Oracle9

XML Database Developer’s Guide - Oracle XML DB

Release 2 (9.2)

October 2002
Part No. A96620-02

ORACLE

Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2)
Part No. A96620-02

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Shelley Higgins

Graphics: Valarie Moore

Contributing Authors: Nipun Agarwal, Abhay Agrawal, Omar Alonso, Sandeepan Banerjee, Mark
Bauer, Ravinder Booreddy, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao, Mark Drake, Fei Ge,
Wenyun He, Thuvan Hoang, Sam ldicula, Neema Jalali, Bhushan Khaladkar, Viswanathan
Krishnamurthy, Muralidhar Krishnaprasad, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick,
Nicolas Montoya, Steve Muench, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar,
Vipul Shah, Cathy Shea, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha Tarachandani,
Randy Urbano, Priya Vennapusa, James Warner

Contributors: Harish Akali, Deanna Bradshaw, Paul Brandenstein, Lisa Eldridge, Geoff Lee, Susan
Kotsovolos, Sonia Kumar, Roza Leyderman, Diana Lorentz, Yasuhiro Matsuda, Bhagat Nainani, Visar
Nimani, Sunitha Patel, Denis Raphaely, Rebecca Reitmeyer, Ronen Wolf

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, SQL*Plus, SQL*Net, Pro*C, On Oracle,
Oracle Store, ConText, and PL/SQL are trademarks or registered trademarks of Oracle Corporation.
Other names may be trademarks of their respective owners.

Contents

Send US YOUIr COMMENTS ..ottt XXiX
PIEIAICE ... s XXXi
Y8 o |1 o (o1 OO SO XXXii
OFGANTZATION ...ttt bt s bbb bbbt bbbt b et b ettt XXXii
Related DOCUMENTALIONo.oiviiiiieit ettt sttt se ettt e st e b e e XXXVIi
L07] 01V /=] 011 o] o LT OTUS ORISR XXXViii
Documentation ACCESSIDIIITYcooiiiiiiiiri e xli
What's New In Oracle XML DB? ... xliii
Oracle XML DB: Oracle9i Release 2 (9.2.0.2): ENhaNCEMENTS.........cccovirvireiineninensense e xliii
Oracle XML DB, Oracle9i Release 2 (9.2.0.1): XMLType Enhancements..........cccccoovevvevveivnninennn. xlv
Oracle XML DB, Oracle9i Release 2 (9.2.0.1): REPOSITONYc.cccveririrerinenie e Xlvii
Oracle Tools Enhancements for Oracle XML DBcccooiiriiniinnieneienee e xlix
Oracle TEXE ENNANCEMENTScoiiiieeee ettt xlix
Oracle Advanced Queuing (AQ) SUPPOIT.....coiiiiiiierieieie ettt s s xlix
Oracle XDK SUPPOIt FOr XIMLTYPE ...covciiiiiieeiietsie ettt sttt I

Part| Introducing Oracle XML DB

1 Introducing Oracle XML DB

INtroducing Oracle XIML DB ..ottt 1-2
Not a Separate Database SEIVETcccciiiieieiceee et sre e 1-2
Benefits Of Oracle XIML DB.........o et 1-3

Key Features of Oracle XIML DBccoco oottt 1-4

Oracle XML DB and XML SCREMAcoeiiiiiiiieieieeseees et sre bt sne 1-7
Oracle XIML DB AFCNITECIUIEcooi ittt ettt sb e sbe e 1-7
XMLType Tables and VIEWS STOFaQgEcoe ittt sttt 1-9
Oracle XML DB REPOSITONY ..ottt sttt sn e sn e ene e ene e 1-10
XMLTYpe Storage ArChITECIUIEcccvie et renne s 1-11
Cached XML Object Management Archite€Ctureccovviveiieeieciie i 1-14
XML RePOSITOrY ArCHITECTUIEoviiiiiiiiiiet s 1-15
Why Use Oracle XIML DB?ocoviiicire ettt s a e a e enesresnenne s 1-16
Unifying Data and Content with Oracle XML DB.........ccccooiiiiiiicc e 1-17
Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents........ 1-20
Oracle XML DB Helps You Integrate Applications..........ccccvcvvviivieiienienienenese e 1-21
When Your Data Is Not XML You Can Use XMLTYPE VIEWS.......ccccereriirieieinieisenennens 1-21
Searching XML Data Stored in CLOBS Using Oracle TeXt ... 1-23
Building Oracle XML DB XML Messaging Applications with Advanced Queueing......... 1-23
Managing Oracle XML DB Applications with Oracle Enterprise Manager.............cc.ccoceu... 1-24
Requirements for Running Oracle XML DB ..ot 1-25
Standards Supported by Oracle XIML DBc.cociiiiiicicese e 1-25
Oracle XML DB TeChNiCal SUPPOITcc.ooiiiiiiiiieiieeeee ettt 1-26
Terminology Used in ThisS ManUaL..........c.cccoiiiiiiiiiii e 1-26
Oracle XML DB Examples Used in This Manualcccccoovivviiininiicseceeeeseee e 1-29

Getting Started with Oracle XML DB

Getting Started With Oracle XIML DBi........ccccooiiiciiiececese e snens 2-2
INStalling Oracle XIMIL DB.........ccv oottt ste e ste e ae e saenreens 2-2
When to Use the Oracle XIML DB ..ot 2-2
Designing Your XML APPHICAtION ... 2-3
Oracle XML DB Design Issues: INtrodUCLIONccoiiiiiiie it 2-3
2T B - - E TSRO U PP PRSP 2-3
. ACCESS .ttt b b e btk e bt b e et bbb e b 2-3
(o o] o] [Tor= U o] o =T o T U F- To - T T USROS ORTPRPR 2-4
0. PrOCESSING .ttt bbbt b e b e bbbt bbb bbbt b et b e bt et e 2-4
3] 0] = T TS 2-4
Oracle XML DB Application Design: a. How Structured Is Your Data?...........ccocoevviniinennns 2-5
Oracle XML DB Application Design: b. AcCessS MOdEIS ..o 2-7

Oracle XML DB Application Design: c. Application Languageccccooeveeniencnineneiennn 2-8

Oracle XML DB Application Design: d. Processing Models..........c.cccoviieiiiiieniennenne 2-9
Oracle XML DB Design: Storage MOEIS..........cccoeviiciiieieiiciese e 2-10
USING XMLTYPE TABIES ... et 2-11
USING XIMLTYPE VIBWS ...ttt bbbttt 2-12

Using Oracle XML DB

Storing Data in an XMLType Column or XMLType Table........ccccoooiiiiiniiiiiieeee 3-3
Accessing Data in XMLType Columns or XMLType Tables........ccocovvveiiicicicic e 3-5
Using XPath With Oracle XIMIL DBi........ccooioiiiiie ettt st 3-5
USING EXISESNOTE() ... evvieeiiteieie st bbbttt 3-7
L0 [To =Y = Tet AV 110 1= (OSSR 3-8
L0 YT (o T =1 = U1 TSSO SRS 3-10
USING XIMLSEQUENCE() ...ttt bbbttt 3-11
Updating XML Documents wWith updateXML()cccooveveiniiincnsere e 3-13
Introducing the W3C XSLT RecOmMmMeENdatioN...........cccccoveiiiieiinieie e 3-15
Using XSL/XSLT with Oracle XML DBccoiiiiiiiiiiieii et 3-16
Other XMLTYPE MELROAS.ociii ittt e et nne s 3-17
Introducing the W3C XML Schema Recommendationc.cccceovvveiiiicne e 3-18
Using XML Schema with Oracle XML DB..........cccoiiiiiniiniinieseseee s 3-19
XMLSchema-INstance NaMESPACEcoverveieeeeeeeese et se et sie et e e e e e eseeseeseesesresresnens 3-21
Validating an XML Document Using an XML Schema.........c.ccccccviviviiiiie v 3-22
Storing XML: Structured or UNStructured STOFage...........covvveiriiinieinieinesesesiesee e 3-24
Data Manipulation Language (DML) INdependencCe..........ccovvevviererienenenierieseeneeesese s 3-27
DOM Fidelity in Structured and Unstructured StOragecccccevveievieeiesiese e 3-27
Structured Storage: XML Schema-Based Storage of XMLTYPE ... 3-28
Structured Storage: Storing complexType Collectionsccccvvvveverereseiceece e 3-32
Structured Storage: Data Integrity and Constraint Checking........c..cccoocevovevevveieve e, 3-33
Oracle XIML DB REPOSITONYcoveuiriiiirieiiriiiitiisteietesee ettt sb et b et n et sb e e e 3-35
Query-Based Access to Oracle XML DB REPOSITOINY......ccccovvviieiiriniiesineneseesieieresesesesesnens 3-37
USING RESOURCE_VIEW ..ottt 3-37
USING PATH_VIEW ...ttt ettt se e nenn 3-37
Creating New Folders and DOCUMENTScovcveieinieiece e e e snesnens 3-38
QuErying ReSOUICe DOCUMIENTS.........cciieiiiie ittt st sre s 3-38
UPAating RESOUITESoviiiieiiieiiieit ettt bbb bbbttt n s 3-38

DEIELING RESOUITESvveuiicieeie ettt et et sae et e sae e s te e e s teeneesteesaesteesbesreensenreenes 3-39

Storage OPLiONS FOIr RESOUITESc.ciiuiiiiiiicierieie ettt ettt 3-40
Defining Your Own Default Table Storage for XML Schema-Based Documents................ 3-40
Accessing XML Schema-Based CONENTccv oo 3-44
Accessing Non-Schema-Based Content With XDBUITYPEcoovviiiiiiniineiiccnieiens 3-44
Oracle XML DB ProtOCOI SEIVEIS.........ccooiiriiiieeiiee sttt 3-44

USING FTP PrOtOCOI SEIVENoiiiii ettt sttt ettt et s re et s taesre e stennaens 3-45

Using HTTP/WeDDAV ProtoCOl SEIVEN ..ottt 3-49

Part Il Storing and Retrieving XML Data in Oracle XML DB

4

vi

Using XMLType

WAL IS XIMILTYPE? ..ottt bbb bbbt b ettt 4-2
Benefits of the XMLType Data TYpe and APl ... 4-3
WHEN 10 USE XIMLTYPE ...tttk bbb e bttt ettt eb bbb e 4-4
Storing XMLType Data in Oracle XML DB..........ccooiiiiiiiiiiiisceie e 4-4
Pros and Cons of XML Storage Options in Oracle XML DBccccocoviveievcie s 4-5
When to Use CLOB Storage for XIMLTYPEcooiiiiiiiiiiirenesie e 4-6
XMLTYPE MemDBEr FUNCLIONS ...ttt bbbttt s 4-7
HOW t0 USE the XIMILTYPE AP ..ottt st ne e sre s 4-7
Creating, Adding, and Dropping XMLType COlUMNSccocrininiiineeeeeees e 4-8
Inserting Values into an XMLTYPe COIUMN........ccoiiiiiiiiicee e 4-9
Using XMLType in an SQL StatemMENT..........covcveiiiieii s 4-9
Updating an XIMLTYPE COIUMNcoiii s 4-10
Deleting a Row Containing an XMLTYpPe COlUMN ..o 4-10
Guidelines for Using XMLType Tables and Columns...........ccccvvviviine v 4-11
Specifying Storage Characteristics on XMLTYype Columns.........ccccoerenenenencieeienceee 4-12
Changing Storage Options on an XMLType Column Using XMLDataccccceceevnnne. 4-13
Specifying Constraints on XMLTYPe COIUMNS.......cccovciiieii i 4-14
Manipulating XML Data in XMLType Columns/Tablesccocoiiiiininiiiniceence 4-14
Inserting XML Data into XMLType Columns/Tables ... 4-15
USING INSERT StatemMENTSccuiiviieie ettt naene e aneenenns 4-15
Selecting and QUErNYING XIML Datalccccceiieiiiiicisicsie ettt 4-17
SEIECTING XML DAc.ccviieeiieiiiieie ettt ettt bbb eb et b e ene b 4-17
QUETYING XIML DALc.vcieeiiceisese sttt sttt sa e e e e e eneenaeneaneenenes 4-18

Using XPath Expressions for Searching XML DOCUMENTScccooiiineieienciceecceeie e 4-18

Querying XML Data Using XMLType Member FUNCLIONSccocooveinenneneenceneeee 4-19
EXISESNOAE FUNCLION ...ttt et 4-20
EXIFACT () FUNCLIONciiicc ettt et e sbe et e s reeaesteesaesraetenreens 4-21
EXLraCctValue() FUNCTIONcooiiiiiee bbb 4-24
More SQL Examples That QUEINY XIMLcccoiiiiieieiercece e 4-26
Updating XML Instances and Data in Tables and ColumnNS.........cccccoceiivineiincicnenccee 4-31
updateXML() SQL FUNCLION ..ottt 4-31
Creating Views of XML Data with updateXML()......cccovrivrirriinininierenese e 4-35
Optimization Of UPAAEXIML()c.ueiirieieieieieieeec ettt sne s 4-35
updateXML() and NULL VAIUES ..ottt 4-36
Updating the Same XML Node More Than ONCe........ccccvcvviiieiinieie v 4-37
XMLTransform() FUNCHIONoooviiiii ettt srenraen 4-37
DEIEtiNg XIML DALA......cecuiiieiiiieiiitit sttt bbbt bbb 4-38
R aTo Iy 1 Y o LT 1 T 1 o o =T S 4-38
INdexing XMLTYPE COIUMINS ..ottt 4-39
Creating Function-Based Indexes on XMLTYype ColumNS.........cccoeiniinennenseneeneeee 4-39
Creating Oracle Text Indexes on XMLTYPe COlUMNSccccvvvreierinerencieeieiesneesese e 4-40

Structured Mapping of XMLType

INtroducing XML SCREMAcccviiii e re et re s nenre e s 5-3
XML Schema and Oracle XIML DB........ccociiiiiiiiieie et 5-3
Using Oracle XML DB and XML SChEM@.......ccceoiiiiiiiiiieiiesesc s 5-5
Why D0 We Need XML SChEMAT?ocv i 5-6
DTD Support in Oracle XIML DB...........coiiiiiiiiiiiieit et 5-7
Introducing DBMS _XMLSCHEMAottt sne e s 5-8
Registering Your XML Schema Before Using Oracle XML DBccccccevvevviveve e, 5-8
Registering Your XML Schema Using DBMS_XMLSCHEMAccccoiiiiininnenneneeee 5-9
Local and Global XML SCHEMEScoeiiiiiiiiiieiie e 5-11
Registering Your XML Schema: Oracle XML DB Sets Up the Storage and Access
INTFASTIUCTUIE ..ottt bbbt bbbttt ettt b et bbb b e 5-13
Deleting Your XML Schema Using DBMS_XMLSCHEMA ... 5-13
Guidelines for Using Registered XML SChEMAS.........cccocviiiiiiieiieneie e sese e 5-14
Objects That Depend on Registered XML SChemasccocviiiiininiiiicceee 5-14

Vii

viii

Creating XMLType Tables, Views, 0r COIUMNS..........cccoiiiiiiiiniee s 5-15

Validating XML Instances Against the XML Schema: schemaValidate()............cccoceevnene. 5-15
Fully Qualified XML SChema URLS ..o 5-16
Transactional Behavior of XML Schema Registration.............ccccovvvevviiviciese e, 5-17
Generating XML Schema Using DBMS_XMLSCHEMA .generateSchema()c.ccccoeuenen. 5-17
XML Schema-Related Methods of XIMLTYPE ..o 5-19
Managing and Storing XML SChEM@.........cccooieiiiicieccce e 5-19
Root XML Schema, XDBSChEMA XSccciiiriiiieecieiirecree et ere s see b staesreesaae s 5-19
How Are XML Schema-Based XMLType Structures Stored?ccocvveveveiereeiveinninnnnnnns 5-20
(B T@ 11V B To 1= 1 SRRSO 5-21
How Oracle XML DB Ensures DOM Fidelity with XML Schema...........c.cocooeniiiiineennn 5-21
DOM Fidelity and SYS_XDBPDSccoiiriiriiiriisessesse et 5-21
Creating XMLType Tables and Columns Based on XML Schema..........cccccccoeieiiiiiinnenn 5-22
SQL Object-Relational Types Store XML Schema-Based XMLType Tables............c.......... 5-23
Specifying SQL Object Type Names with SQLName, SQLType Attributes..............c......... 5-24
SQL Mapping Is Specified in the XML Schema During Registrationcccccceevveene. 5-28
Mapping of Types Using DBMS_XMLSCHEMAcccocoiiiit s 5-31
Setting Attribute Mapping Type INformation ... 5-31
Setting Element Mapping Type INfOrmationcccoocoiiiiiiiinniese e 5-31
XML Schema: Mapping SimpleTyPes 10 SQL. ...t 5-33
simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBScccccvevnene. 5-36
XML Schema: Mapping complexTYPes t0 SQLcoooiiiiiiiiirere e 5-37
Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage..........c.ccccovenvireennne 5-37
Mapping XML Fragments to Large Objects (LOBS)ccccvevveriereneniereseesieeess e 5-39
Oracle XML DB complexType Extensions and Restrictions..........ccocoevevereiiiicnincnccenee 5-41
complexType Declarations in XML Schema: Handling Inheritance.........cccocooeeiine. 5-41
Mapping complexType: simpleContent t0 ObjeCt TYPES ...occvvvvvreririererceeeee e 5-44
Mapping complexType: Any and ANYATHDULES..........ccoiiiiiiiiiinee e 5-45
Handling Cycling Between complexTypes in XML SChema...........ccccvevniniinieneienecne, 5-46
Further Guidelines for Creating XML Schema-Based XML Tables........cc.ccocevvvvvveinivicnnnnnn, 5-49
Specifying Storage Clauses in XMLType CREATE TABLE Statements..........cccccccvevenene. 5-50
Inserting New Instances into XMLTYPe COIUMNSccoiiiiiiiiiiinicneceeesesees 5-51
Query Rewrite with XML Schema-Based Structured Storagec.ccocevvvererereereiesieee e 5-51
What IS QUEIY REWIITE?......ciiiie et et e ene s 5-51
When Does QUETY REWTITTE OCCUI?ciiuiiiiirieisieisie ettt 5-52

