of the document containing

the context node.

Location Path Syntax Summary
Location path provides a means to search for target nodes. Here is the general

syntax for location path:

axisname :: nodetest expr1 expr2 ...

LocationPath ::= RelativeLocationPath
 | AbsoluteLocationPath
AbsoluteLocationPath ::= '/' RelativeLocationPath?
 | AbbreviatedAbsoluteLocationPath
RelativeLocationPath ::= Step
 | RelativeLocationPath '/' Step
 | AbbreviatedRelativeLocationPath

XPath 1.0 Data Model
XPath operates on an XML document as a tree. This section describes how XPath

models an XML document as a tree. The relationship of this model to the XML

documents operated on by XPath must conform to the XML Namespaces

Recommendation.
C-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XPath 1.0 Data Model
Nodes
The tree contains nodes. There are seven types of node:

■ Root Nodes

■ Element Nodes

■ Text Nodes

■ Attribute Nodes

■ Namespace Nodes

■ Processing Instruction Nodes

■ Comment Nodes

Root Nodes
The root node is the root of the tree. It does not occur except as the root of the tree.

The element node for the document element is a child of the root node. The root

node also has as children processing instruction and comment nodes for processing

instructions and comments that occur in the prolog and after the end of the

document element. The string-value of the root node is the concatenation of the

string-values of all text node descendants of the root node in document order. The

root node does not have an expanded-name.

Element Nodes
There is an element node for every element in the document. An element node has

an expanded-name computed by expanding the QName of the element specified in

the tag in accordance with the XML Namespaces Recommendation. The namespace

URI of the element's expanded-name will be null if the QName has no prefix and

there is no applicable default namespace.

See Also: Introducing the W3C Namespaces in XML

Recommendation on page C-18
XPath and Namespace Primer C-11

XPath 1.0 Data Model
The children of an element node are the element nodes, comment nodes, processing

instruction nodes and text nodes for its content. Entity references to both internal

and external entities are expanded. Character references are resolved. The

string-value of an element node is the concatenation of the string-values of all text

node descendants of the element node in document order.

Unique IDs. An element node may have a unique identifier (ID). This is the value

of the attribute that is declared in the DTD as type ID. No two elements in a

document may have the same unique ID. If an XML processor reports two elements

in a document as having the same unique ID (which is possible only if the

document is invalid) then the second element in document order must be treated as

not having a unique ID.

Text Nodes
Character data is grouped into text nodes. As much character data as possible is

grouped into each text node: a text node never has an immediately following or

preceding sibling that is a text node. The string-value of a text node is the character

data. A text node always has at least one character of data. Each character within a

CDATA section is treated as character data. Thus, <![CDATA[<]]> in the source

document will treated the same as < . Both will result in a single < character in a

text node in the tree. Thus, a CDATA section is treated as if the <![CDATA[and]]>
were removed and every occurrence of < and & were replaced by < and &
respectively.

Note: In the notation of Appendix A.3 of

http://www.w3.org/TR/REC-xml-names/ , the local part of

the expanded-name corresponds to the type attribute of the

ExpEType element; the namespace URI of the expanded-name

corresponds to the ns attribute of the ExpEType element, and is null

if the ns attribute of the ExpEType element is omitted.

Note: If a document does not have a DTD, then no element in the

document will have a unique ID.
C-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XPath 1.0 Data Model
Attribute Nodes
Each element node has an associated set of attribute nodes; the element is the parent

of each of these attribute nodes; however, an attribute node is not a child of its

parent element.

Elements never share attribute nodes: if one element node is not the same node as

another element node, then none of the attribute nodes of the one element node will

be the same node as the attribute nodes of another element node.

A defaulted attribute is treated the same as a specified attribute. If an attribute was

declared for the element type in the DTD, but the default was declared as

#IMPLIED, and the attribute was not specified on the element, then the element's

attribute set does not contain a node for the attribute.

Some attributes, such as xml:lang and xml:space , have the semantics that they

apply to all elements that are descendants of the element bearing the attribute,

unless overridden with an instance of the same attribute on another descendant

element. However, this does not affect where attribute nodes appear in the tree: an

element has attribute nodes only for attributes that were explicitly specified in the

start-tag or empty-element tag of that element or that were explicitly declared in the

DTD with a default value.

Note: When a text node that contains a < character is written out

as XML, the < character must be escaped by for example, using <,

or including it in a CDATA section. Characters inside comments,

processing instructions and attribute values do not produce text

nodes. Line-endings in external entities are normalized to #xA as

specified in the XML Recommendation. A text node does not have

an expanded-name.

Note: This is different from the DOM, which does not treat the

element bearing an attribute as the parent of the attribute.

Note: The = operator tests whether two nodes have the same

value, not whether they are the same node. Thus attributes of two

different elements may compare as equal using =, even though they

are not the same node.
XPath and Namespace Primer C-13

XPath 1.0 Data Model
An attribute node has an expanded-name and a string-value. The expanded-name

is computed by expanding the QName specified in the tag in the XML document in

accordance with the XML Namespaces Recommendation. The namespace URI of

the attribute's name will be null if the QName of the attribute does not have a

prefix.

An attribute node has a string-value. The string-value is the normalized value as

specified by the XML Recommendation. An attribute whose normalized value is a

zero-length string is not treated specially: it results in an attribute node whose

string-value is a zero-length string.

There are no attribute nodes corresponding to attributes that declare namespaces.

Namespace Nodes
Each element has an associated set of namespace nodes, one for each distinct

namespace prefix that is in scope for the element (including the xml prefix, which is

implicitly declared by the XML Namespaces Recommendation) and one for the

default namespace if one is in scope for the element. The element is the parent of

each of these namespace nodes; however, a namespace node is not a child of its

parent element.

Elements never share namespace nodes: if one element node is not the same node as

another element node, then none of the namespace nodes of the one element node

Note: In the notation of Appendix A.3 of XML Namespaces

Recommendation, the local part of the expanded-name corresponds

to the name attribute of the ExpANameelement; the namespace URI

of the expanded-name corresponds to the ns attribute of the

ExpAName element, and is null if the ns attribute of the ExpAName
element is omitted.

Note: It is possible for default attributes to be declared in an

external DTD or an external parameter entity. The XML

Recommendation does not require an XML processor to read an

external DTD or an external parameter unless it is validating. A

stylesheet or other facility that assumes that the XPath tree contains

default attribute values declared in an external DTD or parameter

entity may not work with some non-validating XML processors.
C-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XPath 1.0 Data Model
will be the same node as the namespace nodes of another element node. This means

that an element will have a namespace node:

■ For every attribute on the element whose name starts with xmlns :;

■ For every attribute on an ancestor element whose name starts xmlns: unless the

element itself or a nearer ancestor re-declares the prefix;

■ For an xmlns attribute, if the element or some ancestor has an xmlns attribute,

and the value of the xmlns attribute for the nearest such element is non-empty

A namespace node has an expanded-name: the local part is the namespace prefix

(this is empty if the namespace node is for the default namespace); the namespace

URI is always NULL.

The string-value of a namespace node is the namespace URI that is being bound to

the namespace prefix; if it is relative, it must be resolved just like a namespace URI

in an expanded-name.

Processing Instruction Nodes
There is a processing instruction node for every processing instruction, except for

any processing instruction that occurs within the document type declaration.

A processing instruction has an expanded-name: the local part is the processing

instruction's target; the namespace URI is NULL. The string-value of a processing

instruction node is the part of the processing instruction following the target and

any whitespace. It does not include the terminating ?>.

Comment Nodes
There is a comment node for every comment, except for any comment that occurs

within the document type declaration. The string-value of comment is the content

of the comment not including the opening <!-- or the closing -->. A comment node

does not have an expanded-name.

Note: An attribute xmlns="" "undeclares" the default

namespace.

Note: The XML declaration is not a processing instruction.

Therefore, there is no processing instruction node corresponding to

the XML declaration.
XPath and Namespace Primer C-15

XPath 1.0 Data Model
For every type of node, there is a way of determining a string-value for a node of

that type. For some types of node, the string-value is part of the node; for other

types of node, the string-value is computed from the string-value of descendant

nodes.

Expanded-Name
Some types of node also have an expanded-name, which is a pair consisting of:

■ A local part. This is a string.

■ A namespace URI. The namespace URI is either null or a string. If specified in

the XML document it can be a URI reference as defined in RFC2396; this means

it can have a fragment identifier and be relative. A relative URI should be

resolved into an absolute URI during namespace processing: the namespace

URIs of expanded-names of nodes in the data model should be absolute.

Two expanded-names are equal if they have the same local part, and either both

have a null namespace URI or both have non-null namespace URIs that are equal.

Document Order
There is an ordering, document order, defined on all the nodes in the document

corresponding to the order in which the first character of the XML representation of

each node occurs in the XML representation of the document after expansion of

general entities. Thus, the root node will be the first node.

Element nodes occur before their children. Thus, document order orders element

nodes in order of the occurrence of their start-tag in the XML (after expansion of

entities). The attribute nodes and namespace nodes of an element occur before the

children of the element. The namespace nodes are defined to occur before the

attribute nodes.

The relative order of namespace nodes is implementation-dependent.

The relative order of attribute nodes is implementation-dependent.

Reverse document order is the reverse of document order.

Root nodes and element nodes have an ordered list of child nodes. Nodes never

share children: if one node is not the same node as another node, then none of the

Note: For element nodes and root nodes, the string-value of a

node is not the same as the string returned by the DOM nodeValue

method.
C-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Path Language (XPath) 2.0 Working Draft
children of the one node will be the same node as any of the children of another

node.

Every node other than the root node has exactly one parent, which is either an

element node or the root node. A root node or an element node is the parent of each

of its child nodes. The descendants of a node are the children of the node and the

descendants of the children of the node.

Introducing the W3C XML Path Language (XPath) 2.0 Working Draft
XPath 2.0 is the result of joint work by the W3C XSL and XML Query Working

Groups. XPath 2.0 is a language derived from both XPath 1.0 and XQuery. The

XPath 2.0 and XQuery 1.0 Working Drafts are generated from a common source.

These languages are closely related and share much of the same expression syntax

and semantics. The two Working Drafts in places are identical.

XPath is designed to be embedded in a host language such as XSLT or XQuery.

XPath has a natural subset that can be used for matching, that is, testing whether or

not a node matches a pattern.

XQuery Version 1.0 contains XPath Version 2.0 as a subset. Any expression that is

syntactically valid and executes successfully in both XPath 2.0 and XQuery 1.0 will

return the same result in both languages.

XPath also depends on and is closely related to the following specifications:

■ The XPath data model defines the information in an XML document that is

available to an XPath processor. The data model is defined in XQuery 1.0 and

XPath 2.0 Data Model.

■ The static and dynamic semantics of XPath are formally defined in XQuery 1.0

Formal Semantics. This is done by mapping the full XPath language into a

"core" subset for which the semantics is defined. This document is useful for

implementers and others who require a rigorous definition of XPath.

■ The library of functions and operators supported by XPath is defined in XQuery

1.0 and XPath 2.0 Functions and Operators.

XPath 2.0 Expressions
The basic building block of XPath is the expression. The language provides several

kinds of expressions which may be constructed from keywords, symbols, and

operands. In general, the operands of an expression are other expressions.
XPath and Namespace Primer C-17

Introducing the W3C Namespaces in XML Recommendation
XPath is a functional language which allows various kinds of expressions to be

nested with full generality. It is also a strongly-typed language in which the

operands of various expressions, operators, and functions must conform to

designated types.

Like XML, XPath is a case-sensitive language. All keywords in XPath use lower-case

characters.

Expr
 ::=
 OrExpr
 | AndExpr
 | ForExpr
 | QuantifiedExpr
 | IfExpr
 | GeneralComp
 | ValueComp
 | NodeComp
 | OrderComp
 | InstanceofExpr
 | RangeExpr
 | AdditiveExpr
 | MultiplicativeExpr
 | UnionExpr
 | IntersectExceptExpr
 | UnaryExpr
 | CastExpr
 | PathExpr

Introducing the W3C Namespaces in XML Recommendation
Software modules must recognize tags and attributes which they are designed to

process, even in the face of "collisions" occurring when markup intended for some

other software package uses the same element type or attribute name.

Document constructs should have universal names, whose scope extends beyond

their containing document. The W3C Namespaces in XML Recommendation

describes the mechanism, XML namespaces, which accomplishes this.

See Also: http://www.w3.org/TR/REC-xml-names/
C-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C Namespaces in XML Recommendation
What Is a Namespace?
An XML namespace is a collection of names, identified by a URI reference

[RFC2396], which are used in XML documents as element types and attribute

names. XML namespaces differ from the "namespaces" conventionally used in

computing disciplines in that the XML version has internal structure and is not,

mathematically speaking, a set. These issues are discussed in the W3C Namespace

Recommendation, appendix, "A. The Internal Structure of XML Namespaces".

URI References
URI references which identify namespaces are considered identical when they are

exactly the same character-for-character. Note that URI references which are not

identical in this sense may in fact be functionally equivalent. Examples include URI

references which differ only in case, or which are in external entities which have

different effective base URIs.

Names from XML namespaces may appear as qualified names, which contain a

single colon, separating the name into a namespace prefix and a local part.

The prefix, which is mapped to a URI reference, selects a namespace. The

combination of the universally managed URI namespace and the document's own

namespace produces identifiers that are universally unique. Mechanisms are

provided for prefix scoping and defaulting.

URI references can contain characters not allowed in names, so cannot be used

directly as namespace prefixes. Therefore, the namespace prefix serves as a proxy

for a URI reference. An attribute-based syntax described in the following section is

used to declare the association of the namespace prefix with a URI reference;

software which supports this namespace proposal must recognize and act on these

declarations and prefixes.

Notation and Usage
Many of the nonterminals in the productions in this specification are defined not

here but in the W3C XML Recommendation. When nonterminals defined here have

the same names as nonterminals defined in the W3C XML Recommendation, the

productions here in all cases match a subset of the strings matched by the

corresponding ones there.

In this document's productions, the NSC is a "Namespace Constraint", one of the

rules that documents conforming to this specification must follow.

All Internet domain names used in examples, with the exception of w3.org, are

selected at random and should not be taken as having any import.
XPath and Namespace Primer C-19

Introducing the W3C Namespaces in XML Recommendation
Declaring Namespaces
A namespace is declared using a family of reserved attributes. Such an attribute's

name must either be xmlns or have xmlns: as a prefix. These attributes, like any

other XML attributes, can be provided directly or by default.

Attribute Names for Namespace Declaration
[1] NSAttName ::= PrefixedAttName
 | DefaultAttName
[2] PrefixedAttName ::= 'xmlns:' NCName

[NSC: Leading "XML"]
[3] DefaultAttName ::= 'xmlns'
[4] NCName ::= (Letter | '_') (NCNameChar)*

/* An XML Name, minus the ":" */
[5] NCNameChar ::= Letter | Digit | '.' | '-' | '_' | CombiningChar
 | Extender

The attribute's value, a URI reference, is the namespace name identifying the

namespace. The namespace name, to serve its intended purpose, should have the

characteristics of uniqueness and persistence. It is not a goal that it be directly

usable for retrieval of a schema (if any exists). An example of a syntax that is

designed with these goals in mind is that for Uniform Resource Names [RFC2141].

However, it should be noted that ordinary URLs can be managed in such a way as

to achieve these same goals.

When the Attribute Name Matches the PrefixedAttName
If the attribute name matches PrefixedAttName , then the NCName gives the

namespace prefix, used to associate element and attribute names with the

namespace name in the attribute value in the scope of the element to which the

declaration is attached. In such declarations, the namespace name may not be

empty.

When the Attribute Name Matches the DefaultAttName
If the attribute name matches DefaultAttName , then the namespace name in the

attribute value is that of the default namespace in the scope of the element to which

the declaration is attached. In such a default declaration, the attribute value may be

empty. Default namespaces and overriding of declarations are discussed in section

"Applying Namespaces to Elements and Attributes" on page C-23 of the W3C

Namespace Recommendation.
C-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C Namespaces in XML Recommendation
The following example namespace declaration associates the namespace prefix edi
with the namespace name http://ecommerce.org/schema:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- the "edi" prefix is bound to http://ecommerce.org/schema
 for the "x" element and contents -->
</x>

Namespace Constraint: Leading "XML"
Prefixes beginning with the three-letter sequence x, m, l, in any case combination,

are reserved for use by XML and XML-related specifications.

Qualified Names
In XML documents conforming to the W3C Namespace Recommendation, some

names (constructs corresponding to the nonterminal Name) may be given as

qualified names, defined as follows:

Qualified Name Syntax
[6] QName ::= (Prefix ':')? LocalPart
[7] Prefix ::= NCName
[8] LocalPart::= NCName

What is the Prefix?
The Prefix provides the namespace prefix part of the qualified name, and must be

associated with a namespace URI reference in a namespace declaration.

The LocalPart provides the local part of the qualified name. Note that the prefix

functions only as a placeholder for a namespace name. Applications should use the

namespace name, not the prefix, in constructing names whose scope extends

beyond the containing document.

Using Qualified Names
In XML documents conforming to the W3C Namespace Recommendation, element

types are given as qualified names, as follows:

Element Types
[9] STag ::= '<' QName (S Attribute)* S? '>' [NSC: Prefix Declared]
[10] ETag::= '</' QName S? '>'[NSC: Prefix Declared]
[11] EmptyElemTag ::= '<' QName (S Attribute)* S? '/>' [NSC: Prefix Declared]
XPath and Namespace Primer C-21

Introducing the W3C Namespaces in XML Recommendation
The following is an example of a qualified name serving as an element type:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- the 'price' element's namespace is http://ecommerce.org/schema -->
 <edi:price units='Euro'>32.18</edi:price>
</x>

Attributes are either namespace declarations or their names are given as qualified

names:

Attribute
[12] Attribute::= NSAttName Eq AttValue|QName Eq AttValue [NSC:Prefix Declared]

The following is an example of a qualified name serving as an attribute name:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- the 'taxClass' attribute's namespace is http://ecommerce.org/schema -->
 <lineItem edi:taxClass="exempt">Baby food</lineItem>
</x>

Namespace Constraint: Prefix Declared
The namespace prefix, unless it is xml or xmlns , must have been declared in a

namespace declaration attribute in either the start-tag of the element where the

prefix is used or in an ancestor element, that is, an element in whose content the

prefixed markup occurs:

The prefix xml is by definition bound to the namespace name

http://www.w3.org/XML/1998/namespace .

The prefix xmlns is used only for namespace bindings and is not itself bound to

any namespace name.

This constraint may lead to operational difficulties in the case where the namespace

declaration attribute is provided, not directly in the XML document entity, but

through a default attribute declared in an external entity. Such declarations may not

be read by software which is based on a non-validating XML processor.

Many XML applications, presumably including namespace-sensitive ones, fail to

require validating processors. For correct operation with such applications,

namespace declarations must be provided either directly or through default

attributes declared in the internal subset of the DTD.
C-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C Namespaces in XML Recommendation
Element names and attribute types are also given as qualified names when they

appear in declarations in the DTD:

Qualified Names in Declarations
[13] doctypedecl::= '<!DOCTYPE' S QName (S ExternalID)? S? ('[' (markupdecl |
 PEReference | S)* ']' S?)? '>'
[14] elementdecl::= '<!ELEMENT' S QName S contentspec S? '>'
[15] cp ::= (QName | choice | seq) ('?' | '*' | '+')?
[16] Mixed ::= '(' S? '#PCDATA' (S? '|' S? QName)* S? ')*'
 | '(' S? '#PCDATA' S? ')'
[17] AttlistDecl::= '<!ATTLIST' S QName AttDef* S? '>'
[18] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl

Applying Namespaces to Elements and Attributes

Namespace Scoping
The namespace declaration is considered to apply to the element where it is

specified and to all elements within the content of that element, unless overridden

by another namespace declaration with the same NSAttName part:

<?xml version="1.0"?>
 <!-- all elements here are explicitly in the HTML namespace -->
 <html:html xmlns:html='http://www.w3.org/TR/REC-html40'>
 <html:head><html:title>Frobnostication</html:title></html:head>
 <html:body><html:p>Moved to
 <html:a href='http://frob.com'>here.</html:a></html:p></html:body>
</html:html>

Multiple namespace prefixes can be declared as attributes of a single element, as

shown in this example:

<?xml version="1.0"?>
 <!-- both namespace prefixes are available throughout -->
 <bk:book xmlns:bk='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <bk:title>Cheaper by the Dozen</bk:title>
 <isbn:number>1568491379</isbn:number>
 </bk:book>
XPath and Namespace Primer C-23

Introducing the W3C Namespaces in XML Recommendation
Namespace Defaulting
A default namespace is considered to apply to the element where it is declared (if

that element has no namespace prefix), and to all elements with no prefix within the

content of that element. If the URI reference in a default namespace declaration is

empty, then un-prefixed elements in the scope of the declaration are not considered

to be in any namespace. Note that default namespaces do not apply directly to

attributes.

<?xml version="1.0"?>
 <!-- elements are in the HTML namespace, in this case by default -->
 <html xmlns='http://www.w3.org/TR/REC-html40'>
 <head><title>Frobnostication</title></head>
 <body><p>Moved to
 here.</p></body>
 </html>

<?xml version="1.0"?>
 <!-- unprefixed element types are from "books" -->
 <book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 </book>

A larger example of namespace scoping:

<?xml version="1.0"?>
 <!-- initially, the default namespace is "books" -->
 <book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 <notes>
 <!-- make HTML the default namespace for some commentary -->
 <p xmlns='urn:w3-org-ns:HTML'>
 This is a <i>funny</i> book!
 </p>
 </notes>
 </book>

The default namespace can be set to the empty string. This has the same effect,

within the scope of the declaration, of there being no default namespace.

<?xml version='1.0'?>
 <Beers>
C-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C Namespaces in XML Recommendation
 <!-- the default namespace is now that of HTML -->
 <table xmlns='http://www.w3.org/TR/REC-html40'>
 <th><td>Name</td><td>Origin</td><td>Description</td></th>
 <tr>
 <!-- no default namespace inside table cells -->
 <td><brandName xmlns="">Huntsman</brandName></td>
 <td><origin xmlns="">Bath, UK</origin></td>
 <td>
 <details xmlns=""><class>Bitter</class><hop>Fuggles</hop>
 <pro>Wonderful hop, light alcohol, good summer beer</pro>
 <con>Fragile; excessive variance pub to pub</con>
 </details>
 </td>
 </tr>
 </table>
 </Beers>

Uniqueness of Attributes
In XML documents conforming to this specification, no tag may contain two

attributes which:

■ Have identical names, or

■ Have qualified names with the same local part and with prefixes which have

been bound to namespace names that are identical.

For example, each of the bad start-tags is illegal in the following:

<!-- http://www.w3.org is bound to n1 and n2 -->
 <x xmlns:n1="http://www.w3.org"
 xmlns:n2="http://www.w3.org" >
 <bad a="1" a="2" />
 <bad n1:a="1" n2:a="2" />
 </x>

However, each of the following is legal, the second because the default namespace

does not apply to attribute names:

<!-- http://www.w3.org is bound to n1 and is the default -->

 <x xmlns:n1="http://www.w3.org"
 xmlns="http://www.w3.org" >
 <good a="1" b="2" />
 <good a="1" n1:a="2" />
 </x>
XPath and Namespace Primer C-25

Introducing the W3C XML Information Set
Conformance of XML Documents
In XML documents which conform to the W3C Namespace Recommendation,

element types and attribute names must match the production for QName and must

satisfy the "Namespace Constraints".

An XML document conforms to this specification if all other tokens in the document

which are required, for XML conformance, to match the XML production for Name,

match this specification's production for NCName.

The effect of conformance is that in such a document:

■ All element types and attribute names contain either zero or one colon.

■ No entity names, PI targets, or notation names contain any colons.

Strictly speaking, attribute values declared to be of types ID, IDREF(S),

ENTITY(IES), and NOTATION are also Names, and thus should be colon-free.

However, the declared type of attribute values is only available to processors which

read markup declarations, for example validating processors. Thus, unless the use

of a validating processor has been specified, there can be no assurance that the

contents of attribute values have been checked for conformance to this specification.

The following W3C Namespace Recommendation Appendixes are not included in

this primer:

■ A. The Internal Structure of XML Namespaces (Non-Normative)

■ A.1 The Insufficiency of the Traditional Namespace

■ A.2 XML Namespace Partitions

■ A.3 Expanded Element Types and Attribute Names

■ A.4 Unique Expanded Attribute Names

Introducing the W3C XML Information Set
The W3C XML Information Set specification defines an abstract data set called the

XML Information Set (Infoset). It provides a consistent set of definitions for use in

other specifications that need to refer to the information in a well-formed XML

document.

The primary criterion for inclusion of an information item or property has been that

of expected usefulness in future specifications. It does not constitute a minimum set

of information that must be returned by an XML processor.
C-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Information Set
An XML document has an information set if it is well-formed and satisfies the

namespace constraints described in the following section.

There is no requirement for an XML document to be valid in order to have an

information set.

Information sets may be created by methods (not described in this specification)

other than parsing an XML document. See "Synthetic Infosets" on page C-29.

An XML document's information set consists of a number of information items; the

information set for any well-formed XML document will contain at least a

document information item and several others. An information item is an abstract

description of some part of an XML document: each information item has a set of

associated named properties. In this specification, the property names are shown in

square brackets, [thus]. The types of information item are listed in section 2.

The XML Information Set does not require or favor a specific interface or class of

interfaces. This specification presents the information set as a modified tree for the

sake of clarity and simplicity, but there is no requirement that the XML Information

Set be made available through a tree structure; other types of interfaces, including

(but not limited to) event-based and query-based interfaces, are also capable of

providing information conforming to the XML Information Set.

The terms "information set" and "information item" are similar in meaning to the

generic terms "tree" and "node", as they are used in computing. However, the

former terms are used in this specification to reduce possible confusion with other

specific data models. Information items do not map one-to-one with the nodes of

the DOM or the "tree" and "nodes" of the XPath data model.

In this specification, the words "must", "should", and "may" assume the meanings

specified in [RFC2119], except that the words do not appear in uppercase.

Namespaces
XML 1.0 documents that do not conform to the W3C Namespace Recommendation,

though technically well-formed, are not considered to have meaningful information

sets. That is, this specification does not define an information set for documents that

have element or attribute names containing colons that are used in other ways than

as prescribed by the W3C Namespace Recommendation.

Also, the XML Infoset specification does not define an information set for

documents which use relative URI references in namespace declarations. This is in

See Also: http://www.w3.org/TR/xml-infoset/
XPath and Namespace Primer C-27

Introducing the W3C XML Information Set
accordance with the decision of the W3C XML Plenary Interest Group described in

Relative Namespace URI References in the W3C Namespace Recommendation.

The value of a namespace name property is the normalized value of the

corresponding namespace attribute; no additional URI escaping is applied to it by

the processor.

Entities
An information set describes its XML document with entity references already

expanded, that is, represented by the information items corresponding to their

replacement text. However, there are various circumstances in which a processor

may not perform this expansion. An entity may not be declared, or may not be

retrievable. A non-validating processor may choose not to read all declarations, and

even if it does, may not expand all external entities. In these cases an un-expanded

entity reference information item is used to represent the entity reference.

End-of-Line Handling
The values of all properties in the Infoset take account of the end-of-line

normalization described in the XML Recommendation, 2.11 "End-of-Line

Handling".

Base URIs
Several information items have a base URI or declaration base URI property. These

are computed according to XML Base. Note that retrieval of a resource may involve

redirection at the parser level (for example, in an entity resolver) or at a lower level;

in this case the base URI is the final URI used to retrieve the resource after all

redirection.

The value of these properties does not reflect any URI escaping that may be

required for retrieval of the resource, but it may include escaped characters if these

were specified in the document, or returned by a server in the case of redirection.

In some cases (such as a document read from a string or a pipe) the rules in XML

Base may result in a base URI being application dependent. In these cases this

specification does not define the value of the base URI or declaration base URI

property.

 When resolving relative URIs the base URI property should be used in preference

to the values of xml:base attributes; they may be inconsistent in the case of Synthetic

Infosets.
C-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Information Set
Unknown and No Value
 Some properties may sometimes have the value unknown or no value, and it is

said that a property value is unknown or that a property has no value respectively.

These values are distinct from each other and from all other values. In particular

they are distinct from the empty string, the empty set, and the empty list, each of

which simply has no members. This specification does not use the term null since in

some communities it has particular connotations which may not match those

intended here.

Synthetic Infosets
This specification describes the information set resulting from parsing an XML

document. Information sets may be constructed by other means, for example by use

of an API such as the DOM or by transforming an existing information set.

An information set corresponding to a real document will necessarily be consistent

in various ways; for example the in-scope namespaces property of an element will

be consistent with the [namespace attributes] properties of the element and its

ancestors. This may not be true of an information set constructed by other means; in

such a case there will be no XML document corresponding to the information set,

and to serialize it will require resolution of the inconsistencies (for example, by

outputting namespace declarations that correspond to the namespaces in scope).
XPath and Namespace Primer C-29

Introducing the W3C XML Information Set
C-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XSLT P
D

XSLT Primer

This appendix describes introductory information about the W3C XSL and XSLT

Recommendation. It contains the following sections:

■ Introducing XSL

■ XSL Transformation (XSLT)

■ XML Path Language (Xpath)

■ CSS Versus XSL

■ XSL Stylesheet Example, PurchaseOrder.xsl
rimer D-1

Introducing XSL
Introducing XSL
XML documents have structure but no format. Extensible Stylesheet Language

(XSL) adds formatting to XML documents. It provides a way to display XML

semantics and can map XML elements into other formatting languages such as

HTML.

The W3C XSL Transformation Recommendation Version 1.0
This specification defines the syntax and semantics of XSLT, which is a language for

transforming XML documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In

addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL

specifies the styling of an XML document by using XSLT to describe how the

document is transformed into another XML document that uses the formatting

vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not

intended as a completely general-purpose XML transformation language. Rather it

is designed primarily for the kinds of transformations that are needed when XSLT is

used as part of XSL.

This specification defines the syntax and semantics of the XSLT language. A

transformation in the XSLT language is expressed as a well-formed XML document

See Also:

■ Oracle9i XML Case Studies and Applications in particular, the

chapters that describe customizing content, Oracle9i Wireless

Edition, and customizing presentation with XML and XSL.

■ http://www.oasis-open.org/cover/xsl.html

■ http://www.mulberrytech.com/xsl/xsl-list/

■ http://www.builder.com/Authoring/XmlSpot/?tag=st.cn.sr1.ssr.

bl_xml

■ http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/in

dex.html

■ Chapter 6, "Transforming and Validating XMLType Data"

See Also: http://www.w3.org/TR/xslt
D-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing XSL
conforming to the Namespaces in XML Recommendation, which may include both

elements that are defined by XSLT and elements that are not defined by XSLT.

XSLT-defined elements are distinguished by belonging to a specific XML namespace

(see [2.1 XSLT Namespace]), which is referred to in this specification as the XSLT

namespace. Thus this specification is a definition of the syntax and semantics of the

XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree

into a result tree. The transformation is achieved by associating patterns with

templates. A pattern is matched against elements in the source tree. A template

is instantiated to create part of the result tree. The result tree is separate from the

source tree. The structure of the result tree can be completely different from the

structure of the source tree. In constructing the result tree, elements from the

source tree can be filtered and reordered, and arbitrary structure can be added.

A transformation expressed in XSLT is called a stylesheet. This is because, in the

case when XSLT is transforming into the XSL formatting vocabulary, the

transformation functions as a stylesheet.

This document does not specify how an XSLT stylesheet is associated with an XML

document. It is recommended that XSL processors support the mechanism

described in. When this or any other mechanism yields a sequence of more than one

XSLT stylesheet to be applied simultaneously to a XML document, then the effect

should be the same as applying a single stylesheet that imports each member of the

sequence in order.

A stylesheet contains a set of template rules. A template rule has two parts: a

pattern which is matched against nodes in the source tree and a template which can

be instantiated to form part of the result tree. This allows a stylesheet to be

applicable to a wide class of documents that have similar source tree structures.

The W3C is developing the XSL specification as part of its Style Sheets Activity. XSL

has document manipulation capabilities beyond styling. It is a stylesheet language

for XML.

The July 1999 W3C XSL specification, was split into two separate documents:

■ XSL syntax and semantics

■ How to use XSL to apply style sheets to transform one document into another

The formatting objects used in XSL are based on prior work on Cascading Style

Sheets (CSS) and the Document Style Semantics & Specification Language (DSSSL).

XSL is designed to be easier to use than DSSSL.
XSLT Primer D-3

Introducing XSL
Capabilities provided by XSL as defined in the proposal enable the following

functionality:

■ Formatting of source elements based on ancestry and descendency, position,

and uniqueness

■ The creation of formatting constructs including generated text and graphics

■ The definition of reusable formatting macros

■ Writing-direction independent stylesheets

■ An extensible set of formatting objects.

Namespaces in XML
A namespace is a unique identifier or name. This is needed because XML

documents can be authored separately with different DTDs or XML Schemas.

Namespaces prevent conflicts in markup tags by identifying which DTD or XML

Schema a tag comes from. Namespaces link an XML element to a specific DTD or

XML Schema.

Before you can use a namespace marker such as rml: , xhtml: , or xsl: , you must

identify it using the namespace indicator, xmlns as shown in the next paragraph.

XSL Stylesheet Architecture
The XSL stylesheets must include the following syntax:

■ Start tag stating the stylesheet, such as <xsl:stylesheet2>

■ Namespace indicator, such as

xmlns:xsl="http//www.w3.org/TR/WD-xsl" for an XSL namespace

indicator and xmlns:fo="http//www.w3.org/TR/WD-xsl/FO" for a

formatting object namespace indicator

■ Template rules including font families and weight, colors, and breaks. The

templates have instructions that control the element and element values

■ End of stylesheet declaration, </xsl:stylesheet2>

See Also: http://www.w3.org/Style/XSL/

See Also: http://w3.org/TR/REC-xml-names
D-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

CSS Versus XSL
XSL Transformation (XSLT)
XSLT is designed to be used as part of XSL. In addition to XSLT, XSL includes an

XML vocabulary for specifying formatting. XSL specifies the styling of an XML

document by using XSLT to describe how the document is transformed into another

XML document that uses the formatting vocabulary.

Meanwhile the second part is concerned with the XSL formatting objects, their

attributes, and how they can be combined.

XML Path Language (Xpath)
A separate, related specification is published as the XML Path Language (XPath)

Version 1.0. XPath is a language for addressing parts of an XML document, essential

for cases where you want to specify exactly which parts of a document are to be

transformed by XSL. For example, XPath lets you select all paragraphs belonging to

the chapter element, or select the elements called special notes. XPath is designed to

be used by both XSLT and XPointer. XPath is the result of an effort to provide a

common syntax and semantics for functionality shared between XSL

transformations and XPointer.

CSS Versus XSL
W3C is working to ensure that interoperable implementations of the formatting

model is available.

Cascading Stylesheets (CSS)
Cascading Stylesheets (CSS) can be used to style HTML documents. CSS were

developed by the W3C Style Working Group. CSS2 is a style sheet language that

allows authors and users to attach styles (for example, fonts, spacing, or aural cues)

to structured documents, such as HTML documents and XML applications.

By separating the presentation style of documents from the content of documents,

CSS2 simplifies Web authoring and site maintenance.

See Also: Chapter 6, "Transforming and Validating XMLType

Data"

See Also: Appendix C, "XPath and Namespace Primer"
XSLT Primer D-5

XSL Stylesheet Example, PurchaseOrder.xsl
XSL
XSL, on the other hand, is able to transform documents. For example, XSL can be

used to transform XML data into HTML/CSS documents on the Web server. This

way, the two languages complement each other and can be used together. Both

languages can be used to style XML documents. CSS and XSL will use the same

underlying formatting model and designers will therefore have access to the same

formatting features in both languages.

The model used by XSL for rendering documents on the screen builds on years of

work on a complex ISO-standard style language called DSSSL. Aimed mainly at

complex documentation projects, XSL also has many uses in automatic generation

of tables of contents, indexes, reports, and other more complex publishing tasks.

XSL Stylesheet Example, PurchaseOrder.xsl
The following example, PurchaseOrder.xsl , is an example of an XSL stylesheet.

the example stylesheet is used in the examples in Chapter 3, "Using Oracle XML

DB".

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:template match="/">
 <html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00"
 vlink="#66CC99" alink="#669999">

 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <center>

 Purchase Order

 </center>

 <center>
 <xsl:for-each select="Reference">

 <xsl:apply-templates/>
D-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XSL Stylesheet Example, PurchaseOrder.xsl

 </xsl:for-each>
 </center>
 </xsl:for-each>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 <P/>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 </P>
 </P>
 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 <FONT SIZE="+1" COLOR="#FF0000"
 FACE="Arial, Helvetica, sans-serif">Internal

 </P>
 <table border="0" width="98%" BGCOLOR="#000099">
 <tbody>
 <tr>
 <td WIDTH="49%">

 Actions

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="Actions">
 <xsl:for-each select="Action">
 <table border="1" WIDTH="143">
 <xsl:if test="position()=1">
 <thead>
 <tr>
 <td HEIGHT="21">
 <FONT
XSLT Primer D-7

XSL Stylesheet Example, PurchaseOrder.xsl
 COLOR="#FFFF00">User
 </td>
 <td HEIGHT="21">
 Date
 </td>
 </tr>
 </thead>
 </xsl:if>
 <tbody>
 <tr>
 <td>
 <xsl:for-each select="User">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="Date">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>
 </xsl:for-each>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 Requestor

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="Requestor">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 User

D-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XSL Stylesheet Example, PurchaseOrder.xsl
 </td>
 <td WIDTH="51%">
 <xsl:for-each select="User">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 Cost Center

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="CostCenter">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>
 </td>
 <td width="93"/>
 <td valign="top" WIDTH="340">

 Ship To

 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1"/>
 </xsl:for-each>
 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1">
 <table border="0" BGCOLOR="#999900">
 <tbody>
 <tr>
 <td WIDTH="126" HEIGHT="24">
 Name
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="24">
 <xsl:for-each select="name">
 <xsl:apply-templates/>
XSLT Primer D-9

XSL Stylesheet Example, PurchaseOrder.xsl
 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 <tr>
 <td WIDTH="126" HEIGHT="34">
 Address
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="34">
 <xsl:for-each select="address">

 <xsl:apply-templates/>

 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 <tr>
 <td WIDTH="126" HEIGHT="32">
 Telephone
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="32">
 <xsl:for-each select="telephone">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 </tbody>
 </table>
 </xsl:if>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>

 Items:

D-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XSL Stylesheet Example, PurchaseOrder.xsl

 <table border="0">
 <xsl:for-each select="LineItems">
 <xsl:for-each select="LineItem">
 <xsl:if test="position()=1">
 <thead>
 <tr bgcolor="#C0C0C0">
 <td>

 ItemNumber

 </td>
 <td>

 Description

 </td>
 <td>

 PartId

 </td>
 <td>

 Quantity

 </td>
 <td>

 Unit Price

 </td>
 <td>

 Total Price

 </td>
 </tr>
 </thead>
 </xsl:if>
 <tbody>
 <tr bgcolor="#DADADA">
 <td>

 <xsl:for-each select="@ItemNumber">
XSLT Primer D-11

XSL Stylesheet Example, PurchaseOrder.xsl
 <xsl:value-of select="."/>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Description">
 <xsl:apply-templates/>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@Id">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@Quantity">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@UnitPrice">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>
 <FONT FACE="Arial, Helvetica, sans-serif"
 COLOR="#000000">
 <xsl:for-each select="Part">
 <xsl:value-of select="@Quantity*@UnitPrice"/>
 </xsl:for-each>

D-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XSL Stylesheet Example, PurchaseOrder.xsl
 </td>
 </tr>
 </tbody>
 </xsl:for-each>
 </xsl:for-each>
 </table>
 </xsl:for-each>

 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>
XSLT Primer D-13

XSL Stylesheet Example, PurchaseOrder.xsl
D-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API for XMLType, Resource API for Java: Quick Refe
E

Java DOM API for XMLType, Resource API

for Java: Quick Reference

This appendix contains a quick reference for the following Oracle XML DB Java

APIs:

■ Java DOM API For XMLType

■ Oracle XML DB Resource API for Java
rence E-1

Java DOM API For XMLType
Java DOM API For XMLType
Packages oracle.xdb and oracle.xdb.dom implements the Java DOM API for

XMLType. Java DOM API for XMLType implements the W3C DOM

Recommendation Level 1.0 and Level 2.0 Core and also provides Oracle-specific

extensions.

Table E–1 lists the Java DOM API for XMLType (oracle.xdb.dom and
oracle.xdb) classes. Note that class XMLType is in package oracle.xdb and not

oracle.xdb.dom .

Non-Supported Java Methods
The following are methods documented in Release 2 (9.2.0.1) but not currently

supported in Release 2 (9.2.0.2):

■ XDBDocument.getElementByID

■ XDBDocument.importNode

■ XDBNode.normalize

■ XDBNode.isSupported

■ XDBDomImplementation.hasFeature

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Chapter 9, "Java API for XMLType"

Table E–1 Java DOM API for XMLType (mostly oracle.xdb.dom) Classes

Java DOM API for XMLType Description

XDBAttribute Implements the W3C DOM Node interface for interacting with XOBs.

XDBCData Implements org.w3c.dom.CData , the W3C text interface.

XDBCharData Implements org.w3c.dom.CharData , the W3C CharacterData interface.

XDBComment Implements the org.w3c.dom.Comment interface.
E-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API For XMLType
XDBDocument Implements the org.w3c.dom.Document interface.

Methods:

XDBDocument() constructor:

XDBDocument();Creates new Document. Can be used in server only.

XDBDocument(byte[] source);Populates Document from source. Can be
used in server only.

XDBDocument(Connection conn);Opens connection for caching Document
source.

XDBDocument(Connection conn, byte[] source); Connection for caching
bytes for Document source.

XDBDocument(Connection conn, String source);Opens connection for
caching string containing XML text.

XDBDocument(String source);The string containing XML text. Can be used
in server only.

Parameters: source - Contains XML text., conn -Connection to be used.

XDBDomImplementation Implements org.w3c.dom.DomImplementation .

Methods:

XDBDomImplementation()- Opens a JDBC connection to the server.

XDBElement Implements org.w3c.dom.Element .

XDBEntity Implements org.w3c.dom.Entity .

XDBNodeMap Implements org.w3c.dom.NamedNodeMap .

XDBNode Implements org.w3c.dom.Node , the W3C DOM Node interface for
interacting with XOBs.

Methods:

write() -Writes XML for this Node and all subnodes to an OutputStream. If
the OutputStream is ServletOutputStream, the servlet output is committed
and data is written using native streaming.

public void write(OutputStream s, String charEncoding, short indent);

Parameters:

s - stream to write the output toContains XML text

charEncoding - IANA char code (for example, "ISO-8859")

indent - number of characters to indent nested elements

Table E–1 Java DOM API for XMLType (mostly oracle.xdb.dom) Classes (Cont.)

Java DOM API for XMLType Description
Java DOM API for XMLType, Resource API for Java: Quick Reference E-3

Java DOM API For XMLType
XDBNodeList Implements org.w3c.dom.NodeList .

XDBNotation Implements org.w3c.dom.Notation.

XDBProcInst Implements org.w3c.dom.ProcInst , the W3C DOM
ProcessingInstruction interface.

XDBText Implements org.w3c.dom.Text .

XMLType

(package oracle.xdb)

Implements Java methods for the SQL type SYS.XMLTYPE.
Methods:

createXML() - Creates an XMLType. Use this method when accessing data
through JDBC.

getStringVal() - Retrieves string value containing the XML data from
the XMLType

getClobVal() - Retrieves the CLOB value containing the XML data from
the XMLType

extract() - Extracts the given set of nodes from the XMLType

existsNode() - Checks for the existence of the given set of nodes in the
XMLType

transform() - Transforms the XMLType using the given XSL document

isFragment() - Checks if the XMLType is a regular document or a
document fragment

getDOM() - Retrieves the DOM document associated with the XMLType.

createXML() Creates an XMLType. Throws java.sql.SQLException if the XMLType
could not be created:

public static XMLType createXML(OPAQUE opq); Creates and returns an
XMLType given the opaque type containing the XMLType bytes.

public static XMLType createXML(Connection conn, String xmlval);
Creates and returns an XMLType given the string containing the XML data.

public static XMLType createXML(Connection conn, CLOB xmlval);
Creates and returns an XMLType given a CLOB containing the XML data.

public static XMLType createXML(Connection conn, Document domdoc);
Creates and returns an XMLType given an instance of the DOM document.

Parameters:

opq - opaque object from which theXMLType is to be constructed

conn - connection object to be used, xmlval - contains the XML data

domdoc - the DOM Document which represents the DOM tree,

Table E–1 Java DOM API for XMLType (mostly oracle.xdb.dom) Classes (Cont.)

Java DOM API for XMLType Description
E-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Java DOM API For XMLType
getStringVal() Retrieves the string value containing the XML data from the XMLType.
Throws java.sql.SQLException.

public String getStringVal();

getClobVal() Retrieves the CLOB value containing the XML data from the XMLType.
Throws java.sql.SQLException

public CLOB getClobVal();

extract() Extracts and returns the given set of nodes from the XMLType. The set of
nodes is specified by the XPath expression. The original XMLType remains
unchanged. Works only in the thick case. If no nodes match the specified
expression, returns NULL. Throws java.sql.SQLException

public XMLType extract(String xpath, String nsmap);

Parameters:

xpath - xpath expression which specifies for which nodes to search

nsmap - map of namespaces which resolves the prefixes in the xpath
expression; format is "xmlns=a.com xmlns:b=b.com"

existsNode() Checks for existence of given set of nodes in the XMLType. This set of nodes
is specified by the xpath expression. Returns TRUE if specified nodes exist in
the XMLType; otherwise, returns FALSE. Throws
java.sql.SQLException

public boolean existsNode(String xpath, String nsmap);

Parameters:

xpath - xpath expression that specifies for which nodes to search

nsmap - map of namespaces that resolves prefixes in the xpath
expression;format is "xmlns=a.com xmlns:b=b.com",

Table E–1 Java DOM API for XMLType (mostly oracle.xdb.dom) Classes (Cont.)

Java DOM API for XMLType Description
Java DOM API for XMLType, Resource API for Java: Quick Reference E-5

Oracle XML DB Resource API for Java
Oracle XML DB Resource API for Java
Oracle XML DB Resource API for Java’s WebDav support is implemented using

package oracle.xdb.spi classes that render the service provider interface (SPI)

drivers. Classes in oracle.xdb.spi implement core WebDAV support for Oracle XML

DB. Table E–2 lists the oracle.xdb.spi classes.

transform() Transforms and returns the XMLType using the given XSL document. The
new (transformed) XML document is returned. Throws
java.sql.SQLException.

public XMLType transform(XMLType xsldoc, String parammap);

Parameters:

xsldoc - The XSL document to be applied to the XMLType

parammap - top level parameters to be passed to the XSL transformation. Use
format "a=b c=d e=f". Can beNULL.

isFragment() Checks if the XMLType is a regular document or document fragment.
Returns TRUE if doc is a fragment; otherwise, returns FALSE. Throws
java.sql.SQLException.

public boolean isFragment();

getDOM() Retrieves the DOM document associated with the XMLType. This document
is the org.w3c.dom.Document. The caller can perform all DOM operations
on the Document. If the document is binary, getDOM returns NULL. Throws
java.sql.SQLException.

public org.w3c.dom.Document getDOM();

See Also: Chapter 17, "Oracle XML DB Resource API for Java"

Table E–1 Java DOM API for XMLType (mostly oracle.xdb.dom) Classes (Cont.)

Java DOM API for XMLType Description
E-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resource API for Java
Table E–2 Oracle XML DB Resource API for Java (oracle.xdb.spi)

oracle.xdb.spi Class Description

XDBContext Class Implements the Java naming and context interface for Oracle
XML DB, which extends javax.naming.context . In this
release there is no federation support, in other words, it is
completely unaware of the existence of other namespaces.
Methods:

XDBContext() - Class XDBContext constructor.

■ public XDBContext(Hashtable env); Creates an instance
of XDBContext class given the environment.

■ public XDBContext(Hashtable env, String path); Creates
an instance of XDBContext class given the environment
and path.

Parameters: env - Environment to describe properties of
context, path - Initial path for the context.

XDBContextFactory Class Implements javax.naming.context .

Methods:

XDBContextFactory() - Constructor for class
XDBContextFactory. public XDBContextFactory();

XDBNameParser Class Implements javax.naming.NameParser

XDBNamingEnumeration Class Implements javax.naming.NamingEnumeration
Java DOM API for XMLType, Resource API for Java: Quick Reference E-7

Oracle XML DB Resource API for Java
XDBResource Class Implements the core features for Oracle XML DB JNDI service
provider interface (SPI). This release has no federation support,
and is unaware of the existence of other namespaces.

public class XDBResource extends java.lang.Object.

Methods:

XDBResource()- Creates a new instance of XDBResource

getAuthor() - Returns author of the resource

getComment() - Returns the DAV comment of the resource

getContent() - Returns the content of the resource

getContentType() - Returns the content type of the resource

getCreateDate() - Returns the create date of the resource

getDisplayName() - Returns the display name of the resource

getLanguage() - Returns the language of the resource

getLastModDate() - Returns the last modification date of the
resource

getOwnerId() - Returns the owner ID of the resource

setACL() - Sets the ACL on the resource

setAuthor() - Sets the author of the resource

setComment() - Sets the DAV comment of the resource

setContent() - Sets the content of the resource

setContentType() - Sets the content type of the resource

setCreateDate() - Sets the creation date of the resource

setDisplayName() - Sets the display name of the resource

setLanguage() - Sets the language of the resource

setLastModDate() - Sets the last modification date of the
resource

setOwnerId() -Sets the owner ID of the resource

XDBResource() Creates a new instance of XDBResource. public Creates a new
instance of XDBResource given the environment.

public XDBResource(Hashtable env, String path); Creates a
new instance of XDBResource given the environment and path.

Parameters: env - Environment passed in, path - Path to the
resource

Table E–2 Oracle XML DB Resource API for Java (oracle.xdb.spi) (Cont.)

oracle.xdb.spi Class Description
E-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Resource API for Java
getAuthor() Retrieves the author of the resource.

public String getAuthor();

getComment() Retrieves the DAV (Web Distributed Authoring and
Versioning) comment of the resource.

public String getComment();

getContent() Returns the content of the resource.

public Object getContent();

getContentType() Returns the content type of the resource. public String
getContentType();

getCreateDate() Returns the creation date of the resource. public Date
getCreateDate();

getDisplayName() Returns the display name of the resource. public String
getDisplayName();

getLanguage() Returns the Language of the resource. public String
getLanguage();

getLastModDate() Returns the last modification date of the resource.

public Date getLastModDate();

getOwnerId() Returns the owner id of the resource. The value expected by
this method is the user id value for the database user as
provided by the catalog views such as ALL_USERS, and so on.

public long getOwnerId();

setACL() Sets the ACL on the resource.

public void setACL(String aclpath);

Parametes: aclpath - The path to the ACL resource.

setAuthor() Sets the author of the resource. public void setAuthor(String
authname); Parameter: authname - Author of the resource.

setComment() Sets the DAV (Web Distributed Authoring and Versioning)
comment of the resource.

public void setComment(String davcom); Parameter: davcom -
DAV comment of the resource.

setContent() Sets the content of the resource.

public void setContent(Object xmlobj); Parameter: xmlobj -
Content of the resource.

Table E–2 Oracle XML DB Resource API for Java (oracle.xdb.spi) (Cont.)

oracle.xdb.spi Class Description
Java DOM API for XMLType, Resource API for Java: Quick Reference E-9

Oracle XML DB Resource API for Java
setContentType() Sets the content type of the resource.

public void setContentType(String conttype);

Parameter: conttype - Content type of the resource.

setCreateDate() Sets the creation date of the resource.

public void setCreateDate(Date credate);

Parameter: credate - Creation date of the resource.

setDisplayName() Sets the display name of the resource.

public void setDisplayName(String dname);

Parameter: dname - Display name of the resource.

setLanguage() Sets the language of the resource.

public void setLanguage(String lang);

Parameter: lang - Language of the resource.

setLastModDate() Sets the last modification date of the resource.

public void - setLastModDate(Date d);

Parameter: d - Last modification date of the resource.

setOwnerId() Sets the owner id of the resource. The owner id value expected
by this method is the user id value for the database user as
provided by the catalog views such as ALL_USERS, and so on.

public void setOwnerId(long ownerid);

Parameters: ownerid - Owner id of the resource.

Table E–2 Oracle XML DB Resource API for Java (oracle.xdb.spi) (Cont.)

oracle.xdb.spi Class Description
E-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Refe
F

Oracle XML DB XMLType API, PL/SQL and
Resource PL/SQL APIs: Quick Reference

This appendix provides a summary of the following Oracle XML DB SQL and

PL/SQL APIs:

■ XMLType API

■ PL/SQL DOM API for XMLType (DBMS_XMLDOM)

■ PL/SQL Parser for XMLType (DBMS_XMLPARSER)

■ PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

■ DBMS_XMLSCHEMA

■ Oracle XML DB XML Schema Catalog Views

■ Resource API for PL/SQL (DBMS_XDB)

■ RESOURCE_VIEW, PATH_VIEW

■ DBMS_XDB_VERSION

■ DBMS_XDBT
rence F-1

XMLType API
XMLType API
XMLType is a system-defined opaque type for handling XML data. XMLType has

predefined member functions to extract XML nodes and fragments. You can create

columns of XMLType and insert XML documents into them. You can also generate

XML documents as XMLType instances dynamically using SQL functions,

SYS_XMLGEN and SYS_XMLAGG, the PL/SQL package DBMS_XMLGEN, and the

SQLX functions.

Table F–1 lists the XMLType API functions.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Chapter 4, "Using XMLType"
F-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType API
Table F–1 XMLType API

Function Description

XMLType()

constructor function XMLType(xmlData IN clob,
schema IN varchar2 := NULL, validated IN
number := 0, wellformed IN Number := 0) return
self as result

constructor function XMLType(xmlData IN
varchar2, schema IN varchar2 := NULL,validated
IN number := 0, wellformed IN number := 0)
return self as result

constructor function XMLType (xmlData IN
"<ADT_1>", schema IN varchar2 := NULL,
element IN varchar2 := NULL, validated IN
number := 0) return self as result

onstructor function XMLType(xmlData IN
SYS_REFCURSOR, schema in varchar2 := NULL,
element in varchar2 := NULL, validated in number
:= 0) return self as result

Constructor that constructs an instance of the XMLType datatype.
The constructor can take in the XML as a CLOB, VARCHAR2 or
take in a object type.