What XPath EXPressions Are REWITIEN?cc.oiiiiiiiiiiiie s 5-53

How are the XPaths REWIITIEN?.........cciiiiiie e 5-55
Rewriting XPath Expressions: Mapping Types and ISSUESccccccvvererereerecieresneeneeseens 5-57
XPath Expression Rewrites for eXiStSNOAE()c.cuviriririiiniie e 5-62
Rewrite fOr eXtraCtValUe()ocoiieiiiiieice s 5-65
e Y) (= (0] =) A L - U1) S 5-67
Optimizing Updates USing UPAAtEXIML()cveieiririeririiresiesiesie e 5-69
Creating Default Tables During XML Schema Registration............c.ccocconviniininiincnenns 5-70
Ordered Collections in Tables (OCTS)iiiiiiiieierieecsies e re e snesnens 5-71
Using OCT fOr VARRAY STOFAQE.......cviiiiiiie ettt sve e ste e e sre e e sre s 5-71
Cyclical References Between XML SCHEMAS ..o 5-71
Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues..............c....... 5-74
Why Do | Appear to get Memory Leaks When Using Bind Variables for XPath
EXPIESSIONS? ettt bbb bbb bbbt Rttt b bbbt re e r e 5-74
How Do | Check that Query Rewrite is Working Correctly?...........cccooeiiiiiininiciics 5-77
Why Does the XML DB Query Not Use MY INAEX?c.coivivriivienenie e 5-78
How Do | Specify Attributes in a complexType XML Schema Declaration? 5-79
Why Do the XML Schema and Element Not MatCh?............cocccveiiniiniiicineieec e 5-81
How Do | Pull a Stylesheet From RESOURCE_VIEW [S/MIME]?......cccccevvviveiinivinannn 5-82
Why for Our XML Parser Does selectSingleNode return NULL When the xmins
ATIFDULE IS AT ... et 5-82
Why Do | Get Error ORA-19007: Schema and Element Do Not Match?............cc.ccccoeeee 5-84
Is it Possible to Register XML Schema for SChemas?ccocoovvivivvinienc e 5-86

Transforming and Validating XMLType Data

Transforming XMLTYPE INSTANCES.......cccccviivirieieeeeee ettt sre e s 6-2

XMLTransform() and XMLTYPe.tranSform()ccooiiriiinineieneeeee e 6-2
XMLTransform() EXAMPIEScoiiiiiii et 6-3
Validating XIMLTYPE INSLANCESocviiiiiiiiicicieiee sttt re st sre e s 6-8
Validating XML Data Stored as XMLType: EXamPIes ... 6-10

Searching XML Data with Oracle Text

Searching XML Data With Oracle TEXT ... 7-3
INtrOdUCTNG OFaCIE TEXL ..ot ettt 7-3
Assumptions Made in This Chapter’s EXamPIES.........ccccviiiiniiiieninene e 7-4

Oracle TEXE USEIS ANA ROIES..........oo ittt e s sbae s 7-5

Querying with the CONTAINS OPEIatOrccoviiiiiiieiieieereeie ettt 7-6
Using the WITHIN Operator to Narrow Query Down to Document Sections....................... 7-8
INntroducing SECTION_GROUPS..........coiiiieiitre ettt nsenes 7-8
XML_SECTION_GROUP ..ottt ettt 7-8
AUTO_SECTION_GROUP/ PATH_SECTION_GROUP for INPATH and HASPATH 7-10
Dynamically Adding Sections or Stop Section Using ALTER INDEXccocooiiiiniennne 7-10
WITHIN Syntax for SECtion QUENYING.......ccoeoiiiirieiiieeee et 7-11
WITHIN Operator LIMItatiONScccvieiieriiieieiecccese e se e e e enesresnesnens 7-11
INPATH or HASPATH Operators Search Using XPath-Like EXpressions............cccoceeevnnne. 7-12
Using INPATH Operator for Path Searching in XML DOCUMENTSccooevivenecnieennnn, 7-13
Using HASPATH Operator for Path Searching in XML Documents...........ccccocevveivenennne. 7-19
Building a Query Application With Oracle TeXt..........ccooiiiiiiiiini e 7-21
What ROIE DO YOU NEEA? ..ottt et n et ane s 7-21
Step 1. Create a Section Group PreferenCe...... ..o 7-21
Deciding Which Section Group t0 USE ..ot 7-23
Creating a Section Preference with XML_SECTION_GROUPccccocviiiinencieienee, 7-23
Creating a Section Preference with AUTO_SECTION_GROUP..........cccceveiereivcnniennanens 7-23
Creating a Section Preference with PATH_SECTION_GROUPcccccvciivviiein e, 7-24
Step 2. Set the Preference’s AtIrDULES ... 7-24
2.1 XML_SECTION_GROUP: Using CTX_DDL.add_zone_section........c..c.cccceeververvrvernnnn. 7-25
2.2 XML_SECTION_GROUP: Using CTX_DDL.Add_Attr_Sectionccccccervevvreereennas 7-25
2.3 XML_SECTION_GROUP: Using CTX_DDL.Add_Field_Section...........ccccccoseererinnnes 7-26
2.5 AUTO_SECTION_GROUP: Using CtX_DDL.Add_Stop_Section........c.cccceevervevvevennnnn. 7-28
Step 3. Create an Index Using the Section Preference Created in Step 2........cccccoovvvininnenn 7-28
Step 4. Create YOUr QUETY SYNTAXciiriiiiiiiieieieisesc ettt 7-30
Querying Within Attribute SECTIONScccvvv e 7-30
Presenting the Results Of YOUIr QUETY ..ottt 7-34
XIMLTYPE INAEXING itttk b et b et eb et b et b e b ene e 7-35
You Need QuUery REWTITE PriVIlEgES.......cocv i 7-35
System Parameter is Set to the Default, CTXSYS.PATH_SECTION_GROURP................... 7-36
XMLType Indexes Work Like Other Oracle Text INAeXES.........ccccvrviriireincineineenenes 7-36
Using Oracle Text With Oracle XIML DBi.........cccoooieiiicieccsese s sne s 7-37
Creating an Oracle Text Index on an UriType Columnccocvviiiiieneneiencceeeee, 7-37

Querying XML Data: Use CONTAINS or exiStSNOAe()?........ccovreereiiniiiniineiseneee e 7-38

Full-Text Search Functions in XPath Using ora:CoNtaiNscccceeveviieeie s siennens 7-40

OFQICONTAINS FRATUIES. ... euiitiiti ettt sttt e e et e s e e et eseebeabeebesbeseesnens 7-40
OFQCONTAINS SYNTAX.....eiiiiiiieiiiieseiieseestesie et e e s e e e te s s et e e ste st e aeseeseeneesee e enseneesesneenenresresrens 7-40
Ora:CoNtAINS EXAMPIESoouiiiiiiiie ettt sre s 7-41
Oracle XML DB: Creating a Policy for 0ra:contains()cocoveireinenninseneeneesieeseecneens 7-42
Oracle XML DB: Using CTXXPATH Indexes for existSNOde()ccccvvvviervrerieiieieneeesinsnienns 7-45
Why do We Need CTXXPATH When ConText Indexes Can Perform XPath Searches?. 7-45
CTXXPATH INAEX TYPE ..ottt bbbttt 7-46
Creating CTXXPATH INUEXEScueivirieieieeicieeee ettt se e e enesresnesnens 7-46
Creating CTXXPATH Storage Preferences with CTX_DDL. Statements...........cccccccveneee. 7-47
Performance Tuning CTXXPATH Index: Synchronizing and Optimizing the Index...... 7-47
Using Oracle Text: Advanced TEChNIQUES.........cccuiierierieicisiese s e 7-49
Highlight Support for INPATH/HASPATH Text Operators.........coccoeeererieieeieeineneeenees 7-49
Distinguishing Tags ACI0SS DOCTYPES......cuieiiiiieiaieriate ettt sttt are e sre e 7-51
Specifying Doctype Limiters to Distinguish Between Tagsccoceveverererieieieeieeiesiesennens 7-51
Doctype-Limited and Unlimited Tags in @ Section Group........c.ccocererereneiieieieeeseseeeees 7-52
XML_SECTION_GROUP Attribute SECLIONScoiiiiirieieniesie et 7-52
Constraints for Querying Attribute SECHIONS..........ccoiv i 7-54
RePEAtEd Z0ONE SECLIONSoviiiiie ittt ettt ebe b e 7-55
OVErlappPing ZONE SECLIONScviuiiiiiieiirieicrteest bbbttt 7-55
NESTEA SECLIONS ...ttt ettt et bbbt b e st e et e sbe et e 7-55
Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View.........cccccccvvrvrernnnnne. 7-56
Case Study: Searching XML-Based Conference Proceedingsccccovceveieieneieiinieninienennens 7-57
Searching for Content and Structure in XML DOCUMENTS..........ccccovereriererieieieseeeseneneens 7-57
Searching XML-Based Conference Proceedings Using Oracle Textcccccccvevvvveviennnnnn, 7-58
Searching Conference Proceedings EXample: JSP ... 7-62
Frequently Asked Questions About Oracle TeXt........cccccieiviiiiiinieriennne e 7-65
FAQs: General Questions About Oracle TeXL.........ccviveveiieeiiiieie e 7-65
FAQs: Searching Attribute Values with Oracle TeXt.........cccoiiiiininiicees 7-71
FAQs: Searching XML Documents in CLOBs Using Oracle TeXtccccceveveveivnivcnennnnnn 7-71

Xi

Part Il Using XMLType APIs to Manipulate XML Data

8 PL/SQL API for XMLType

Introducing PL/SQL APIS FOr XIMLTYPE ...c.oiviiiiiitiieie ettt 8-2
Backward Compatibility with XDK for PL/SQL, Oracle9i Release 1 (9.0.1)cccvecvrvrnnne 8-2
PL/ZSQL APIS FOr XMLTYPE FEATUIES.......cciiiiiiieiiiiiiiesicsie sttt 8-3
With PL/SQL APIs for XMLType You Can Modify and Store XML Elements. 8-4

PL/SQL DOM API for XMLType (DBMS_XMLDOM)ccccoviiiiiiiiiiensese e 8-5
Introducing W3C Document Object Model (DOM) Recommendation...........c.ccccceeveiennnns 8-5
PL/SQL DOM API for XMLType (DBMS_XMLDOM): FEAUIEScccvrevreinieriieiiieeas 8-7
Designing End-to-End Applications Using XDK and Oracle XML DB..........ccccccovvivrvnnnnn. 8-8
Using PL/SQL DOM API for XMLType: Preparing XML Data.........cccccoeviiiininnienininen 8-9
Generating an XML Schema Mapping to SQL Object TYPEScccveivreiirerinerineneeneeieeas 8-10
Wrapping Existing Data into XML with XMLTYPE VIEWS.......ccccerirererieieieesesesesennens 8-11
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods...........cccoevvreivinreiennnnn. 8-11
PL/SQL DOM API for XMLType (DBMS_XMLDOM) EXCePLioNSccoevreereenieennens 8-20
PL/SQL DOM API for XMLTYPE: NOUE TYPES ...cvcievirirrieiierieresiesieseseenieieseeseesassesesnessenees 8-20
Working with XML Schema-Based XML INStANCES..........cccccvviviiieiiieieeie e 8-22
DOM NodeList and NamesNodeMap ODJECTS........ccccuriiriiriineieiieseese e 8-22
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequence.............cc.c........ 8-23
PL/SQL DOM API for XMLTYpe EXaMPIESccooviiiiiiiiiiieie e 8-24

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)ccccccviiiiiriiiisiessiesieiesee e 8-26
PL/SQL Parser APl for XMLTYPE: FEALUIEScocviieicese et 8-26
PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence 8-28
PL/SQL Parser APl for XMLTYpe EXamPIe.......ccoiiiiiiiiiiiiieeeee e 8-29

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)ccccovevvereeieisnenseeens 8-30
Enabling Transformations and Conversions With XSLTccccovveviiieii s 8-30
PL/SQL XSLT Processor for XMLTYpPe: FEAtUIES.........cccveiiiiiiieriieinerieeeie e 8-30
PL/SQL XSLT Processor APl (DBMS_XSLPROCESSOR): Methodsccccccoveveivenennnne. 8-31
PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence........... 8-32
PL/SQL XSLT Processor for XMLTYpe EXampPle ... 8-33

9 Java API for XMLType
Introducing Java DOM API FOr XIMLTYPEcviiiiiiiitiieitriet et 9-2

Xii

JavVa DOM AP FOF XIMILTYPE....ccuiiuiiteitiiteite ettt et ettt et st be b b 9-2

Accessing XML Documents Stored in Oracle9i Database (Java)ccccoevveriineincinienn 9-2
Using JDBC to Manipulate XML Documents Stored in a Database...........cccccevvvvvncvninnnnnnns 9-5
Java DOM AP fOr XIMILTYPE FEALUIESc..oiiiiiiiieiieiieeseees ettt 9-15
Java DOM API FOr XIMLTYPE CIASSESc.vcuiiiiiieiinieisieisieisie ettt 9-17
Non-Supported Java MEthOASccccoviiiiie e 9-18
Java DOM API for XMLType: Calling SEQUENCEccooiiiriieieieie e 9-18

Part IV Viewing Existing Data as XML

10 Generating XML Data from the Database

Oracle XML DB Options for Generating XML Data From Oracle9i Database..................... 10-2
Generating XML Using SQLX FUNCLIONScoeoiiiiiiiiiiiseee et 10-2
Generating XML Using Oracle Extensions t0 SQLXcccovivviiiieveneieserieesesneesese e 10-2
Generating XML Using DBMS_XMLGEN..........ccooiiiiiic e 10-2
Generating XML USing SQL FUNCLIONS.........ccoiiiiiiiiiiieeeee e 10-2
Generating XML with XSQL Pages Publishing Framework..........c.ccccooeveveieicincinninininnns 10-3
Generating XML Using XML SQL Utility (XSU)c.cccooiiiiiiiiie e 10-3

Generating XML from the Database Using SQLX FUNCLIONSccoviiiiniincinecncnns 10-5

XMLEIEMENT() FUNCLION ..ottt sttt st neenennennennens 10-5

XIMLFOIESt() FUNCLION ...ttt ettt sbe et tenta e te s e sbeeneenneenes 10-9

XMLSEQUENCE() FUNCLION ..ottt ettt 10-11

XMLCONCAL() FUNCLION......ciiicicese sttt sttt neeneerenne e 10-15

DY/ Ao To T TN ¥ 1 1 o SRS USSR 10-17

Generating XML from the Database Using SQLX FUNCLIONScc.ccoviiiieiicnnciicieeae 10-20

XMLCOIAEVAI() FUNCLION ... s 10-20

Generating XML from Oracle9i Database Using DBMS_XMLGEN.........c..ccccocevviieiinenenn, 10-21
Sample DBMS_XMLGEN QUEIY RESUITcooiiriiiriiiiisitee s 10-21
DBMS_XMLGEN Calling SEQUENCEceivirieierieieieieeeeeee et ste e ste et see s enaesasnnnnens 10-22

Generating XML Using Oracle-Provided SQL FUNCLIONSccccccveviiieieiieie e 10-42

SYS_XMLGEN() FUNCLION ...ttt ettt 10-42
UsSiNg XMLFOrmat ObJECE TYPE....iivieiirire et e ettt ne e enenns 10-44

SYS_XMLAGG() FUNCLION ...ttt sttt sttt sttt sbe et e ebeseene e 10-51

Generating XML Using XSQL Pages Publishing Frameworkccccccooevinniiiiiccnns 10-52

Generating XML Using XML SQL Utility (XSU)ccccoviiiiiiicriesesese e 10-54

Xiii

11

12

Xiv

XMLType Views
What Are XIMLTYPE VIBWS? ..ottt ettt bbbt 11-2
Creating Non-Schema-Based XIMLTYPE VIBWS.......cccovciiiviieiinnne e 11-3
Creating XML Schema-Based XIMLTYPE VIEWScccciiiiiiiiinie e 11-4
Creating XML Schema-Based XMLType Views Using SQL/XML Generation
Functions 11-5
Creating XMLType Views Using Object Types and VIEWS.........cccceevievenerienenenereaneannns 11-11
Creating XMLType Views From XMLType Tables ... 11-17
Referencing XMLType View Objects USiNg REF().......cccooiiiiiiiiniisccesesees 11-18
DML (Data Manipulation Language) on XMLTYPE VIEWSccccccvvivrvrieneieneneneeneeneeennens 11-19
Query ReWTrite 0N XIMLTYPE VIBWS. ..ottt 11-20
Query Rewrite on XML Schema-Based VIBWScccccooiirieniinnenceesee e 11-21
Query Rewrite on Non-Schema-Based XMLTYPE VIEWScccccvvvvvrevinenieseneieiesnannns 11-21
Ad-Hoc Generation of XML Schema-Based XML ... 11-23
Validating User-Specified INTOrmMation. ..o 11-24
Creating and Accessing Data Through URLs
How Oracle9i Database Works with URLS and URIS..........ccccvoiiiiiiininine e 12-2
L0 IO 0] o= o] SRS 12-4
WAL IS @ URI? .o bbbttt 12-4
Advantages of Using DBUTi and XDBUTFi.........cccviiiiriiiiiieiecsee e 12-5
UriTypes Store Uri-RETEIENCEScccv et 12-6
Advantages of USING UFTTYPES ..ottt sne s 12-7
UTITYPE FUNCTIONS ...ttt bttt ettt 12-7
HEPUITYPE FUNCLIONS ...ttt sttt sttt st e e e e enannennenneas 12-8
getContentTYPE() FUNCHIONc.ooiiiiiiiie it 12-9
GEEXIML() FUNCTION ..ottt bbbttt b e ene e 12-9
DBUTrI, Intra-Database REFErENCESc.ccoiiiiiiiie ettt 12-10
Formulating the DBUITccuiiicicccec ettt 12-10
Notation for DBUFTYPE FIAgMENTSccuciiiiiriiiriiisieesieseesi et 12-13
DBUFi Syntax GUIAEIINES.........cocvieiiiie et 12-13
Some ComMMON DBUIT SCENAITOS ..ottt et ebe s 12-15
Identifying the Whole Table...........cco 12-15
Identifying a Particular ROw of the Tablecccccvveieiiiiccc e 12-16
Identifying a Target COIUMIN...........oooi i 12-16

Retrieving the Text Value of @ COIUMN ...
How DBUFris Differ from Object References........ccoocoieiieiiiiiiicee e
DBUFri Applies to a Database and SESSIONc..cccveeeiieieieie s aneas
Where Can DBUTFT Be USEA? ..ottt et
DBUITYPE FUNCLIONS ..ottt
D T 10 g I Y o 1= TS
How to Create an Instance of XDBUITYPE ..ot
Creating Oracle Text Indexes on UriType COlUMNS ..o
USING UFITYPE ODBJECLS ..ottt sttt ne e enenns
Storing Pointers to Documents With UFITYPE ..o
Using HttpUriType and DBUFITYPE ..c.cooiiiiiiieeeiee st
Creating Instances of UriType Objects with the UriFactory Packagecccccocevevveivcnnnnn,
Registering New UriType Subtypes with the UriFactory Package............cccccoceovininnne.
Why Define New Subtypes Of UTNTTYPE? ..o
SYS DBURIGEN() SQL FUNCHIONcciiiieie e
Rules for Passing Columns or Object Attributes to SYS DBURIGEN()cccccvevveiivennnns
SYS_DBURIGEN EXQMPIES......coiiiiitiiiiiieit et
Turning a URL into a Database Query with DBUFi Serviet........ccccoovvivvievencicicecisieieenns
DBUTri Serviet MEeChaniSIM ...
INSTAlliNG DBUIT SEIVIET.....c.ooiiiiiccc e
DBUIT SEBCUFILY .oovvieieeieeete ettt sttt st te s tesae st e tesa e s en e e eneeneeneanennens
Configuring the UriFactory Package to Handle DBUTISccccccoovvvievvcicvncc e,

PartV Oracle XML DB Repository: Foldering, Security, and Protocols

13 Oracle XML DB Foldering

Introducing Oracle XML DB FOIAEriNG.......cccceiiiiiiiiie st
Oracle XIML DB REPOSITONYcueuiriiiirieiiriiiitiisteeetesee ittt sttt st bt e e
(2T o To Y1 (o] VA =1 o 1 011 1o [oe | Y
Oracle XIMIL DB RESOUICES.......ccutittitiitiste ittt sttt see ettt ebe bbb sbe bbb e b st esses s eseabeebesbesbennea
Where Exactly Is Repository Data STOred?ccoeieiiiieinieeneeeneesee s
PathName RESOIULIONciiiiiicc e
DEIELING RESOUITES ...ttt sttt ettt ettt s b ettt e st be e s e s teesaesbe e st e steenbesneebesneenreaneas
Accessing Oracle XML DB RepoSitory RESOUICES.........ccoeiieiieiieiseese e
Navigational Or Path ACCESSc.cciiiiieiiiceee e a et nesnesrenre e

12-18

12-29
12-29

13-6

XV

14

15

XVi

Accessing Oracle XML DB Resources Using Internet Protocols............cccccvvevviveceinennn, 13-10

QUETY-BASEA ACCESS. ...ttt bbb bbbt bbb bbbt bt en e 13-12
Accessing Repository Data USiNg SErVIELS ... 13-13
Accessing Data Stored in Oracle XML DB Repository ReSOUICESccccoeveieiieiecieiennnn 13-14
Managing and Controlling AcCeSS t0 RESOUITESccereireirieiieeseise e 13-16
Extending Resource Metadata Properti€sccococeveieiieieiniein s esne s 13-17
Frequently Asked Questions (FAQS): XML DB RePOSItOrYc.ccocevireienineieieeieieeeeenns 13-18
Why Does XML Repository Hierarchical Index Not Work? ..o, 13-18
Oracle XML DB Versioning
Introducing Oracle XML DB VersioNiNg. ..ot esne e 14-2
Oracle XML DB Versioning FEAtUIES........cccviiruirererieeeresiese e se st ssesie e seeaesaeesnesnenes 14-2
Oracle XML DB Versioning Terms Used in This Chapter.........cccccooininninciciniencee, 14-3
Oracle XML DB Resource ID and Path Name ... 14-3
Creating a Version-Controlled Resource (WVCR)cccvcviiiieiiinsn e 14-4
Version RESOUrCe OF VCR VEISION ...c.couiiiiiieieieieise ettt sne s 14-4
ReSOUrCe ID Of @ NEW VEISIONocuoiiiiiiieieee e ettt 14-5
Accessing a Version-Controlled Resource (VCR) ..o s 14-6
Updating a Version-Controlled Resource (VCR)ccooiiiiiiiiiienene e 14-6
Access Control and Security OF VCR......coo s 14-8
Frequently Asked Questions: Oracle XML DB Versioningc..ccocvvvierieneneneseeniereerennnnnens 14-12
Can | SWitch @ VCR 10 @ NON-VCR? ..ottt 14-12
How Do | Access the Old Copy of a VCR After Updating It? ..o, 14-12
Can We Use Version Control for Data Other Than Oracle XML DB Data?.................... 14-12
RESOURCE_VIEW and PATH_VIEW
Oracle XML DB RESOURCE_VIEW and PATH_VIEW ... 15-2
RESOURCE_VIEW Definition and STrUCLUIEccocveiiiieiiciesecc e 15-3
PATH_VIEW Definition and StIUCLUIEccooiiiiiiiiiiene e 15-4
Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW............... 15-5
Operations You Can Perform Using UNDER_PATH and EQUALS PATH.........ccccc...... 15-6
Resource View, Path VIEW APo 15-7
UNDER _PATH....o ettt bbb bbbttt ettt bbb 15-7
EQUALS _PATH ...ttt bbbttt ettt et bbbt 15-9
A N o PSS SS 15-9

16

17

18

Using the Resource View and Path VIeW APL.........cccccoiiiiiiiieee e 15-11
Accessing Paths and Repository Resources: EXamples.........ccocovvvvieniinieienenereeneeseeesens 15-11
Inserting Data into a Repository Resource: EXamples ..o 15-12
Deleting Repository Resources: EXamples... ... 15-13
Updating Repository Resources: EXamMpPIes.........ccccvcveviiriiniiniesesn e 15-14

Working with Multiple Oracle XML DB Resources Simultaneouslycccccceoviienne. 15-15

Tuning XML DB to Obtain Faster QUENIESccociiiiriiiniiiiesiesiesese e 15-16

Searching for Resources USiNg Oracle TeXL.......cocoiiiiiiiineeieense e 15-16

Oracle XML DB Resource API for PL/SQL (DBMS_XDB)

Introducing Oracle XML DB Resource APl for PL/SQLccccvovviivivinieieseeeeee s 16-2

OVErVIEW OF DBIMS_XDB ..ottt ettt nn et naenes 16-2

DBMS_XDB: Oracle XML DB Resource Managementcccoeoieineninennenseneeseesee e 16-2
Using DBMS_XDB to Manage Resources, Calling SEQUENCEccceverereereciereeeee e 16-3

DBMS_XDB: Oracle XML DB ACL-Based Security Managementc.ccccoccevvevenneriennnnn, 16-5
Using DBMS_XDB to Manage Security, Calling SeqUENCeccoevrvireinniineineneenns 16-6

DBMS_XDB: Oracle XML DB Configuration Management..........cccccocevvverereieensinsiesesenenns 16-8
Using DBMS_XDB for Configuration Management, Calling Sequence..............c.cccceovne.e. 16-9

DBMS_XDB: Rebuilding Oracle XML DB Hierarchical Indexes..........ccccocevieneiiniineennn. 16-11
Using DBMS_XDB to Rebuild Hierarchical Indexes, Calling Sequence...........ccccceevennee. 16-11

Oracle XML DB Resource API for Java

Introducing Oracle XML DB Resource APl fOr JaVa..........ccocvovviviieiiniene e 17-2

Using Oracle XML DB Resource API FOr JAVacccooiiieiiiieiiccce e 17-2

Parameters for Oracle XML DB Resource APl fOr JaVa.........ccccooveiiniieneneieneeeees e 17-2

Oracle XML DB Resource API for Java: EXamMPIES........ccccovvviiiiiininie e 17-3

Oracle XML DB Resource Security

Introducing Oracle XML DB Resource Security and ACLS........ccccoceverereneneienecneeesese e 18-2
How the ACL-Based Security Mechanism WOIKS..........cccccoeiiiiiiiieie e 18-2

Access Control LISt TErMINOIOQYccoviiiiiiiiiieieeee et 18-2

Oracle XIML DB ACL FEATUIEScoueirieieiiiiiteiste sttt ettt 18-5
ACL Interaction with Oracle XML DB Table/View SeCurityccocevvviveivicieseeccseenn, 18-5

XVii

19

Xviii

LDAP Integration and USEE IDScccoiieiiiice ettt 18-5

Oracle XML DB Resource API for ACLS (PL/SQL) ..ot 18-5
How Concurrency Issues Are Resolved with Oracle XML DB ACLS.......ccccccevvvveiveivinnnnns 18-5
ACCeSS CoNtrol: USEr aNd GrOUP ACCESS.....c..oiiriiieieieiieiieieetesie ettt e es st snea 18-6
ACE Elements Specify Access Privileges for PrinCipalscccccoeiienninnnninsnece, 18-6
Oracle XML DB Supported PriVilEgES.......ccccoeiciciiiii sttt 18-7
F AN (] o ol o YT =T 1= OST 18-8
AGGregate PrIVIIEgES ..o 18-9
ACL EVAlUALION RUIES ..o 18-10
USING Oracle XIMIL DB ACLSociiiiee ettt sttt et ste e e ste e e stesnaesteaneens 18-10
Updating the Default ACL 0N @ FOIAET ...t 18-11
ACL and ResoUrce ManNagEMENT.........cc.coviviirererisieseseeieeeseseesesesre e e stesrestesaessensessesesnsssenses 18-12
HoW to Set ReSOUICe PropPerty ACLS.......co ettt e 18-12
Default ASSIGNMENT OF ACLS ...c.ooiiiiiiiiereeere et 18-12
Retrieving ACLS fOr @ RESOUICEcccvciiiiiiese et e e eneeneens 18-13
Changing Privileges 0n a GIVEN RESOUICEcccciveieiieiesie e e se et 18-13
Restrictions for Operations 0N ACLS ...t 18-13
Using DBMS_XDB t0 CheCK PrivIlEgEeSccccceieiieieieiesi s esneanens 18-13
Row-Level Security for Access Control SECUNItYccccoeviviiiiieiie s 18-14
Using FTP, HTTP, and WebDAV Protocols
Introducing Oracle XML DB ProtOCOI SEIVENcccceiiiiieiiiieiieie sttt 19-2
SESSTON POOKING ... ettt ettt ettt bbbt b et n e ene e 19-2
Oracle XML DB Protocol Server Configuration Management..........ccccocevvveveveeveiesieensenens 19-3
Configuring Protocol Server PArameterscccvoveieiieie et 19-4
Interaction with Oracle XML DB FileSyStem RESOUICESccccerviveriierieiirieinieenieesieeneens 19-6
Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents 19-7
[SAVZ=T o) S =TTy <To N e o o 1 Lo SRS 19-7
Using FTP and Oracle XML DB ProtoCOl SEIVET ...t 19-7
Oracle XML DB Protocol SErver: FTP FEAtUIESccceiverieeriee ettt 19-7
Using HTTP and Oracle XML DB ProtoCol SEIVEr..........ccccvviiviiiiie e 19-9
Oracle XML DB Protocol Server: HTTP FEAUIEScovvviiiirire e 19-9
Using WebDAYV and Oracle XIML DBccccciiieiiiiieieiese s sie e seensesssessesnens 19-11
Oracle XML DB WeDDaV FEATUIES.........coiiiiiieriiieieieetie ettt 19-11
Using Oracle XML DB and WebDAV: Creating a WebFolder in Windows 2000........... 19-12

20

Writing Oracle XML DB Applications in Java
Introducing Oracle XML DB Java APPlICAtIONSccoviiiiiiinieinieecsese e 20-2
Which Oracle XML DB APIs Are Available Inside and Outside the Database?............... 20-2
Design Guidelines: Java Inside or Outside the Database?..........ccccccooevvvieiinie s 20-3
HTTP: Accessing Java Servlets or Directly Accessing XMLType ReSOUrCes............cc.... 20-3
Accessing Many XMLType Object Elements: Use JDBC XMLType Support.........c.c........ 20-3
Use the Servlets to Manipulate and Write Out Data Quickly as XMLcccccccveviiinnnnn 20-3
Writing Oracle XML DB HTTP ServIets iN JAVAcoccoireiireiineiiieesese e 20-4
Configuring Oracle XML DB SEIVIETScccceviieeiieiceese e snens 20-4
HTTP Request Processing for Oracle XML DB ServIets..........cccooiiiiiiniiciiieseceeiee 20-8
The Session Pool and XML DB SEIVIELScccceiiieiiiieiieise st 20-9
Native XIML Stream SUPPOITcoiiiee ettt a e re e snesrennenes 20-9
Oracle XML DB SErVIEt APIS ..ottt et 20-10
Oracle XML DB Servlet EXamMPIe........ccoiiiiiiiiiiiis et 20-10
Installing the Oracle XML DB EXample SEervIetc.cocoooiviviivniiiieniesinne e 20-11
Configuring the Oracle XML DB Example Serviet.........ccccooiiiiiinininiiecceeee 20-12
Testing the EXampPle SErVIEL...........coi e 20-12

Part VI Oracle Tools that Support Oracle XML DB

21

Managing Oracle XML DB Using Oracle Enterprise Manager
Introducing Oracle XML DB and Oracle Enterprise Managerc.ccccoeonernennensieneennens 21-2
Getting Started with Oracle Enterprise Manager and Oracle XML DBccccccceivvvnine 21-2
Oracle Enterprise Manager Oracle XML DB Features............ccoeviriieninene e 21-3
Configure Oracle XIML DB ..ottt 21-4
Create and Manage RESOUICES..........ccvieiuerieieiee et eiesiese e e e st e sres e ee e e s eseeseeseanesressesnens 21-4
Manage XML Schema and Related Database ObJects.........ccccccevevviievicie s, 21-4
The Enterprise Manager Console for Oracle XML DB.......cccccoiiiinniieinennesese e 21-7
XML Database Management Window: Right-Hand Dialog Windows............ccccceevininne 21-7
Hierarchical Navigation Tree: NaVIgatorcccovveii i 21-7
Configuring Oracle XML DB with Enterprise Managerc.ccccveoierneniensinecneeseeneens 21-7
Viewing or Editing Oracle XML DB Configuration Parametersccccoceveveveiveieiinnnnns 21-11
Creating and Managing Oracle XML DB Resources with Enterprise Manager 21-12
Administering INdividual RESOUICES.........ccoeiiiiiiiiieiiee e 21-15

Xix

22

23

XX

Individual Resource CONtENT IMEBNU...........ocuviiiciiiiiieie ettt s sraee s 21-17

Enterprise Manager and Oracle XML DB: ACL SECUNILYcccceorerrennenneneenee e 21-22
Granting and Revoking User Privileges with User > XML Tabcccccoovvvivviicicicnenns 21-23
XML Database ReSOUICE PrIVIIEQES........ccoii ittt ste e st 21-25
Managing XML Schema and Related Database ODjJects...........ccccoevriineiiniciec e 21-27
Navigating XML Schema in Enterprise Managercccccoovvvvvvienieveniesieseeneseseeseeeeesens 21-28
Registering an XML SCHEMAccvoiiiiie ettt 21-31
Creating Structured Storage Infrastructure Based on XML Schemaccccccovivniinecne. 21-34
Creating an XMLTYPE TabIecoov i ene s 21-35
Creating Tables with XMLTYPE COIUMNSco.oiiiiiiiiienee e 21-37
Creating a View Based 0N XML SChemMa........cccoceoiiiiiiiiiiieese e 21-39
Creating a Function-Based Index Based on XPath EXPressionsccocceeevevereriereninannas 21-42
Loading XML Data into Oracle XML DB
Loading XMLType Data into Oracle9i Databasecccceovviiiiiiiinii s 22-2
L] (0] 7 U [0] o WSSOSO SO USRS PRSPPI 22-2
Using SQL*Loader to Load XMLTYPE COIUMNSccooiiiiiiiiinieiniesesiesie e 22-2
Importing and Exporting XMLType Tables
Overview of IMPORT/EXPORT Support in Oracle XML DB........ccccocooiiniiniiensneeeeee 23-2
Resource s and Foldering Do Not Fully Support IMPORT/EXPORTccccoevveivvivenevnnnn, 23-2
Non-XML Schema-Based XMLType Tables and Columnsccccocviniiiieniiciiccsenee 23-2
XML Schema-Based XMLTYPE TAbIESccooiiiiiiiiii e 23-2
Guidelines for Exporting Hierarchy-Enabled Tables...........c.ccocooviiviiivinccie e, 23-3
IMPORT/EXPORT Syntax and EXamPIes........cccoiiiiiiee e 23-4
USEr LEVE] IMPOTTZEXPOIT......ciiiiiitiieieiiete ettt 23-4
I 1] Lo oo Lot o Lo o A 23-5
Metadata in Repository is Not Exported During a Full Database EXport............ccccceevnennne 23-6
Importing and Exporting with Different Character Setscccovviviiniinciiieeeeee 23-6