Parameters:

xmlData - data in the form of a CLOB, REF cursor, VARCHAR2 or
object type.

schema - optional schema URL used to make the input conform to
the given schema.

validated - flag to indicate that the instance is valid according to the
given XMLSchema. (default 0)

wellformed - flag to indicate that the input is wellformed. If set,
then the database would not do well formed check on the input
instance. (default 0)

element - optional element name in the case of the ADT_1 or REF
CURSOR constructors. (default null)

-- --

createXML()

STATIC FUNCTION createXML(xmlval IN
varchar2) RETURN XMLType deterministic

STATIC FUNCTION createXML(xmlval IN clob)
RETURN XMLType

STATIC FUNCTION createXML (xmlData IN clob,
schema IN varchar2, validated IN number := 0,
wellformed IN number := 0) RETURN XMLType
deterministic

STATIC FUNCTION createXML (xmlData IN
varchar2, schema IN varchar2, validated IN
number := 0, wellformed IN number := 0)
RETURN XMLType deterministic

STATIC FUNCTION createXML (xmlData IN
"<ADT_1>", schema IN varchar2 := NULL,
element IN varchar2 := NULL, validated IN
NUMBER := 0) RETURN XMLType deterministic

STATIC FUNCTION createXML (xmlData IN
SYS_REFCURSOR, schema in varchar2 := NULL,
element in varchar2 := NULL, validated in number
:= 0) RETURN XMLType deterministic

Static function for creating and returning an XMLType instance. The
string and clob parameters used to pass in the date must contain
well-formed and valid XML documents. The options are described
in the following table.

Parameters:

xmlData - Actual data in the form of a CLOB, REF cursor,
VARCHAR2 or object type.

schema - optional Schema URL to be used to make the input
conform to the given schema.

validated - flag to indicate that the instance is valid according to the
given XMLSchema. (default 0)

wellformed - flag to indicate that the input is wellformed. If set,
then the database would not do well formed check on the input
instance. (default 0)

element - optional element name in the case of the ADT_1 or REF
CURSOR constructors. (default null)
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-3

XMLType API
existsNode()

MEMBER FUNCTION existsNode(xpath IN
varchar2) RETURN number deterministic

MEMBER FUNCTION existsNode(xpath in
varchar2, nsmap in varchar2) RETURN number
deterministic

Takes an XMLType instance and a XPath and returns 1 or 0
indicating if applying the XPath returns a non-empty set of nodes.
If the XPath string is NULL or the document is empty, then a value
of 0 is returned, otherwise returns 1.

Parameters:

xpath - XPath expression to test.

nsmap - optional namespace mapping.

extract()

MEMBER FUNCTION extract(xpath IN varchar2)
RETURN XMLType deterministic

MEMBER FUNCTION extract(xpath IN varchar2,
nsmap IN varchar2) RETURN XMLType
deterministic

Extracts an XMLType fragment and returns an XMLType instance

containing the result node(s). If the XPath does not result in any

nodes, it returns NULL.

Parameters:

xpath - XPath expression to apply.

nsmap - optional prefix to namespace mapping information.

isFragment()

MEMBER FUNCTION isFragment() RETURN
number deterministic

Determines if the XMLType instance corresponds to a well-formed
document, or a fragment. Returns 1 or 0 indicating if the XMLType
instance contains a fragment or a well-formed document. Returns 1
or 0 indicating if the XMLType instance contains a fragment or a
well-formed document..

getClobVal()

MEMBER FUNCTION getClobVal() RETURN clob
deterministic

Returns a CLOB containing the serialized XML representation; if
the return is a temporary CLOB, it must be freed after use.

getNumberVal()

MEMBER FUNCTION getNumberVal() RETURN
number deterministic

Returns a numeric value, formatted from the text value pointed to

by the XMLType instance. The XMLType must point to a valid text

node that contains a numerical value.

getStringVal()

MEMBER FUNCTION getStringVal() RETURN
varchar2 deterministic

Returns the document as a string containing the serialized XML
representation, or for text nodes, the text itself. If the XML
document is bigger than the maximum size of the VARCHAR2,
4000, then an error is raised at run time.

transform()

MEMBER FUNCTION transform(xsl IN
XMLType, parammap in varchar2 := NULL)
RETURN XMLType deterministic

Transforms XML data using the XSL stylesheet argument and the
top-level parameters passed as a string of name=value pairs. If any
argument other than the parammap is NULL, a NULL is returned.

Parameter

xsl - XSL stylesheet describing the transformation

parammap - top level parameters to the XSL - string of name=value
pairs

Table F–1 XMLType API (Cont.)

Function Description
F-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType API
toObject()

MEMBER PROCEDURE toObject(SELF in
XMLType, object OUT "<ADT_1>", schema in
varchar2 := NULL, element in varchar2 := NULL)

Converts XML data into an instance of a user defined type, using
the optional schema and top-level element arguments.

Parameters:

SELF - instance to be converted. Implicit if used as a member
procedure.

object - converted object instance of the required type may be
passed in to this function.

schema - schema URL. Mapping of the XMLType instance to the
converted object instance can be specified using a schema.

element - top-level element name. This specifies the top-level
element name in the XMLSchema document to map the XMLType
instance.

isSchemaBased()

MEMBER FUNCTION isSchemaBased return
number deterministic

Determines if the XMLType instance is schema-based. Returns 1 or
0 depending on whether the XMLType instance is schema-based or
not.

getSchemaURL()

MEMBER FUNCTION getSchemaURL return
varchar2 deterministic

Returns the XML schema URL corresponding to the XMLType
instance, if the XMLType instance is a schema-based document.
Otherwise returns NULL.

getRootElement()

MEMBER FUNCTION getRootElement return
varchar2 deterministic

Gets the root element of the XMLType instance. Returns NULL if
the instance is a fragment.

createSchemaBasedXML()

MEMBER FUNCTION
createSchemaBasedXML(schema IN varchar2 :=
NULL) return sys.XMLType deterministic

Creates a schema-based XMLType instance from a
non-schema-based XML and a schemaURL.

Parameter:

schema - schema URL If NULL, then the XMLType instance must
contain a schema URL.

createNonSchemaBasedXML()

MEMBER FUNCTION
createNonSchemaBasedXML return XMLType
deterministic

Creates a non-schema-based XML document from an XML
schema-based instance.

getNamespace()

MEMBER FUNCTION getNamespace return
varchar2 deterministic

Returns the namespace of the top level element in the instance.
NULL if the input is a fragment or is a non-schema-based instance.

schemaValidate()

MEMBER PROCEDURE schemaValidate

Validates the XML instance against its schema if it has not already
validated. For non-schema based documents an error is raised. If
validation fails an error is raised; else, the document’s status is
changed to validated.

Table F–1 XMLType API (Cont.)

Function Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-5

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
PL/SQL DOM API for XMLType (DBMS_XMLDOM)
Table F–2 lists the PL/SQL DOM API for XMLType (DBMS_XMLDOM) methods

supported in Release 2 (9.2.0.1). These are grouped according to the W3C DOM

Recommendation. The following DBMS_XMLDOM methods are not supported in

Release 2 (9.2.0.2):

■ hasFeature

■ getVersion

■ setVersion

■ getCharset

■ setCharset

■ getStandalone

■ setStandalone

■ writeExternalDTDToFile

■ writeExternalDTDToBuffer

isSchemaValidated()

MEMBER FUNCTION isSchemaValidated return
NUMBER deterministic

Returns the validation status of the XMLType instance if it has been
validated against its schema. Returns 1 if validated against the
schema, 0 otherwise.

setSchemaValidated()

MEMBER PROCEDURE setSchemaValidated(flag
IN BINARY_INTEGER := 1)

Sets the VALIDATION state of the input XML instance to avoid
schema validation.

Parameter: flag - 0 = NOT VALIDATED; 1 = VALIDATED; Default
value is 1.

isSchemaValid()
member function isSchemaValid(schurl IN
VARCHAR2 := NULL, elem IN VARCHAR2 :=
NULL) return NUMBER deterministic

Checks if the input instance conforms to a specified schema. Does
not change validation status of the XML instance. If an XML
schema URL is not specified and the XML document is
schema-based, conformance is checked against the XMLType
instance’s own schema.

Parameter:

schurl - URL of the XML Schema against which to check
conformance.

elem - Element of a specified schema, against which to validate.
Useful when you have an XML Schema that defines more than one
top level element, and you need to check conformance against a
specific elements.

Table F–1 XMLType API (Cont.)

Function Description
F-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
■ writeExternalDTDToClob

Table F–3 . lists additional methods supported in Release 2 (9.2.0.2).

See Also: Chapter 8, "PL/SQL API for XMLType"

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods

Group/Method Description

Node methods --

isNull() Tests if the node is NULL.

makeAttr() Casts the node to an Attribute.

makeCDataSection() Casts the node to a CDataSection.

makeCharacterData() Casts the node to CharacterData.

makeComment() Casts the node to a Comment.

makeDocumentFragment() Casts the node to a DocumentFragment.

makeDocumentType() Casts the node to a Document Type.

makeElement() Casts the node to an Element.

makeEntity() Casts the node to an Entity.

makeEntityReference() Casts the node to an EntityReference.

makeNotation() Casts the node to a Notation.

makeProcessingInstruction() Casts the node to a DOMProcessingInstruction.

makeText() Casts the node to a DOMText.

makeDocument() Casts the node to a DOMDocument.

writeToFile() Writes the contents of the node to a file.

writeToBuffer() Writes the contents of the node to a buffer.

writeToClob() Writes the contents of the node to a clob.

getNodeName() Retrieves the Name of the Node.

getNodeValue() Retrieves the Value of the Node.

setNodeValue() Sets the Value of the Node.

getNodeType() Retrieves the Type of the node.

getParentNode() Retrieves the parent of the node.
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-7

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
getChildNodes() Retrieves the children of the node.

getFirstChild() Retrieves the first child of the node.

getLastChild() Retrieves the last child of the node.

getPreviousSibling() Retrieves the previous sibling of the node.

getNextSibling() Retrieves the next sibling of the node.

getAttributes() Retrieves the attributes of the node.

getOwnerDocument() Retrieves the owner document of the node.

insertBefore() Inserts a child before the reference child.

replaceChild() Replaces the old child with a new child.

removeChild() Removes a specified child from a node.

appendChild() Appends a new child to the node.

hasChildNodes() Tests if the node has child nodes.

cloneNode() Clones the node.

Named node map methods --

isNull() Tests if the NodeMap is NULL.

getNamedItem() Retrieves the item specified by the name.

setNamedItem() Sets the item in the map specified by the name.

removeNamedItem() Removes the item specified by name.

item() Retrieves the item given the index in the map.

getLength() Retrieves the number of items in the map.

Node list methods --

isNull() Tests if the Nodelist is NULL.

item() Retrieves the item given the index in the nodelist.

getLength() Retrieves the number of items in the list.

Attr methods --

isNull() Tests if the Attribute Node is NULL.

makeNode() Casts the Attribute to a node.

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
F-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
getQualifiedName() Retrieves the Qualified Name of the attribute.

getNamespace() Retrieves the NS URI of the attribute.

getLocalName() Retrieves the local name of the attribute.

getExpandedName() Retrieves the expanded name of the attribute.

getName() Retrieves the name of the attribute.

getSpecifiied() Tests if attribute was specified in the owning
element.

getValue() Retrieves the value of the attribute.

setValue() Sets the value of the attribute.

C data section methods --

isNull()isNull() Tests if the CDataSection is NULL.

makeNode()makeNode() Casts the CDatasection to a node.

Character data methods --

isNull() Tests if the CharacterData is NULL.

makeNode() Casts the CharacterData to a node.

getData() Retrieves the data of the node.

setData() Sets the data to the node.

getLength() Retrieves the length of the data.

substringData() Retrieves the substring of the data.

appendData() Appends the given data to the node data.

insertData() Inserts the data in the node at the given offSets.

deleteData() Deletes the data from the given offSets.

replaceData() Replaces the data from the given offSets.

Comment methods --

isNull() Tests if the comment is NULL.

makeNode() Casts the Comment to a node.

DOM implementation methods --

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-9

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
isNull() Tests if the DOMImplementation node is NULL.

hasFeature() Tests if the DOM implements a given feature. [Not
supported in this release]

Document fragment methods --

isNull() Tests if the DocumentFragment is NULL.

makeNode() Casts the Document Fragment to a node.

Document type methods --

isNull() Tests if the Document Type is NULL.

makeNode() Casts the document type to a node.

findEntity() Finds the specified entity in the document type.

findNotation() Finds the specified notation in the document type.

getPublicId() Retrieves the public ID of the document type.

getSystemId() Retrieves the system ID of the document type.

writeExternalDTDToFile() Writes the document type definition to a file.

writeExternalDTDToBuffer() Writes the document type definition to a buffer.

writeExternalDTDToClob() Writes the document type definition to a clob.

getName() Retrieves the name of the Document type.

getEntities() Retrieves the nodemap of entities in the Document
type.

getNotations() Retrieves the nodemap of the notations in the
Document type.

Element methods --

isNull() Tests if the Element is NULL.

makeNode() Casts the Element to a node.

getQualifiedName() Retrieves the qualified name of the element.

getNamespace() Retrieves the NS URI of the element.

getLocalName() Retrieves the local name of the element.

getExpandedName() Retrieves the expanded name of the element.

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
F-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
getChildrenByTagName() Retrieves the children of the element by tag name.

getElementsByTagName() Retrieves the elements in the subtree by element.

resolveNamespacePrefix() Resolve the prefix to a namespace uri.

getTagName() Retrieves the Tag name of the element.

getAttribute() Retrieves the attribute node specified by the name.

setAttribute() Sets the attribute specified by the name.

removeAttribute() Removes the attribute specified by the name.

getAttributeNode() Retrieves the attribute node specified by the name.

setAttributeNode() Sets the attribute node in the element.

removeAttributeNode() Removes the attribute node in the element.

normalize() Normalizes the text children of the element. [Not
supported in this release]

Entity methods --

isNull() Tests if the Entity is NULL.

makeNode() Casts the Entity to a node.

getPublicId() Retrieves the public Id of the entity.

getSystemId() Retrieves the system Id of the entity.

getNotationName() Retrieves the notation name of the entity.

Entity reference methods --

isNull() Tests if the entity reference is NULL.

makeNode() Casts the Entity reference to NULL.

Notation methods --

isNull() Tests if the notation is NULL.

makeNode() Casts the notation to a node.

getPublicId() Retrieves the public Id of the notation.

getSystemId() Retrieves the system Id of the notation.

Processing instruction methods --

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-11

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
isNull() Tests if the processing instruction is NULL.

makeNode() Casts the Processing instruction to a node.

getData() Retrieves the data of the processing instruction.

getTarget() Retrieves the target of the processing instruction.

setData() Sets the data of the processing instruction.

Text methods --

isNull() Tests if the text is NULL.

makeNode() Casts the text to a node.

splitText() Splits the contents of the text node into 2 text nodes.

Document methods --

isNull() Tests if the document is NULL.

makeNode() Casts the document to a node.

newDOMDocument() Creates a new document.

freeDocument() Frees the document.

getVersion() Retrieves the version of the document. [Not
supported in this release]

setVersion() Sets the version of the document. [Not supported in
this release]

getCharset() Retrieves the Character set of the document. [Not
supported in this release]

setCharset() Sets the Character set of the document. [Not
supported in this release]

getStandalone() Retrieves if the document is specified as standalone.
[Not supported in this release]

setStandalone() Sets the document standalone. [Not supported in
this release]

writeToFile() Writes the document to a file.

writeToBuffer() Writes the document to a buffer.

writeToClob() Writes the document to a clob.

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
F-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)
writeExternalDTDToFile() Writes the DTD of the document to a file. [Not
supported in this release]

writeExternalDTDToBuffer() Writes the DTD of the document to a buffer. [Not
supported in this release]

writeExternalDTDToClob() Writes the DTD of the document to a clob. [Not
supported in this release]

getDoctype() Retrieves the DTD of the document.

getImplementation() Retrieves the DOM implementation.

getDocumentElement() Retrieves the root element of the document.

createElement() Creates a new element.

createDocumentFragment() Creates a new document fragment.

createTextNode() Creates a Text node.

createComment() Creates a comment node.

createCDATASection() Creates a CDatasection node.

createProcessingInstruction() Creates a processing instruction.

createAttribute() Creates an attribute.

createEntityReference() Creates an Entity reference.

getElementsByTagName() Retrieves the elements in the by tag name.

Table F–3 DBMS_XMLDOM Methods Added in Release 2 (9.2.0.2)

Method Syntax

createDocument FUNCTION createDocument (namspaceURI IN VARCHAR2, qualifiedName
IN VARCHAR2, doctype IN DOMType :=NULL) REURN DocDocument;

getPrefix FUNCTION getPrefix(n DOMNode) RETURN VARCHAR2;

setPrefix PROCEDURE setPrefix (n DOMNode) RETURN VARCHAR2;

hasAttributes FUNCTION hasAttributes (n DOMNode) RETURN BOOLEAN;

getNamedItem FUNCTION getNamedItem (nnm DOMNamedNodeMap, name IN
VARCHAR2, ns IN VARCHAR2) RETURN DOMNode;

setNamedItem FUNCTION getNamedItem (nnm DOMNamedNodeMap, arg IN DOMNode,
ns IN VARCHAR2) RETURN DOMNode;

Table F–2 Summary of Release 2 (9.2.0.1) DBMS_XMLDOM Methods (Cont.)

Group/Method Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-13

PL/SQL Parser for XMLType (DBMS_XMLPARSER)
PL/SQL Parser for XMLType (DBMS_XMLPARSER)
You can access the content and structure of XML documents through the PL/SQL

Parser for XMLType (DBMS_XMLPARSER).

Table F–4 lists the PL/SQL Parser for XMLType (DBMS_XMLPARSER) functions

and procedures.

removeNamedItem FUNCTION removeNamedItem (nnm DOMNamesNodeMap, name in
VARCHAR2, ns IN VARCHAR2) RETURN DOMNode;

getOwnerElement FUNCTION getOwnerElement (a DOMAttr) RETURN DOMElement;

getAttribute FUNCTION getAttribute (elem DOMElement, name IN VARCHAR2, ns IN
VARCHAR2) RETURN VARCHAR2;

hasAttribute FUNCTION hasAttribute (elem DOMElement, name IN VARCHAR2)
RETURN BOOLEAN;

hasAttribute FUNCTION hasAttribute (elem DOMElement, name IN VARCHAR2, ns IN
VARCHAR2) RETURN BOOLEAN;

setAttribute PROCEDURE setAttribute (elem DOMElement, name IN VARCHAR2,
newvalue IN VARCHAR2, ns IN VARCHAR2);

removeAttribute PROCEDURE removeAttribute (elem DOMElement, name IN VARCHAR2,
ns IN VARCHAR2);

getAttributeNode FUNCTION getAttributeNode(elem DOMElement, name IN VARCHAR2, ns
IN VARCHAR2) RETURN DOMAttr;

setAttributeNode FUNCTION setAttributeNode(elem DOMElement, newAttr IN DOMAttr, ns IN
VARCHAR2) RETURN DOMAttr;

createElement FUNCTION createElement (doc DOMDocument, tagname IN VARCHAR2,
ns IN VARCHAR2) RETURN DOMElement;

createAttribute FUNCTION createAttribute (doc DOMDocument, name IN VARCHAR2, ns
IN VARCHAR2) RETURN DOMAttr;

See Also: Chapter 8, "PL/SQL API for XMLType"

Table F–3 DBMS_XMLDOM Methods Added in Release 2 (9.2.0.2) (Cont.)

Method Syntax
F-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
This PL/SQL implementation of the XSL processor follows the W3C XSLT Working

Draft (Rev WD-xslt-19990813).

Table F–5 summarizes the PL/SQL XSLT Processor for XMLType
(DBMS_XSLPROCESSOR) functions and procedures.

Table F–4 DBMS_XMLPARSER Functions and Procedures

Functions/Procedures Description

parse() Parses XML stored in the given URL/file.

newParser() Returns a new parser instance

parseBuffer() Parses XML stored in the given buffer

parseClob() Parses XML stored in the given clob

parseDTD() Parses DTD stored in the given url/file

parseDTDBuffer() Parses DTD stored in the given buffer

parseDTDClob() Parses DTD stored in the given clob

setBaseDir() Sets base directory used to resolve relative URLs.

showWarnings() Turns warnings on or off.

setErrorLog() Sets errors to be sent to the specified file

setPreserveWhitespace() Sets white space preserve mode

setValidationMode() Sets validation mode.

getValidationMode() Returns validation mode.

setDoctype() Sets DTD.

getDoctype() Gets DTD Parser.

getDocument() Gets DOM document.

freeParser() Frees a parser object.

getReleaseVersion() Returns the release version of Oracle XML Parser for
PL/SQL.

See Also: Chapter 8, "PL/SQL API for XMLType"
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-15

DBMS_XMLSCHEMA
DBMS_XMLSCHEMA
This package is created by dbmsxsch.sql during the Oracle XML DB installation.

It provides procedures for registering and deleting your XML schemas. Table F–6

summarizes the DBMS_XMLSCHEMA functions and procedures.

Table F–5 PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
Functions

Functions and Procedures Description

newProcessor() Returns a new processor instance.

processXSL() Transforms an input XML document.

showWarnings() Turns warnings on or off.

setErrorLog() Sets errors to be sent to the specified file.

newStylesheet() Creates a new stylesheet using the given input and
reference URLs.

transformNode() Transforms a node in a DOM tree using the given
stylesheet.

selectNodes() Selects nodes from a DOM tree that match the given
pattern.

selectSingleNodes() Selects the first node from the tree that matches the
given pattern.

valueOf() Retrieves the value of the first node from the tree
that matches the given pattern

setParam() Sets a top-level parameter in the stylesheet

removeParam() Removes a top-level stylesheet parameter

resetParams() Resets the top-level stylesheet parameters

freeStylesheet() Frees a stylesheet object

freeProcessor() Frees a processor object

See Also: Chapter 5, "Structured Mapping of XMLType"
F-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XMLSCHEMA
Table F–6 DBMS_XMLSCHEMA Functions and Procedures

Constant Description

registerSchema()

procedure
registerSchema(schemaURL IN
VARCHAR2, schemaDoc IN
VARCHAR2, local IN BOOLEAN :=
TRUE, genTypes IN BOOLEAN :=
TRUE, genbean IN BOOLEAN :=
FALSE, genTables IN BOOLEAN :=
TRUE, force IN BOOLEAN :=
FALSE, owner IN VARCHAR2 :=
null);

procedure
registerSchema(schemaURL IN
VARCHAR2, schemaDoc IN CLOB,
local IN BOOLEAN := TRUE,
genTypes IN BOOLEAN := TRUE,
genbean IN BOOLEAN := FASLE,
force IN BOOLEAN := FALSE,
owner IN VARCHAR2 := null);

procedure
registerSchema(schemaURL IN
VARCHAR2, schemaDoc IN BFILE,
local IN BOOLEAN := TRUE,
genTypes IN BOOLEAN := TRUE,
genbean IN BOOLEAN := FALSE,
force IN BOOLEAN := FALSE,
owner IN VARCHAR2 := null);

procedure
registerSchema(schemaURL IN
VARCHAR2, schemaDoc IN
SYS.XMLType, local IN BOOLEAN
:= TRUE, genTypes IN BOOLEAN :=
TRUE, genbean IN BOOLEAN :=
FALSE, force IN BOOLEAN :=
FALSE, owner IN VARCHAR2 :=
null);

procedure
registerSchema(schemaURL IN
VARCHAR2, schemaDoc IN
SYS.URIType, local IN BOOLEAN :=
TRUE, genTypes IN BOOLEAN :=
TRUE, genbean IN BOOLEAN :=
FALSE, force IN BOOLEAN :=
FALSE, owner IN VARCHAR2 :=
null);

Registers the specified XML schema for use by
Oracle XML DB. This schema can then be used to
store documents that conform to it.

Parameters:

schemaURL - URL that uniquely identifies the
schema document. This value is used to derive the
path name of the schema document within the XML
DB hierarchy.

schemaDoc - a valid XML schema document

local - is this a local or global schema? By default, all
schemas are registered as local schemas, that is
under /sys/schemas/<username/... If a schema is
registered as global, it is added under
/sys/schemas/PUBLIC/.... You need write
privileges on the preceding directory to be able to
register a schema as global.

genTypes - should the schema compiler generate
object types? By default, TRUE

genbean - should the schema compiler generate Java
beans? By default, FALSE.

genTables - sShould the schema compiler generate
default tables? By default, TRUE

force - if this parameter is set to TRUE, the schema
registration will not raise errors. Instead, it creates
an invalid XML schema object in case of any errors.
By default, the value of this parameter is FALSE.

owner - specifies the name of the database user
owning the XML schema object. By default, the user
registering the XML schema owns the XML schema
object. Can be used to register an XML schema to be
owned by a different database user.
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-17

DBMS_XMLSCHEMA
DBMS_XMLSCHEMA constants:

■ DELETE_RESTRICT, CONSTANT NUMBER := 1;

registerURI()

procedure registerURI(schemaURL
IN varchar2, schemaDocURI IN
varchar2, local IN
BOOLEAN := TRUE, genTypes IN
BOOLEAN := TRUE, genbean IN
BOOLEAN := FALSE, genTables IN
BOOLEAN := TRUE, force IN
BOOLEAN := FALSE, owner IN
VARCHAR2 := null);

Registers an XML schema specified by a URI name.

deleteSchema()

procedure
deleteSchema(schemaURL IN
varchar2, delete_option IN
pls_integer := DELETE_RESTRICT);

Removes the XML schema from Oracle XML DB.

generateBean()

procedure generateBean(schemaURL
IN varchar2);

Generates the Java Bean code corresponding to a
registered XML schema.

compileSchema()

procedure compileSchema(
schemaURL IN varchar2);

Recompiles an already registered XML schema.
Useful for bringing an invalid schema to a valid
state.

generateSchema()

function
generateSchemas(schemaName IN
varchar2, typeName IN varchar2,
elementName IN varchar2 := NULL,
schemaURL IN varchar2 := NULL,
annotate IN BOOLEAN := TRUE,
embedColl IN BOOLEAN := TRUE)
return sys.XMLSequenceType;

function generateSchema(
schemaName IN varchar2,
typeName IN varchar2,
elementName IN varchar2 := NULL,
recurse IN BOOLEAN := TRUE,
annotate IN BOOLEAN := TRUE,
embedColl IN BOOLEAN := TRUE)
return sys.XMLType;

Generates XML schema(s) from an Oracle type
name.

Table F–6 DBMS_XMLSCHEMA Functions and Procedures (Cont.)

Constant Description
F-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB XML Schema Catalog Views
■ DELETE_INVALIDATE,CONSTANT NUMBER := 2;

■ DELETE_CASCADE, CONSTANT NUMBER := 3;

■ DELETE_CASCADE_FORCE, CONSTANT NUMBER := 4;

Oracle XML DB XML Schema Catalog Views
Table F–7 lists the Oracle XML DB XML schema catalog views.

Table F–7 Oracle XML DB: XML Schema Catalog View

Schema Description

USER_XML_SCHEMAS Lists all registered XML Schemas owned by the user.

ALL_XML_SCHEMAS Lists all registered XML Schemas usable by the
current user.

DBA_XML_SCHEMAS Lists all registered XML Schemas in Oracle XML DB.

DBA_XML_TABLES Lists all XMLType tables in the system.

USER_XML_TABLES Lists all XMLType tables owned by the current user.

ALL_XML_TABLES Lists all XMLType tables usable by the current user.

DBA_XML_TAB_COLS Lists all XMLType table columns in the system.

USER_XML_TAB_COLS Lists all XMLType table columns in tables owned by
the current user.

ALL_XML_TAB_COLS Lists all XMLType table columns in tables usable by
the current user.

DBA_XML_VIEWS Lists all XMLType views in the system.

USER_XML_VIEWS Lists all XMlType views owned by the current user.

ALL_XML_VIEWS Lists all XMLType views usable by the current user.

DBA_XML_VIEW_COLS Lists all XMLType view columns in the system.

USER_XML_VIEW_COLS Lists all XMLType view columns in views owned by
the current user.

ALL_XML_VIEW_COLS Lists all XMLType view columns in views usable by
the current user.
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-19

Resource API for PL/SQL (DBMS_XDB)
Resource API for PL/SQL (DBMS_XDB)
Resource API for PL/SQL (DBMS_XDB)PL/SQL package provides functions for the

following oracle XML DB tasks:

■ Resource management of Oracle XML DB hierarchy. These functions

complement the functionality provided by Resource Views.