Part VIl XML Data Exchange Using Advanced Queueing

24 Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams

A AT T E N OSSO 24-2
How Do AQ and XML Complement Each Other?.........c.ccovvviiviievineie e 24-2
Oracle Streams and AQooi oot e et e nre e e nreanes 24-5
Streams MeSSage QUEUINGcveiitiiiiiietirieii ettt sb et b ettt bbb e 24-6
XMLType Attributes in ODJECT TYPES ...oiviiieceieee e nne s 24-6
Internet Data Access Presentation (IDAP) ... 24-7
IDAP AFCHITECTUIE ...ttt sttt st a e bt et e st e s e e e e neebeebesreseeneas 24-7
XMLTYPE QUEUE PAYIOAUSecveveieiieie ettt ne e e nnesnens 24-8
Enqueue Using AQ XIML SEIVIET.........c.cciiiiiiii et 24-10
Dequeue UsSiNg AQ XIML SEIVIETccooiiiiiiie et 24-13
IDAP and AQ XML SCHEMAScvoiviiiiiiecie ettt ettt be et s re e ebesbeesbesneesbeereen 24-14
Frequently Asked Questions (FAQs): XML and Advanced QUeUINgc.ccccevevvevrercennnne. 24-14
Can | Store AQ XML Messages with Many PDFs as One Record?...........cccoeovvvnennnenn 24-14
Do | Specify Payload Type as CLOB First, Then Enqueue and Store?cccccevvevenene 24-15
Can | Add New Recipients After Messages Are EnqUeUed?...........ccceveveieieieicccnenenn 24-15
How Does Oracle Enqueue and Dequeue and Process XML Messages?........ccccovvveennne 24-15
How Can | Parse Messages with XML Content from AQ QUEUES?.........ccccerverveveivinannns 24-16
Can | Prevent the Listener from Stopping Until the XML Document Is Processed?...... 24-17
How Can 1 Use HTTPS With AQ?ooiiiiiiee ettt st ene s 24-17
What Are the Options for Storing XML in AQ Message Payloads?cccccoevvveivinnnnns 24-17
Can We Compare IDAP and SOAPT? ... 24-18
Part VIl Oracle XML DB Case Studies
25 Oracle XML DB Case Study: Web Services Retrieve and Display XML
Documents
XML DB Web Services Case StudY: OVEIVIEW ..ot 25-2
What Happens When You Enter a PO NUMDEI?........ccovviviiiiiese e 25-2
Oracle XML Db Web Services: Main COMPONENTS..........ccoceiirirenenieieie e 25-2
Running XML DB Web Services Case Study: Implementation Steps...........cccoceoveriiernennns 25-3
Before You Run this Case StudyY DEMOcocieieieeicice e e 25-3

XXi

26

XXii

Steps for Implementing the XML DB Web Services Case Studyccocoeoevereiciniencennne. 25-9

1. RUN XDBSEIVICES.JAVA ...ttt sttt bttt bbb bbbt 25-10
2. Implement GEtPOXMLSEIVIELJAVA........ccccie i eneas 25-11
3. Deploy XDBServices Class to the Oracle9iAS/Web Services (SOAP) Server.............. 25-11
4. Deploy displayPOXML.html to Display Results on Client-Side Web Server.............. 25-12
5. Enter a PO Number and See the Retrieved PO Displayedccccoevvvvevieiencicieninannns 25-13
XML DB Web Services: Calling SEQUENCEcccoiiiiiiieieeerese e 25-14
XD BSEIVICES. JAVA ...ecveteiiiteeete ettt et b bbbtk et b bbbt bbbt bt bt e 25-15
JEIPOXMLSEINVIEL JAVA.c.eciieciice ettt neeneerenns 25-19
Oracle XML DB Basic Demo
Prerequisites for Running the XML DB BasiC DEMOcccccovvivievininie i 26-2
Database SQL*NET and XML DB Configurationccccccoooviviiiieiieiieiie e 26-3
Verify SQL*NET and XML DB Configurationcoccoviiriininiiniinscecsceseeseeeseens 26-7
Installing XML DB BaSiC DEIMOcccccviiiiiireieiisese et neeneesesre e 26-8
Editing installParameterS. XmMl...........cov oo 26-9
Running the INStallation SCHIPT........cooiiiiiiie e 26-9
What IS Oracle XIML DB?.......ciiiiiiiiieisiee ettt sttt ettt ettt ne b 26-11
Oracle XML DB COMPONENLS.......cccoiiiiriiaiiitenie sttt ettt sbe b b e b se e e sne s 26-12
Starting the XML DB BaSiC DEIMOccouiuiiiiiiiiiitieeesee et 26-12
0.1 XML DB Demo: Initial Setup (RUN ONCE) ...ccevveieeieeieieeeeces e 26-13
0.2 XML DB Demo: Resetting the DEMOcccveiiiiiieciee et se e 26-14
1.0 XML DB Demo: XML DB on localhost - WebDAV and FTP Supportcccoceeveevnnne. 26-14
1.1 Using SQL to MaKe Dir€CLOIIESocvvvieiiereiiesieerie et se ettt 26-17
1.2 Using FTP to Load Configuration FileS..........ccccccivieiiiiieiis s 26-19
2.0 XML DB Demo: XML Schema - How XML DB Shreds and Stores XML....................... 26-22
2.1 Registering XML SCREMIA.......cccv i s ene s 26-28
2.2 Objects Are Created With XML Schema Registration..........c..ccccccevvvvieviiieiisieneennn, 26-30
3.0 XML DB Demo: How XML Files Conform to the XML Schema.........ccccoceveeiiinnennne. 26-31
3.1 Using FTP to Load INStance DOCUMENTSccciveieieeiicise e et see st e seeeeesnaeneas 26-33
3.2 Using SQL to Add Constraints to XML Datacccccevveviiieie i 26-34
3.3 Using FTP to Upload XML Documents that Attempt to Violate the Constraints..... 26-37
4.0 XML DB Demo: Simple XPath Queries Against XML Documents..........ccccceevvervevernnne. 26-42
4.1 More Complex XPath Queries 0n XML DOCUMENTS..........cccoviirerenenenienieieeeeeeeieees 26-44
4.2 EXPLAIN Plan of Queries 0n XML TabIeScccoeiiiiiiiiiiecire e 26-46

4.3 Using extractValue() and an XPath Expression to Create XML Indexes.................... 26-48

4.4 Using EXPLAIN Plan to Determine if the Index is Being Usedccccecereiininnnn. 26-49
5.0 XML DB Demo: Using HTTP to Access XML Content........cccccccvvivvevenniencneieeieee e 26-51
5.1 SQL Can Display the Retrieved XML Document Through XDBUFriServlet............... 26-54
5.2 Editing XML Documents with WebDAV-Enabled TOOIS..........ccccoecineiiniiniiicn, 26-56
5.3 Displaying and Verifying Updates Made to XML Documents, Using SQL 26-57
5.4 Updating XML Documents USING SQLcccouiiiiiiiininiiiene e 26-59
5.5 Displaying Changes Made to an XML Document Using Both XML and SQL.......... 26-60
6.0 XML DB Demo: Querying RESOURCE_VIEWS Using SQLc.cccocvvvvvvierieiecccene 26-62
6.1 XPath-Based Querying of RESOURCE_VIEWS Using Hierarchical Indexing.......... 26-68
7.0 XML DB Demo: Using Views to Access XML from Relational Toolscccccccveenee. 26-70
7.1 Relational Views of XML Act Like Other VIEWS.........ccccoiiriininiiceeseens 26-73
7.2 QUErying USING ROIUP....ccoiiii e 26-75
8.0 XML DB Demo: Accessing Content Using DBUFriServlet; Transforming Content
L8 LS T o 1] OSSO 26-76
8.1 PUrchaseOrder RAW XMLccoiiiiiiiiiieiecresie e 26-77
8.2 Using Standard XSL Style Sheets to Transform XML Documents to HTML 26-79
8.3 Transforming PurchaseOrder USING XSLTcccoviiiiiiiiiinscrecseecneecseeseeesees 26-81
8.4 Creating XMLType Views With SQLccccoviiiiiiriiiiinsiese e 26-83
8.5 Displaying DEPTVIEW Raw XML Using DBUTriServiet ... 26-85
8.6 Transforming DEPTVIEW From XML to HTML Using a Style Sheet............c.ccc....... 26-86
8.7 Displaying the Transformed DEPTVIEW After XSL Transformation....................... 26-87
9.0 XML DB Demo: OracleText EXamMPIES ..o 26-89

Installing and Configuring Oracle XML DB

INStAlliNg Oracle XIML DBcc.ooiiiice ettt st e e s te e s te e esteenaenneens A-2
Installing or Reinstalling Oracle XML DB from SCratCh..........ccccccveiiiiininninienseeeeee A-2
Installing a New Oracle XML DB With DBCAcccco i A-2
Dynamic Protocol Registration Registers FTP and HTTP Services with Local Listener.... A-3
Installing a New Oracle XML DB Manually Without DBCA.............ccccoiiineineinciieiieee A-4
Reinstalling Oracle XIML DBccooi oot nnens A-4
Upgrading an Existing Oracle XML DB Installation ..o A-5
Upgrading XML DB From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)cccvvvviniinnencinccnne A-5
Migrating Data From Release 2 (9.2.0.1) to Release 2 (9.2.0.2)ccccvvevevevriereveeireese e A-6
Configuring Oracle XIMIL DB........coooiiiie ettt sttt et e e nreenes A-9

XXili

XXV

Oracle XML DB Configuration File, xdbconfig.Xmlccooiiiiiiiiiicicee e, A-9

Top Level Tag <XADCONTIGS ..o A-9
)£ o0 T SO A-10
(U Rt oo T PSP A-10
SPFOTOCOICONTIGS ..ttt b bt e b b e nese e s s A-10
S 0111 01T 1 o S A-10
Oracle XML DB Configuration EXampPle ... A-11
Oracle XML DB Configuration APL..........ccooiiii e A-14
Get Configuration, Cfg_ gEL()....couiirriieiriese e e A-14
Update Configuration, cfg_UPAate()........coouiiriririiiiene e A-14
Refresh Configuration, cfg_refresh() ... A-15

XML Schema Primer

INtroduCing XIML SCREMIAc.viviiiiiiiiiie bbb B-2
Purchase Order SChema, PO.XSAcoveiiieieicreese e B-4
XML SCHEM@ COMPONENTS ...ttt bbb bbb ettt e bbb e s be b abe e B-6
Complex Type Definitions, Element and Attribute Declarations............cccocconviniincennnnn, B-6
=T T To T @0] 1Tt SR B-12
SHMIPIE TYPES et bbbt bbb et s bt b e bt e bt e bt bbb bbb e B-13
LIS WIS ettt b bbb bbb bR bbbt Rt bbbt B-17
L8] o) T 1Y/ 0 1S B-19
ANONYMOUS TYPE DefiNitiONS ... s B-20
[[T aT=T o | A @do] 0] =1 o | (TS B-21
Complex Types from SIMPIE TYPES ..cvcviecieere et neens B-21
IMIXE CONTENT........oouiiiiiiieie bbb et b et b e bbb sb e b e neneas B-22
EMPLY CONTENT ...t B-23
N 0 1Y/ o 1= PR B-24
YN g [aTe] r=1d [o] o OSSPV P PP B-25
BUilding Content MOGEIS..........coo it B-26
WA] oW = €] 0T U] o 1SR B-29
INTTWVAIUES ... bbbt b bbbt bbbt bbb e nes B-31
How DTDs and XML Schema Differ ... e B-31
DTD LIMITALIONS ...ecviieiiieesiee ettt ettt ettt B-33
XML Schema Features Compared t0 DTD FEAtUIES..........coeierereiiinieieeeesese e B-34
Converting Existing DTDS to XML SCheMA?.........cccoeiiiiiiiiiesesee e B-37

XML Schema Example, PUrchaseOrderXSa ...t B-37

XPath and Namespace Primer

Introducing the W3C XML Path Language (XPath) 1.0 Recommendation................c.ccccueee. C-2
THe XPath EXPIESSION ...c..cuiiiiiiieiiieeiiseee itttk b et b et bttt C-3
Evaluating Expressions with Respect t0 a CONEXLccccvvivveviriirierenee e C-3
XPath Expressions Often Occur in XML AFDULES ... C-4
LOCALION PALRIS. ...t bttt ettt besre e nae C-5
Location Path Syntax AbBDreViations.........cccccvveiiiineiesces e e C-5
Location Path Examples Using Unabbreviated Syntax ..o C-5
Location Path Examples Using Abbreviated SYNtaX...........cccoeviniininninsisensceeees C-7
Relative and Absolute LOCation PathS..........ccccciiiiiiieee e C-9
Location Path SyntaX SUMIMATY ...t C-10
XPath 1.0 DAta MOAEL ..o et sttt C-10
INOTES. ..ttt et bbb bt b et b bbb st s et s bbbt n e C-11
Introducing the W3C XML Path Language (XPath) 2.0 Working Draftc.ccccece v C-17
XPAth 2.0 EXPIESSIONS ..ottt b ettt b e bbbt sr bbb enas C-17
Introducing the W3C Namespaces in XML Recommendationcc.ccoevevvivvieninnencnennne, C-18
What 1S 8 NAMESPACE? ...ttt b bbb bt e b e C-19
QUATIFIEA INAMIES ...ttt ettt besbe st seesbesaeseeneeneas C-21
USIiNg QUANITIEA NAIMESocviciicece st nae e e eneas C-21
Namespace Constraint: Prefix Declared ... C-22
Applying Namespaces to Elements and ALribULES ... C-23
N EE T et o Tot IR ol o] o 1] Vo P C-23
Namespace DEFAUITING ..o bbb e C-24
UNIQUENESS OF ALIFTDULEScviiiiieie e C-25
Conformance of XIML DOCUMENLSccoviiiiiriieninenieie ettt C-26
Introducing the W3C XML Information Set..........ccccoiviiiiiciiiiccce e C-26
INBIMESPACES ...ttt b e b r et sr e r e b sr e C-27
=g Bo) il T L= o F- 1 T 1 T o SRS C-28
BASE URIS ...t b e b e C-28
UNKNOWN @NA NO VAIUE.........coiiiiiiicie ettt C-29
SYNTNELIC INFOSELS ...uiiiiiie et st e e sneneeneas C-29

XXV

D XSLT Primer
INEFOAUCTIIG XS 1ttt bbbt bbb bbb bbbt bt bttt D-2
The W3C XSL Transformation Recommendation Version 1.0........cccccoovverneniiennensennneen, D-2
NaMESPACES TN XML ...ttt bbb e sn e D-4
XSL Stylesheet ArChiteCTUNEcccii i D-4
XSL Transformation (XSLT)ccciircieieieesesie e se ettt ra e s te e sre st e snesseseseeneenens D-5
XML Path Language (XPath) ... s D-5
CSS VEISUS XS ..ttt sttt b bbbt et s bt et b e s e e e b e et e s b e et e s b e e b e nb e e bt ebeenbeeneennas D-5
XSL Stylesheet Example, PUrchaseOrder.XSl ..o D-6
E Java DOM API for XMLType, Resource API for Java: Quick Reference
JAVA DOM APT FOU XIMLTYPIE ..o iiicie ettt e e st sse st ste e ste e sneestessaestenneenteeneenneenes E-2
Non-Supported Java METNOASooiiiiiiii e E-2
Oracle XML DB ReSOUICe AP FOr JAVA.c.coiiiiiiiiieene et E-6
F Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL APIs: Quick
Reference
XIMILTYPE APttt ee e e e ee et ee e eees F-2
PL/SQL DOM API for XMLType (DBMS_XMLDOM)ccocovveireireiereeeeeesesseessesnesnsesnneons F-6
PL/SQL Parser for XMLType (DBMS_XMLPARSER)........cccciitiiiinieiine e F-14
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)cccccoververveieeneinsenens F-15
DBMS _XIMLSCHEMA ...ttt b et b e b ne e aneeneesne e F-16
Oracle XML DB XML Schema Catalog VIBWS..........cccociiiiiieiieineseseee e F-19
Resource APl for PL/SQL (DBMS_XDB)ccccoeiiiiiiieieeee e se s e ste e saessesesseseesesessasnssseses F-20
DBMS _XIMLGENottt b et e bt ene e nneene e sbe e F-23
RESOURCE_VIEW, PATH_VIEW ...ttt b F-24
DBMS_XDB_VERSION ...ttt sttt ane s F-25
DBIMS XD BT ..ottt b bbbt b et b ekt b e s b e et e b e e bt e Rt e b eRe e nn e e nne e F-27
G Example Setup scripts. Oracle XML DB - Supplied XML Schemas

XXVi

EXAMPIE SELUD SCIIPTS ..ottt ettt bbb bbb e b e e e e eneas G-2
Chapter 3 Examples Set Up Script: Creating User and Directorycccccoeevvevenereieninnnns G-2
Chapter 3 Examples Set Up Script: Granting Privileges, Creating Table..........ccccccccvvvvnns G-3
Chapter 3 Examples SCript: iNVOICE. XMccoiiiiiiiiiiee e G-8

Chapter 3 Examples Script: PurchaseOrder Xml.........c.cocooeiiiiiiiiinene e G-9

Chapter 3 Examples SCript: FTP SCHIPT......ccoiiiiiriineeree e G-10
Chapter 3 Examples Script: Configuring FTP and HTTP Ports......c.ccocvevvivivincnnevicnenn, G-11
RESOURCE_VIEW and PATH_VIEW Database and XML Schema.........c..ccccccoeeviiniviiinnnns G-12
Resource View Definition and STrUCTUIE...........ccooeiiiiiiieccene e G-12
PATH_VIW Definition and STrUCTUIEcccoviieieiccceeces e G-12
XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources.................. G-12
XDBRESOUFITE. XSO,eveeuietieieeieeti ettt sttt te st st e e ee e eseeseese e st ebeebesbesbesaesbesbesbesbeseeneeneeneenens G-12
acl.xsd: XML Schema for Representing Oracle XML DB ACLS........cccccoevvivvievennniesencnienenns G-15
ACL Representation XML Schema, acl.XSAccooeriiiiiiiiiie e G-15
. To] 15 To [OOSR G-15
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB.........cccccocvivvivnvnieiinenerene, G-18
Do | oTeTo] a1 1o 101 ISR G-18
Glossary

Index

XXVil

XXViii

Send Us Your Comments

Oracle9/ XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2)
Part No. A96620-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXiX

XXX

Preface

This manual describes Oracle XML DB, the Oracle9i XML database. It describes
how XML data can be stored, generated, manipulated, managed, and queried in the
database using Oracle XML DB.

After introducing you to the heart of Oracle XML DB, namely the XMLType
framework and Oracle XML DB Repository, the manual provides a brief
introduction to design criteria to consider when planning your Oracle XML DB
application. It provides examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle
XML DB, APIs for manipulating XMLType data, and ways you can view, generate,
transform, and search on existing XML data. The remainder of the manual discusses
how to use Oracle XML Repository, including versioning and security, how to
access and manipulate Repository resources using protocols, SQL, PL/SQL, or Java,
and how to manage your Oracle XML DB application using Oracle Enterprise
Manager. It also introduces you to XML messaging and Advanced Queueing
XMLType support.

The Preface contains the following sections:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXXi

Audience

Organization

XXX

This manual is intended for developers building XML applications on Oracle9i
database.