■ Oracle XML DB's Access Control List (ACL) for security management. The

ACL-based security mechanism can be used for either:

– In-hierarchy ACLs, ACLs stored through Oracle XML DB resource API

– In-memory ACLs, that can be stored outside Oracle XML DB.

Some of these methods can be used for both Oracle XML DB resources and

arbitrary database objects. AclCheckPrivileges() enables database users

access to Oracle XML DB ACL-based security mechanism without having to

store their objects in the Oracle XML DB hierarchy.

■ Oracle XML DB configuration session management.

■ Rebuilding of hierarchical indexes.

Table F–8 summarizes the DBMS_XDB functions and procedures.

See Also: Chapter 16, "Oracle XML DB Resource API for PL/SQL

(DBMS_XDB)"

Table F–8 DBMS_XDB Functions and Procedures

Function/Procedure Description

getAclDocument()

FUNCTION getAclDocument(
abspath IN VARCHAR2) RETURN
sys.xmltype;

Retrieves ACL document that protects resource
given its path name.

getPrivileges()

FUNCTION getPrivileges(res_path
IN VARCHAR2) RETURN
sys.xmltype;

Gets all privileges granted to the current user on the
given XML DB resource.

changePrivileges()

FUNCTION changePrivileges(
res_path IN VARCHAR2, ace IN
xmltype) RETURN
pls_integer;

Adds the given ACE to the given resource's ACL.
F-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Resource API for PL/SQL (DBMS_XDB)
checkPrivileges()

FUNCTION checkPrivileges(
res_path IN VARCHAR2, privs IN
xmltype) RETURN pls_integer;

Checks access privileges granted to the current user
on the specified XML DB resource.

setacl()

PROCEDURE setacl(res_path IN
VARCHAR2, acl_path IN
VARCHAR2);

Sets the ACL on the given XML DB resource to be
the ACL specified.

AclCheckPrivileges()

FUNCTION AclCheckPrivileges(
acl_path IN VARCHAR2, owner IN
VARCHAR2, privs IN xmltype)
RETURN pls_integer;

Checks access privileges granted to the current user
by specified ACL document on a resource whose
owner is specified by the 'owner' parameter.

LockResource()

FUNCTION LockResource(path IN
VARCHAR2, depthzero IN
BOOLEAN, shared IN boolean)
RETURN BOOLEAN;

Gets a WebDAV-style lock on that resource given a
path to that resource.

GetLockToken()

PROCEDURE GetLockToken(path
IN VARCHAR2, locktoken OUT
VARCHAR2);

Returns that resource's lock token for the current
user given a path to a resource.

UnlockResource()

FUNCTION UnlockResource(path
IN VARCHAR2, deltoken IN
VARCHAR2) RETURN BOOLEAN;

Unlocks the resource given a lock token and a path
to the resource.

Table F–8 DBMS_XDB Functions and Procedures (Cont.)

Function/Procedure Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-21

Resource API for PL/SQL (DBMS_XDB)
CreateResource()

FUNCTION CreateResource(path IN
VARCHAR2,data IN VARCHAR2)
RETURN BOOLEAN;

FUNCTION CreateResource(path IN
VARCHAR2, data IN
SYS.XMLTYPE) RETURN
BOOLEAN;

FUNCTION CreateResource(path IN
VARCHAR2, datarow IN REF
SYS.XMLTYPE) RETURN
BOOLEAN;

FUNCTION CreateResource(path IN
VARCHAR2, data IN CLOB)
RETURN BOOLEAN;

FUNCTION CreateResource(path
IN VARCHAR2, data IN BFILE)
RETURN BOOLEAN;

FUNCTION CreateResource(
abspath IN VARCHAR2,
data IN BFILE, csid IN NUMBER :=
0) RETURN BOOLEAN;

FUNCTION CreateResource(
abspath IN VARCHAR2, data IN
BLOB, csid IN NUMBER := 0)
RETURN BOOLEAN;

Creates a new resource.

CreateFolder()

FUNCTION CreateFolder(path IN
VARCHAR2) RETURN BOOLEAN;

Creates a new folder resource in the hierarchy.

DeleteResource()

PROCEDURE DeleteResource(path
IN VARCHAR2);

Deletes a resource from the hierarchy.

Link()

PROCEDURE Link(srcpath IN
VARCHAR2, linkfolder IN
VARCHAR2, linkname IN
VARCHAR2);

Creates a link to an existing resource.

CFG_Refresh()

PROCEDURE CFG_Refresh;

Refreshes the session's configuration information to
the latest configuration.

Table F–8 DBMS_XDB Functions and Procedures (Cont.)

Function/Procedure Description
F-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XMLGEN
DBMS_XMLGEN
PL/SQL package DBMS_XMLGEN transforms SQL query results into a canonical

XML format. It inputs an arbitrary SQL query, converts it to XML, and returns the

result as a CLOB. DBMS_XMLGEN is similar to the DBMS_XMLQUERY, except that it is

written in C and compiled in the kernel. This package can only be run in the

database.

Table F–9 summarizes the DBMS_XMLGEN functions and procedures.

CFG_Get()

FUNCTION CFG_Get RETURN
SYS.XMLType;

Retrieves the session's configuration information.

CFG_Update()

PROCEDURE CFG_Update(
xdbconfig IN SYS.XMLTYPE);

Updates the configuration information.

See Also: Chapter 10, "Generating XML Data from the Database"

Table F–9 DBMS_XMLGEN Functions and Procedures

Function/Procedure Description

newContext() Creates a new context handle.

setRowTag() Sets the name of the element enclosing each row of
the result. The default tag is ROW.

setRowSetTag () Sets the name of the element enclosing the entire
result. The default tag is ROWSET.

getXML() Gets the XML document.

getNumRowsProcessed() Gets the number of SQL rows that were processed in
the last call to getXML.

setMaxRows() Sets the maximum number of rows to be fetched
each time.

setSkipRows() Sets the number of rows to skip every time before
generating the XML. The default is 0.

Table F–8 DBMS_XDB Functions and Procedures (Cont.)

Function/Procedure Description
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-23

RESOURCE_VIEW, PATH_VIEW
RESOURCE_VIEW, PATH_VIEW
Oracle XML DB RESOURCE_VIEW and PATH_VIEW provide a mechanism for

SQL-based access of data stored in the Oracle XML DB Repository. Data stored in

the Oracle XML DB Repository through protocols such as FTP or WebDAV API can

be accessed in SQL through RESOURCE and PATH VIEWS.

Oracle XML DB Resource API for PL/SQL is based on RESOURCE_VIEW, PATH

VIEW and some PL/SQL packages. It provides query and DML functionality.

PATH_VIEW has one row for each unique path in the Repository, whereas

REOURCE_VIEW has one row for each resource in the Repository.

Table F–10 summarizes the Oracle XML DB Resource API for PL/SQL operators.

setConvertSpecialChars() Sets whether special characters such as $, which are
non-XML characters, should be converted or not to
their escaped representation. The default is to
perform the conversion.

convert() Converts the XML into the escaped or unescaped
XML equivalent.

useItemTagsForColl() Forces the use of the collection column name
appended with the tag _ITEM for collection
elements. The default is to set the underlying object
type name for the base element of the collection.

restartQUERY() Restarts the query to start fetching from the
beginning.

closeContext() Closes the context and releases all resources.

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

Table F–9 DBMS_XMLGEN Functions and Procedures (Cont.)

Function/Procedure Description
F-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDB_VERSION
DBMS_XDB_VERSION
DBMS_XDB_VERSION along with DBMS_XDB implement the Oracle XML DB

versioning API.

Table F–11 summarizes the DBMS_XDB_VERSION functions and procedures.

Table F–10 RESOURCE_VIEW, PATH_VIEW Operators

Operator Description

UNDER_PATH

INTEGER UNDER_PATH(
resource_column, pathname);

INTEGER UNDER_PATH(
resource_column, depth, pathname);

INTEGER UNDER_PATH(
resource_column,pathname,correlati
on)

INTEGER UNDER_PATH(
resource_column, depth,pathname,
correlation)

Using the Oracle XML DB hierarchical index,
returns sub-paths of a particular path.

Parameters:

resource_column - column name or column alias of the
'resource' column in the path_view or
resource_view.

pathname - path name to resolve.

depth - maximum depth to search; a depth of less than 0 is
treated as 0.

correlation - integer that can be used to correlate the
UNDER_PATH operator (a primary operator) with ancillary
operators (PATH and DEPTH).

EQUALS_PATH

EQUALS_PATH INTEGER
EQUALS_PATH(resource_column,
pathname);

Finds the resource with the specified path name.

PATH

PATH VARCHAR2 PATH(
correlation);

Returns the relative path name of the resource under
the specified path name argument.

DEPTH

DEPTH INTEGER DEPTH(
correlation);

Returns the folder depth of the resource under the

specified starting path.

See Also: Chapter 14, "Oracle XML DB Versioning"
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-25

DBMS_XDB_VERSION
Table F–11 DBMS_XDB_VERSION Functions and Procedures

Function/Procedure Description

MakeVersioned()

FUNCTION MakeVersioned(
pathname VARCHAR2) RETURN
dbms_xdb.resid_type;

Turns a regular resource whose path name is given
into a version-controlled resource.

Checkout()

PROCEDURE Checkout(pathname
VARCHAR2);

Checks out a VCR before updating or deleting it.

Checkin()

FUNCTION Checkin(pathname
VARCHAR2) RETURN
dbms_xdb.resid_type;

Checks in a checked-out VCR and returns the
resource id of the newly-created version.

Uncheckout()

FUNCTION Uncheckout(pathname
VARCHAR2) RETURN
dbms_xdb.resid_type;

Checks in a checked-out resource and returns
the resource id of the version before the
resource is checked out.

GetPredecessors()

FUNCTION GetPredecessors(
pathname VARCHAR2) RETURN
resid_list_type;

Retrieves the list of predecessors by path name.

GetPredsByResId()

FUNCTION GetPredsByResId(resid
resid_type) RETURN resid_list_type;

Retrieves the list of predecessors by resource id.

GetResourceByResId()

FUNCTION GetResourceByResId(
resid resid_type) RETURN
XMLType;

Obtains the resource as an XMLType, given the
resource objectID.

GetSuccessors()

FUNCTION GetSuccessors(
pathname VARCHAR2) RETURN
resid_list_type;

Retrieves the list of successors by path name.

GetSuccsByResId()

FUNCTION GetSuccsByResId(resid
resid_type) RETURN resid_list_type;

Retrieves the list of successors by resource id.
F-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

DBMS_XDBT
DBMS_XDBT
Using DBMS_XDBT you can set up an Oracle Text ConText index on the Oracle

XML DB Repository hierarchy. DBMS_XDBT creates default preferences and the

Oracle Text index. It also sets up automatic synchronization of the ConText index.

DBMS_XDBT contains variables that describe the configuration settings for the

ConText index. These are intended to cover the basic customizations that

installations may require, but they are not a complete set.

Use DBMS_XDBT for the following tasks:

■ To customize the package to set up the appropriate configuration

■ To drop existing index preferences using dropPreferences()

■ To create new index preferences using createPreferences()

■ To create the ConText index using the createIndex()

■ To set up automatic synchronization of the ConText index using the

configureAutoSync()

Table F–12 summarizes the DBMS_XDBT functions and procedures.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Table F–12 DBMS_XDBT Functions and Procedures

Procedure/Function Description

dropPreferences() Drops any existing preferences.

createPreferences() Creates preferences required for the ConText index
on the XML DB hierarchy.

createDatastorePref() Creates a USER datastore preference for the ConText
index.

createFilterPref() Creates a filter preference for the ConText index.

createLexerPref() Creates a lexer preference for the ConText index.

createWordlistPref() Creates a stoplist for the ConText index.

createStoplistPref() Creates a section group for the ConText index.

createStoragePref() Creates a wordlist preference for the ConText
index.

createSectiongroupPref() Creates a storage preference for the ConText index.
Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference F-27

DBMS_XDBT
createIndex() Creates the ConText index on the XML DB
hierarchy.

configureAutoSync() Configures the ConText index for automatic
maintenance (SYNC).

Table F–12 DBMS_XDBT Functions and Procedures (Cont.)

Procedure/Function Description
F-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup scripts. Oracle XML DB - Supplied XML Sch
G

Example Setup scripts. Oracle XML DB -

Supplied XML Schemas

This appendix describes a few example setup scripts for use with the examples in

Chapter 3, "Using Oracle XML DB". It also includes the structure of Resource View

and Path View and the Oracle XML DB supplied XML schema:

■ Example Setup Scripts

■ RESOURCE_VIEW and PATH_VIEW Database and XML Schema

■ XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources

■ acl.xsd: XML Schema for Representing Oracle XML DB ACLs

■ xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
emas G-1

Example Setup Scripts
Example Setup Scripts
The following sections include the setup scripts and sample files used for the

examples in Chapter 3, "Using Oracle XML DB".

Chapter 3 Examples Set Up Script: Creating User and Directory
set echo on
connect / as sysdba
drop directory DIR;
drop user &1 cascade;
create user &1 identified by &2;
grant create any directory, drop any directory to &1;
grant connect, resource to &1;
connect &1/&2
create or replace function getFileContent(file bfile)
return CLOB deterministic
is
 charContent CLOB := ’ ’;
 targetFile bfile;
 warning number;
begin
 targetFile := file;
 DBMS_LOB.fileopen(targetFile, DBMS_LOB.file_readonly);
 DBMS_LOB.loadfromFile(charContent,targetFile,
 DBMS_LOB.getLength(targetFile),1,1);
 DBMS_LOB.fileclose(targetFile);
 return charContent;
end;
/
show errors;
drop directory DIR;
create directory DIR as ’&3’;
create or replace function getDocument(filename varchar2)
return CLOB deterministic
is
 file bfile := bfilename(’DIR’,filename);
 charContent CLOB := ’ ’;
 targetFile bfile;
 warning number;
begin
 targetFile := file;
 DBMS_LOB.fileopen(targetFile, DBMS_LOB.file_readonly);
 DBMS_LOB.loadfromFile(charContent,targetFile,
 DBMS_LOB.getLength(targetFile),1,1);
G-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup Scripts
 DBMS_LOB.fileclose(targetFile);
 return charContent;
end;
/
show errors
declare
 result boolean;
begin
 result := dbms_xdb.createfolder(’/public/&4’);
end;
/
commit;
quit

Chapter 3 Examples Set Up Script: Granting Privileges, Creating Table...
This script grants appropriate privileges, creates tables with XMLType Columns,

creates XMLType tables, Inserts, queries, and updates the tables:

set echo on
connect scott/tiger
grant all on emp to &1;
connect &1/&2
--
-- Table Creation Examples
--
create table EXAMPLE1
(
 KEYVALUE varchar2(10) primary key,
 XMLCOLUMN xmltype
);
create table XMLTABLE of XMLType;
--
-- Insert Example
--
describe getDocument;
insert into XMLTABLE
values (xmltype(getDocument(’purchaseorder.xml’)))
/
commit
/
--
-- Valid existsNode operations
--
select existsNode(value(X),’/PurchaseOrder/Reference’)
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-3

Example Setup Scripts
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder[Reference="ADAMS-20011127121040988PST"]’)
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[2]/Part[@Id="037429135020"]’)
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[Description="8 1/2"]’)
from XMLTABLE X
/
--
-- Invalid existsNode() operations
--
select existsNode(value(X),’/PurchaseOrder/UserName’)
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder[Reference="ADAMS-XXXXXXXXXXXXXXXXXXXX"]’)
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[3]/Part[@Id="037429135020"]’)
from XMLTABLE X
/
select existsNode(value(X),
 ’/PurchaseOrder/LineItems/LineItem[Description="Snow White"]’)
from XMLTABLE X
/
--
-- existsNode() in where clause examples
--
select count(*)
from XMLTABLE x
where existsNode(value(x),’/PurchaseOrder[User="ADAMS"]’) = 1
/
delete from XMLTABLE x
where existsNode(value(x),’/PurchaseOrder[User="ADAMS"]’) = 1
/
commit
/
--
G-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup Scripts
-- Reload the Sample Document.
--
insert into XMLTABLE
values (xmltype(getDocument(’purchaseorder.xml’)))
/
commit
/
--
-- Valid extractValue() operiations
--
select extractValue(value(x),’/PurchaseOrder/Reference’)
from XMLTABLE X
/
select extractValue(value(x),
 ’/PurchaseOrder/LineItems/LineItem[2]/Part/@Id’)
from XMLTABLE X
/
--
-- Invalid extractValue() operations
--
select extractValue(value(X),
 ’/PurchaseOrder/LineItems/LineItem/Description’)
from XMLTABLE X
/
select extractValue(value(X),
 ’/PurchaseOrder/LineItems/LineItem[1]’)
from XMLTABLE X
/
select extractValue(value(x),’/PurchaseOrder/Reference’)
from XMLTABLE X, SCOTT.EMP
where extractValue(value(x),’/PurchaseOrder/User’) = EMP.ENAME
and EMP.EMPNO = 7876
/
--
-- extract() operations
--
set long 10000
select extract(value(X),
 ’/PurchaseOrder/LineItems/LineItem/Description’)
from XMLTABLE X
/
select extract(value(X),
 ’/PurchaseOrder/LineItems/LineItem[1]’)
from XMLTABLE X
/

Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-5

Example Setup Scripts
set long 10000
set feedback on
select extractValue(value(t),’/Description’)
from XMLTABLE X,
table (xmlsequence (
 extract(value(X),
 ’/PurchaseOrder/LineItems/LineItem/Description’)
)
) t
/
update XMLTABLE t
set value(t) = updateXML(value(t),
’/PurchaseOrder/Reference/text()’,
’MILLER-200203311200000000PST’)
where existsNode(value(t),
 ’/PurchaseOrder[Reference="ADAMS-20011127121040988PST"]’) = 1
/
select value(t)
from XMLTABLE t
/
update XMLTABLE t
set value(t) =
updateXML(value(t),
 ’/PurchaseOrder/LineItems/LineItem[2]’,
 xmltype(’<LineItem ItemNumber="4">
 <Description>Andrei Rublev</Description>
 <Part Id="715515009928" UnitPrice="39.95"
 Quantity="2"/>
 </LineItem>’
)
)
where existsNode(value(t),
 ’/PurchaseOrder[Reference="MILLER-200203311200000000PST"]’
) = 1
/
select value(t)
from XMLTABLE t
where existsNode(value(t),
 ’/PurchaseOrder[Reference="MILLER-200203311200000000PST"]’
) = 1
/
select value(t).transform(xmltype(getDocument(’purchaseOrder.xsl’)))
from XMLTABLE t
where existsNode(value(t),
 ’/PurchaseOrder[Reference="MILLER-200203311200000000PST"]’
G-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup Scripts
) = 1
/
begin
 dbms_xmlschema.registerSchema(
 ’http://www.oracle.com/xsd/purchaseOrder.xsd’,
 getDocument(’purchaseOrder.xsd’),
 TRUE, TRUE, FALSE, FALSE
);
end;
/
create table XML_PURCHASEORDER of XMLType
XMLSCHEMA "http://www.oracle.com/xsd/purchaseOrder.xsd"
ELEMENT "PurchaseOrder"
/
describe XML_PURCHASEORDER
insert into XML_PURCHASEORDER
values (xmltype(getDocument(’Invoice.xml’)))
/
alter table XML_PURCHASEORDER
add constraint VALID_PURCHASEORDER
check (XMLIsValid(sys_nc_rowinfo$)=1)
/
insert into XML_PURCHASEORDER
values (xmltype(getDocument(’InvalidPurchaseOrder.xml’)))
/
alter table XML_PURCHASEORDER
drop constraint VALID_PURCHASEORDER
/
create trigger VALIDATE_PURCHASEORDER
before insert on XML_PURCHASEORDER
for each row
declare
 XMLDATA xmltype;
begin
 XMLDATA := :new.sys_nc_rowinfo$;
 xmltype.schemavalidate(XMLDATA);
end;
/
insert into XML_PURCHASEORDER
values (xmltype(getDocument(’InvalidPurchaseOrder.xml’)))
/
drop table XML_PURCHASEORDER;
begin
 dbms_xmlSchema.deleteSchema(’http://www.oracle.com/xsd/purchaseOrder.xsd’,4);
end;
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-7

Example Setup Scripts
/
begin
 dbms_xmlschema.registerSchema(
 ’http://www.oracle.com/xsd/purchaseOrder.xsd’,
 getDocument(’purchaseOrder1.xsd’),
 TRUE, TRUE, FALSE, FALSE
);
end;
/
describe XML_PURCHASEORDER_TYPE
drop table XML_PURCHASEORDER;
begin
 dbms_xmlSchema.deleteSchema(’http://www.oracle.com/xsd/purchaseOrder.xsd’,4);
end;
/
begin
 dbms_xmlschema.registerSchema(
 ’http://www.oracle.com/xsd/purchaseOrder.xsd’,
 getDocument(’purchaseOrder2.xsd’),
 TRUE, TRUE, FALSE, FALSE
);
end;
/
describe XML_PURCHASEORDER_TYPE
quit

Loading Files
set echo on
connect &1/&2
declare
 result boolean;
begin
 result := dbms_xdb.createResource(’/public/&3/&4’,
 getFileContent(bfilename(’DIR’,’&4’)));
end;
/
commit;
quit

Chapter 3 Examples Script: invoice.xml
<Invoice
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
G-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup Scripts
xsi:noNamespaceSchemaLocation="http://www.oracle.com/xsd/purchaseOrder.xsd">
 <Reference>ADAMS-20011127121040988PST</Reference>
 <Actions>
 <Action>
 <User>SCOTT</User>
 <Date xsi:nil="true"/>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Julie P. Adams</Requestor>
 <CostCenter>R20</CostCenter>
 <ShippingInstructions>
 <name>Julie P. Adams</name>
 <address>300 Oracle Parkway, Redwood Shores, CA 94065</address>
 <telephone>650 506 7300</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Ground</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>The Ruling Class</Description>
 <Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>Diabolique</Description>
 <Part Id="037429135020" UnitPrice="29.95" Quantity="3"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>8 1/2</Description>
 <Part Id="037429135624" UnitPrice="39.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</Invoice>

Chapter 3 Examples Script: PurchaseOrder.xml
<PurchaseOrder
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.oracle.com/xdb/po.xsd">
 <Reference>ADAMS-20011127121040988PST</Reference>
 <Actions>
 <Action>
 <User>SCOTT</User>
 <Date xsi:nil="true"/>
 </Action>
 </Actions>
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-9

Example Setup Scripts
 <Reject/>
 <Requestor>Julie P. Adams</Requestor>
 <User>ADAMS</User>
 <CostCenter>R20</CostCenter>
 <ShippingInstructions>
 <name>Julie P. Adams</name>
 <address>300 Oracle Parkway, Redwood Shores, CA 94065</address>
 <telephone>650 506 7300</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Ground</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>The Ruling Class</Description>
 <Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>Diabolique</Description>
 <Part Id="037429135020" UnitPrice="29.95" Quantity="3"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>8 1/2</Description>
 <Part Id="037429135624" UnitPrice="39.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

Chapter 3 Examples Script: FTP Script
#! /usr/bin/ksh
TESTDIR=$1
TESTFILENAME=$2
. ./config.sh
SCRIPTFILE=‘date ’+%Y%m%d%H%M%S’‘
SCRIPTFILE=/tmp/$SCRIPTFILE.cmd
mkdir /tmp/$TESTDIR

Note:

■ The example XML schema, "XML Schema Example,

PurchaseOrder.xsd" is located in Appendix B, "XML Schema

Primer".

■ The example XSL file, "XSL Stylesheet Example,

PurchaseOrder.xsl" is located in Appendix D, "XSLT Primer".
G-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Example Setup Scripts
echo "open $ORAHOSTNAME $ORAFTPPORT" > $SCRIPTFILE
echo "user $ORASQLUSER $ORASQLPASSWORD" >> $SCRIPTFILE
echo "cd public" >> $SCRIPTFILE
echo "cd $TESTDIR" >> $SCRIPTFILE
echo "put $TESTFILENAME" >> $SCRIPTFILE
echo "ls -l" >> $SCRIPTFILE
echo "get $TESTFILENAME /tmp/$TESTDIR/$TESTFILENAME" >> $SCRIPTFILE
echo "quit" >> $SCRIPTFILE
ftp -v -n < $SCRIPTFILE
rm $SCRIPTFILE
echo "Diff Results for $TESTFILENAME"
diff -b $TESTFILENAME /tmp/$TESTDIR/$TESTFILENAME
rm -rf /tmp/$TESTDIR

Chapter 3 Examples Script: Configuring FTP and HTTP Ports
#! /usr/bin/ksh
ORAHOSTNAME=‘hostname‘
ORAFTPPORT=2100
ORAHTTPPORT=8080

if ["$LOGNAME" = "oracle2"]
then
 ORAFTPPORT=2122
 ORAHTTPPORT=8088
fi
echo "FTP Port = $ORAFTPPORT"
echo "HTTP Port = $ORAHTTPPORT"

ORASQLUSER=DOC92
ORASQLPASSWORD=DOC92
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-11

RESOURCE_VIEW and PATH_VIEW Database and XML Schema
RESOURCE_VIEW and PATH_VIEW Database and XML Schema
The following describes the RESOURCE_VIEW and PATH_VIEW structures.

Resource View Definition and Structure
The RESOURCE_VIEW contains one row for each resource in the Repository. The

following describes its structure:

Column Datatype Description
------ -------- ---
RES XMLTYPE A resource in Oracle XML Repository
ANY_PATH VARCHAR2 A path that can be used to access the resource in the
 Repository

PATH_VIW Definition and Structure
The PATH_VIEW contains one row for each unique path in the Repository. The

following describes its structure:

Column Datatype Description
------ -------- -----------------------------
PATH VARCHAR2 Path name of a resource
RES XMLTYPE The resource referred by PATH
LINK XMLTYPE Link property

XDBResource.xsd: XML Schema for Representing Oracle XML DB
Resources

Here is the listing for the XML schema, XDBResource.xsd , used to represent

Oracle XML DB resources.