Prerequisite Knowledge
An understanding of XML, XML Schema, XPath, and XSL is helpful when using
this manual.

Many examples provided here are in SQL, Java, or PL/SQL, hence, a working
knowledge of one or more of these languages is presumed.

This document contains the following parts, chapters, and appendixes:

PART I. Introducing Oracle XML DB

Introduces you to the Oracle XML DB components and architecture, including
XMLType and the Repository. It discusses some basic design issues and provides a
comprehensive set of examples of where and how you can use Oracle XML DB.

Chapter 1, "Introducing Oracle XML DB"

Introduces you to the Oracle XML DB components and architecture. It includes a
description of the benefits of using Oracle XML DB, the key features, standards
supported, and requirements for running Oracle XML DB. It lists Oracle XML
DB-related terms used throughout the manual.

Chapter 2, "Getting Started with Oracle XML DB"

Describes how to install Oracle XML DB, compatibility and migration, and some
preliminary application planning issues.

Chapter 3, "Using Oracle XML DB"

Introduces you to where and how you can use Oracle XML DB. It provides
examples of storing, accessing, updating, and validating your XML data using
Oracle XML DB.

PART II. Storing and Retrieving XML Data

Describes the ways you can store, retrieve, validate, and transform XML data using
Oracle9i database native XMLType API.

Chapter 4, "Using XMLType"

Describes how to create XMLType tables and manipulate and query XML data for
non-schema-based XMLType tables and columns.

Chapter 5, "Structured Mapping of XMLType"

Describes how to use Oracle XML DB mapping from SQL to XML and back,
provides an overview of how you must register your XML schema, how you can
either use Oracle XML DBs default mapping or specify your own mapping. It also
describes how to use Ordered Collections in Tables (OCTs) in Oracle XML DB.

Chapter 6, "Transforming and Validating XMLType Data"

Describes how you can use SQL functions to transform XML data stored in the
database and being retrieved or generated from the database. It also describes how
you can use SQL functions to validate XML data being input into the database.

Chapter 7, "Searching XML Data with Oracle Text"

Describes how you can create an Oracle Text index on DBUriType or Oracle XML
DB UriType columns and search XML data using Oracle Text’s CONTAINS()
function and XMLType’s existsNode() function. It includes how to use
CTXXPATHnNdex for XPath querying of XML data.

PART lIl. Using XMLType APIs to Manipulate XML Data
Describes the PL/SQL and Java XMLType APIs and how to use them.

Chapter 8, "PL/SQL API for XMLType"

Introduces the PL/SQL DOM API for XMLType, PL/SQL Parser API for XMLType,
and PL/SQL XSLT Processor APl for XMLType. It includes examples and calling
sequence diagrams.

Chapter 9, "Java API for XMLType"

Describes how to use the Java (JDBC) API for XMLType. It includes examples and
calling sequence diagrams.

PART IV. Viewing Existing Data as XML
Chapter 10, "Generating XML Data from the Database"

Discusses SQLX, Oracle SQLX extension functions, and SQL functions for
generating XML. SQLX functions include XMLElement() and XMLForest()

Xxxiii

XXXIV

Oracle SQLX extension functions include XMLColAttValue() . SQL functions
include SYS_XMLGEN() XMLSEQUENCE()and SYS_XMLAGG() It also describes
how to use DBMS_XMLGEMNSQL Pages Publishing Framework, and XML SQL
Utility (XSU) to generate XML data from data stored in the database.

Chapter 11, "XMLType Views"

Describes how to create XMLType views based on XML generation functions, object
types, or transforming XMLType tables. It also discusses how to manipulate XML
data in XMLType views.

Chapter 12, "Creating and Accessing Data Through URLSs"

Introduces you to how Oracle9i database works with URIs and URLSs. It describes
how to use UriTypes and associated sub-types: DBUriType , HttpUriType , and
XDBUriType to create and access database data using URLS. It also describes how
to create instances of UriType using the UriFactory package, how to use SYS_
DBURIGEN() SQL function, and how to turn a URL into a database query using
DBUri Servlet.

PART V. Oracle XML DB Repository: Foldering, Security, and Protocols

Describes Oracle XML DB Repository, the concepts behind it, how to use
Versioning, ACL security, the Protocol Server, and the various associated Oracle
XML DB Resource APIs.

Chapter 13, "Oracle XML DB Foldering"

Describes hierarchical indexing and foldering. Introduces you to the various Oracle
XML DB Repository components such as Oracle XML DB Resource View API,
Versioning, Oracle XML DB Resource API for PL/SQL and Java.

Chapter 14, "Oracle XML DB Versioning"

Describes how to create a version-controlled Oracle XML DB resource (VCR) and
how to access and update a VCR.

Chapter 15, "/RESOURCE_VIEW and PATH_VIEW"

Describes how you can use SQL to access data stored in Oracle XML DB Repository
using Oracle XML DB Resource View API. This chapter also compares the
functionality of the other Oracle XML DB Resource APIs.

Chapter 16, "Oracle XML DB Resource API for PL/SQL (DBMS_XDB)"

Describes DBMS_Oracle XML DB and the Oracle XML DB Resource API for
PL/SQL.

Chapter 17, "Oracle XML DB Resource API for Java"

Describes Oracle XML DB Resource API for JavaZJNDI and how to use it to access
Oracle XMI DB Repository data.

Chapter 18, "Oracle XML DB Resource Security"

Describes how to use Oracle XML DB resources and ACL security, how to share
ACL, and how to retrieve ACL information.

Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

Introduces Oracle XML DB Protocol Server and how to use FTP, HTTP, and
WebDAV with Oracle XML DB.

Chapter 20, "Writing Oracle XML DB Applications in Java"

Introduces you to writing Oracle XML DB applications in Java. It describes which
Java APIs are available inside and outside the database, tips for writing Oracle XML
DB HTTP servlets, which parameters to use to configure servlets in the
configuration file /xdbconfig.xml , and HTTP request processing.

PART VI. Oracle Tools That Support Oracle XML DB Development

Includes chapters that describe the tools you can use to build and manage your
Oracle XML DB application.

Chapter 21, "Managing Oracle XML DB Using Oracle Enterprise Manager"

Describes how you can use Oracle Enterprise Manager to register your XML
schema; create resources, XMLType tables, views, and columns; manage ACL
security, configure Oracle XML DB; and create function-based indexes.

Chapter 22, "Loading XML Data into Oracle XML DB"
Describes ways you can load XMLType data using SQL*Loader.

Chapter 23, "Importing and Exporting XMLType Tables"
Describes the IMPORT/EXPORT utility support for loading XMLType tables.

XXXV

XXXVI

PART VII. XML Data Exchange Using Advanced Queueing
Describes Oracle Advanced Queueing support for XML and XMLType messaging.

Chapter 24, "Exchanging XML Data Using Advanced Queueing (AQ) and
Oracle Streams"

Introduces how you can use Advancd Queueing to exchange XML data. It briefly
describes Oracle Streams, Internet Data Access Presentation (IDAP), using AQ XML
Servlet to enquue and dequeue messages, using IDAP, and AQ XML schemas.

PART VIII. Oracle XML DB Case Studies
Describes two XML DB-based applications.

Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve and Display
XML Documents"

Provides the calling sequence and code for building an XML DB Web Services based
purchase order application.

Chapter 26, "Oracle XML DB Basic Demo"

Provides many examples and illustrations of ways to store, access, and manipulate
purchase order XML document using XML DB.

Appendix A, "Installing and Configuring Oracle XML DB"
Describes how to install and configure Oracle XML DB.

Appendix B, "XML Schema Primer"
Provides a summary of the W3C XML Schema Recommendation.

Appendix C, "XPath and Namespace Primer"

Provides an introduction to W3C XPath Recommendation, Namespace
Recommendation, and Information Sets.

Appendix D, "XSLT Primer"
Provides an introduction to the W3C XSL/XSLT Recommendation.

Appendix E, "Java DOM API for XMLType, Resource API for Java: Quick
Reference”

Provides a quick reference for the Oracle XML DB Java APIs.

Appendix F, "Oracle XML DB XMLType API, PL/SQL and Resource PL/SQL
APIs: Quick Reference"

Provides a quick reference for the Oracle XML DB PL/SQL APIs.

Appendix G, "Example Setup scripts. Oracle XML DB - Supplied XML
Schemas"

Provides a description of the setup scripts used for the examples in Chapter 3. It
also descibes the RESOURCE_VIEW and PATH_VIEW structures and lists the
Oracle XML DB- supplied sample resource XML schema.

Glossary

Related Documentation
For more information, see these Oracle resources:

« Oracle9i Database New Features for information about the differences between
Oracle9i and the Oracle9i Enterprise Edition and the available features and
options. This book also describes features new to Oracle9i Release 2 (9.2).

« Oracle9i XML API Reference - XDK and Oracle XML DB
« Oracle9i XML Developer’s Kits Guide - XDK

« Oracle9i XML Case Studies and Applications (contains XDK examples, no
Oracle XML DB examples for this release)

« Oracle9i Database Error Messages

« Oracle Text Application Developer’s Guide

« Oracle Text Reference

« Oracle9i Database Concepts.

« Oracle9i Java Developer’s Guide

« Oracle9i Application Developer’s Guide - Fundamentals

« Oracle9i Application Developer’s Guide - Advanced Queuing
« Oracle9i Supplied PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

XXXVii

Conventions

XXXViii

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index htm

To access the database documentation search engine directly, please visit
http:/tahiti.oracle.com

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Bold

Italics

UPPERCASE
monospace
(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER_
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name ,

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

XXXIX

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

Other notation

Italics

UPPERCASE

xl

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE... AS subquery ;

SELECT col1 , coln FROM

employees;

col2 ,...,

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) = 3;

CONNECT SYSTEMystem_password
DB_NAME = database _name

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

Convention Meaning Example

lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names salolus hr/hr
of tables, columns, or files. aip
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amww.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

xli

xlii

What's New In Oracle XML DB?

This chapter describes the new features, enhancements, APIs, and product
integration added through Oracle XML DB as a part of Oracle9i Release 2 (9.2.0.2)
and Oracle9i Release 2 (9.2.0.1).

Oracle XML DB: Oracle9i Release 2 (9.2.0.2): Enhancements

This section summarizes the Oracle XML DB enhancements provided with patch
release, Oracle9i Release 2 (9.2.0.2).

See Also: Oracle9i Release Notes, Release 2 (9.2.0.2) available
with your software.

Exporting and Importing XML Data

Oracle9i Release 2 (9.2.0.2) provides enhanced IMPORT/EXPORT utility support to
assist in loading XML data into Oracle XML DB. See Chapter 23, "Importing and
Exporting XMLType Tables".

XMLAgg() SQLX Function

XMLAgg() now supports the ORDER BY clause. See Chapter 10, "Generating XML
Data from the Database", "XMLAgg() Function".

updateXML() XMLType Function

The updateXML() section has been reworked to include more comprehensive
examples.

xliii

xliv

Globalization Support: Multibyte Characters

Oracle XML DB can handle multibyte characters as long as the client character set is
the same as the database character set.

Updated Oracle XML DB - Supplied XML Schema

The end of Appendix G, "Example Setup scripts. Oracle XML DB - Supplied XML
Schemas" lists the three updated Oracle XML DB - supplied XML schema,
XDBResource.xsd , acl.xsd , and xdbconfig.xsd

Migrating from Release 2 (9.2.0.1) to Release 2 (9.2.0.2)

Notes have been adding describing how to migrate from Release 2 (9.2.0.1) to
Release 2 (9.2.0.2). See Appendix A, "Installing and Configuring Oracle XML DB".

RESOURCE_VIEW PATH Operator

Further examples and explanation have been added to this section for determining
paths under multiple correlations or specified path name arguments. See
Chapter 15, "RESOURCE_VIEW and PATH_VIEW", "PATH" on page 15-9.

New Configuration Parameters

A new tuning parameter, resource-view-cache-size has been added. When
qguerying large RESOURCE_VIE®ou can now tune the

resource-view-cache-size parameter in the xdbconfig file. See Chapter 15,
"RESOURCE_VIEW and PATH_VIEW", "Tuning XML DB to Obtain Faster Queries".

HTTP/webDAV parameter default-url-charset has been added. This is the
character set in which an HTTP Protocol Server assumes the incoming URL is
encoded when it is not encoded in UTF-8 or the request’s Content-Type field
Charset parameter. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols",
Table 19-3.

PL/SQL DOM API for XMLType: New Methods

Several new DBMS_XMLDOMethods are now supported for the PL/SQL DOM API
for XMLType. See Chapter 8, "PL/SQL API for XMLType". Note that there are a few
methods that have been de-supported in this release.

Java DOM API for XMLType: Desupported Methods

A few methods in XDBDocument, XDBNode, and XDBDOMImplementation classes
have been de-supported in this release. See Chapter 9, "Java API for XMLType".

Highlight Support for XML Documents with INPATH/HASPTH Oracle Text
Operators

You can now highlight XML documents in Oracle Text with the INPATH/HASPATH
guery element(s) highlighted and using CTX_DOC.MARKU®r HIGHLIGHT
procedures. See Chapter 7, "Searching XML Data with Oracle Text", "Highlight
Support for INPATH/HASPATH Text Operators" on page 7-49.

Oracle XML DB Case Studies are Provided

See Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve and Display
XML Documents" and Chapter 26, "Oracle XML DB Basic Demo".

See Also:

http://otn.oracle.com/tech/xml/content.html for the
latest Oracle XML DB updates and notes.

Oracle XML DB, Oracle9i Release 2 (9.2.0.1): XMLType Enhancements

XMLType datatype was first introduced in Oracle9i. This datatype has been
significantly enhanced in Oracle9i Release 2 (9.2.0.1). This release is also referred to,
in general, as Release 2 (9.2). The following sections describe these enhancements.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

XMLType Tables

Datatype XMLType can now be used to create tables of XMLType. This gives you the
flexibility to store XML either in a column, in a table, or as a whole table, much like
objects.

XMLType Constructors

Additional XMLType constructors have been added. Besides the create XML()
functions, XMLType can now also be constructed using user-defined constructors.

W3C XML Schema Support

Extensive XML schema support has been added in this release to Oracle XML DB.
You can now perform the following:

« Construct an XMLType object based on an XML schema and have it be
continuously validated.

xlv

xlvi

« Create XML schema-based XMLType tables. This feature automatically
creates appropriate storage structures for optimal storage of XML
schema-based documents. Unlike SQL DDL, this process does not require
knowledge of all column data types and their definitions.

« Register annotated XML schema using the DBMS_XMLSCHENbackage, to
share storage and type definitions. Registered XML schema can be shared
across all database users to allow for instance wide common document
definition. The registration process optionally creates default tables. With
XML schema annotation you can specify various objects such as, SQL types,
default storage tables, and so on.

« Pre-parse incoming XML documents and automatically direct them to
default storage tables. This allows protocols such as FTP and WebDAV to
accept structured XML documents and store them in object-relational
tables.

« Automatically validate XML documents or instances against W3C XML
Schema when the XML documents or instances are added to Oracle XML
DB.

« Explicitly validate XML documents and instances against XML schema
using XMLIsSchemaValid() = method on XMLType.

« Use datatype -aware extraction of part of an XML document using the
extractValue operator.

SQLX Functions and Oracle Extensions

This release includes support for SQLX operations for generating XML from
existing relational and object relational tables. This is based on ISO-ANSI Working
Draft for XML-Related Specifications (SQL/XML) [ISO/IEC 9075 Part 14 and ANSI]
which defines ways in which the database language SQL can be used in conjunction
with XML.

For example, the following functions defined by the SQLX standards body are
supported: XMLElement (), XMLForest() , XMLConcat() , andXMLAgg() . Oracle
XML DB also extends the SQLX operations with functions such as:

XMLColAttvVal() , XMLSequence() , SYS_XMLGEN(), and SYS_XMLAGG()

W3C XPath Support for Extraction, Condition Checks, and Updates

Oracle9i Release 1 (9.0.1) provided the extract() and existsNode() functions
on XMLType objects. These allowed XPath-based queries against XML documents.
This release provides additional support as follows:

« extract() , existsNode() , and extractValue() now allow for a
namespace-based operation.

« extract() , existsNode() , and extractValue() support the full
XPath function set, including axis operators.

« updateXML() function (new) replaces part of the XMLType DOM by using
XPath as a locator.

ToObject Method

ToObject method allows the caller to convert an XMLType object to a PL/SQL
object type.

XMLType Views

This release supports XMLType-based views. These enable you to view any data in
the database as XML. XMLType views can be XML schema-based or non-XML
schema-based. See Chapter 11, "XMLType Views".

W3C XSLT Support

This release introduces a new function, XMLTransform() that allows for a
database-based transformation of in-memory or on disk XML documents. See
Chapter 6, "Transforming and Validating XMLType Data".

JDBC Support for XMLType

Oracle XML DB allows database clients to bind and define XMLType. JDBC support
includes a function-rich XMLType class that allows for native (for thick JDBC) XML
functionality support. See Chapter 9, "Java API for XMLType".

C-Based PL/SQL DOM, Parser, and XSLT APIs

This release includes native PL/SQL DOM, Parser, and XSLT APIs integrated in the
database code. These PL/SQL APIs are compatible with the Java-based PLSQL
APIs shipped as part of XDK for PL/SQL with Oracle9i Release 1 (9.0.1) and higher.
See Chapter 8, "PL/SQL API for XMLType".

Oracle XML DB, Oracle9i Release 2 (9.2.0.1): Repository

In this release, Oracle XML DB Repository adds advanced foldering and security
mechanisms to the database. Oracle XML DB Repository is a new feature that
provides a novel file system-like access to all database data. The Repository allows
the following actions:

xIvii

« Viewing the database and its content as a file system containing resources,
typically referred to as files and folders.

« Access and manipulation of resources through path name-based SQL and
Java API.

« Access and manipulation of resources through built-in native Protocol
Servers for FTP, HTTP, and WebDAV.

« ACL-based security for Oracle XML DB resources.

Oracle XML DB Resource API (PL/SQL): DBMS_XDB

DBMS_XDBackage provides methods to access and manipulate Oracle XML DB
resources. Chapter 16, "Oracle XML DB Resource API for PL/SQL (DBMS_XDB)".