 XDBResource.xsd
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/xdb/XDBResource.xsd"
version="1.0" elementFormDefault="qualified"
xmlns:res="http://xmlns.oracle.com/xdb/XDBResource.xsd">

<simpleType name="OracleUserName">

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"
G-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources
 <restriction base="string">
 <minLength value="1" fixed="false"/>
 <maxLength value="4000" fixed="false"/>
 </restriction>
</simpleType>

<simpleType name="ResMetaStr">
 <restriction base="string">
 <minLength value="1" fixed="false"/>
 <maxLength value="128" fixed="false"/>
 </restriction>
</simpleType>

<simpleType name="SchElemType">
 <restriction base="string">
 <minLength value="1" fixed="false"/>
 <maxLength value="4000" fixed="false"/>
 </restriction>
</simpleType>

<simpleType name="GUID">
 <restriction base="hexBinary">
 <minLength value="8" fixed="false"/>
 <maxLength value="32" fixed="false"/>
 </restriction>
</simpleType>

<simpleType name="LocksRaw">
 <restriction base="hexBinary">
 <minLength value="0" fixed="false"/>
 <maxLength value="2000" fixed="false"/>
 </restriction>
</simpleType>

<simpleType name="LockScopeType">
 <restriction base="string">
 <enumeration value="Exclusive" fixed="false"/>
 <enumeration value="Shared" fixed="false"/>
 </restriction>
</simpleType>

<complexType name="LockType" mixed="false">
 <sequence>
 <element name="owner" type="string"/>
 <element name="expires" type="dateTime"/>
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-13

XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources
 <element name="lockToken" type="hexBinary"/>
 </sequence>
 <attribute name="LockScope" type="res:LockScopeType" />
</complexType>

<complexType name="ResContentsType" mixed="false">
 <sequence >
 <any name="ContentsAny" />
 </sequence>
 </complexType>

<complexType name="ResAclType" mixed="false">
 <sequence >
 <any name="ACLAny"/>
 </sequence>
</complexType>

<complexType name="ResourceType" mixed="false">
 <sequence >
 <element name="CreationDate" type="dateTime"/>
 <element name="ModificationDate" type="dateTime"/>
 <element name="Author" type="res:ResMetaStr"/>
 <element name="DisplayName" type="res:ResMetaStr"/>
 <element name="Comment" type="res:ResMetaStr"/>
 <element name="Language" type="res:ResMetaStr"/>
 <element name="CharacterSet" type="res:ResMetaStr"/>
 <element name="ContentType" type="res:ResMetaStr"/>
 <element name="RefCount" type="nonNegativeInteger"/>
 <element name="Lock" type="res:LocksRaw"/>
 <element pname="ACL" type="res:ResAclType" minOccurs="0" maxOccurs="1"/>
 <element name="Owner" type="res:OracleUserName" minOccurs="0"
maxOccurs="1"/>
 <element name="Creator" type="res:OracleUserName" minOccurs="0"
maxOccurs="1"/>
 <element name="LastModifier" type="res:OracleUserName" minOccurs="0"
maxOccurs="1"/>
 <element name="SchemaElement" type="res:SchElemType" minOccurs="0"
maxOccurs="1"/>
 <element name="Contents" type="res:ResContentsType" minOccurs="0"
maxOccurs="1"/>
 <element name="VCRUID" type="res:GUID"/>

<element name="Parents" type="hexBinary" minOccurs="0" maxOccurs="1000"/>
<any name="ResExtra" namespace="##other" minOccurs="0" maxOccurs="65535"/>
</sequence>
G-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

acl.xsd: XML Schema for Representing Oracle XML DB ACLs
 <attribute name="Hidden" type="boolean"/>
 <attribute name="Invalid" type="boolean"/>
 <attribute name="VersionID" type="integer"/>
 <attribute name="ActivityID" type="integer"/>
 <attribute name="Container" type="boolean"/>
 <attribute name="CustomRslv" type="boolean"/>
 <attribute name="StickyRef" type="boolean"/>

</complexType>
<element name="Resource" type="res:ResourceType"/>
</schema>

acl.xsd: XML Schema for Representing Oracle XML DB ACLs
This section describes the XML schema used to represent Oracle XML DB ACLs:

ACL Representation XML Schema, acl.xsd
Here is XML schema, acl.xsd, used to represent Oracle XML DB ACLs:

acl.xsd
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xmlns.oracle.com/xdb/acl.xsd" version="1.0"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd"
 elementFormDefault="qualified">

 <annotation>
 <documentation>
 This XML schema describes the structure of XML DB ACL documents.

 Note : The following "systemPrivileges" element lists all supported
 system privileges and their aggregations.
 See dav.xsd for description of DAV privileges
 Note : The elements and attributes marked "hidden" are for
 internal use only.
 </documentation>
 <appinfo>
 <xdb:systemPrivileges>
 <xdbacl:all>
 <xdbacl:read-properties/>
 <xdbacl:read-contents/>
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-15

acl.xsd: XML Schema for Representing Oracle XML DB ACLs
 <xdbacl:read-acl/>
 <xdbacl:update/>
 <xdbacl:link/>
 <xdbacl:unlink/>
 <xdbacl:unlink-from/>
 <xdbacl:write-acl-ref/>
 <xdbacl:update-acl/>
 <xdbacl:link-to/>
 <xdbacl:resolve/>
 </xdbacl:all>
 </xdb:systemPrivileges>
 </appinfo>
 </annotation>

 <!-- privilegeNameType (this is an emptycontent type) -->
 <complexType name = "privilegeNameType"/>

 <!-- privilegeName element
 All system and user privileges are in the substitutionGroup
 of this element.
 -->
 <element name = "privilegeName" type="xdbacl:privilegeNameType"
 xdb:defaultTable=""/>

 <!-- all system privileges in the XML DB ACL namespace -->
 <element name = "read-properties" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "read-contents" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "read-acl" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "update" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "link" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "unlink" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "unlink-from" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "write-acl-ref" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "update-acl" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "link-to" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
G-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

acl.xsd: XML Schema for Representing Oracle XML DB ACLs
 <element name = "resolve" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>
 <element name = "all" type="xdbacl:privilegeNameType"
 substitutionGroup="xdbacl:privilegeName" xdb:defaultTable=""/>

<!-- privilege element -->
 <element name = "privilege" xdb:SQLType = "XDB$PRIV_T" xdb:defaultTable="">
 <complexType>
 <choice maxOccurs="unbounded">
 <any xdb:transient="generated"/>
 <!-- HIDDEN ELEMENTS -->
 <element name = "privNum" type = "hexBinary" xdb:baseProp="true"
 xdb:hidden="true"/>
 </choice>
 </complexType>
 </element>

<!-- ace element -->
 <element name = "ace" xdb:SQLType = "XDB$ACE_T" xdb:defaultTable="">
 <complexType> <sequence>
 <element name = "grant" type = "boolean"/>
 <element name = "principal" type = "string"
 xdb:transient="generated"/>
 <element ref="xdbacl:privilege" minOccurs="1"/>
 <!-- HIDDEN ELEMENTS -->
 <element name = "principalID" type = "hexBinary" minOccurs="0"
 xdb:baseProp="true" xdb:hidden="true"/>
 <element name = "flags" type = "unsignedInt" minOccurs="0"
 xdb:baseProp="true" xdb:hidden="true"/>
 </sequence> </complexType>
 </element>

 <!-- acl element -->
 <element name = "acl" xdb:SQLType = "XDB$ACL_T" xdb:defaultTable = "XDB$ACL">
 <complexType>
 <sequence>
 <element name = "schemaURL" type = "string" minOccurs="0"
 xdb:transient="generated"/>
 <element name = "elementName" type = "string" minOccurs="0"
 xdb:transient="generated"/>
 <element ref = "xdbacl:ace" minOccurs="1" maxOccurs = "unbounded"
 xdb:SQLCollType="XDB$ACE_LIST_T"/>

 <!-- HIDDEN ELEMENTS -->
 <element name = "schemaOID" type = "hexBinary" minOccurs="0"
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-17

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 xdb:baseProp="true" xdb:hidden="true"/>
 <element name = "elementNum" type = "unsignedInt" minOccurs="0"
 xdb:baseProp="true" xdb:hidden="true"/>
 </sequence>
 <attribute name = "shared" type = "boolean" default="true"/>
 <attribute name = "description" type = "string"/>
 </complexType>
 </element>

 </schema>';

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
Here is xdbconfig.xsd , the XML schema used to configure Oracle XML DB:

xdbconfig.xsd
<schema targetNamespace="http://xmlns.oracle.com/xdb/xdbconfig.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xdbc="http://xmlns.oracle.com/xdb/xdbconfig.xsd"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0" elementFormDefault="qualified">

 <element name="xdbconfig" xdb:defaultTable="XDB$CONFIG">

 <complexType><sequence>

 <!-- predefined XML DB properties - these should NOT be changed -->
 <element name="sysconfig">
 <complexType><sequence>
 <!-- generic XML DB properties -->
 <element name="acl-max-age" type="unsignedInt" default="1000"/>
 <element name="acl-cache-size" type="unsignedInt" default="32"/>
 <element name="invalid-pathname-chars" type="string" default=""/>
 <element name="case-sensitive" type="boolean" default="true"/>
 <element name="call-timeout" type="unsignedInt" default="300"/>
 <element name="max-link-queue" type="unsignedInt" default="65536"/>
 <element name="max-session-use" type="unsignedInt" default="100"/>
 <element name="persistent-sessions" type="boolean" default="false"/>
 <element name="default-lock-timeout" type="unsignedInt"
 default="3600"/>
 <element name="xdbcore-logfile-path" type="string"
 default="/sys/log/xdblog.xml"/>
 <element name="xdbcore-log-level" type="unsignedInt" default="0"/>
G-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 <element name="resource-view-cache-size" type="unsignedInt"
 default="1048576"/>
 <element name="case-sensitive-index-clause" type="string"
minOccurs="0"/>

 <!-- protocol specific properties -->
 <element name="protocolconfig">
 <complexType><sequence>

 <!-- these apply to all protocols -->
 <element name="common">
 <complexType><sequence>
 <element name="extension-mappings">
 <complexType><sequence>
 <element name="mime-mappings" type="xdbc:mime-mapping-type"/>
 <element name="lang-mappings" type="xdbc:lang-mapping-type"/>
 <element name="charset-mappings"
 type="xdbc:charset-mapping-type"/>
 <element name="encoding-mappings"
 type="xdbc:encoding-mapping-type"/>
 </sequence></complexType>
 </element>
 <element name="session-pool-size" type="unsignedInt"
 default="50"/>
 <element name="session-timeout" type="unsignedInt"
 default="6000"/>

 </sequence></complexType>
 </element>

 <!-- FTP specific -->
 <element name="ftpconfig">
 <complexType><sequence>
 <element name="ftp-port" type="unsignedShort" default="2100"/>
 <element name="ftp-listener" type="string"/>
 <element name="ftp-protocol" type="string"/>
 <element name="logfile-path" type="string"
 default="/sys/log/ftplog.xml"/>
 <element name="log-level" type="unsignedInt" default="0"/>
 <element name="session-timeout" type="unsignedInt"
 default="6000"/>
 <element name="buffer-size" default="8192">
 <simpleType>
 <restriction base="unsignedInt">
 <minInclusive value="1024"/> <!-- 1KB -->
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-19

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 <maxInclusive value="1048496"/> <!-- 1MB -->
 </restriction>
 </simpleType>
 </element>
 </sequence></complexType>
 </element>

 <!-- HTTP specific -->
 <element name="httpconfig">
 <complexType><sequence>
 <element name="http-port" type="unsignedShort" default="8080"/>
 <element name="http-listener" type="string"/>
 <element name="http-protocol" type="string"/>
 <element name="max-http-headers" type="unsignedInt"
 default="64"/>
 <element name="max-header-size" type="unsignedInt"
 default="4096"/>
 <element name="max-request-body" type="unsignedInt"
 default="2000000000" minOccurs="1"/>
 <element name="session-timeout" type="unsignedInt"
 default="6000"/>
 <element name="server-name" type="string"/>
 <element name="logfile-path" type="string"
 default="/sys/log/httplog.xml"/>
 <element name="log-level" type="unsignedInt" default="0"/>
 <element name="servlet-realm" type="string" minOccurs="0"/>

 <element name="webappconfig">
 <complexType><sequence>
 <element name="welcome-file-list"
 type="xdbc:welcome-file-type"/>
 <element name="error-pages" type="xdbc:error-page-type"/>
 <element name="servletconfig"
 type="xdbc:servlet-config-type"/>
 </sequence></complexType>
 </element>
 <element name="default-url-charset" type="string"
 minOccurs="0"/>
 </sequence></complexType>
 </element>

 </sequence></complexType>
 </element>

 </sequence></complexType>
G-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 </element>

 <!-- users can add any properties they want here -->
 <element name="userconfig" minOccurs="0">
 <complexType><sequence>
 <any maxOccurs="unbounded" namespace="##other"/>
 </sequence></complexType>
 </element>

 </sequence></complexType>

 </element>

 <complexType name="welcome-file-type">
 <sequence>
 <element name="welcome-file" minOccurs="0" maxOccurs="unbounded">
 <simpleType>
 <restriction base="string">
 <pattern value="[̂ /]*"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>

 <!-- customized error pages -->
 <complexType name="error-page-type">
 <sequence>
 <element name="error-page" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <choice>
 <element name="error-code">
 <simpleType>
 <restriction base="positiveInteger">
 <minInclusive value="100"/>
 <maxInclusive value="999"/>
 </restriction>
 </simpleType>
 </element>

 <!-- Fully qualified classname of a Java exception type -->
 <element name="exception-type" type="string"/>

 <element name="OracleError">
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-21

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 <complexType><sequence>
 <element name="facility" type="string" default="ORA"/>
 <element name="errnum" type="unsignedInt"/>
 </sequence></complexType>
 </element>
 </choice>

 <element name="location" type="anyURI"/>

 </sequence></complexType>
 </element>
 </sequence>
 </complexType>

 <!-- parameter for a servlet: name, value pair and a description -->
 <complexType name="param">
 <sequence>
 <element name="param-name" type="string"/>
 <element name="param-value" type="string"/>
 <element name="description" type="string"/>
 </sequence>
 </complexType>

 <complexType name="servlet-config-type">
 <sequence>
 <element name="servlet-mappings">
 <complexType><sequence>
 <element name="servlet-mapping" minOccurs="0"
 maxOccurs="unbounded">
 <complexType><sequence>
 <element name="servlet-pattern" type="string"/>
 <element name="servlet-name" type="string"/>
 </sequence></complexType>
 </element>
 </sequence></complexType>
 </element>

 <element name="servlet-list">
 <complexType><sequence>
 <element name="servlet" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <element name="servlet-name" type="string"/>
 <element name="servlet-language">
 <simpleType>
G-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 <restriction base="string">
 <enumeration value="C"/>
 <enumeration value="Java"/>
 <enumeration value="PL/SQL"/>
 </restriction>
 </simpleType>
 </element>
 <element name="icon" type="string" minOccurs="0"/>
 <element name="display-name" type="string"/>
 <element name="description" type="string" minOccurs="0"/>
 <choice>
 <element name="servlet-class" type="string" minOccurs="0"/>
 <element name="jsp-file" type="string" minOccurs="0"/>
 </choice>
 <element name="servlet-schema" type="string" minOccurs="0"/>
 <element name="init-param" minOccurs="0"
 maxOccurs="unbounded" type="xdbc:param"/>
 <element name="load-on-startup" type="string" minOccurs="0"/>
 <element name="security-role-ref" minOccurs="0"
 maxOccurs="unbounded">
 <complexType><sequence>
 <element name="description" type="string" minOccurs="0"/>
 <element name="role-name" type="string"/>
 <element name="role-link" type="string"/>
 </sequence></complexType>
 </element>
 </sequence></complexType>
 </element>
 </sequence></complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="lang-mapping-type"><sequence>
 <element name="lang-mapping" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <element name="extension" type="xdbc:exttype"/>
 <element name="lang" type="string"/>
 </sequence></complexType>
 </element></sequence>
 </complexType>

 <complexType name="charset-mapping-type"><sequence>
Example Setup scripts. Oracle XML DB - Supplied XML Schemas G-23

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
 <element name="charset-mapping" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <element name="extension" type="xdbc:exttype"/>
 <element name="charset" type="string"/>
 </sequence></complexType>
 </element></sequence>
 </complexType>

 <complexType name="encoding-mapping-type"><sequence>
 <element name="encoding-mapping" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <element name="extension" type="xdbc:exttype"/>
 <element name="encoding" type="string"/>
 </sequence></complexType>
 </element></sequence>
 </complexType>

 <complexType name="mime-mapping-type"><sequence>
 <element name="mime-mapping" minOccurs="0" maxOccurs="unbounded">
 <complexType><sequence>
 <element name="extension" type="xdbc:exttype"/>
 <element name="mime-type" type="string"/>
 </sequence></complexType>
 </element></sequence>
 </complexType>

 <simpleType name="exttype">
 <restriction base="string">
 <pattern value="[̂ *\./]*"/>
 </restriction>
 </simpleType>

</schema>
G-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Glossary

Access control entry (ACE)

An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a

given resource or resources.

ACE

Access Control Entry. See access control entry.

ACL

Access Control List. See access control list.

API

Application Program Interface. See application program interface.

application program interface (API)

A set of public programmatic interfaces that consist of a language and message

format to communicate with an operating system or other programmatic

environment, such as databases, Web servers, JVMs, and so forth. These messages

typically call functions and methods available for application development.

application server

A server designed to host applications and their environments, permitting server

applications to run. A typical example is Oracle9iAS, which is able to host Java, C,

C++, and PL/SQL applications in cases where a remote client controls the interface.

See also Oracle Application Server.
Glossary-1

attribute

A property of an element that consists of a name and a value separated by an equals

sign and contained within the start-tags after the element name. In this example,

<Price units=’USD’>5</Price> , units is the attribute and USD is its value,

which must be in single or double quotes. Attributes may reside in the document or

DTD. Elements may have many attributes but their retrieval order is not defined.

BC4J

Business Components for Java, a J2EE application development framework that

comes with JDeveloper. BC4J is an object-relational mapping tool that implements

J2EE Design Patterns.

BFILES

External binary files that exist outside the database tablespaces residing in the

operating system. BFILES are referenced from the database semantics, and are also

known as External LOBs.

Binary Large Object (BLOB)

A Large Object datatype whose content consists of binary data. Additionally, this

data is considered raw as its structure is not recognized by the database.

BLOB

See Binary Large Object.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods

and services to each other. The software infrastructure to enable this is referred to as

an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the

selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues.

The second process then calls the first as a result of an action, value, or other event.

This technique is used in most programs that have a user interface to allow

continuous interaction.
Glossary-2

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the

database to understand and manipulate a new datatype. Cartridges interface

through the Extensibility Framework within Oracle8 or later. Oracle Text is such a

cartridge, adding support for reading, writing, and searching text documents stored

within the database.

Cascading Style Sheets

A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web

documents.

CDATA

See character data.

CDF

Channel Definition Format. Provides a way to exchange information about channels

on the internet.

CGI

See Common Gateway Interface.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This

allows for the inclusion of characters that would otherwise have special functions,

such as &, <, >, and so on. CDATA sections can be used in the content of an element

or in attributes.

child element

An element that is wholly contained within another, which is referred to as its

parent element. For example <Parent><Child></Child></Parent> illustrates a

child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have

corresponding functionality. In the case of the XML Class Generator, the input file is

a DTD and the output is a series of classes that can be used to create XML

documents conforming with the DTD.
Glossary-3

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it

needs to run applications.

client/server

The term used to describe the application architecture where the actual application

runs on the client but accesses data or other external processes on a server across a

network.

Character Large Object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the

database character set. A CLOB may be indexed and searched by the Oracle Text

search engine.

CLOB

See Character Large Object.

command line

The interface method in which the user enters in commands at the command

interpreter’s prompt.

Common Gateway Interface (CGI)

The programming interfaces enabling Web servers to execute other programs and

pass their output to HTML pages, graphics, audio, and video sent to browsers.

Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed

objects across a network. These self-contained software modules can be used by

applications running on different platforms or operating systems. CORBA objects

and their data formats and functions are defined in the Interface Definition

Language (IDL), which can be compiled in a variety of languages including Java, C,

C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create

code that can be easily ported to virtually any platform and operating system.

Content

The body of a resource in Oracle XML DB and what you get when you treat the

resource like a file and ask for its contents. Content is always an XMLType.
Glossary-4

CORBA

See Common Object Request Broker API.

CSS

See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD

specifies information such as the database name or the Oracle Net service name, the

ORACLE_HOME directory, and Globalization Support configuration information

such as language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester

embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBURITYPE

The Oracle9i datatype used for storing instances of the datatype that permits

XPath-based navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML

document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares

the root element name as person and an external DTD as person.dtd in the file

system. Internal DTDs are declared within the DOCTYPE declaration.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables

programmatic access to its elements and attributes. The DOM object and its

interface is a W3C recommendation. It specifies the Document Object Model of an

XML Document including the APIs for programmatic access. DOM views the

parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are

text files that derive their format from SGML and can either be included in an XML

document by using the DOCTYPE element or by using an external file through a

DOCTYPE reference.
Glossary-5

DOM

See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating

XML documents stored in Oracle XML DB, Oracle XML DB uses a data integrity

mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML

documents are identical to the original XML document, particularly for purposes of

DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute,

SYS_XDBPD$.

DTD

See Document Type Definition.

EDI

Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other

elements such as children, data, and attributes and their values. Elements are

identified by start-tags, such as <name>, and end-tags, such as </name> , or in the

case of empty elements, <name/> .

empty element

An element without text content or child elements. It can only contain attributes

and their values. Empty elements are of the form <name/> or <name></name> ,

where there is no space between the tags.

Enterprise Java Bean

An independent program module that runs within a JVM on the server. CORBA

provides the infrastructure for Enterprise Java Beans, and a container layer provides

security, transaction support, and other common functions on any supported server.

entity

A string of characters that may represent either another string of characters or

special characters that are not part of the document’s character set. Entities and the

text that is substituted for them by the parser are declared in the DTD.
Glossary-6

existnode

The SQL operator that returns a TRUE or FALSE based upon the existence of an

XPath within an XMLType.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web

Consortium (W3C) using a subset of the SGML syntax and designed for Internet

use.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying

formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a

transformation language to convert one XML document into another.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents.

There are two W3C recommendations covering XSL stylesheets—XSL

Transformations (XSLT) and XSL Formatting Objects (XSLFO).

(W3C) eXtensible Stylesheet Language. XSL consists of two W3C recommendations:

XSL Transformations for transforming one XML document into another and XSL

Formatting Objects for specifying the presentation of an XML document. XSL is a

language for expressing stylesheets. It consists of two parts:

■ A language for transforming XML documents (XSLT), and

■ An XML vocabulary for specifying formatting semantics (XSLFO).

An XSL stylesheet specifies the presentation of a class of XML documents by

describing how an instance of the class is transformed into an XML document that

uses the formatting vocabulary.

extract

The SQL operator that retrieves fragments of XML documents stored as XMLType.

Folder

A directory or node in the Oracle XML DB repository that contains or can contain a

resource. A folder is also a resource.
Glossary-7

Foldering

A feature in Oracle XML DB that allows content to be stored in a hierarchical

structure of resources.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a

formatting object tree and then renders the resulting pages to a specified output.

Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree

representation), Print, AWT, MIF and TXT. The primary output target is PDF.

function-based index

A database index that, when created, permits the results of known queries to be

returned much more quickly.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType
datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB

hierarchical index, which provides a fast mechanism for evaluating path names

similar to the directory mechanisms used by operating system filesystems. Any

path name-based access will normally use the Oracle XML DB hierarchical index.

HTML

See Hypertext Markup Language.

HTTP

See Hypertext Transport Protocol.

HTTPURITYPE

The datatype used for storing instances of the datatype that permits XPath-based

navigation of database schemas in remote databases.

hypertext

The method of creating and publishing text documents in which users can navigate

between other documents or graphics by selecting words or phrases designated as

hyperlinks.
Glossary-8

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves

as the basis of the World Wide Web. The next version of HTML will be called

xHTML and will be an XML application.

Hypertext Transport Protocol (HTTP)

The protocol used for transporting HTML files across the Internet between Web

servers and browsers.

iAS

See Oracle9iAS.

IDE

See Integrated Development Environment.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType
datatypes for searching for specific text within a specific XPath.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation

of an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aide in the development of software run from a

single user interface. JDeveloper is an IDE for Java development as it includes an

editor, compiler, debugger, syntax checker, help system, and so on, to permit Java

software development through a single user interface.

interMedia

The collection of complex datatypes and their access in Oracle. These include text,

video, time-series, and spatial data.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as

the Internet.

J2EE

See Java 2 Platform, Enterprise Edition.
Glossary-9

Java

A high-level programming language developed and maintained by Sun

Microsystems where applications run in a virtual machine known as a JVM. The

JVM is responsible for all interfaces to the operating system. This architecture

permits developers to create Java applications and applets that can run on any

operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)

The Java platform (Sun Microsystems) that defines multitier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is

independent of a particular XML processor implementation.

JavaBean

An independent program module that runs within a JVM, typically for creating

user interfaces on the client. Also known as Java Bean. The server equivalent is

called an Enterprise JavaBean. See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through

the SQL language. JDBC drivers are written in Java for platform independence but

are specific to each database.

Java Developer’s Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code

for a version of Java that makes up a Java development environment. JDKs are

designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface

A programming interface from Sun for connecting Java programs to naming and

directory services such as DNS, LDAP and NDS. Oracle XML DB Resource API for

Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a

platform. JREs are designated by versions, and Java 2 is used to designate versions

from 1.2 onward.
Glossary-10

Java Server Page (JSP)

An extension to the servlet functionality that enables a simple programmatic

interface to Web pages. JSPs are HTML pages with special tags and embedded Java

code that is executed on the Web server or application server providing dynamic

functionality to HTML pages. JSPs are actually compiled into servlets when first

requested and run in the server’s JVM.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine

language of the platform and runs it. JVMs can run on a client, in a browser, in a

middle tier, on an intranet, on an application server such as Oracle9iAS, or in a

database server such as Oracle.

JAXP

See Java API for XML Processing.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle’s Java IDE that enables application, applet, and servlet development and

includes an editor, compiler, debugger, syntax checker, help system, an integrated

UML class modeler, and so on. JDeveloper has been enhanced to support

XML-based development by including the Oracle XDK for Java, integrated for easy

use along with XML support, in its editor.

JDK

See Java Developer’s Kit.

JNDI

JServer

The Java Virtual Machine that runs within the memory space of the Oracle

database. In Oracle8i Release 1 the JVM was Java 1.1 compatible while Release 2 is

Java 1.2 compatible.

JVM

See Java virtual machine.
Glossary-11

LAN

See local area network.

Large Object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External

LOBs. Internal LOBs include BLOBs, CLOBS, and NCLOBs while External LOBs

include BFILES. See also BFILES, Binary Large Object, Character Large Object.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when

the Java application first asks for it. This saves typical type conversion bottlenecks

with JDBC.

listener

A separate application process that monitors the input process.

LOB

See Large Object.

local area network (LAN)

A computer communication network that serves users within a restricted

geographical area. LANs consist of servers, workstations, communications

hardware (routers, bridges, network cards, and so on) and a network operating

system.

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking.

When a name is added to a collection, an exclusive write lock is not placed on the

collection, only that name within the collection is locked. The name modification is

put on a queue, and the collection is locked and modified only at commit time.

namespace

The term to describe a set of related element names or attributes within an XML

document. The namespace syntax and its usage is defined by a W3C

Recommendation. For example, the <xsl:apply-templates/ > element is identified as

part of the XSL namespace. Namespaces are declared in the XML document or DTD

before they are used be using the following attribute syntax:

xmlns:xsl="http://www.w3.org/TR/WD-xsl".
Glossary-12

national Character Large Object (NCLOB)

The LOB datatype whose value is composed of character data corresponding to the

database national character set.

NCLOB

See National Character Large Object.

node

In XML, the term used to denote each addressable entity in the DOM tree.

Notation Attribute Declaration

In XML, the declaration of a content type that is not part of those understood by the

parser. These types include audio, video, and other multimedia.

N-tier

The designation for a computer communication network architecture that consists

of one or more tiers made up of clients and servers. Typically two-tier systems are

made up of one client level and one server level. A three-tier system utilizes two

server tiers, typically a database server as one and a Web or application server along

with a client tier.

OAG

Open Applications Group.

OAI

Oracle Applications Integrator. Runtime with Oracle iStudio development tool that

provides a way for CRM applications to integrate with other ERP systems besides

Oracle ERP. Specific APIs must be "message-enabled." It uses standard extensibility

hooks to generate or parse XML streams exchanged with other application systems.

In development.

OASIS

See Organization for the Advancement of Structured Information.

object-relational

The term to describe a relational database system that can also store and manipulate

higher-order data types, such as text documents, audio, video files, and

user-defined objects.
Glossary-13

Object Request Broker (ORB)

Software that manages message communication between requesting programs on

clients and between objects on servers. ORBs pass the action request and its

parameters to the object and return the results back. Common implementations are

JCORB and Enterprise Bean. See also CORBA.

Object View

A tailored presentation of the data contained in one or more object tables or other

views. The output of an Object View query is treated as a table. Object Views can be

used in most places where a table is used.