Oracle XML DB Resource API (JNDI)

This uses JNDI (Java Naming and Directory Interface) to locate resources, and
manage collections. It supports INDI Service Provider Interface (SPI). This interface
works only inside the database server on the JServer platform. See Chapter 17,
"Oracle XML DB Resource API for Java".

Oracle XML DB Resource View API (SQL)

ResourceView is a public XMLType view that you can use to perform path
name-based queries against all resources in a database instance. This view merges
path-based queries with queries against relational and object-relational tables and
views. See Chapter 15, "RESOURCE_VIEW and PATH_VIEW".

In Release 2 (9.2.0.2) the XDBconfig file includes a tuning parameter,
resource-view-cache-size to allow faster queries. See the end of Chapter 15,
"RESOURCE_VIEW and PATH_VIEW".

Oracle XML DB Versioning: DBMS_XDB_VERSION

DBMS_XDB_VERSIOpackage provides methods to version Oracle XML DB
resources. See Chapter 14, "Oracle XML DB Versioning".

Oracle XML DB ACL Security

Methods that implement ACL-based security are a part of DBMS_XDBackage.
They allow you to create high-performance access control lists for any XMLType
object. See Chapter 18, "Oracle XML DB Resource Security"

xlviii

Oracle XML DB Protocol Servers

The Protocol Servers provide access to any foldered XMLType row through FTP,
HTTP, and WebDAV. Note that XMLType can manage arbitrary binary data as well
in any file format. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".

XDBURIType

URIType now includes a new subtype, XDBURIType, that represents a path name
within Oracle XML DB. See Chapter 12, "Creating and Accessing Data Through
URLs".

Oracle Tools Enhancements for Oracle XML DB

Oracle Enterprise Manager

Oracle Enterprise Manager provides a graphical interface to manage, administer,
and configure Oracle XML DB. See Chapter 21, "Managing Oracle XML DB Using
Oracle Enterprise Manager".

Oracle Text Enhancements
This release offers the following Oracle Text enhancements:

« Columns of type XMLType can now be indexed natively in Oracle9i
database using Oracle Text.

« CONTAINS() is a new function for use as ora:contains in an XPath
guery and as part of the existsNode() function.

« CTXXPATHSs a new index type for use with existsNode() to speedup the
performance of XPath searching.

See Chapter 7, "Searching XML Data with Oracle Text".

Oracle Advanced Queuing (AQ) Support

With this release, the Advanced Queueing (AQ) Internet Data Access Presentation
(IDAP) has been enhanced. IDAP facilitates your using AQ over the Internet. You
can now use AQ XML servlet to access Oracle9i AQ using HTTP and SOAP.

Also in this release, IDAP is the Simple Object Access Protocol (SOAP)
implementation for AQ operations. IDAP now defines the XML message structure
used in the body of the SOAP request.

xlix

You can now use XMLType as the AQ payload type instead of having to embed
XMLType as an attribute in an Oracle object type.

See:

« Chapter 24, "Exchanging XML Data Using Advanced Queueing
(AQ) and Oracle Streams"

« Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle XDK Support for XMLType

XDK for Java Support

XSQL Servlet and XML SQL Utility (XSU) for Java now support XMLType. Most
methods on XMLType object, such as, getClobVal() , are now available in XSU for
Java.

XDK for PLSQL Support
XML SQL Utility (XSU) for PLSQL now supports XMLType.

See:

« "Generating XML Using XSQL Pages Publishing Framework"
on page 10-52. and "Generating XML Using XML SQL Utility
(XSU)" on page 10-54

« Oracle9i XML Developer’s Kits Guide - XDK

Part |

Introducing Oracle XML DB

Part | of this manual introduces Oracle XML DB. It contains the following chapters:
« Chapter 1, "Introducing Oracle XML DB"

« Chapter 2, "Getting Started with Oracle XML DB"

« Chapter 3, "Using Oracle XML DB"

1

Introducing Oracle XML DB

This chapter introduces you to Oracle XML DB by describing the Oracle XML DB
benefits, features, and architecture. This chapter contains the following sections:

Introducing Oracle XML DB

Benefits of Oracle XML DB

Key Features of Oracle XML DB

Oracle XML DB and XML Schema

Oracle XML DB Architecture

XMLType Storage Architecture

Why Use Oracle XML DB?

Searching XML Data Stored in CLOBs Using Oracle Text

Building Oracle XML DB XML Messaging Applications with Advanced
Queueing

Managing Oracle XML DB Applications with Oracle Enterprise Manager
Requirements for Running Oracle XML DB

Oracle XML DB Technical Support

Terminology Used in This Manual

Oracle XML DB Examples Used in This Manual

Introducing Oracle XML DB

11

Introducing Oracle XML DB

Introducing Oracle XML DB

This chapter introduces you to Oracle XML DB. It discusses the features available
for building XML applications on the Oracle9i database.

From its beginnings, XML's core characteristics of self-description and dynamic
extensibility have provided the flexibility needed to transport messages between
various applications, and loosely couple distributed business processes.

XML is also language-independent and platform-independent. As XML support has
become standard in browsers, application servers, and databases, enterprises have
wished to tie legacy applications to the Web using XML to transform various
proprietary file- and document-exchange templates into XML.

More recently, a new generation of XML standards, such as XML Schema, has
enabled a unified data model that can address both structured data and documents.
XML Schema has emerged as a key innovation in managing document content with
the same rigor as data by enabling documents marked up as XML to move into the
database.

Oracle XML DB is a set of built-in high-performance storage and retrieval
technologies geared to XML. Oracle XML DB fully absorbs the World Wide Web
Consortium (W3C) XML data model into Oracle9i database and provides new
standard access methods for navigating and querying XML. You get all the
advantages of relational database technology and XML technology at the same
time. Oracle XML DB can be used to store, query, update, transform, or otherwise
process XML, while at the same time providing SQL access to the same XML data.

Not a Separate Database Server

Oracle XML DB is not some separate server but rather the name for a distinct group
of technologies related to high-performance XML storage and retrieval that are
available within the familiar Oracle database. Oracle XML DB can also be thought
of as an evolution of the Oracle database that encompasses both SQL and XML data
models in a highly interoperable manner, thus providing native XML support.

You use Oracle XML DB in conjunction with Oracle XML Developer’s Kit (XDKSs).
XDKs provide common development-time utilities that can run in the middle tier in
Oracle9iAS or in Oracle9i database.

See Also: Oracle9i XML Developer’s Kits Guide - XDK. for more
information about XDK

1-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Benefits of Oracle XML DB

Benefits of Oracle XML DB

Applications often manage structured data as tables and unstructured data as files
or Large Objects (LOBs). This subjects developers to different paradigms for
managing different kinds of data. Systems channel application-development down
either of the following paths:

« Unstructured. This typically makes document access transparent and table
access complex.

« Structured. This typically makes document access complex and table access
transparent.

Oracle XML DB provides the following benefits:

« The ability to store and manage both structured and unstructured data under
the same standard W3C XML data model (XML Schema).

« Complete transparency and interchangeability between the XML and SQL data
views.

« Valuable Repository functionality: foldering, access control, FTP, and WebDAV
protocol support with versioning. This enables applications to retain the file
abstraction when manipulating XML data brought into Oracle. As a result, you
can store XML in the database (rendering it queryable) and at the same time
access it through popular desktop tools.

« Better management of unstructured XML data by supporting
« Piecewise updates
« XML indexing
« Integrated XML text search with Oracle Text
« Multiple views on the data, including relational views for SQL access
« Enforcement of intra- and inter-document relationships in XML documents

« Users today face a performance barrier in storing and retrieving complex XML.
Oracle XML DB provides high performance and scalability for XML operations
with the help of a number of specific optimizations that relate to XML-specific
data-caching and memory management, query optimization on XML, special
hierarchical indexes on the XML Repository, and so on.

« Enables data and documents from disparate systems to be accessed, for
example, through Oracle Gateway and External Tables, and combined into a

Introducing Oracle XML DB 1-3

Key Features of Oracle XML DB

standard data model. This integrative aspect reduces the complexity of
developing applications that must deal with data from different stores.

Key Features of Oracle XML DB

Table 1-1 describes Oracle XML DB features. This list includes XML features
available since Oracle9i Release 1 (9.0.1).

Table 1-1 Oracle XML DB Features

Oracle XML DB Features Description

XMLType

The native datatype XMLType helps store and manipulate XML. Multiple storage
options (Character Large Object (CLOB), structured XML) are available with
XMLType, and administrators can choose a storage that meets their requirements.
CLOB storage is an un-decomposed storage that is like an image of the original
XML.

The native structured XML storage is a shredded decomposition of XML into
underlying object-relational structures (automatically created and managed by
Oracle) for better SQL queriability.

With XMLType, you can perform SQL operations such as:

. Queries, OLAP function invocations, and so on, on XML data, as well as XML
operations

. XPath searches, XSL transformations, and so on, on SQL data

You can build regular SQL indexes or Oracle Text indexes on XMLType for high
performance for a very broad spectrum of applications. See Chapter 4, "Using
XMLType".

DOM fidelity

The Document Object Model (DOM) is a standard programmatic representation of
XML documents. Oracle XML DB can shred XML documents while storing them
(structured XML Storage) in a manner that maintains DOM fidelity: the DOM that
you store is the DOM that you get back. DOM fidelity means that your programs
can manipulate exactly the same XML data that you got, and the process of storage
does not affect the order of elements, the presence of namespaces and so on. DOM
fidelity does not, however, imply maintenance of whitespaces, and the like; if you
want to preserve the exact layout of XML including whitespaces you can use
CLOB storage. See Chapter 5, "Structured Mapping of XMLType".

Document fidelity

For applications that need to store XML while maintaining complete fidelity to the
original, including whitespace characters, the CLOB storage option is available.

1-4 Oracle9i/ XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Key Features of Oracle XML DB

Table 1-1 Oracle XML DB Features (Cont.)
Oracle XML DB Features

Description

XML Schema

Oracle XML DB gives you the ability to constrain XML documents to XML
schemas. You can create tables and types automatically given a W3C standard
XML Schema. You can also enforce that an XML document being stored is
schema-valid. This means you have a standard data model for all your data
(structured and unstructured) and can use the database to enforce this data model.
See Chapter 5, "Structured Mapping of XMLType".

XML Schema storage
with DOM fidelity

Use structured storage (object-relational) columns, VARRAYS, nested tables, and
LOBs to store any element or element-subtree in your XML schema and still
maintain DOM fidelity (DOM stored == DOM retrieved). See Chapter 5,
"Structured Mapping of XMLType".

Note: If you choose CLOB storage option, available with XMLType since Oracle9i
Release 1 (9.0.1), you can keep whitespaces.

XML Schema
validation

While storing XML documents in Oracle XML DB you can optionally ensure that
their structure complies (is “valid” against) with specific XML Schema. See
Chapter 6, "Transforming and Validating XMLType Data".

XML piecewise
update

You can use XPath to specify individual elements and attributes of your document
during updates, without rewriting the entire document. This is more efficient,
especially for large XML documents. See Chapter 5, "Structured Mapping of
XMLType".

XPath search

You can use XPath syntax (embedded in an SQL statement or as part of an HTTP
request) to query XML content in the database. See Chapter 4, "Using XMLType"
and Chapter 7, "Searching XML Data with Oracle Text".

XML indexes Use XPath to specify parts of your document to create indexes for XPath searches.
Enables fast access to XML documents. See Chapter 4, "Using XMLType".
SQLX operators New SQL member functions tracking the emerging ANSI SQLX standard, such as,

XMLElement (to create XML elements on the fly) and others, to make XML
gueries and on-the-fly XML generation easy. These render SQL and XML
metaphors interoperable.See Chapter 10, "Generating XML Data from the
Database".

XSL transformations
for XMLType

Use XSLT to transform XML documents through an SQL operator.
Database-resident, high-performance XSL transformations. See Chapter 6,
"Transforming and Validating XMLType Data" and Appendix D, "XSLT Primer".

Lazy XML loading

Oracle XML DB provides a virtual DOM,; it only loads rows of data as they are
requested, throwing away previously referenced sections of the document if
memory usage grows too large. You can use this to get high scalability when many
concurrent users are dealing with large XML documents. The virtual DOM is
available through Java interfaces running in a Java execution environment at the
client or with the server. See Chapter 8, "PL/SQL API for XMLType".

Introducing Oracle XML DB 1-5

Key Features of Oracle XML DB

Table 1-1 Oracle XML DB Features (Cont.)

Oracle XML DB Features Description

XML views You can create XML views to create permanent aggregations of various XML
document fragments or relational tables. You can also create views over
heterogeneous data sources using Oracle Gateways. See Chapter 11, "XMLType
Views".

PL/SQL and OCI Use DOM and other APIs for accessing and manipulating XML data. You can get

interfaces static and dynamic access to XML. See Chapter 8, "PL/SQL API for XMLType".

Schema caching

Structural information (such as element tags, datatypes, and storage location) is
kept in a special schema cache, to minimize access time and storage costs. See
Chapter 5, "Structured Mapping of XMLType".

XML generation

SQL operators such as SYS_XMLGENNd SYS_XMLAG@rovide native,
high-performance generation of XML from SQL queries. New operators such as
XMLElement() , to create XML tables and elements on the fly, make XML
generation more flexible. See Chapter 10, "Generating XML Data from the
Database". These operators track the emerging ANSI SQLX standard.

Oracle XML DB

A built-in XML Repository. This Repository can be used for foldering whereby you

Repository can view XML content stored in Oracle XML DB as a hierarchy of directory-like
folders. See Chapter 13, "Oracle XML DB Foldering".

« The repository supports access control lists (ACLs) for any XMLType object, and
lets you define your own privileges in addition to providing certain
system-defined ones. See Chapter 18, "Oracle XML DB Resource Security".

=« You can use the Repository to view XML content as navigable directories
through a number of popular clients and desktop tools. Items managed by the
repository are called resources.

« Hierarchical indexing is enabled on the Repository. Oracle XML DB provides
a special hierarchical index to speed folder search. Additionally, you can
automatically map hierarchical data in relational tables into folders (where the
hierarchy is defined by existing relational information, such as with CONNECT
BY).

SQL Repository You can search the XML Repository using SQL. Operators like UNDER_PATH and
search DEPTH allow applications to search folders, XML file metadata (such as owner

and creation date), and XML file content. See Chapter 15, "RESOURCE_VIEW and
PATH_VIEW".

WebDav, HTTP, and

You can access any foldered XMLType row using WebDAV and FTP. Users

FTP access manipulating XML data in the Oracle9i database can use the HTTP API. See
Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".
Versioning Oracle XML DB provides versioning and version-management capabilities over

resources managed by the XML Repository. See Chapter 14, "Oracle XML DB
\ersioning".

1-6 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Architecture

Oracle XML DB and XML Schema

XML schema unifies both document and data modeling. In Oracle XML DB, you can
create tables and types automatically using XML Schema. In short, this means that
you can develop and use a standard data model for all your data, structured,
unstructured, and pseudo/semi-structured. You can now use Oracle9i database to
enforce this data model for all your data.

You can create XML schema-based XMLType tables and columns and optionally
specify, for example, that they:

« Conform to pre-registered XML schema

« Arestored in structured storage format specified by the XML schema
maintaining DOM fidelity

You can also choose to wrap existing relational and object-relational data into XML
format using XMLType views.

You can store an XMLType object as an XML schema-based object or a non-XML
schema-based object:

« XML Schema-based objects. These are stored in Oracle XML DB as LOBs or in
structured storage (object-relationally) in tables, columns, or views.

« Non-XML schema-based objects. These are stored in Oracle XML DB as Large
Objects (LOBSs).

You can map from XML instances to structured or LOB storage. The mapping can
be specified in XML schema and the XML schema must be registered in Oracle XML
DB. This is a required step before storing XML schema-based instance documents.
Once registered, the XML schema can be referenced using its URL.

Oracle XML DB Architecture

Figure 1-1 shows the Oracle XML DB architecture. The two main features in Oracle
XML DB architecture are:

« The XMLType tables and views storage, which includes storage of XMLType
tables and views

« The Oracle XML DB Repository, also referred to in this manual as "XML
Repository" or "Repository"

The section following Figure 1-1 describes the architecture in more detail.

Introducing Oracle XML DB 1-7

Oracle XML DB Architecture

Gateways
to external
sources

AQ and
Oracle9
Streams
Access

Figure 1-1 Oracle XML DB Architecture: XMLType Storage and Repository

Desktop FTP

Tool Tool

WebDAV FTP
Access Access

Browser
or other
ul
JDBC
Browser Application
Direct Oracle
HTTP SerI\\Il‘iactes
Access Access
e

Oracle9 j Database

Oracle XML DB

XMLType Tables
and Views

Oracle XML DB

Repository

[0 XML Services
¢ XML Validation

¢ XML Transformation

e XML Schema
Registration
¢ Create Tables

Store in LOB or O-R
Insert, Delete, Update
XMLType tables

* Indexing

Retrieve / Generate
XML Using
XMLType APIs

¢ SQL

e Java

« PL/SQL

——+&1 XML Services

« Versioning
* ACL Security
« Foldering

Retrieve XML Using
Resource APIs

¢ SQL

e Java/JNDI

« PL/SQL

1-8 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Architecture

XMLType Tables and Views Storage
"XMLType tables and views storage" in Oracle XML DB provides a native XML
storage and retrieval capability in the database, strongly integrated with SQL.

XML data, including XML schema definition files can be stored in LOBSs, in
structured storage (object-relationally), or using any hybrid combining both LOBs
and structured storage. See Chapter 3, "Using Oracle XML DB" and Chapter 4,
"Using XMLType".

Supported XML Access APIs
« PL/SQL and Java APIs for XMLType. Use these APIs to:

« Create XMLType tables, columns, and views
« Query and retrieve XML data

« SQL functions, such as XMLElement() and XMLForest() .Applications can
guery XML data in the database using standard SQL and SQL member
functions that comply with the SQLX standard.

See Also: Part IV. Viewing Existing Data as XML.

Supported XML Services
In Oracle XML DB, besides accessing or generating XML data, you can also perform
various operations on the data:

« PL/SQL and Java APIs for XMLType. These enable you to manipulate
XMLType data, such as update, delete, and insert XML data.

« Indexing. This speeds up data searches where XPath features are not critical. It
is most suited for XML data stored in LOBs.