OC4J

Oracle9iAS Containers for J2EE, a J2EE deployment tool that comes with

JDeveloper.

OCT

See Ordered Collection in Tables.

OE

Oracle Exchange.

OIS

See Oracle Integration Server.

Oracle9iAS (iAS)

The Oracle application server that integrates all the core services and features

required for building, deploying, and managing high-performance, n-tier,

transaction-oriented Web applications within an open standards framework.

Oracle9 iFS

The Oracle file system and Java-based development environment that either runs

inside the database or on a middle tier and provides a means of creating, storing,

and managing multiple types of documents in a single database repository.

ORACLE_HOME

The operating system environmental variable that identifies the location of the

Oracle database installation for use by applications.
Glossary-14

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as

an Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to

do SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle

database server. It is based on the W3C XML data model.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information

standards through conferences, seminars, exhibits, and other educational events.

XML is a standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child

element. For example, <Parent><Child></Child></Parent> illustrates a parent

element wrapping its child element.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag

or nonparsed data.

parser

In XML, a software program that accepts as input an XML document and

determines whether it is well-formed and, optionally, valid. The Oracle XML Parser

supports both SAX and DOM interfaces.

path name

The name of a resource that reflects its location in the repository hierarchy. A path

name is composed of a root element (the first /), element separators (/) and various

sub-elements (or path elements). A path element may be composed of any character

in the database character set except ("\", "/"). These characters have a special
Glossary-15

meaning for Oracle XML DB. Forward slash is the default name separator in a path

name and backward slash may be used to escape characters.

PCDATA

See Parsed Character Data.

PDA

Personal Digital Assistant, such as a Palm Pilot.

PL/SQL

The Oracle procedural database language that extends SQL. It is used to create

programs that can be run within the database.

principal

An entity that may be granted access control privileges to an Oracle XML DB

resource. Oracle XML DB supports as principals:

■ Database users.

■ Database roles. A database role can be understood as a group, for example, the

DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the

database's general authentication model.

prolog

The opening part of an XML document containing the XML declaration and any

DTD or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

RDF

Resource Definition Framework.

renderer

A software processor that outputs a document in a specified format.
Glossary-16

repository

The set of database objects, in any schema, that are mapped to path names. There is

one root to the repository ("/") which contains a set of resources, each with a path

name.

resource

An object in the repository hierarchy.

resource name

The name of a resource within its parent folder. Resource names must be unique

(potentially subject to case-insensitivity) within a folder. Resource names are always

in the UTF8 character set (NVARCHAR).

result set

The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is

between the optional prolog and epilog. An XML document is only permitted to

have one root element.

SAX

See Simple API for XML.

schema

The definition of the structure and data types within a database. It can also be used

to refer to an XML document that support the XML Schema W3C recommendation.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key

form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before

sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and

performs processing on that server. Servlets are the Java equivalent to CGI scripts.
Glossary-17

session

The active connection between two tiers.

SGML

See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based

applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed

environment.

SOAP

See Simple Object Access Protocol.

SQL

See Structured Query Language.

SSI

See Server-Side Include.

SSL

See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An ISO standard for defining the format of a text document implemented using

markup and DTDs.

Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

Stylesheet

In XML, the term used to describe an XML document that consists of XSL

processing instructions used by an XSL processor to transform or format an input

XML document into an output one.
Glossary-18

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The term used to specify the location on the host operating system of the reference

that follows.

SYS_XMLGEN

The native SQL function that returns as an XML document the results of a passed-in

SQKL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags

start with < and end with >. In XML, there are start-tags (<name>), end-tags

(</name>), and empty tags (<name/>).

TCP/IP

See Transmission Control Protocol/Internet Protocol.

thread

In programming, a single message or process execution path within an operating

system that supports concurrent execution (multithreading).

Transmission Control Protocol/Internet Protocol (TCP/IP)

The communications network protocol that consists of the TCP which controls the

transport functions and IP which provides the routing mechanism. It is the standard

for Internet communications.

Transviewer

The Oracle term used to describe the Oracle XML JavaBeans included in the XDK

for Java.

TransXUtility

TransXUtility is a Java API that simplifies the loading of translated seed data and

messages into a database.

UDDI

See Universal Description, Discovery and Integration.
Glossary-19

UIX

See User Interface XML.

Uniform Resource Identifier (URI)

The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are

used by browsers to navigate the World Wide Web and consist of a protocol prefix,

port number, domain name, directory and subdirectory names, and the file name.

For example http://technet.oracle.com:80/tech/xml/index.htm specifies the

location and path a browser will travel to find OTN’s XML site on the World Wide

Web.

Universal Description, Discovery and Integration (UDDI)

This specification provides a platform-independent framework using XML to

describe services, discover businesses, and integrate business services on the

Internet.

URI

See Uniform Resource Identifier.

URL

See Uniform Resource Locator.

user interface (UI)

The combination of menus, screens, keyboard commands, mouse clicks, and

command language that defines how a user interacts with a software application.

User Interface XML (UIX)

A set of technologies that constitute a framework for building web applications.

valid

The term used to refer to an XML document when its structure and element content

is consistent with that declared in its referenced or included DTD.

W3C

See World Wide Web Consortium (W3C).
Glossary-20

WAN

See wide area network.

WebDAV

See World Wide Web distributed authoring and versioning.

Web Request Broker

The cartridge within OAS that processes URLs and sends them to the appropriate

cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings,

and deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML

version declared in its XML declaration. This includes having a single root element,

properly nested tags, and so forth.

wide area network (WAN)

A computer communication network that serves users within a wide geographic

area, such as a state or country. WANs consist of servers, workstations,

communications hardware (routers, bridges, network cards, and so on), and a

network operating system.

Working Group (WG)

The committee within the W3C that is made up of industry members that

implement the recommendation process in specific Internet technology areas.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the

World Wide Web. It is located at www.w3c.org.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on

the Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.
Glossary-21

Wrapper

The term describing a data structure or software that wraps around other data or

software, typically to provide a generic or object interface.

WSDL

See Web Services Description Language.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data.

XDBbinary elements are stored in the repository when completely unstructured

binary data is uploaded into Oracle XML DB.

XDK

See XML Developer’s Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks

in XML documents. These rules are being developed by the XML Linking Group

under the W3C recommendation process. This is one of the three languages XML

supports to manage document presentation and hyperlinks (XLink, XPointer, and

XPath).

XML

See eXtensible Markup Language.

XML Developer’s Kits (XDKs)

The set of libraries, components, and utilities that provide software developers with

the standards-based functionality to XML-enable their applications. In the case of

the Oracle XDK for Java, the kit contains an XML parser, an XSLT processor, the

XML Class Generator, the Transviewer JavaBeans, and the XSQL Servlet.

XML Gateway

A set of services that allows for easy integration with the Oracle e-Business Suite to

create and consume XML messages triggered by business events.

XML Query

The W3C’s effort to create a standard for the language and syntax to query XML

documents.
Glossary-22

XML Schema

The W3C’s effort to create a standard to express simple data types and complex

structures within an XML document. It addresses areas currently lacking in DTDs,

including the definition and validation of data types. Oracle XML Schema Processor

automatically ensures validity of XML documents and data used in e-business

applications, including online exchanges. It adds simple and complex datatypes to

XML documents and replaces DTD functionality with an XML Schema definition

XML document.

XMLType

An XMLType column stores XML data using an underlying CLOB column in the

database.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational

data in XML format. This is especially useful if, for example, your legacy data is not

in XML but you need to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL

and XPointer. XPath is currently a W3C recommendation. It specifies the data

model and grammar for navigating an XML document utilized by XSLT, XLink and

XML Query.

XPointer

The term and W3C recommendation to describe a reference to an XML document

fragment. An XPointer can be used at the end of an XPath-formatted URI. It
specifies the identification of individual entities or fragments within an XML

document using XPath navigation.

XSL

See eXtensible Stylesheet Language.

XSLFO

See eXtensible Stylesheet Language Formatting Object.

XSLT

See eXtensible Stylesheet Language Transformation.
Glossary-23

XSQL

The designation used by the Oracle Servlet providing the ability to produce

dynamic XML documents from one or more SQL queries and optionally transform

the document in the server using an XSL stylesheet.
Glossary-24

Index

A
access control entries (ACEs), 18-10

elements in, 18-6

access control lists (ACLs), 18-2

bootstrap, 18-4

concurrency resolution, 18-5

default, 18-4

defined, 13-5

features, 18-5

managing, 18-12

managing from Enterprise Manager, 21-22

restrictions, 18-13

security, row-level, 18-14

setting the resource property, 18-12

summary, 1-11

term explained, 1-29

updating, 18-11

using, 18-10

accessing

using XDBUriType, 3-44

with JDBC, 9-3

XML documents using Java, 9-2

adding

XMLType columns, 4-8

Advanced Queuing (AQ)

definition, 24-2

enqueuing, 24-10

hub-and-spoke architecture support, 24-4

IDAP, 24-7

message management support, 24-4

messaging scenarios, 24-2

point-to-point support, 24-2

publish/subscribe support, 24-2

XML servlet, 24-13

XMLType queue payloads, 24-8

aggregating

XSQL and XMLAgg, 10-52

ALTER INDEX, using sections, 7-10

any, 13-6

attributes

collection, 5-37

columnProps, 5-70

Container, 13-7

defaultTable, 5-70

for root element, 3-21

in elements, 5-25

maintainDOM, 5-22

maintainOrder, 5-37

mapping any, 5-45

maxOccurs, 5-37

namespaces, 5-5

noNameSpaceSchemaLocation, 3-22

of XMLFormat, 10-44

passing to SYS_DBURIGEN, 12-30

REF, 5-38, 5-47

schemaLocation, 3-22, 5-10

setting to NULL, 4-36

SQLInLine, 5-37, 5-38

SQLName, 5-24

SQLSchema, 5-24

SQLType, 5-24, 5-28, 5-39

storeVarrayAsTable, 5-71

SYS_XDBPD$, 5-57

tableProps, 5-70

xdb.defaultTable, 3-40

xdb.SQLType, 3-31

XMLAttributes in XMLElement, 10-7
Index-1

XMLDATA, 4-13, 5-50

XMLType, in AQ, 24-8

xsi.NamespaceSchemaLocation, 5-5

xsi.noNamespaceSchemaLocation, 11-9

authenticatedUser

DBuri security, 12-37

AUTO_SECTION_GROUP

using, 7-10

B
B*Tree, 1-11, 4-6, 5-51

indexing, 3-26

bootstrap ACL, 18-4

C
CASCADE mode, 5-14

cascading style sheets, see CSS, D-5

catalog views, F-19

cfg_get, 16-9, A-14

cfg_refresh, A-15

character sets

importing and exporting XML data, 23-6

Korean, 3-4

CharacterData, 8-23

CLOB storage of XMLType, 4-5

collection attribute, 5-37

collection index, 5-60

collections, 3-32, 18-6

columnProps attribute, 5-70

complexType

collections, 3-32

cycling, 5-48

cycling between, 5-46

elements, B-3

handling inheritance, 5-41

in XML schema, explained, B-35

mapping any and any attributes, 5-45

mapping to SQL, 5-37

restrictions, 5-41

concatenating

elements using XMLConcat, 10-16

configuring

API, A-14

protocol server in Oracle XML DB, 19-4

servlet, example, 20-12

servlets in Oracle XML DB, 20-4

using Enterprise Manager, 21-7

constraints

on XMLType columns, 5-51

structured storage, 3-33

using with XMLType tables, 3-23

CONTAINS, 4-39, 7-6

compared against existsNode, 7-38

compared to existsNode(),extract(), 4-42

contents, element, 13-6

CREATE TABLE

XMLType storage, 5-50

createFolder(), 16-3

createXML

inserting with CLOB, example, 4-15

inserting with string, 4-16

summarized, 3-17

creating

XML schema-based tables, columns, 5-22

XMLType columns, 4-8

XMLType table, 4-7

CSS and XSL, D-5

CTX_DDL.Add_Field_Section, 7-26

CTXAPP

role, 7-6

CTXSYS.PATH_SECTION_GROUP, 7-36

CTXXPATH, 4-41

indexes, 7-45

storage preferences, 7-47

cycling in complexTypes

self-referencing, 5-48

D
data integrity

in structured, unstructured storage, 3-27

Oracle XML DB, 3-33

date

format conversion in updateXML(), 5-70

format conversions for XML, 5-62

mapping to SQL, 5-35

DBMS_METADATA, 12-5

DBMS_XDB, F-20
Index-2

AclCheckPrivileges, database objects, 18-13

cfg_get, A-14

cfg_refresh, A-15

changePrivilege, 18-13

checkPrivileges, 18-13

configuration management, 16-8

getAclDocument, 18-13

Link, 16-2

LockResource, 16-2

overview, 16-2

rebuilding hierarchical index, 16-11

security, 16-5

DBMS_XDB_VERSION, 14-2, F-25

subprograms, 14-9

DBMS_XDBT, F-27

DBMS_XMLDOM, 8-5, 8-11, F-6

DBMS_XMLGEN, 10-21, F-23

generating complex XML, 10-30

generating XML, 10-2

DBMS_XMLPARSER, 8-26, F-14

DBMS_XMLSCHEMA, 5-8, F-16

deleteSchema, 5-8

generateSchema() function, 5-17

generateSchemas() function, 5-17

mapping of types, 5-31

registerSchema, 5-8

DBMS_XSLPROCESSOR, 8-30, F-15

dbmsxsch.sql, F-16

DBUri, 12-10

and object references, 12-18

identifying a row, 12-16

identifying a target column, 12-16

retrieving column text value, 12-17

retrieving the whole table, 12-15

security, 12-37

servlet, 12-34

servlet, installation, 12-36

syntax guidelines, 12-13

URL specification, 12-13

XPath expressions in, 12-14

DBUri-refs, 12-10

HTTP access, 12-34

where it can be used, 12-18

DBUriType

defined, 12-2

examples, 12-25

notation for fragments, 12-13

stores references to data, 12-6

default table

creating, 5-70

defining a, 3-40

defaultTable attribute, 5-70

deleting

resources, 3-39, 15-13

rows using extract(), 4-38

rows with XMLType columns, 4-38

using extract(), 4-38

XML schema using DBMS_XMLSCHEMA, 5-13

DEPTH, 15-11

dequeuing

with AQ XML servlet, 24-13

document

fidelity, explained, 1-4

no order, 5-64

no order with extract(), 5-68

order, 5-62

order with extract(), 5-67

order, query rewrites with collection, 5-60

ordering preserved in mapping, 5-68

DOM

differences, and SAX, 8-6

explained, 1-27

fidelity, 5-21

fidelity, default, 5-56

fidelity, in structured storage, 4-5

fidelity, structured or unstructured

storage, 3-27

fidelity, summarized, 1-4

fidelity, SYS_XDBPD$, 5-21

introduced, 8-5

Java API, 9-2

Java API features, 9-15

Java API, XMLType classes, 9-17

NodeList, 8-22

non-supported, 8-5

DOM API for PL/SQL, 8-5

DOMDocument, 9-18

dropping

XMLType columns, 4-9

DTD
Index-3

limitations, B-33

E
elementFormDefault, 5-61

elements

access control entries (ACEs), 18-6

any, 13-6

complexType, B-3

Contents, Resource index, 13-6

simpleType, B-3

XDBBinary, 13-11

XML, 8-4

enqueuing

adding new recipients after, 24-15

using AQ XML servlet, 24-10

EQUALS_PATH

summary, 15-6

syntax, 15-9

existsNode

and CONTAINS, querying, 7-38

dequeing messages, 2-10

finding XML elements, nodes, 4-20

indexing with CTXXPATH, 7-45

query rewrite, 5-51

XPath rewrites, 5-62

exporting XML table, 23-3

extract, 5-67

deleting, 4-38

dequeing messages, 2-10

mapping, 5-68

query rewrite, 5-51

querying XMLType, 4-26

rewrite in XPath expressions, 5-67

extracting

data from XML, 4-27

extractValue, 4-24

creating indexes, query rewrite, 5-66

query rewrite, 5-51

rewrites in XPath expressions, 5-65

F
factory method, 12-26

folder, defined, 13-4

foldering

explained, 13-2

summary, 1-11

FORCE mode option, 5-14

Frequently Asked Questions (FAQs)

AQ and XML, 24-14

Oracle Text, 7-65

versioning, 14-12

FTP

configuration parameters, Oracle XMl DB, 19-5

creating default tables, 5-70

protocol server, features, 19-7

protocol server, using, 3-45

function-based index

creating in Enterprise Manager, 21-42

creating on extract or existsNode, 4-39

functions

createXML, 4-15

DBUriType, 12-19

isSchemaValid, 6-10

isSchemaValidated, 6-9

schemaValidate, 6-9

setSchemaValidated, 6-10

SYS_DBURIGEN, 12-29

SYS_XMLAgg, 10-51

SYS_XMLGEN, 10-42

transform, 6-2

updateXML, 5-69

XMLAgg, 10-17

XMLColAttVal, 10-20

XMLConcat, 10-15

XMLElement, 10-5

XMLForest, 10-9

XMLSequence, 10-11, 10-13

XMLTransform, 6-2

XMLType, 4-7

G
generating

DBUriType using SYS_DBURIGEN, 12-29

generating XML

DBMS_XMLGEN example, 10-30

element forest

XMLColAttVal, 10-20
Index-4

from SQL, DBMS_XMLGEN, 10-21

one document from another, 10-12

SQL, SYS_XMLGEN, 10-42

SYS_XMLAgg, 10-51

using SQL functions, 10-2

XML SQL Utility (XSU), 10-54

XMLAgg, 10-17

XMLConcat, 10-15

XMLElement, 10-5

XMLForest, 10-9

XMLSequence, 10-11

XSQL, 10-52

getClobVal

summarized, 3-18

getNameSpace

summarized, 3-18

getRootElement

summarized, 3-18

getXMLType, 9-17

global XML schema, 5-12

groups, 18-6

H
HASPATH, 4-40, 7-10

operator, 7-12

path existence searching, 7-20

path searching, 7-19

highlighting

XML documents with Oracle Text, 7-49

HTTP

access for DBUri-refs, 12-34

accessing Java servlet or XMLType, 20-3

accessing Repository resources, 13-11

configuration parameters, WebDAV, 19-5

creating default tables, 5-70

HttpUriType, DBUriType, 12-23

improved performance, 19-2

Oracle XML DB servlets, 20-8

protocol server, features, 19-9

requests, 20-8

servlets, 20-4

UriFactory, 12-38

using UriRefs to store pointers, 12-7

HttpUriType

accesses remote pages, 12-6

defined, 12-2

hub-and-spoke architecture, enabled by AQ, 24-4

I
IDAP

architecture, 24-7

transmitted over Internet, 24-7

XML schema, 24-14

IMPORT/EXPORT

in XML DB, 23-2

index

collection, 5-60

Index Organized Table (IOT), 5-71

indexing

B*Tree, 3-26

function-based on existsNode(), 4-39

in structured, unstructured storage, 3-26

Oracle Text, CTXXPATH, 7-45

Oracle Text, XMLType, 7-35

XMLType, 4-39

Information Set

W3C introducing XML, C-26

inheritance

in XML schema, restrictions in

complexTypes, 5-43

INPATH, 4-40, 7-10

operator, 7-13

INPATH operator, 7-12

inserting

into XMLType, 4-9

new instances, 5-51

XML data into XMLType columns, 4-15

installing

from scratch, Oracle XML DB, A-2

manually without DBCA, A-4

instance document

specifying root element namespace, 5-5

XML, described, B-36

Internet Data Access Presentation (IDAP)

SOAP specification for AQ, 24-7

isFragment

summarized, 3-18

isSchemaValid, 6-10
Index-5

isSchemaValidated, 6-9

J
Java

Oracle XML DB guidelines, 20-3

using JDBC to access XMLType objects, 20-3

writing Oracle XML DB applications, 20-2

Java DOM API for XMLType, E-2

JDBC

accessing documents, 9-3

manipulating data, 9-5

using SQL to determine object properties, 17-3

JNDI, 9-2

using Resource API, 17-2

L
lazy manifestation, 8-4

Lazy Manifestation (LM), 3-26

LDAP

Oracle XML DB, in, 18-5

Least Recently Used (LRU), 3-26

Link, 16-2

LOBs

mapping XML fragments to, 5-39

location path, C-5

LockResource, 16-2

M
maintainDOM, 5-64

maintainOrder attribute, 5-37

mapping

collection predicates, 5-59

complexType any, 5-45

complexTypes to SQL, 5-37

overriding using SQLType attribute, 5-32

predicates, 5-58

scalar nodes, 5-58

simpleContent to object types, 5-44

simpleType XML string to VARCHAR2, 5-36

simpleTypes, 5-33

type, setting element, 5-31

maxOccurs, 5-37

MIME

overriding with DBUri servlet, 12-35

modes

CASCADE, 5-14

FORCE, 5-14

MULTISET operator

using with SYS_XMLGEN selects, 10-47

N
NamedNodeMap object, 8-22

namespace

defining, 3-29

handling in query rewrites, 5-61

handling in XPath, 5-61

W3C introducing, C-18

XDBResource, 13-17

XML schema URL, 5-5

xmlns, D-4

XMLSchema-Instance, 3-21

naming SQL objects

SQLName, SQLType attributes, 5-24

navigational access, 13-9

nested

generating nested XML using DBMS_

XMLGEN, 10-32

object tables, 3-32

sections in Oracle Text, 7-55

XML, generating with XMLElement, 10-7

XMLAgg functions and XSQL, 10-52

newDOMDocument, 8-22

NodeList object, 8-22

NULL

mapping to in XPath, 5-60

O
object references and DBUri, 12-18

operators

CONTAINS, 4-39, 7-6

CONTAINS compared, 4-42

DEPTH, 15-11

EQUALS_PATH, 15-9

HASPATH, 7-12

INPATH, 7-12, 7-13
Index-6

MULTISET and SYS_XMLGEN, 10-47

PATH, 15-9

UNDER_PATH, 15-7

WITHIN, 7-8, 7-11

XMLIsValid, 6-9

Oracle Enterprise Manager

configuring Oracle XML DB, 21-7

console, 21-7

creating a view based on XML schema, 21-39

creating function-based index, 21-42

creating resources, 21-12

features, 21-3

granting privileges, XML Tab, 21-23

managing security, 21-22

managing XML schema, 21-27

Oracle Net Services, 1-11

Oracle Text

advanced techniques, 7-45, 7-49

ALTER INDEX, 7-10

attribute sections, constraints, 7-54

building query applications, 7-21

comparing CONTAINS and existsNode, 7-38

conference Proceedings example, 7-57

CONTAINS and XMLType, 4-39

CONTAINS operator, 7-6

creating index on XMLType columns, 4-12

creating on XMLType columns, 4-40

CTXSYS, 7-5

CTXXPATH, 7-45

DBMS_XDBT, F-27

installing, 7-4

Oracle XML DB, and, 7-37

querying, 7-6

querying within attribute sections, 7-30

searching data with, 7-3

searching XML in CLOBs, 1-23

section_group, deciding which to use, 7-23

users and roles, 7-5

XMLType, 7-4

XMLType indexing, 7-35

Oracle XML DB, 3-5

access models, 2-7

advanced queueing, 1-23

application language, 2-8

architecture, 1-7

benefits, 1-3

configuring with Enterprise Manager, 21-7

designing, 2-3

features, 1-4

foldering, 13-2

installation, A-2

installing, 2-2

installing manually, A-4

introducing, 1-2

Java applications, 20-2

processing models, 2-9

Repository, 1-6, 3-35, 13-4

storage models, 2-10

storing XMLType, 4-4

upgrading, A-5

using XSL/XSLT with, 3-16

versioning, 14-2

when to use, 2-2

Oracle XML DB Resource API for Java/JNDI

examples, 17-3

using, 17-2

oracle.xdb, E-2

oracle.xdb.dom, E-2

oracle.xdb.spi, E-6

XDBResource.getContent(), E-9

XDBResource.getContentType, E-9

XDBResource.getCreateDate, E-9

XDBResource.getDisplayName, E-9

XDBResource.getLanguage(), E-9

XDBResource.getLastModDate, E-9

XDBResource.getOwnerId, E-9

XDBResource.setACL, E-9

XDBResource.setAuthor, E-9

XDBResource.setComment, E-9

XDBResource.setContent, E-9

XDBResource.setContentType, E-10

XDBResource.setCreateDate, E-10

XDBResource.setDisplayName, E-10

XDBResource.setInheritedACL, E-10

XDBResource.setLanguage, E-10

XDBResource.setLastModDate, E-10

XDBResource.setOwnerId, E-10

oracle.xdb.XMLType, 9-17

ora.contains

creating a policy for, 7-42
Index-7

XPath full-text searches, 7-40

ordered collections in tables (OCTs), 5-71

default storage of VARRAY, 5-37

rewriting collection index, 5-60

P
PATH, 15-9

PATH_SECTION_GROUP

using, 7-10

PATH_VIEW, 3-38

structure, 15-4

Path-based access

explained, 13-9

pathname

resolution, 13-7

performance

improved using Java writeToStream, 13-12

improvement for structured storage, 3-25

piecewise update, 1-5

PL/SQL DOM

examples, 8-24

methods, 8-11

PL/SQL Parser for XMLType, F-14

PL/SQL XSLT Processor for XMLType, F-15

point-to-point

support in AQ, 24-2

Positional Descriptor (PD), 5-21

predicates, 5-58

collection, mapping of, 5-59

principals, 18-6

privileges

aggregate, 18-9

atomic, 18-8

granting from Oracle Enterprise Manager, 21-23

processXSL, 8-33

protocol server

architecture, 19-3

configuration parameters, 19-4

event-based logging, 19-7

FTP, 19-7

FTP configuration parameters, 19-5

HTTP, 19-9

HTTP/WebDAV configuration

parameters, 19-5

Oracle XML DB, 19-2

using, 3-44

WebDAV, 19-11

protocols

access calling sequence, 13-11

access to Repository resources, 13-10

retrieving resource data, 13-11

storing resource data, 13-11

publish/subscribe

support in AQ, 24-2

purchase order

XML, 3-6

purchaseorder.xsl, D-6

Q
query access

using RESOURCE_VIEW and PATH_

VIEW, 15-2

query results

presenting, 7-21, 7-34

query rewrite, 5-51

query-based access

using SQL, 13-12

querying

resources, 3-38

XML data, 4-17

XMLType, 4-18

XMLType,transient data, 4-27

R
rebuilding hierarchical indexes, 16-11

REF attribute, 5-38, 5-47

registerHandler, 12-27

Reinstalling

Oracle XML DB

reinstalling, A-4

Repository, 3-35, 13-4

based on WebDAV, 3-35

hierarchy explained, 3-35

query-based access, 3-37

where is the data stored, 13-6

resource id

new version, 14-5
Index-8

RESOURCE_VIEW

explained, 15-2

PATH_VIEW differences, 15-5

querying resource documents, 3-38

structure, 15-3

resources

access using UNDER_PATH, 15-11

accessing Repository, 13-8

accessing with protocols, 19-6

changing privileges, 18-13

configuration management, 16-8

controlling access to, 18-7

creating from Enterprise Manager, 21-12

defined, 13-4

deleting, 13-7

deleting non-empty containers, 15-13

deleting using DELETE, 15-13

extending metadata properties, 13-17

inserting data using RESOURCE_VIEW, 15-11

management using DBMS_XDB, 16-2

managing, 18-12

multiple simultaneous operations, 15-15

required privileges for operations, 18-9

retrieving access control lists (ACLs), 18-13

setting property in access control lists

(ACLs), 18-12

storage options, 3-40

updating, 15-14

ResourceType

extending, 13-17

S
scalar nodes, mapping, 5-58

scalar value

converting to XML document using SYS_

XMLGEN, 10-46

schemaLocation, 5-10

schemaValidate, 3-24, 6-9

method, 5-15

searching CLOBs, 1-23

security

access control entries (ACEs), 18-6

aggregate privileges, 18-9

DBUri, 12-37

management using DBMS_XDB, 16-5

management with Enterprise Manager, 21-22

user and group access, 18-6

servlets

accessing Repository data, 13-13

and session pooling, 20-9

APIs, 20-10

AQ XML, 24-13

configuring, 20-12

configuring Oracle XML DB, 20-4

DBUri, URL into a query, 12-34

example, 20-10

explained, 1-29

installing, 20-11

session pooling, 20-9

session pooling and Oracle XML DB, 19-2

testing the, 20-12

writing Oracle XML DB HTTP, 20-4

XML manipulation, with, 20-3

session pooling, 20-9

protocol server, 19-2

setSchemaValidated, 6-10

Simple Object Access Protocol (SOAP) and

IDAP, 24-7

simpleContent

mapping to object types, 5-44

simpleType

elements, B-3

mapping to SQL, 5-33

mapping to VARCHAR2, 5-36

SOAP

access through Advanced Queueing, 1-11

and IDAP, 24-7

space

requirements in structured, unstructured

storage, 3-27

SQL functions

existsNode, 4-20

extractValue, 4-24

SQL*Loader, 22-2

SQLInLine attribute, 5-37

SQLName, 5-24

SQLType, 5-24, 5-28

attribute, 5-39

SQLX
Index-9

generating XML, 10-5

generating XML, for, 10-2

operators, explained, 1-5

Oracle extensions, 10-2

storage

of complex types, 3-32

options for resources, 3-40

structured, 3-33

XMLDATA, 4-13

structured or unstructured, 3-24

structured, query rewrite, 5-51

VARRAYs and OCT, 5-71

XML-schema-based, 5-20

XMLType CREATE TABLE, 5-50

storeVarrayAsTable attribute, 5-71

substitution

creating columns by inserting

HttpUriType, 12-25

/sys, restrictions, 13-3

SYS_DBURIGEN, 12-29

examples, 12-31

inserting database references, 12-31

passing columns or attributes, 12-30

retrieving object URLs, 12-33

returning partial results, 12-32

returning Uri-refs, 12-33

text function, 12-31

SYS_REFCURSOR

generating a document for each row, 10-13

SYS_XDBPD$, 5-21, 5-64

in query rewrites, 5-57

suppressing, 5-22

SYS_XMLAgg, 10-51

SYS_XMLGEN, 10-42

converting a UDT to XML, 10-47

converting XMLType instances, 10-48

generating XML in SQL queries, 4-12

inserting, 4-17

object views, 10-49

static member function create, 10-45

using with object views, 10-49

XMLFormat attributes, 10-44

XMLGenFormatType object, 10-44

T
tableProps attribute, 5-70

tablespace

do not drop, A-2

transform, 6-2

triggers

BEFORE INSERT trigger, 3-24

BEFORE INSERT, using with XMLType, 3-23

creating XMLType, 4-38

using with XMLType, 4-38

U
UDT

generating an element from, 10-9

generating an element using XMLForest, 10-10

UNDER_PATH, 3-38, 15-7

summary, 15-6

updateXML, 5-69

creating views, 4-35

mapping NULL values, 4-36

replacing contents of node tree, 3-14

updating text node value, 3-13

updating

resources, 3-38, 15-14

same node more than once, 4-37

upgrading

existing installation, A-5

URI

base, C-28

UriFactory, 12-26

configuring to handle DBUri-ref, 12-38

factory method, 12-26

generating UriType instances, 12-26

registering ecom protocol, 12-27

registering new UriType subtypes, 12-26

registerURLHandler, 12-27

Uri-ref, see also Uri-reference, 12-4

Uri-reference

database and session, 12-18

datatypes, 12-6

DBUri, 12-10

DBUri and object references, 12-18

DBUri syntax guidelines, 12-13
Index-10

DBUri-ref, 12-10

DBUri-ref uses, 12-18

DBUriType examples, 12-25

explained, 12-4

HTTP access for DBUri-ref, 12-34

UriFactory package, 12-26

UriType examples, 12-24

UriTypes, 12-23

UriTypes, 12-23

benefits, 12-7

creating Oracle Text index on column, 7-37

examples, 12-24

subtypes, advantages, 12-29

URL

identifying XML schema, for, 5-5

V
validating

examples, 6-10

isSchemaValid, 6-10

isSchemaValidated, 6-9

schemaValidate, 6-9

SetSchemaValidated, 6-10

with XML schema, 5-7

VARRAYS

inline, 3-32

storage using OCT, 5-71

VCR, 14-4, 14-6

access control and security, 14-8

version-controlled resource (VCR), 14-4, 14-6

versioning, 1-10, 14-2

FAQs, 14-12

views

RESOURCE and PATH, 15-2

W
W3C DOM Recommendation, 8-9

WebDAV

protocol server, features, 19-11

standard introduced, 3-35

WebFolder

creating in Windows 2000, 19-12

WITHIN

in Oracle Text, 7-8

limitations, 7-11

syntax, 7-11

writeToStream, 13-12

X
XDB$RESOURCE table, 13-18

XDBBinary, 13-5, 13-11

explained, 1-28

xdbconfig.xml, 19-2

XDBResource

namespace, 13-17

xsd, 13-17

XDBSchema.xsd, 5-19

XDBUri, 12-5

XDBUriType

accessing non-schema content, 3-44

accessing Repository content, 3-44

defined, 12-2

stores references to Repository, 12-6

XDK for PL/SQL, backward compatibility, 8-2

XML

binary datatypes, 5-34

fragments, mapping to LOBs, 5-39

primitive datatypes, 5-36

primitive numeric types, 5-34

XML DB Resource API for Java/JNDI, 17-2

XML DB, Oracle, 3-5

XML schema

and Oracle XML DB, 1-7, 5-5

benefits, 5-6

compared to DTD, B-31

complexType declarations, 5-41

creating default tables during registration, 5-70

cyclical references, 5-74

cyclical references between, 5-71

DTD limitations, B-33

elementFormDefault, 5-61

Enterprise Manager, managing them

from, 21-27

features, B-34

global, 5-12

inheritance in, complexType restrictions, 5-43

key feature explained, 1-5
Index-11

local, 5-11

local and global, 5-11

managing and storing, 5-19

mapping to SQL object types, 8-10

navigating in Enterprise Manager, 21-28

registering, 5-8

registering using DBMS_XMLSCHEMA, 5-9

root, 5-19

SQL mapping, 5-28

storage and access, 5-13

storage of XMLType, 3-28

unsupported constructs in query rewrites, 5-54

updateXML(), 5-69

URLs, 5-16

validating an XML document, 3-22

W3C Recommendation, 3-18, 5-3

xdb.SQLType, 3-31

XMLType methods, 5-19

XML schema, creating a view in Enterprise

Manager, 21-39

XML Schema, introducing W3C, B-2

XML SQL Utility

generating XML, 10-54

XML SQL Utility (XSU)

generating XML, 10-3

XML storage, 3-24

XML_SECTION_GROUP

using, 7-8

XMLAgg, 10-17

XMLAttributes, 10-7

XMLColAttVal, 10-20

XMLConcat, 10-15

concatenating XML elements in

argument, 10-16

returning XML elements by

concatenating, 10-16

XMLDATA

column, 5-58

optimizing updates, 5-69

parameter, F-3

pseudo-attribute of XMLType, 5-50

structured storage, 4-13

XMLElement, 10-5

attribute, 10-7

generating elements from DTD, 10-9

using namespaces to create XML

document, 10-8

XMLForest, 10-9

generating elements, 10-10

generating elements from DTD, 10-10

XMLFormat

XMLAgg, 10-17

XMLFormat object type

SYS_XMLGEN

XMLFormatType object, 10-44

XMLGenFormatType object, 10-44

XMLIsValid

validating

XMLIsValid, 6-9

XMLSequence, 10-11

extracting description nodes, 3-12

generating an XML document for each

row, 10-13

generating one document from another, 10-12

unnesting collections in XML to SQL, 10-14

XMLTransform, 4-37, 6-2

XMLType, 4-2

adding columns, 4-8

API, F-2

benefits, 4-3

CLOB storage, 4-5

column, 3-3

constraints, specifying, 4-14

CONTAINS operator, 4-39

CREATE TABLE, 5-50

creating columns, 4-8

creating columns, example, 4-8

creating Oracle Text index, 4-12

deleting a row containing, 4-10

deleting rows, 4-38

deleting using extract(), 4-38

dropping columns, 4-9

extracting data, 4-27

functions, 4-7

guidelines for using, 4-11

how to use, 4-7

indexing, 7-35

indexing columns, 4-39

inserting into, 4-9

inserting with createXML() using string, 4-16
Index-12

inserting with SYS_XMLGEN(), 4-17

inserting XML data, 4-15

instances, PL/SQL APIs, 8-2

Java

writeToStream, 13-12

loading data, 22-2

manipulating data in columns, 4-14

Oracle Text support, 7-4

querying, 4-17, 4-18

querying transient data, 4-27

querying with extract() and existsNode(), 4-26

querying XMLType columns, 4-27

queue payloads, 24-8

storage architecture, 1-11

storage characteristics, 4-12

storing data in Oracle XML DB, 4-4

summarized, 1-4

table, 3-3

table storage, 1-9

table, querying with JDBC, 9-3

tables, storing, 5-23

tables, views, columns, 5-15

triggers, 4-38

updating column, example, 4-10

using in SQL SELECT statement, 4-9

views,access with PL/SQL DOM APIs, 8-11

when to use, 4-4

Xpath support, 4-39

XMLType, loading with SQL*Loader, 22-2

XPath

basics, D-5

explained, 1-27

expressions, mapping, 5-57

mapping for extract(), 5-67

mapping for extract() without document

order, 5-68

mapping for extractValue(), 5-65

mapping to NULL in, 5-60

mapping, simple, 5-57

rewrites for existNode(), 5-62

rewriting expressions, 5-53

support, 4-39

text(), 5-58

unsupported constructs in query rewrites, 5-54

use for searching data, 1-5

using with Oracle XML DB, 3-5

W3C introducing, C-2

XPath expressions

supported, 5-54

xsi.noNamespaceSchemaLocation, 5-5

XSL

and CSS, D-5

basics, D-2

defined, 1-27

XSL stylesheet, example, D-6

XSLT, 8-11

1.1 specification, D-5

explained, D-5

xsql

include-xml

aggregating results into one XML, 10-52

generating XML from database, 10-53

XSQL Pages Publishing Framework

generating XML, 10-3, 10-52
Index-13

Index-14

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New In Oracle XML DB?
	Oracle XML DB: Oracle9i Release 2 (9.2.0.2): Enhancements
	Oracle XML DB, Oracle9i Release 2 (9.2.0.1): XMLType Enhancements
	Oracle XML DB, Oracle9i Release 2 (9.2.0.1): Repository
	Oracle Tools Enhancements for Oracle XML DB
	Oracle Text Enhancements
	Oracle Advanced Queuing (AQ) Support
	Oracle XDK Support for XMLType

	Part I� Introducing Oracle XML DB
	1 Introducing Oracle XML DB
	Introducing Oracle XML DB
	Not a Separate Database Server

	Benefits of Oracle XML DB
	Key Features of Oracle XML DB
	Oracle XML DB and XML Schema
	Oracle XML DB Architecture
	XMLType Tables and Views Storage
	Supported XML Access APIs
	Supported XML Services

	Oracle XML DB Repository
	Supported XML Access APIs
	Supported XML Services

	XMLType Storage Architecture
	Cached XML Object Management Architecture
	XML Repository Architecture

	Why Use Oracle XML DB?
	Unifying Data and Content with Oracle XML DB
	Exploiting Database Capabilities
	Exploiting XML Capabilities

	Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents
	Oracle XML DB Helps You Integrate Applications
	When Your Data Is Not XML You Can Use XMLType Views

	Searching XML Data Stored in CLOBs Using Oracle Text
	Building Oracle XML DB XML Messaging Applications with Advanced Queueing
	Managing Oracle XML DB Applications with Oracle Enterprise Manager
	Requirements for Running Oracle XML DB
	Standards Supported by Oracle XML DB
	Oracle XML DB Technical Support
	Terminology Used in This Manual
	Oracle XML DB Examples Used in This Manual

	2 Getting Started with Oracle XML DB
	Getting Started with Oracle XML DB
	Installing Oracle XML DB

	When to Use the Oracle XML DB
	Designing Your XML Application
	Oracle XML DB Design Issues: Introduction
	a. Data
	b. Access
	c. Application Language
	d. Processing
	Storage

	Oracle XML DB Application Design: a. How Structured Is Your Data?
	XML Schema-Based or Non-Schema-Based

	Oracle XML DB Application Design: b. Access Models
	Oracle XML DB Application Design: c. Application Language
	Oracle XML DB Application Design: d. Processing Models
	Messaging Options

	Oracle XML DB Design: Storage Models
	Using XMLType Tables
	Using XMLType Views

	3 Using Oracle XML DB
	Storing Data in an XMLType Column or XMLType Table
	Accessing Data in XMLType Columns or XMLType Tables
	Using XPath with Oracle XML DB
	PurchaseOrder XML Document
	Using existsNode()
	Using extractValue()
	Using extract()
	Using XMLSequence()

	Updating XML Documents with updateXML()
	Introducing the W3C XSLT Recommendation
	Using XSL/XSLT with Oracle XML DB
	Other XMLType Methods
	Introducing the W3C XML Schema Recommendation
	Using XML Schema with Oracle XML DB
	XMLSchema-Instance Namespace

	Validating an XML Document Using an XML Schema
	Storing XML: Structured or Unstructured Storage
	Data Manipulation Language (DML) Independence
	DOM Fidelity in Structured and Unstructured Storage

	Structured Storage: XML Schema-Based Storage of XMLType
	XML Schema Names and Defining Oracle XML DB Namespace
	Using xdb:SQLName to Override Default Names
	Using xdb:SQLType to Override Default Mapping
	Structured Storage: Storing complexType Collections
	Structured Storage: Data Integrity and Constraint Checking

	Oracle XML DB Repository
	Introducing the IETF WebDAV Standard
	Oracle XML DB Repository is Based on WebDAV

	Query-Based Access to Oracle XML DB Repository
	Using RESOURCE_VIEW
	Using PATH_VIEW
	Creating New Folders and Documents
	Querying Resource Documents
	Updating Resources
	Deleting Resources

	Storage Options for Resources
	Defining Your Own Default Table Storage for XML Schema-Based Documents
	Your Default Table is an XMLType Table and Hierarchically Enabled

	Accessing XML Schema-Based Content
	Accessing Non-Schema-Based Content With XDBUriType
	Oracle XML DB Protocol Servers
	Using FTP Protocol Server
	Using HTTP/WebDAV Protocol Server

	Part II� Storing and Retrieving XML Data in Oracle XML DB
	4 Using XMLType
	What Is XMLType?
	Benefits of the XMLType Data Type and API

	When to Use XMLType
	Storing XMLType Data in Oracle XML DB
	Pros and Cons of XML Storage Options in Oracle XML DB
	When to Use CLOB Storage for XMLType

	XMLType Member Functions
	How to Use the XMLType API
	Creating, Adding, and Dropping XMLType Columns
	Inserting Values into an XMLType Column
	Using XMLType in an SQL Statement
	Updating an XMLType Column
	Deleting a Row Containing an XMLType Column

	Guidelines for Using XMLType Tables and Columns
	Define table/column of XMLType
	Create an XMLType Instance
	Select or Extract a Particular XMLType Instance
	You can Define an Oracle Text Index
	You Can Define XPath Index, CTXXPATH
	Specifying Storage Characteristics on XMLType Columns
	Changing Storage Options on an XMLType Column Using XMLData
	Specifying Constraints on XMLType Columns

	Manipulating XML Data in XMLType Columns/Tables
	Inserting XML Data into XMLType Columns/Tables
	Using INSERT Statements

	Selecting and Querying XML Data
	SQL Functions for Manipulating XML data
	Selecting XML Data
	Querying XML Data
	Using XPath Expressions for Searching XML Documents
	Querying XML Data Using XMLType Member Functions
	existsNode Function
	Using Indexes to Evaluate existsNode()

	extract () Function
	extractValue() Function
	A Shortcut Function
	extractValue() Characteristics

	More SQL Examples That Query XML

	Updating XML Instances and Data in Tables and Columns
	updateXML() SQL Function
	Creating Views of XML Data with updateXML()
	Optimization of updateXML()
	updateXML() and NULL Values
	Updating the Same XML Node More Than Once
	XMLTransform() Function

	Deleting XML Data
	Using XMLType In Triggers
	Indexing XMLType Columns
	Creating Function-Based Indexes on XMLType Columns
	Creating Oracle Text Indexes on XMLType Columns
	QUERY_REWRITE PRIVILEGE Is No Longer Needed
	Creating XPath Indexes on XMLType Columns: CTXXPATH Index
	Differences Between CONTAINS and existsNode()/extract()

	5 Structured Mapping of XMLType
	Introducing XML Schema
	XML Schema and Oracle XML DB
	Using Oracle XML DB and XML Schema
	Why Do We Need XML Schema?
	XML Schema Provides Flexible XML-to-SQL Mapping Setup
	XML Schema Allows XML Instance Validation

	Using XML Schema and Namespaces
	DTD Support in Oracle XML DB
	Inline DTD Definitions
	External DTD Definitions

	Introducing DBMS_XMLSCHEMA
	Registering Your XML Schema Before Using Oracle XML DB
	Registering Your XML Schema Using DBMS_XMLSCHEMA
	Local and Global XML Schemas
	Local XML Schema

	Registering Your XML Schema: Oracle XML DB Sets Up the Storage and Access Infrastructure

	Deleting Your XML Schema Using DBMS_XMLSCHEMA
	FORCE Mode
	CASCADE Mode

	Guidelines for Using Registered XML Schemas
	Objects That Depend on Registered XML Schemas
	Creating XMLType Tables, Views, or Columns
	Validating XML Instances Against the XML Schema: schemaValidate()
	Fully Qualified XML Schema URLs
	XML Schema That Users Cannot Reference
	Fully Qualified XML Schema URLs Permit Explicit Reference to XML Schema URLs

	Transactional Behavior of XML Schema Registration

	Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()
	XML Schema-Related Methods of XMLType
	Managing and Storing XML Schema
	Root XML Schema, XDBSchema.xsd
	How Are XML Schema-Based XMLType Structures Stored?
	Specifying the Storage Mechanism

	DOM Fidelity
	How Oracle XML DB Ensures DOM Fidelity with XML Schema
	DOM Fidelity and SYS_XDBPD$
	How to Suppress SYS_XDBPD$

	Creating XMLType Tables and Columns Based on XML Schema
	SQL Object-Relational Types Store XML Schema-Based XMLType Tables

	Specifying SQL Object Type Names with SQLName, SQLType Attributes
	SQL Mapping Is Specified in the XML Schema During Registration

	Mapping of Types Using DBMS_XMLSCHEMA
	Setting Attribute Mapping Type Information
	Overriding SQL Types

	Setting Element Mapping Type Information
	Overriding SQL Type

	XML Schema: Mapping SimpleTypes to SQL
	simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBs

	XML Schema: Mapping complexTypes to SQL
	Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage
	Mapping XML Fragments to Large Objects (LOBs)

	Oracle XML DB complexType Extensions and Restrictions
	complexType Declarations in XML Schema: Handling Inheritance
	Mapping complexType: simpleContent to Object Types
	Mapping complexType: Any and AnyAttributes
	Handling Cycling Between complexTypes in XML Schema

	Further Guidelines for Creating XML Schema-Based XML Tables
	Specifying Storage Clauses in XMLType CREATE TABLE Statements
	Inserting New Instances into XMLType Columns

	Query Rewrite with XML Schema-Based Structured Storage
	What Is Query Rewrite?
	When Does Query Rewrite Occur?
	What XPath Expressions Are Rewritten?
	How are the XPaths Rewritten?
	Rewriting XPath Expressions: Mapping Types and Issues
	XPath Expression Rewrites for existsNode()
	Rewrite for extractValue()
	Rewrite for extract()
	Optimizing Updates Using updateXML()

	Creating Default Tables During XML Schema Registration
	Ordered Collections in Tables (OCTs)
	Using OCT for VARRAY Storage

	Cyclical References Between XML Schemas
	Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues
	Why Do I Appear to get Memory Leaks When Using Bind Variables for XPath Expressions?
	How Do I Check that Query Rewrite is Working Correctly?
	Why Does the XML DB Query Not Use My Index?
	How Do I Specify Attributes in a complexType XML Schema Declaration?
	Why Do the XML Schema and Element Not Match?
	How Do I Pull a Stylesheet From RESOURCE_VIEW [S/MIME]?
	Why for Our XML Parser Does selectSingleNode return NULL When the xmlns Attribute is Added?
	Why Do I Get Error ORA-19007: Schema and Element Do Not Match?
	Is it Possible to Register XML Schema for Schemas?

	6 Transforming and Validating XMLType Data
	Transforming XMLType Instances
	XMLTransform() and XMLType.transform()

	XMLTransform() Examples
	Validating XMLType Instances
	Validating XML Data Stored as XMLType: Examples

	7 Searching XML Data with Oracle Text
	Searching XML Data with Oracle Text
	Introducing Oracle Text
	Accessing Oracle Text
	Oracle Text Now Supports XMLType
	Further Oracle Text Examples

	Assumptions Made in This Chapter’s Examples
	Oracle Text Users and Roles
	User CTXSYS
	Role CTXAPP

	Querying with the CONTAINS Operator
	CONTAINS Syntax

	Using the WITHIN Operator to Narrow Query Down to Document Sections
	Introducing SECTION_GROUPS
	XML_SECTION_GROUP
	Zone Sections: CTX_DLL.ADD_ZONE_SECTION Procedure
	Field Sections: CTX_DLL.ADD_FIELD_SECTION Procedure
	Attribute Section: CTX_DLL.ADD_ATTR_SECTION Procedure
	Constraints for Querying Attribute or Field Sections

	AUTO_ SECTION_GROUP/ PATH_SECTION_GROUP for INPATH and HASPATH
	Dynamically Adding Sections or Stop Section Using ALTER INDEX
	WITHIN Syntax for Section Querying
	WITHIN Operator Limitations

	INPATH or HASPATH Operators Search Using XPath-Like Expressions
	Path Indexing and Path Querying with Oracle Text
	Path Indexing
	Path Querying
	Using INPATH Operator for Path Searching in XML Documents
	Using HASPATH Operator for Path Searching in XML Documents
	Using HASPATH Operator for Path Existence Searching
	Tag Value Equality Testing

	Building a Query Application with Oracle Text
	What Role Do You Need?

	Step 1. Create a Section Group Preference
	Deciding Which Section Group to Use
	Creating a Section Preference with XML_SECTION_GROUP
	Creating a Section Preference with AUTO_SECTION_GROUP
	Creating a Section Preference with PATH_SECTION_GROUP

	Step 2. Set the Preference’s Attributes
	2.1 XML_SECTION_GROUP: Using CTX_DDL.add_zone_section
	add_zone_section Guidelines

	2.2 XML_SECTION_GROUP: Using CTX_DDL.Add_Attr_Section
	Add_Attr_Section Guidelines

	2.3 XML_SECTION_GROUP: Using CTX_DDL.Add_Field_Section
	Add_Field_Section Guidelines
	How Attr_Section Differs from Field_Section

	2.5 AUTO_SECTION_GROUP: Using CtX_DDL.Add_Stop_Section

	Step 3. Create an Index Using the Section Preference Created in Step 2
	Creating an Index Using XML_SECTION_GROUP
	Creating an Index Using AUTO_SECTION_GROUP
	Creating an Index Using PATH_SECTION_GROUP

	Step 4. Create Your Query Syntax
	Querying Within Attribute Sections

	Presenting the Results of Your Query
	XMLType Indexing
	You Need Query Rewrite Privileges
	System Parameter is Set to the Default, CTXSYS.PATH_SECTION_GROUP
	XMLType Indexes Work Like Other Oracle Text Indexes

	Using Oracle Text with Oracle XML DB
	Creating an Oracle Text Index on an UriType Column
	Querying XML Data: Use CONTAINS or existsNode()?

	Full-Text Search Functions in XPath Using ora:contains
	ora:contains Features
	ora:contains Syntax
	ora:contains Examples

	Oracle XML DB: Creating a Policy for ora:contains()
	Querying Using Other User’s Policy

	Oracle XML DB: Using CTXXPATH Indexes for existsNode()
	Why do We Need CTXXPATH When ConText Indexes Can Perform XPath Searches?
	CTXXPATH Index Type
	Creating CTXXPATH Indexes
	Creating CTXXPATH Storage Preferences with CTX_DDL. Statements
	Performance Tuning CTXXPATH Index: Synchronizing and Optimizing the Index
	Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing

	Using Oracle Text: Advanced Techniques
	Highlight Support for INPATH/HASPATH Text Operators
	Highlighting XML Documents with INPATH
	Highlighting XML Documents with HASPATH

	Distinguishing Tags Across DocTypes
	Specifying Doctype Limiters to Distinguish Between Tags
	Doctype-Limited and Unlimited Tags in a Section Group
	XML_SECTION_GROUP Attribute Sections
	Attribute Value Sensitive Section Search
	Dynamic Add Section

	Constraints for Querying Attribute Sections
	Repeated Zone Sections
	Overlapping Zone Sections
	Nested Sections
	Nested Section Query Example

	Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View

	Case Study: Searching XML-Based Conference Proceedings
	Searching for Content and Structure in XML Documents
	Searching XML-Based Conference Proceedings Using Oracle Text
	Task 1. Grant System Privileges. Set Initialization Parameters
	Task 2. Create Table Proceedings
	Task 3. Populate Table with Data
	Task 4. Create an Oracle Text Index on the XMLType Column
	Task 5. Querying the Conference Proceedings with XPath and Contains()

	Searching Conference Proceedings Example: jsp

	Frequently Asked Questions About Oracle Text
	FAQs: General Questions About Oracle Text
	Can I Use a CONTAINS() Query with an XML Function to Extract an XML Fragment?
	Can XML Documents Be Queried Like Table Data?
	Can I Edit Individual XML Elements?
	How Are XML Files Locked in CLOBs and BLOBs?
	How Can I Search XML Documents and Return a Zone?
	How Do I Load XML Documents into the Database?
	How Do I Search XML Documents with Oracle Text?
	How Do I Search XML Using the WITHIN Operator?
	Where Can I Find Examples of Using Oracle Text to Search XML?
	Does Oracle Text Automatically Recognize XML Tags?
	Can I Do Range Searching with Oracle Text?
	Can Oracle Text Do Section Extraction?
	Can I Create a Text Index on Three Columns?
	How Fast Is Oracle9i at Indexing Text? Can I Just Enable Boolean Searches?

	FAQs: Searching Attribute Values with Oracle Text
	Can I Build Text Indexes on Attribute Values?

	FAQs: Searching XML Documents in CLOBs Using Oracle Text
	How Can I Search Different XML Documents Stored in CLOBs?
	How Do I Store an XML Document in a CLOB Using Oracle Text?
	Is Storing XML in CLOBs Affected by Character Set?
	Can I Only Insert Structured Data When the Table is Created?
	Can I Break an XML Document Without Creating a Custom Development?
	What Is the Syntax for Creating a Substring Index with XML_SECTION_GROUP?
	Why Does the XML Search for Topic X with Relevance Y Give Wrong Results?