« Transforming XML data to other XML, HTML, and so on, using XMLType’'s
XMLTransform() function, XDK’s XSLT Processors, or XSQL Servlet Pages
Publishing Framework. See Chapter 6, "Transforming and Validating XMLType
Data" and Chapter 10, "Generating XML Data from the Database".

« Validating XML data. Validates XML data against XML schema when the XML
data is stored in the database.

See Also: "XMLType Storage Architecture" on page 1-11.

Introducing Oracle XML DB 1-9

Oracle XML DB Architecture

Oracle XML DB Repository

Oracle XML DB Repository (XML Repository or Repository) is an XML data
repository in the Oracle9i database optimized for handling XML data. At the heart
of Oracle XML DB Repository is the Oracle XML DB foldering module.

See Also: Chapter 13, "Oracle XML DB Foldering".

The contents of Oracle XML DB Repository are referred to as resources. These can be
either containers (or directories / folders) or files. All resources are identified by a
path name and have a (extensible) set of (metadata) properties such as Owner,
CreationDate, and so on, in addition to the actual contents defined by the user.

Supported XML Access APIs
Figure 1-1 lists the following Oracle XML DB supported XML access and
manipulation APIs:

« Oracle XML DB Resource APIs. Use these APIs to access the foldered XMLType
and other data, that is, data accessed using the Oracle XML DB hierarchically
indexed Repository. The APIs are available in the following languages:

— SQL (through the RESOURCE_VIEW and PATH_VIEW APIs)
— PL/SQL (DBMS_XDBAPI
- Java API

See Also: Part V. Oracle XML DB Repository: Foldering, Security,
and Protocols

« Oracle XML DB Protocol Server. Oracle XML DB supports FTP, HTTP, and
WebDav protocols, as well as JDBC, for fast access of XML data stored in the
database in XMLType tables and columns. See Chapter 19, "Using FTP, HTTP,
and WebDAV Protocols".

Supported XML Services
XML Repository, besides supporting APIs to access and manipulate XML and other
data, also supports the following services:

« Versioning. Oracle XML DB provides support for versioning resources. The
DBMS_XDB_VERSIORL/SQL package implements functions to make a
resource version-controlled. Any subsequent updates to the resource results in

1-10 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture

new versions being created while the data corresponding to the previous
versions is retained.

« ACL Security. Security of accessing Oracle XML DB resources is based on the
ACL (Access Control Lists) mechanism. Every resource in Oracle XML DB has
an associated ACL that lists its privileges. Whenever resources are accessed or
manipulated, these ACLs determine if the operation is legal.

« Foldering. XML Repository’s foldering module manages a persistent hierarchy
of containers, also known as folders or directories, and resources. Other Oracle
XML DB modaules, such as protocol servers, the schema manager, and the
Oracle XML DB RESOURCE_VIEW API, use the foldering module to map path
names to resources.

XMLType Storage Architecture

Figure 1-2 describes the XMLType tables and views storage architecture in more
detail.

For XMLType tables, tables with XMLType columns, and views, if XML
schema-based and the XML schema is registered with Oracle XML DB, XML
elements are mapped to database tables. These can be easily viewed and accessed in
XML Repository.

Data in XMLType tables and tables containing XMLType columns can be stored in
Character Large Objects (CLOBSs) or natively in structured XML storage.

Data in XMLType views can be stored in local tables or remote tables that are
accessed using DBLinks.

Both XMLType tables and views can be indexed using B*Tree, Oracle Text,
function-based, or bitmap indexes.

Options for accessing data in XML Repository include:
« HTTP, through the HTTP protocol handler.
« WebDav and FTP, through the WebDav and FTP protocol server.

= SQL, through Oracle Net Services including JDBC. Oracle XML DB also
supports XML data messaging using Advanced Queueing (AQ) and SOAP.

Introducing Oracle XML DB 1-11

XMLType Storage Architecture

See Also:
« Partll. Storing and Retrieving XML Data in Oracle XML DB
« Chapter 19, "Using FTP, HTTP, and WebDAV Protocols"

« Chapter 21, "Managing Oracle XML DB Using Oracle
Enterprise Manager"

« Chapter 24, "Exchanging XML Data Using Advanced Queueing
(AQ) and Oracle Streams"

1-12 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture

Figure 1-2 Oracle XML DB: XMLType Storage and Retrieval Architecture

JDBC
Direct Oracle WebDAV Access
HTTP Net and
Access Access FTP Access
A A 20 A
< Access
Oracle9
Database
Oracle XML DB v \ 4 A 4
HTTP DAV, FTP
Protocol SQ.L Protocol
Handler Engine Handlers
I--.--.--.--.--..I
' XML Schemas 1
' .
1 1
Indexes: ! XMLType XMLType 1 Repository
« B*Tree : Tables Views L
e Text : [— I T
* Function- PR ey f— - -
based — — - Hierarchical
« Bitmap Index
—_ N |
— T -I
CLOB Native Local ! : Remote
Structured ocal | ; Tables
Storage XML Tables i DBLinks | < »| Accessed
Storage ! : via DBLinks
b e e e e =

Introducing Oracle XML DB 1-13

XMLType Storage Architecture

Cached XML Object Management Architecture

Figure 1-3 shows the Oracle XML DB Cached XML Object Management
Architecture, relevant for programmatic access to XMLType instances. The Oracle
XML DB cache can be deployed at the client (with Oracle JDBC OCI driver) or
within the server. This cache provides:

« Alazily materialized virtual DOM from the stored XMLType, whose nodes are
fetched on demand

« A cache for XML schemas

You can thus get dynamic access to XML without having to materialize an entire
XML DOM in memory. This is accomplished by calculating offsets to the nodes in
the DOM during compilation.

Figure 1-3 Cached XML Object Management Architecture

Dynamic
Java
Access

4

Cached XML
Object
Management
XML
Schemas Cache
Virtual
DOM

1-14 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Storage Architecture

XML Repository Architecture
Figure 1-4 describes the Oracle XML DB Repository (XML Repository) architecture.

A resource is any piece of content managed by Oracle XML DB, for which we desire
to maintain or view the file/folder metaphor.

Each resource has a name, an associated access control list that determines who can
see the resource, certain static properties, and some extra ones that are extensible by
the application. The application using the Repository obtains a logical view of
folders in parent-child arrangement. The Repository is available in the database (for
example, for SQL access) using the RESOURCE_VIEW.

The RESOURCE_VIEW in Oracle9i database consists of a Resource (itself an
XMLType), that contains the queryable name of the resource, its ACLs, and its
properties, static or extensible.

« If the content comprising the resource is XML (stored somewhere in an
XMLType table or view), the RESOURCE_VIEW points to that XMLType row
that stores the content.

« Ifthe content is not XML, then the RESOURCE_VIEW stores it as a LOB.

Parent-child relationships between folders (necessary to construct the hierarchy) are
maintained and traversed efficiently using the hierarchical index. Text indexes are
available to search the properties of a resource, and internal B*Tree indexes over
Names and ACLs speed up access to these attributes of the Resource XMLType.

In addition to the resource information, the RESOURCE_VIEW also contains a Path
column, which holds the paths to each resource.

See Also:

» Chapter 13, "Oracle XML DB Foldering"

« Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

Introducing Oracle XML DB 1-15

Why Use Oracle XML DB?

Figure 1-4 Oracle XML DB: Repository Architecture

Application Logical View of
Oracle XML DB Repository

(] Table
Name |ACL | Property 1 | Property N | Property N
: abc
Oracle9 / Database >
Database View of Oracle XML DB Repository X'\gt-\';\yspe
RESOURCE_VIEW (XMLType) Path p—
Name |ACL | Property1| Property N | Extra | Content | Parent p—
‘ < > —
LOB J—
FTP
WebDAV
B*Tree Text Hierarchical Te\l/t_)les or
Index Index Index lews
of XML

\ ”/

Why Use Oracle XML DB?

The following section describes Oracle XML DB advantages for building XML
database applications. The main advantages are:

« Unifying Data and Content with Oracle XML DB

« Oracle XML DB Offers Faster Storage and Retrieval of Complex XML
Documents

« Oracle XML DB Helps You Integrate Applications

1-16 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?

« When Your Data Is Not XML You Can Use XMLType Views

Unifying Data and Content with Oracle XML DB

Most applications’ data and Web content is stored in a relational database or a file
system, or a combination of both. XML is used mostly for transport and is
generated from a database or a file system. As the volume of XML transported
grows, the cost of regenerating these XML documents grows and these storage
methods become less effective at accommodating XML content. See Figure 1-5.
Oracle XML DB is effective at accommodating XML content. It provides enhanced
native support for XML.

Figure 1-5 Unifying Data and Content: Some Common XML Architectures

Non-Native XML Processing

Applications

Application Server

XML Processing and
Repository Layer

File
System
RDBMS
Multimedia and Structured Data
Document Content and Metadata

Separate Data and Content Servers

Applications

Application Server

XML
Repository

Multimedia, Document
Content and XML,
Metadata

RDBMS

Structured Data

Oracle XML DB

Applications

Oracle iAS

Oracle
XML DB

Multimedia and
Document Content,
Structured Data,
XML, Metadata

Introducing Oracle XML DB 1-17

Why Use Oracle XML DB?

Organizations today typically manage their structured data and unstructured data
differently:

« Unstructured data, in tables, makes document access transparent and table
access complex

« Structured data, often in binary large objects (such as in BLOBs) makes access
more complex and table access transparent.

With Oracle XML DB you can store and manage both structured, unstructured, and
pseudo or semi-structured data, using a standard data model, and standard SQL
and XML.

Oracle XML DB provides complete transparency and interchangeability between
XML and SQL. You can perform both the following:

« XML operations on object-relational (such as table) data
« SQL operations on XML documents

This makes the database much more accessible to XML-shaped data content.

Exploiting Database Capabilities

In previous releases, without strong database XML support, you most likely stored
your XML data in files or in unstructured storage such as CLOBs. Whether you
stored your XML data in files or CLOBs, you did not exploit several key capabilities
of Oracle database:

« Indexing and Search: Applications use queries such as “find all the product
definitions created between March and April 2002", a query that is typically
supported by a B*Tree index on a date column. Previously, content management
vendors have had to build proprietary query APIs to handle this problem.
Oracle XML DB can enable efficient structured searches on XML data. See
Chapter 4, "Using XMLType", Chapter 10, "Generating XML Data from the
Database", and Chapter 7, "Searching XML Data with Oracle Text".

« Updates and Transaction Processing: Commercial relational databases use fast
updates of subparts of records, with minimal contention between users trying
to update. As traditionally document-centric data participate in collaborative
environments through XML, this requirement becomes more important. File- or
CLOB- storage cannot provide the granular concurrency control that Oracle
XML DB does. See Chapter 4, "Using XMLType".

« Managing Relationships: Data with any structure typically has foreign key
constraints. Currently, XML data-stores lack this feature, so you must
implement any constraints in application code. Oracle XML DB enables you to

1-18 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?

constrain XML data according to XML schema definitions and hence achieve
control over relationships that structured data has always enjoyed. See
Chapter 5, "Structured Mapping of XMLType" and the purchase order case
study/examples at the end of Chapter 4, "Using XMLType".

Multiple Views of Data: Most enterprise applications need to group data
together in different ways for different modules. This is why relational views
are necessary—to allow for these multiple ways to combine data. By allowing
views on XML, Oracle XML DB creates different logical abstractions on XML
for, say, consumption by different types of applications. See Chapter 11,
"XMLType Views".

Performance and Scalability: Users expect data storage, retrieval, and query to
be fast. Loading a file or CLOB and parsing is typically slower than relational
data access. Oracle XML DB dramatically speeds up XML storage and retrieval.
See Chapter 2, "Getting Started with Oracle XML DB" and Chapter 3, "Using
Oracle XML DB".

Ease of Development: Databases are foremost an application platform that
provides standard, easy ways to manipulate, transform, and modify individual
data elements. While typical XML parsers give standard read access to XML
data they do not provide an easy way to modify and store individual XML
elements. Oracle XML DB supports a number of standard ways to store, modify,
and retrieve data: using XML Schema, XPath, DOM, and Java.

See Also:
« Chapter 9, "Java API for XMLType"
« Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

« Chapter 16, "Oracle XML DB Resource API for PL/SQL
(DBMS_XDB)"

Exploiting XML Capabilities
If the drawbacks of XML file storage force you to break down XML into database
tables and columns, there are several XML advantages you have left:

Structure Independence: The open content model of XML cannot be captured
easily in the pure tables-and-columns world. XML Schemas allow global
element declarations, not just scoped to a container. Hence you can find a
particular data item regardless of where in the XML document it moves to as
your application evolves. See Chapter 5, "Structured Mapping of XMLType".

Introducing Oracle XML DB 1-19

Why Use Oracle XML DB?

« Storage Independence: When you use relational design, your client programs
must know where your data is stored, in what format, what table, and what the
relationships are among those tables. XMLType enables you to write
applications without that knowledge and allows DBAs to map structured data
to physical table and column storage. See Chapter 5, "Structured Mapping of
XMLType" and Chapter 13, "Oracle XML DB Foldering".

« Ease of Presentation: XML is understood natively by browsers, many popular
desktop applications, and most internet applications. Relational data is not
generally accessible directly from applications, but requires programming to be
made accessible to standard clients. Oracle XML DB stores data as XML and
pump it out as XML, requiring no programming to display your database
content. See:

« Chapter 6, "Transforming and Validating XMLType Data".
« Chapter 10, "Generating XML Data from the Database".
« Chapter 11, "XMLType Views".

« Oracle9i XML Developer’s Kits Guide - XDK, in the chapter, “XSQL Pages
Publishing Framework™. It includes XMLType examples.

« Ease of Interchange: XML is the language of choice in Business-to-Business
(B2B) data exchange. If you are forced to store XML in an arbitrary table
structure, you are using some kind of proprietary translation. Whenever you
translate a language, information is lost and interchange suffers. By natively
understanding XML and providing DOM fidelity in the storage/retrieval
process, Oracle XML DB enables a clean interchange. See:

« Chapter 6, "Transforming and Validating XMLType Data"
« Chapter 11, "XMLType Views"

Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large,
or many XML documents. Oracle XML DB provides very high performance and
scalability for XML operations. The major performance features are:

« Native XMLType. See Chapter 4, "Using XMLType".

« The lazily evaluated virtual DOM support. See Chapter 8, "PL/SQL API for
XMLType".

1-20 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Why Use Oracle XML DB?

« Database-integrated ad-hoc XPath and XSLT support. This support is described
in several chapters, including Chapter 4, "Using XMLType" and Chapter 6,
"Transforming and Validating XMLType Data".

« XML Schema-caching support. See Chapter 5, "Structured Mapping of
XMLType".

« CTXPATH Text indexing. See Chapter 7, "Searching XML Data with Oracle
Text".

« The hierarchical index over the Repository. See Chapter 13, "Oracle XML DB
Foldering".

Oracle XML DB Helps You Integrate Applications

Oracle XML DB enables data from disparate systems to be accessed through
gateways and combined into one common data model. This reduces the complexity
of developing applications that must deal with data from different stores.

When Your Data Is Not XML You Can Use XMLType Views

XMLType views provide a way for you wrap existing relational and object-relational
data in XML format. This is especially useful if, for example, your legacy data is not
in XML but you need to migrate to an XML format. Using XMLType views you do
not need to alter your application code.

See Also: Chapter 11, "XMLType Views".

To use XMLType views you must first register an XML schema with annotations
that represent the bi-directional mapping from XML to SQL object types and back to
XML. An XMLType view conforming to this schema (mapping) can then be created
by providing an underlying query that constructs instances of the appropriate SQL
object type. Figure 1-6 summarizes the Oracle XML DB advantages.

Introducing Oracle XML DB 1-21

Why Use Oracle XML DB?

Figure 1-6 Oracle XML DB Benefits

Oracle
XML DB

Faster Storage and
Retrieval of Complex
XML Documents

Unifies Data
and Content

|

— Enhanced native
database support for
XML

Higher performance
of XML operations

Higher scalability

— Stores and manages of XML operations

structured, unstructured,
and semi-structured data

— Transparent XML and SQL
interoperability

— Exploits database features:

— indexing, searching
— updating, transaction processing
— manages constraints

— multiple data views
— speeds up XML storage, retrieval

— supports standards for storing,
modifying, retrieving data

— Exploits XML features:

structure and storage independence
facilitates presentation and data display
facilitates B2B data exchange

Helps Also Handles
Integrate non-XML Data
Applications with XMLType

Views

XMLType views E Facilitates migrating of

over local or remote legacy and non-XML to
sources XML data

Connectivity to other
databases, files, ...

Uniform SQL / XML
queries over data
integrated from
multiple sources

1-22 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Building Oracle XML DB XML Messaging Applications with Advanced Queueing

Searching XML Data Stored in CLOBs Using Oracle Text

Oracle enables special indexing on XML, including Oracle Text indexes for section
searching, special operators to process XML, aggregation of XML, and special
optimization of queries involving XML.

XML data stored in Character Large Objects (CLOBSs) or stored in XMLType
columns in structured storage (object-relationally), can be indexed using Oracle
Text. HASPATH() and INPATH() operators are designed to optimize XML data
searches where you can search within XML text for substring matches.

Oracle9i Release 2 (9.2) also provides:

« CONTAINS() function that can be used with existsNode() for XPath based
searches. This is for use as the ora:contains function in an XPath query, as
part of existsNode()

« The ability to create indexes on UriType and XDBUriType columns.