	Part III� Using XMLType APIs to Manipulate XML Data
	8 PL/SQL API for XMLType
	Introducing PL/SQL APIs for XMLType
	Backward Compatibility with XDK for PL/SQL, Oracle9i Release 1 (9.0.1)
	Differences Between PL/SQL API for XMLType and XDK for PL/SQL

	PL/SQL APIs For XMLType Features
	Lazy XML Loading (Lazy Manifestation)
	XMLType Datatype Now Supports XML Schema

	With PL/SQL APIs for XMLType You Can Modify and Store XML Elements

	PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	Introducing W3C Document Object Model (DOM) Recommendation
	W3C DOM Extensions Not Supported in This Release
	Supported W3C DOM Recommendations
	Difference Between DOM and SAX

	PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
	Enhanced Performance

	Designing End-to-End Applications Using XDK and Oracle XML DB
	Using PL/SQL DOM API for XMLType: Preparing XML Data
	Generating an XML Schema Mapping to SQL Object Types
	DOM Fidelity for XML Schema Mapping

	Wrapping Existing Data into XML with XMLType Views
	PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods
	Non-Supported DBMS_XMLDOM Methods in Release 2 (9.2.0.2)

	PL/SQL DOM API for XMLType (DBMS_XMLDOM) Exceptions
	PL/SQL DOM API for XMLType: Node Types
	Working with XML Schema-Based XML Instances
	DOM NodeList and NamesNodeMap Objects
	PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequence
	PL/SQL DOM API for XMLType Examples

	PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
	PL/SQL Parser API for XMLType: Features
	PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence
	PL/SQL Parser API for XMLType Example

	PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
	Enabling Transformations and Conversions with XSLT
	PL/SQL XSLT Processor for XMLType: Features
	PL/SQL XSLT Processor API (DBMS_XSLPROCESSOR): Methods
	PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence
	PL/SQL XSLT Processor for XMLType Example

	9 Java API for XMLType
	Introducing Java DOM API for XMLType
	Java DOM API for XMLType
	Accessing XML Documents in Repository
	Accessing XML Documents Stored in Oracle9i Database (Java)
	Using JDBC
	How Java Applications Use JDBC to Access XML Documents in Oracle XML DB

	Using JDBC to Manipulate XML Documents Stored in a Database

	Java DOM API for XMLType Features
	Creating XML Schema-Based Documents
	JDBC/SQLJ

	Java DOM API for XMLType Classes
	Non-Supported Java Methods
	Java DOM API for XMLType: Calling Sequence

	Part IV� Viewing Existing Data as XML
	10 Generating XML Data from the Database
	Oracle XML DB Options for Generating XML Data From Oracle9i Database
	Generating XML Using SQLX Functions
	Generating XML Using Oracle Extensions to SQLX
	Generating XML Using DBMS_XMLGEN
	Generating XML Using SQL Functions
	Generating XML with XSQL Pages Publishing Framework
	Generating XML Using XML SQL Utility (XSU)

	Generating XML from the Database Using SQLX Functions
	XMLElement() Function
	XML_Attributes_Clause

	XMLForest() Function
	XMLSEQUENCE() Function
	XMLConcat() Function
	XMLAgg() Function
	Generating XML from the Database Using SQLX Functions
	XMLColAttVal() Function
	Generating XML from Oracle9i Database Using DBMS_XMLGEN
	Sample DBMS_XMLGEN Query Result
	DBMS_XMLGEN Calling Sequence

	Generating XML Using Oracle-Provided SQL Functions
	SYS_XMLGEN() Function
	SYS_XMLGEN Syntax
	Why is SYS_XMLGEN() so Powerful?
	Using XMLFormat Object Type

	SYS_XMLAGG() Function
	Generating XML Using XSQL Pages Publishing Framework
	Generating XML Using XML SQL Utility (XSU)

	11 XMLType Views
	What Are XMLType Views?
	Creating Non-Schema-Based XMLType Views
	Creating XML Schema-Based XMLType Views
	Creating XML Schema-Based XMLType Views Using SQL/XML Generation Functions
	Step 1. Register XML Schema, emp_simple.xsd
	Step 2. Create XMLType View Using SQL/XML Functions
	Using Namespaces with SQL/XML Functions

	Creating XMLType Views Using Object Types and Views
	Step 1. Create Object Types
	Step 2. Create or Generate XMLSchema, emp.xsd
	Step 3. Register XML Schema, emp.xsd
	Step 4a. Create XMLType View Using the One-Step Process
	Step 4b. Create XMLType View Using the Two-Step Process by First Creating an Object View
	Step 1. Create Object Types
	Step 2. Register XML Schema, dept.xsd
	Step 3a. Create XMLType Views on Relational Tables
	Step 3b. Create XMLType Views on Relational Tables using SQL functions

	Creating XMLType Views From XMLType Tables
	Referencing XMLType View Objects Using REF()
	DML (Data Manipulation Language) on XMLType Views
	Query Rewrite on XMLType Views
	Query Rewrite on XML Schema-Based Views
	Query Rewrite on Non-Schema-Based XMLType Views

	Ad-Hoc Generation of XML Schema-Based XML
	Validating User-Specified Information

	12 Creating and Accessing Data Through URLs
	How Oracle9i Database Works with URLs and URIs
	Accessing and Processing Data Through HTTP
	Creating Columns and Storing Data Using UriType
	UriFactory Package

	URI Concepts
	What Is a URI?
	How to Create a URL Path from an XML Document View
	UriType Objects Can Use Different Protocols to Retrieve Data

	Advantages of Using DBUri and XDBUri

	UriTypes Store Uri-References
	Advantages of Using UriTypes
	UriType Functions

	HttpUriType Functions
	getContentType() Function
	getXML() Function

	DBUri, Intra-Database References
	Formulating the DBUri
	Notation for DBUriType Fragments
	DBUri Syntax Guidelines
	Using Predicate (XPath) Expressions in DBUris

	Some Common DBUri Scenarios
	Identifying the Whole Table
	Identifying a Particular Row of the Table
	Identifying a Target Column
	Retrieving the Text Value of a Column
	How DBUris Differ from Object References
	DBUri Applies to a Database and Session
	Where Can DBUri Be Used?

	DBUriType Functions
	getContentType() Function
	getClob() and getBlob() Functions

	XDBUriType
	How to Create an Instance of XDBUriType

	Creating Oracle Text Indexes on UriType Columns
	Using UriType Objects
	Storing Pointers to Documents with UriType
	Using the Substitution Mechanism

	Using HttpUriType and DBUriType

	Creating Instances of UriType Objects with the UriFactory Package
	Registering New UriType Subtypes with the UriFactory Package

	Why Define New Subtypes of UriType?
	SYS_DBURIGEN() SQL Function
	Rules for Passing Columns or Object Attributes to SYS_DBURIGEN()
	SYS_DBURIGEN Examples
	Returning Partial Results
	RETURNING Uri-Refs

	Turning a URL into a Database Query with DBUri Servlet
	DBUri Servlet Mechanism
	DBUri Servlet: Optional Arguments

	Installing DBUri Servlet
	DBUri Security
	Configuring the UriFactory Package to Handle DBUris

	Part V� Oracle XML DB Repository: Foldering, Security, and Protocols
	13 Oracle XML DB Foldering
	Introducing Oracle XML DB Foldering
	Oracle XML DB Repository
	Repository Terminology

	Oracle XML DB Resources
	Contents Element in Resource Index
	any Element
	Where Exactly Is Repository Data Stored?
	Generated Table Names
	Defining Structured Storage for Resources

	Pathname Resolution
	Deleting Resources

	Accessing Oracle XML DB Repository Resources
	Navigational or Path Access
	Accessing Oracle XML DB Resources Using Internet Protocols
	Where You Can Use Oracle XML DB Protocol Access
	Protocol Access Calling Sequence
	Retrieving Oracle XML DB Resources
	Storing Oracle XML DB Resources
	Using Internet Protocols and XMLType: XMLType Direct Stream Write

	Query-Based Access
	Accessing Repository Data Using Servlets
	Accessing Data Stored in Oracle XML DB Repository Resources
	Managing and Controlling Access to Resources
	Extending Resource Metadata Properties
	Frequently Asked Questions (FAQs): XML DB Repository
	Why Does XML Repository Hierarchical Index Not Work?

	14 Oracle XML DB Versioning
	Introducing Oracle XML DB Versioning
	Oracle XML DB Versioning Features
	Oracle XML DB Versioning Terms Used in This Chapter
	Oracle XML DB Resource ID and Path Name

	Creating a Version-Controlled Resource (VCR)
	Version Resource or VCR Version
	Resource ID of a New Version
	Accessing a Version-Controlled Resource (VCR)
	Updating a Version-Controlled Resource (VCR)
	Checkout
	Checkin
	Uncheckout
	Update Contents and Properties

	Access Control and Security of VCR
	Frequently Asked Questions: Oracle XML DB Versioning
	Can I Switch a VCR to a Non-VCR?
	How Do I Access the Old Copy of a VCR After Updating It?
	Can We Use Version Control for Data Other Than Oracle XML DB Data?

	15 RESOURCE_VIEW and PATH_VIEW
	Oracle XML DB RESOURCE_VIEW and PATH_VIEW
	RESOURCE_VIEW Definition and Structure
	PATH_VIEW Definition and Structure
	Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW
	Operations You Can Perform Using UNDER_PATH and EQUALS_PATH

	Resource_View, Path_View API
	UNDER_PATH
	EQUALS_PATH
	PATH
	DEPTH
	Using the Resource View and Path View API
	Accessing Paths and Repository Resources: Examples
	Inserting Data into a Repository Resource: Examples
	Deleting Repository Resources: Examples
	Deleting Non-Empty Containers Recursively

	Updating Repository Resources: Examples

	Working with Multiple Oracle XML DB Resources Simultaneously
	Tuning XML DB to Obtain Faster Queries
	Searching for Resources Using Oracle Text

	16 Oracle XML DB Resource API for PL/SQL (DBMS_XDB)
	Introducing Oracle XML DB Resource API for PL/SQL
	Overview of DBMS_XDB
	DBMS_XDB: Oracle XML DB Resource Management
	Using DBMS_XDB to Manage Resources, Calling Sequence

	DBMS_XDB: Oracle XML DB ACL-Based Security Management
	Using DBMS_XDB to Manage Security, Calling Sequence

	DBMS_XDB: Oracle XML DB Configuration Management
	Using DBMS_XDB for Configuration Management, Calling Sequence

	DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes
	Using DBMS_XDB to Rebuild Hierarchical Indexes, Calling Sequence

	17 Oracle XML DB Resource API for Java
	Introducing Oracle XML DB Resource API for Java
	Using Oracle XML DB Resource API for Java
	Parameters for Oracle XML DB Resource API for Java
	Oracle XML DB Resource API for Java: Examples

	18 Oracle XML DB Resource Security
	Introducing Oracle XML DB Resource Security and ACLs
	How the ACL-Based Security Mechanism Works

	Access Control List Terminology
	Oracle XML DB ACL Features
	ACL Interaction with Oracle XML DB Table/View Security
	LDAP Integration and User IDs
	Oracle XML DB Resource API for ACLs (PL/SQL)
	How Concurrency Issues Are Resolved with Oracle XML DB ACLs

	Access Control: User and Group Access
	ACE Elements Specify Access Privileges for Principals

	Oracle XML DB Supported Privileges
	Atomic Privileges
	Aggregate Privileges

	ACL Evaluation Rules
	Using Oracle XML DB ACLs
	Updating the Default ACL on a Folder

	ACL and Resource Management
	How to Set Resource Property ACLs
	Default Assignment of ACLs
	Retrieving ACLs for a Resource
	Changing Privileges on a Given Resource
	Restrictions for Operations on ACLs

	Using DBMS_XDB to Check Privileges
	Row-Level Security for Access Control Security

	19 Using FTP, HTTP, and WebDAV Protocols
	Introducing Oracle XML DB Protocol Server
	Session Pooling
	HTTP Performance is Improved
	Java Servlets

	Oracle XML DB Protocol Server Configuration Management
	Configuring Protocol Server Parameters
	Interaction with Oracle XML DB Filesystem Resources
	Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents
	Event-Based Logging

	Using FTP and Oracle XML DB Protocol Server
	Oracle XML DB Protocol Server: FTP Features
	Non-Supported FTP Features
	Using FTP on Standard or Non-Standard Ports
	FTP Server Session Management

	Using HTTP and Oracle XML DB Protocol Server
	Oracle XML DB Protocol Server: HTTP Features
	Non-Supported HTTP Features
	Using HTTP on Standard or Non-Standard Ports
	HTTP Server and Java Servlets
	Non-ASCII Characters in URLs

	Using WebDAV and Oracle XML DB
	Oracle XML DB WebDav Features
	Oracle XML DB’s Non-Supported WebDAV Features

	Using Oracle XML DB and WebDAV: Creating a WebFolder in Windows 2000

	20 Writing Oracle XML DB Applications in Java
	Introducing Oracle XML DB Java Applications
	Which Oracle XML DB APIs Are Available Inside and Outside the Database?

	Design Guidelines: Java Inside or Outside the Database?
	HTTP: Accessing Java Servlets or Directly Accessing XMLType Resources
	Accessing Many XMLType Object Elements: Use JDBC XMLType Support
	Use the Servlets to Manipulate and Write Out Data Quickly as XML

	Writing Oracle XML DB HTTP Servlets in Java
	Configuring Oracle XML DB Servlets
	HTTP Request Processing for Oracle XML DB Servlets
	The Session Pool and XML DB Servlets
	Native XML Stream Support
	Oracle XML DB Servlet APIs
	Oracle XML DB Servlet Example
	Installing the Oracle XML DB Example Servlet
	Configuring the Oracle XML DB Example Servlet
	Testing the Example Servlet

	Part VI� Oracle Tools that Support Oracle XML DB
	21 Managing Oracle XML DB Using Oracle Enterprise Manager
	Introducing Oracle XML DB and Oracle Enterprise Manager
	Getting Started with Oracle Enterprise Manager and Oracle XML DB
	Enterprise Manager: Installing Oracle XML DB
	You Must Register Your XML Schema with Oracle XML DB

	Oracle Enterprise Manager Oracle XML DB Features
	Configure Oracle XML DB
	Create and Manage Resources
	Manage XML Schema and Related Database Objects

	The Enterprise Manager Console for Oracle XML DB
	XML Database Management Window: Right-Hand Dialog Windows
	Hierarchical Navigation Tree: Navigator

	Configuring Oracle XML DB with Enterprise Manager
	Viewing or Editing Oracle XML DB Configuration Parameters
	Category: Generic
	Category: FTP
	Category: HTTP

	Creating and Managing Oracle XML DB Resources with Enterprise Manager
	Administering Individual Resources
	General Resources Page
	Security Page

	Individual Resource Content Menu
	Create Resource
	Grant Privileges On...
	Show Contents
	Show Grantee

	Enterprise Manager and Oracle XML DB: ACL Security
	Granting and Revoking User Privileges with User > XML Tab
	Resources List
	Available Privileges List
	Granted List

	XML Database Resource Privileges

	Managing XML Schema and Related Database Objects
	Navigating XML Schema in Enterprise Manager
	Registering an XML Schema
	General Page
	Options Page

	Creating Structured Storage Infrastructure Based on XML Schema
	Creating Tables
	Creating Views
	Creating Function-Based Indexes
	Creating an XMLType Table
	Creating Tables with XMLType Columns
	Creating a View Based on XML Schema
	Creating a Function-Based Index Based on XPath Expressions

	22 Loading XML Data into Oracle XML DB
	Loading XMLType Data into Oracle9i Database
	Restoration

	Using SQL*Loader to Load XMLType Columns
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications

	23 Importing and Exporting XMLType Tables
	Overview of IMPORT/EXPORT Support in Oracle XML DB
	Resource s and Foldering Do Not Fully Support IMPORT/EXPORT

	Non-XML Schema-Based XMLType Tables and Columns
	XML Schema-Based XMLType Tables
	Guidelines for Exporting Hierarchy-Enabled Tables

	IMPORT/EXPORT Syntax and Examples
	IMPORT/EXPORT Example Assumptions
	User Level Import/Export
	Table Mode Export

	Metadata in Repository is Not Exported During a Full Database Export
	Importing and Exporting with Different Character Sets

	Part VII� XML Data Exchange Using Advanced Queueing
	24 Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams
	What Is AQ?
	How Do AQ and XML Complement Each Other?
	AQ and XML Message Payloads
	AQ Enables Hub-and-Spoke Architecture for Application Integration
	Messages Can Be Retained for Auditing, Tracking, and Mining
	Viewing Message Content with SQL Views
	Advantages of Using AQ

	Oracle Streams and AQ
	Streams Message Queuing

	XMLType Attributes in Object Types
	Internet Data Access Presentation (IDAP)
	IDAP Architecture
	XMLType Queue Payloads

	Enqueue Using AQ XML Servlet
	Dequeue Using AQ XML Servlet
	IDAP and AQ XML Schemas
	Frequently Asked Questions (FAQs): XML and Advanced Queuing
	Can I Store AQ XML Messages with Many PDFs as One Record?
	Do I Specify Payload Type as CLOB First, Then Enqueue and Store?
	Can I Add New Recipients After Messages Are Enqueued?
	How Does Oracle Enqueue and Dequeue and Process XML Messages?
	How Can I Parse Messages with XML Content from AQ Queues?
	Can I Prevent the Listener from Stopping Until the XML Document Is Processed?
	How Can I Use HTTPS with AQ?
	What Are the Options for Storing XML in AQ Message Payloads?
	Can We Compare IDAP and SOAP?

	Part VIII� Oracle XML DB Case Studies
	25 Oracle XML DB Case Study: Web Services Retrieve and Display XML Documents
	XML DB Web Services Case Study: Overview
	What Happens When You Enter a PO Number?
	Oracle XML Db Web Services: Main Components

	Running XML DB Web Services Case Study: Implementation Steps
	Before You Run this Case Study Demo
	XDBServicesService.wsdl
	XDBServicesDeploymentDescriptor.dd
	XDBServicesStub.java

	Steps for Implementing the XML DB Web Services Case Study
	1. Run XDBServices.java
	2. Implement GetPOXMLServlet.java
	3. Deploy XDBServices Class to the Oracle9iAS/Web Services (SOAP) Server
	XDBServicesDeploymentDescriptor.dd
	Web Services: Deployed Service Information for POFetcher Service

	4. Deploy displayPOXML.html to Display Results on Client-Side Web Server
	5. Enter a PO Number and See the Retrieved PO Displayed

	XML DB Web Services: Calling Sequence
	XDBServices.java
	getPOXMLServlet.java

	26 Oracle XML DB Basic Demo
	Prerequisites for Running the XML DB Basic Demo
	Non-Oracle Software
	Oracle Software
	Database SQL*NET and XML DB Configuration
	Verify SQL*NET and XML DB Configuration

	Installing XML DB Basic Demo
	Editing installParameters.xml
	Running the Installation Script

	What is Oracle XML DB?
	New Methods for Navigating and Querying XML
	Several Options for Storing XML in the Database
	Fully Supports XPath Access Methods
	Use XPath Expressions to Query and Update XML
	Oracle XML DB Components

	Starting the XML DB Basic Demo
	0.1 XML DB Demo: Initial Setup (Run Once)
	0.2 XML DB Demo: Resetting the Demo
	1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Support
	1.1 Using SQL to Make Directories
	1.2 Using FTP to Load Configuration Files

	2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML
	2.1 Registering XML Schema
	2.2 Objects Are Created With XML Schema Registration

	3.0 XML DB Demo: How XML Files Conform to the XML Schema
	3.1 Using FTP to Load Instance Documents
	3.2 Using SQL to Add Constraints to XML Data
	3.3 Using FTP to Upload XML Documents that Attempt to Violate the Constraints

	4.0 XML DB Demo: Simple XPath Queries Against XML Documents
	4.1 More Complex XPath Queries on XML Documents
	4.2 EXPLAIN Plan of Queries on XML Tables
	4.3 Using extractValue() and an XPath Expression to Create XML Indexes
	4.4 Using EXPLAIN Plan to Determine if the Index is Being Used

	5.0 XML DB Demo: Using HTTP to Access XML Content
	5.1 SQL Can Display the Retrieved XML Document Through XDBUriServlet
	5.2 Editing XML Documents with WebDAV-Enabled Tools
	5.3 Displaying and Verifying Updates Made to XML Documents, Using SQL
	5.4 Updating XML Documents Using SQL
	5.5 Displaying Changes Made to an XML Document Using Both XML and SQL

	6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQL
	6.1 XPath-Based Querying of RESOURCE_VIEWS Using Hierarchical Indexing

	7.0 XML DB Demo: Using Views to Access XML from Relational Tools
	7.1 Relational Views of XML Act Like Other Views
	7.2 Querying Using Rollup

	8.0 XML DB Demo: Accessing Content Using DBUriServlet; Transforming Content Using XSL
	8.1 PurchaseOrder Raw XML
	8.2 Using Standard XSL Style Sheets to Transform XML Documents to HTML
	8.3 Transforming PurchaseOrder Using XSLT
	8.4 Creating XMLType Views with SQL
	8.5 Displaying DEPTVIEW Raw XML Using DBUriServlet
	8.6 Transforming DEPTVIEW From XML to HTML Using a Style Sheet
	8.7 Displaying the Transformed DEPTVIEW After XSL Transformation

	9.0 XML DB Demo: OracleText Examples

	A Installing and Configuring Oracle XML DB
	Installing Oracle XML DB
	Installing or Reinstalling Oracle XML DB from Scratch
	Installing a New Oracle XML DB with DBCA
	Dynamic Protocol Registration Registers FTP and HTTP Services with Local Listener
	Changing FTP or HTTP Port Numbers
	Post Installation

	Installing a New Oracle XML DB Manually Without DBCA
	Post Installation

	Reinstalling Oracle XML DB

	Upgrading an Existing Oracle XML DB Installation
	Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
	Migrating Data From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)
	Before the Upgrade
	When is Data Non-Migratable to Release 2 (9.2.0.2)?
	The Release 2 (9.2.0.2) Oracle XML DB Upgrade Process
	Oracle XMl DB: Error Handling When Migrating to Release 2 (9.2.0.2)
	Summary of Functions that Trigger Migration of a Table

	Configuring Oracle XML DB
	Oracle XML DB Configuration File, xdbconfig.xml
	Top Level Tag <xdbconfig>
	<sysconfig>
	<userconfig>
	<protocolconfig>
	<httpconfig>

	Oracle XML DB Configuration Example
	Oracle XML DB Configuration API
	Get Configuration, cfg_get()
	Update Configuration, cfg_update()
	Refresh Configuration, cfg_refresh()

	B XML Schema Primer
	Introducing XML Schema
	Purchase Order, po.xml
	Association Between the Instance Document and Purchase Order Schema
	Purchase Order Schema, po.xsd
	Purchase Order Schema, po.xsd
	Prefix xsd:

	XML Schema Components
	Primary Components
	Secondary Components
	Helper Components
	Complex Type Definitions, Element and Attribute Declarations
	Defining the USAddress Type
	Defining PurchaseOrderType
	Occurrence Constraints: minOccurs and maxOccurs
	Default Attributes
	Default Elements
	Global Elements and Attributes

	Naming Conflicts

	Simple Types
	Defining myInteger, Range 10000-99999
	Defining the Simple Type “SKU”
	Using the Enumeration Facet
	List Types
	Creating a List of myInteger's
	List Type for Six US States

	Union Types
	Union Type for Zipcodes

	Anonymous Type Definitions
	Two Anonymous Type Definitions

	Element Content
	Complex Types from Simple Types
	Deriving a Complex Type from a Simple Type

	Mixed Content
	Snippet of Customer Letter
	Snippet of Schema for Customer Letter

	Empty Content
	An Empty Complex Type
	Shorthand for an Empty Complex Type

	AnyType

	Annotations
	Annotations in Element Declaration & Complex Type Definition

	Building Content Models
	Nested Choice and Sequence Groups
	An 'All' Group
	Illegal Example with an 'All' Group

	Attribute Groups
	Adding Attributes to the Inline Type Definition
	Adding Attributes Using an Attribute Group

	Nil Values
	How DTDs and XML Schema Differ
	XML Example
	DTD Example
	XML Schema Example
	DTD Limitations
	XML Schema Features Compared to DTD Features
	Instance XML Documents

	Converting Existing DTDs to XML Schema?

	XML Schema Example, PurchaseOrder.xsd

	C XPath and Namespace Primer
	Introducing the W3C XML Path Language (XPath) 1.0 Recommendation
	XPath Models an XML Document as a Tree of Nodes

	The XPath Expression
	Evaluating Expressions with Respect to a Context
	Evaluating Subexpressions

	XPath Expressions Often Occur in XML Attributes

	Location Paths
	Location Path Syntax Abbreviations
	Location Path Examples Using Unabbreviated Syntax
	Location Path Examples Using Abbreviated Syntax
	Attribute Abbreviation @
	Path Abbreviation //
	Location Step Abbreviation .
	Location Step Abbreviation ..
	Abbreviation Summary

	Relative and Absolute Location Paths
	Location Path Syntax Summary

	XPath 1.0 Data Model
	Nodes
	Root Nodes
	Element Nodes
	Text Nodes
	Attribute Nodes
	Namespace Nodes
	Processing Instruction Nodes
	Comment Nodes
	Expanded-Name
	Document Order

	Introducing the W3C XML Path Language (XPath) 2.0 Working Draft
	XPath 2.0 Expressions

	Introducing the W3C Namespaces in XML Recommendation
	What Is a Namespace?
	URI References
	Notation and Usage
	Declaring Namespaces
	Attribute Names for Namespace Declaration
	When the Attribute Name Matches the PrefixedAttName
	When the Attribute Name Matches the DefaultAttName
	Namespace Constraint: Leading "XML"

	Qualified Names
	Qualified Name Syntax
	What is the Prefix?

	Using Qualified Names
	Element Types
	Attribute

	Namespace Constraint: Prefix Declared
	Qualified Names in Declarations

	Applying Namespaces to Elements and Attributes
	Namespace Scoping
	Namespace Defaulting
	Uniqueness of Attributes
	Conformance of XML Documents

	Introducing the W3C XML Information Set
	Namespaces
	Entities

	End-of-Line Handling
	Base URIs
	Unknown and No Value
	Synthetic Infosets

	D XSLT Primer
	Introducing XSL
	The W3C XSL Transformation Recommendation Version 1.0
	Namespaces in XML
	XSL Stylesheet Architecture

	XSL Transformation (XSLT)
	XML Path Language (Xpath)
	CSS Versus XSL
	Cascading Stylesheets (CSS)
	XSL

	XSL Stylesheet Example, PurchaseOrder.xsl

	E Java DOM API for XMLType, Resource API for Java: Quick Reference
	Java DOM API For XMLType
	Non-Supported Java Methods

	Oracle XML DB Resource API for Java

	F Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick Reference
	XMLType API
	PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	PL/SQL Parser for XMLType (DBMS_XMLPARSER)
	PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
	DBMS_XMLSCHEMA
	Oracle XML DB XML Schema Catalog Views
	Resource API for PL/SQL (DBMS_XDB)
	DBMS_XMLGEN
	RESOURCE_VIEW, PATH_VIEW
	DBMS_XDB_VERSION
	DBMS_XDBT

	G Example Setup scripts. Oracle XML DB - Supplied XML Schemas
	Example Setup Scripts
	Chapter 3 Examples Set Up Script: Creating User and Directory
	Chapter 3 Examples Set Up Script: Granting Privileges, Creating Table...
	Loading Files

	Chapter 3 Examples Script: invoice.xml
	Chapter 3 Examples Script: PurchaseOrder.xml
	Chapter 3 Examples Script: FTP Script
	Chapter 3 Examples Script: Configuring FTP and HTTP Ports

	RESOURCE_VIEW and PATH_VIEW Database and XML Schema
	Resource View Definition and Structure
	PATH_VIW Definition and Structure

	XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources
	XDBResource.xsd

	acl.xsd: XML Schema for Representing Oracle XML DB ACLs
	ACL Representation XML Schema, acl.xsd
	acl.xsd

	xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
	xdbconfig.xsd

	Glossary
	Index