« A new index type, CTXXPATHthat allows higher performance XPath searching
in Oracle XML DB under existsNode()

See Also:
« Chapter 7, "Searching XML Data with Oracle Text"
« Oracle Text Application Developer’s Guide

« Oracle Text Reference

Building Oracle XML DB XML Messaging Applications with Advanced
Queueing
Advanced Queueing now supports the use of:
« XMLType as a message/payload type, including XML schema-based XMLType
« Queueing/dequeuing of XMLType messages

Introducing Oracle XML DB 1-23

Managing Oracle XML DB Applications with Oracle Enterprise Manager

See Also:

« Oracle9i Application Developer’s Guide - Advanced Queuing for
information about using XMLType with Oracle Advanced
Queuing

« Chapter 24, "Exchanging XML Data Using Advanced Queueing
(AQ) and Oracle Streams"

Managing Oracle XML DB Applications with Oracle Enterprise Manager

You can use Oracle Enterprise Manager (Enterprise Manager) to manage and
administer your Oracle XML DB application. Enterprise Manager’s graphical user
interface facilitates your performing the following tasks:

« Configuration

Configuring Oracle XML DB, including protocol server configuration
Viewing and editing Oracle XML DB configuration parameters

Registering XML schema

. Create resources

Managing resource security, such as editing resource ACL definitions
Granting and revoking resource privileges
Creating and editing resource indexes

Viewing and navigating your Oracle XML DB hierarchical Repository

« Create XML schema-based tables and views

Creating your storage infrastructure based on XML schemas
Editing an XML schema

Creating an XMLType table and a table with XMLType columns
Creating a view based XML schema

Creating a function-based index based on XPath expressions

See Also: Chapter 21, "Managing Oracle XML DB Using Oracle
Enterprise Manager”

1-24 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Standards Supported by Oracle XML DB

Requirements for Running Oracle XML DB

Oracle XML DB is available with Oracle9i Release 2 (9.2).

See:

« http://otn.oracle.com/tech/xml for the latest news
and white papers on Oracle XML DB

« Chapter 2, "Getting Started with Oracle XML DB"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

W3C XML Schema 1.0 Recommendation. You can register XML schemas,
validate stored XML content against XML schemas, or constrain XML stored in
the server to XML schemas.

W3C XPath 1.0 Recommendation. You can search or traverse XML stored inside
the database using XPath, either from HTTP requests or from SQL.

ISO-ANSI Working Draft for XML-Related Specifications (SQL/XML) [ISO/IEC
9075 Part 14 and ANSI]. You can use the emerging ANSI SQLX functions to
qguery XML from SQL.

Java Database Connectivity (JDBC) API. JDBC access to XML is available for
Java programmers.

W3C XSL 1.0 Recommendation. You can transform XML documents at the
server using XSLT.

W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML
stored in the server as an XML DOM, for dynamic access.

Protocol support. You can store or retrieve XML data from Oracle XML DB
using standard protocols such as HTTP, FTP, IETF WebDAV, as well as Oracle
Net. See Chapter 19, "Using FTP, HTTP, and WebDAV Protocols".

Java Servlet version 2.2, (except that the Servlet WAR file, web.xml is not
supported in its entirety, and only one ServletContext and one web-app are
currently supported, and stateful servlets are not supported). See Chapter 20,
"Writing Oracle XML DB Applications in Java".

Simple Object Access Protocol (SOAP). You can access XML stored in the server
from SOAP requests. You can build, publish, or find Web Services using Oracle
XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle

Introducing Oracle XML DB 1-25

Oracle XML DB Technical Support

Advanced Queuing IDAP, the SOAP specification for queuing operations, on
XML stored in Oracle9i databases. See Chapter 24, "Exchanging XML Data
Using Advanced Queueing (AQ) and Oracle Streams" and Oracle9i Application
Developer’s Guide - Advanced Queuing.

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or
consultant, technical support for Oracle XML-enabled technologies is available free
through the Discussions option on Oracle Technology Network (OTN):

http://otn.oracle.com/tech/xml

You do not need to be a registered user of OTN to post or reply to XML-related
guestions on the OTN technical discussion forum. To use the OTN technical forum
follow these steps:

1. In the left-hand navigation bar of the OTN site, select Support > Discussions.
2. Click Enter a Technical Forum.

3. Scroll down to the Technologies section. Select XML.

4

Post any questions, comments, requests, or bug reports.

Terminology Used in This Manual

Table 1-2 describes terms used in this manual.

See Also: "Glossary"

1-26 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Terminology Used in This Manual

Table 1-2 Terminology Used in This Manual

Term Used in Manual

Description

XML Schema

XML Schema is a schema definition language (also in XML) that can be used to
describe the structure and various other semantics of conforming instance
documents. See Appendix B, "XML Schema Primer".

Oracle XML DB uses annotated XML schemas, that is, XML schemas that include
additional attributes defined by Oracle XML DB. The Oracle XML DB attributes
serve to specify metadata that in turn determines both the XML structuring and its
mapping to a database schema. You can register XML schemas and then use the
appropriate XML schema URLs while creating XMLType tables and columns and
also to define XMLType views. See:

« Chapter 5, "Structured Mapping of XMLType"
« Appendix B, "XML Schema Primer"

XPath

A language for addressing parts of an XML document, for use by XSLT and
XPointer. XPath uses the directory traversal syntax to traverse an XML document.
It includes syntax for specifying predicate expressions on the nodes traversed. The
result of a XPath traversal is an XML fragment. See Appendix C, "XPath and
Namespace Primer".

XSL

A stylesheet language used for transforming XML documents to HTML, XML or
any other formats. See Appendix D, "XSLT Primer".

DOM

Document Object Model (DOM) is an application program interface (API) for
HTML and XML documents. It defines the logical structure of documents and the
way a document is accessed and manipulated. In the DOM specification, the term
“document” is used in the broad sense.

XML is increasingly being used as a way of representing many different kinds of
information that may be stored in diverse systems, and much of this would
traditionally have been seen as data rather than as documents. Nevertheless, XML
presents this data as documents, and DOM can be used to manage this data.

With DOM, you can build documents, navigate their structure, and add, modify,
or delete elements and content. Anything in an HTML or XML document can be
accessed, changed, deleted, or added using DOM, with a few exceptions. DOM is
designed for use with any programming language.

Oracle XML DB provides implementations of DOM APIs to operate on XMLType
instances using various client APIs including PL/SQL DOM, Java DOM, and C
DOM (for OCI clients). See

« Chapter 5, "Structured Mapping of XMLType"
« Chapter 8, "PL/SQL API for XMLType"

Oracle XML DB
Repository

See also Chapter 3, "Using Oracle XML DB"

Introducing Oracle XML DB 1-27

Terminology Used in This Manual

Table 1-2 Terminology Used in This Manual (Cont.)

Term Used in Manual

Description

Resource

An object identified by a URL. In compliance with HTTP and WebDAV standards,
it has a set of system properties, such as displayname , creationdate , and so
on. In all cases, it maintains a reference count and destroys any associated data
when the last URL binding to it is removed. It maintains an access control list
(ACL) and owner. An Oracle XML DB resource is an XMLType mapped to a path
name that contains these properties. See Chapter 15, "RESOURCE_VIEW and
PATH_VIEW".

Repository

Oracle XML DB Repository is the set of all Oracle XML DB resources. The
Repository is a hierarchically organized set of XMLType objects, each with a path
name to identify them. Think of the Oracle XML DB Repository as a file system of
objects rather than files. There is one root to this Repository (“/”’), which contains a
set of resources, each with a path name. Resources that contain (“contain” with
respect to the hierarchical naming system) other resources are called folders (see
“Folder” in the following).

Oracle XML DB objects can have many path names (that is, a resource can be in
more than one folder). In some sense, the database itself is the Repository, since
any database object can be mapped to a path name. However, Oracle XML DB uses
“Repository” to refer to the set of database objects, in any schema, that are mapped
to path names. See Chapter 13, "Oracle XML DB Foldering".

Folder

A non-leaf node object in Oracle XML DB Repository, or one with the potential to
be such a node. Oracle XML DB has special storage semantics for collections for
optimization reasons. It maintains a special kind of hierarchical index used to
navigate the hierarchy of collections, and defines a property, called name that is
used to form path names in the hierarchy. There are many names for collections,
such as folders and directories. Any XML element type can be a folder by specifying
the isFolder attribute in the Oracle XML DB schema. See Chapter 13, "Oracle
XML DB Foldering".

Pathname

A hierarchical name is composed of a root element (the first /), element separators
(/), and various sub-elements (or path elements). A path element can be composed
of any character in the database character set except the following "\’ *//’). In
Oracle XML DB, a forward slash is the default name separator in a path name.

Resource Name

A resource here means any database object stored in Oracle XML DB Repository.
Resource name is the name of a resource within its parent folder. Resource names
are the path elements, that is, filenames within folders. Resource names must be
unique (potentially subject to case-insensitivity) within a folder.

Content

The body of a resource is what you get when you treat the resource like a file and
ask for its contents.

XDBBinary

An XML element defined by the Oracle XML DB schema that contains binary data.
XDBBinary elements are stored in the Repository when completely unstructured
binary data is uploaded into Oracle XML DB.

1-28 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Examples Used in This Manual

Table 1-2 Terminology Used in This Manual (Cont.)

Term Used in Manual Description

ACL Terminology See also Chapter 18, "Oracle XML DB Resource Security"

Access Control List Restricts access to an object. Oracle XML DB uses ACLs to restrict access to any
(ACL) Oracle XML DB resource, that is, any XMLType object that is mapped into the
Oracle XML DB file system hierarchy.

Protocol Terminology See also Chapter 19, "Using FTP, HTTP, and WebDAYV Protocols" and Chapter 3,
"Using Oracle XML DB"
FTP “File Transfer Protocol”. Defined as an Internet Standard (STDO009) in RFC959.

Oracle XML DB implements this standard. FTP is implemented by both dedicated
clients at the operating system level, file system explorer clients, and browsers.
FTP is commonly used for bulk file upload and download and for scripting of
Repository maintenance. FTP can be used in a mode similar to HTTP, with
frequent session establishment/destruction, by browsers in “passive” mode.

HTTP “HyperText Transfer Protocol”. Oracle XML DB implements HTTP 1.1 as defined
in RFC2616. Oracle XML DB implements cookies, basic authentication, and
HTTP/1.1 (RFC2616, 2109 & 2965) in this release.

WebDAV Web Distributed Authoring and Versioning (WebDav). Oracle XML DB supports
RFC2518 and access control in this release.

Servlets Sun developed a widely accepted standard for invoking Java code as the result of
protocol requests and passing parameters to that request. Servlets are most
commonly implemented with HTTP. The majority of Java services are
implemented as servlets, through mechanisms (implemented in Java) such as JSPs
(Java Server Pages) or SOAP (Simple Object Access Protocol). Servlets thus form
the architectural basis for a large percentage of web application development.

Oracle XML DB provides a method for invoking Java stored procedures over
protocols other than Oracle Services (Net Services). Oracle XML DB implements
most servlet standards. Chapter 20, "Writing Oracle XML DB Applications in Java".

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and
XMLType. The examples are based on a number of database schema, sample XML
documents, and sample XML schema. The infrastructure for the examples is
described, in most cases, with the examples in each chapter.

Introducing Oracle XML DB 1-29

Oracle XML DB Examples Used in This Manual

See Also:

« Appendix G, "Example Setup scripts. Oracle XML DB -
Supplied XML Schemas"

« http://otn.oracle.com/tech/xml/doc.html for the updated
example listings.

1-30 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

2

Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when
planning your Oracle XML DB solution. It contains the following sections:

Getting Started with Oracle XML DB
When to Use the Oracle XML DB
Designing Your XML Application

Oracle XML DB Design Issues: Introduction

Oracle XML DB Application Design: a. How Structured Is Your Data?
Oracle XML DB Application Design: b. Access Models

Oracle XML DB Application Design: c. Application Language

Oracle XML DB Application Design: d. Processing Models

Oracle XML DB Design: Storage Models

Getting Started with Oracle XML DB 2-1

Getting Started with Oracle XML DB

Getting Started with Oracle XML DB

Installing Oracle XML DB

Oracle XML DB is installed as part of the General Purpose Database shipping with
Oracle9i Release 2 (9.2) database. If you need to perform a manual installation or
de-installation of the Oracle XML DB, see Appendix A, "Installing and Configuring
Oracle XML DB" for further information.

When to Use the Oracle XML DB

Oracle XML DB is suited for any application where some or all of the data
processed by the application is represented using XML. Oracle XML DB provides
for high performance ingestion, storage, processing and retrieval of XML data.
Additionally, it also provides the ability to quickly and easily generate XML from
existing relational data.

The type of applications that Oracle XML DB is particularly suited to include:

« Business-to-Business (B2B) and Application-to-Application (A2A) integration
« Internet applications

« Content-management applications

« Messaging

« Web Services

A typical Oracle XML DB application has one or more of the following
requirements and characteristics:

« Large numbers of XML documents must be ingested or generated
« Large XML documents need to be processed or generated

« High performance searching, both within a document and across a large
collections of documents

« High Levels of security. Fine grained control of security

« Data processing must be contained in XML documents and data contained in
traditional relational tables

« Uses languages such as Java that support open standards such as SQL, XML,
XPath, and XSLT

2-2 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Design Issues: Introduction

« Accesses information using standard Internet protocols such as FTP,
HTTP/WebDav, or JDBC

« Full queriability from SQL and integration with analytic capabilities

« Validation of XML documents is critical

Designing Your XML Application

Oracle XML DB provides you with the ability to fine tune how XML documents will
be stored and processed in Oracle9i database. Depending on the nature of the
application being developed, XML storage must have at least one of the following
features

« High performance ingestion and retrieval of XML documents
« High performance indexing and searching of XML documents
« Beable to update sections of an XML document

=« Manage highly either or both structured and non-structured XML documents

Oracle XML DB Design Issues: Introduction

a. Data

b. Access

This section discusses the preliminary design criteria you can consider when
planning your Oracle XML DB application. Figure 2-1 provides an overview of
your main design options for building Oracle XML DB applications.

Will your data be highly structured (mostly XML), semi- structured (pseudo-
structured), or mostly non-structured? If highly structured, will your table(s) be
XML schema-based or non-schema-based? See "Oracle XML DB Application
Design: a. How Structured Is Your Data?" on page 2-5 and Chapter 3, "Using Oracle
XML DB".

How will other applications and users access your XML and other data? How
secure must the access be? Do you need versioning? See "Oracle XML DB
Application Design: b. Access Models" on page 2-7.

Getting Started with Oracle XML DB 2-3

Oracle XML DB Design Issues: Introduction

c. Application Language

d. Processing

Storage

In which language(s) will you be programming your application? See "Oracle XML
DB Application Design: c. Application Language" on page 2-8.

Will you need to generate XML? See Chapter 10, "Generating XML Data from the
Database".

How often will XML documents be accessed, updated, and manipulated? Will you
need to update fragments or the whole document?

Will you need to transform the XML to HTML, WML, or other languages, and how
will your application transform the XML? See Chapter 6, "Transforming and
Validating XMLType Data".

Does your application need to be primarily database resident or work in both
database and middle tier?

Is your application data-centric, document- and content-centric, or integrated (is
both data- and document-centric). "Oracle XML DB Application Design: d.
Processing Models" on page 2-9.

Will you be exchanging XML data with other applications, across gateways? Will
you need Advanced Queueing (AQ) or SOAP compliance? See Chapter 24,
"Exchanging XML Data Using Advanced Queueing (AQ) and Oracle Streams".

How and where will you store the data, XML data, XML schema, and so on? See
"Oracle XML DB Design: Storage Models" on page 2-10.

Note: Your choice of which models to choose in the preceding
four categories, a through d, are typically related to each other.
However, the storage model you choose is orthogonal to the choices
you make for the other design models. In other words, choices you
make for the other design modeling options are not dependent on
the storage model option you choose.

2-4 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: a. How Structured Is Your Data?

Figure 2-1 Oracle XML DB Design Options

Data Access? Language? Processing and
Structure? . Java Data
Repository . JDBC Manipulation?
Path Access « PL/SQL «DOM
« JNDI L SQL inserts /
updates
SQL *« XSLT
Query Access « Queriability
« Updatability

Storage Options ?

XMLType Tables or XMLType Views

* You get the same Oracle XML DB functionality regardless
of which storage option you chose.

« The storage option affects the application's performance
and data fidelity

Oracle XML DB Application Design: a. How Structured Is Your Data?

Figure 2-2 shows the following data structure categories and associated suggested
storage options:

« Structured data. Is your data highly structured? In other words, is your data
mostly XML data?

« Semi/pseudo-structured data. Is your data semi/pseudo-structured? In other
words does your data include some XML data?

« Unstructured data. Is your data unstructured? In other words, is your data
mostly non-XML data?

XML Schema-Based or Non-Schema-Based
Also consider the following data modeling questions:

« If your application is XML schema-based:

— For structured data, you can use either Character Large Object (CLOB) or
structured storage.

Getting Started with Oracle XML DB 2-5

Oracle XML DB Application Design: a. How Structured Is Your Data?

— For semi- or pseudo-structured data, you can use either CLOB, structured,
or hybrid storage. Here your XML schema can be more loosely coupled. See
also "Oracle XML DB Design: Storage Models" on page 2-10.

— For unstructured data, an XML schema design is not applicable.

« If your application is non-schema-based. For structured, semi/
pseudo-structured, and unstructured data, you can store your data in either
CLOBs in XMLType tables or views or in files in Repository folders. With this
design you have many access options including path- and query-based access
through Resource Views.

Figure 2-2 Data Storage Models: How Structured Is Your Data?

How Structured is

Your Data?
Semi-structured
smg::tj;ed Psudo-structured UnstrDu;:tt:red
Data
XML Non-Schema ~ XML Non-Schema
Schema Based? Schema Based?
Based? Based?
Use either: Store as: Use either: Store as: Store as:
CLOB or « CLOBIin « CLOB *« CLOBIin « CLOBIn
Structured XMLType < Structured XMLType XMLType
Storage Table » Hybrid Table Table
 Filein Storage * File in * Filein
Repository (semi- Repository Repository
Folder structured Folder Folder
Views storage) Views Views
* Access * Access * Access
through through through
Resource Resource Resource
APls APIs APIs

2-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: b. Access Models

Oracle XML DB Application Design: b. Access Models

Figure 2-3 shows the two main data access modes to consider when designing your
Oracle XML DB applications:

Navigation- or path-based access. This is suitable for both content/document
and data oriented applications. Oracle XML DB provides the following
languages and access APIs:

— SQL access through Resource/Path Views. See Chapter 15,
"RESOURCE_VIEW and PATH_VIEW".

— PL/SQL access through DBMS_XDBSee Chapter 16, "Oracle XML DB
Resource API for PL/SQL (DBMS_XDB)".

— Java access. See Chapter 17, "Oracle XML DB Resource API for Java".

— Protocol-based access using HTTP/WebDAV or FTP, most suited to
content-oriented applications. See Chapter 19, "Using FTP, HTTP, and
WebDAV Protocols".

Query-based access. This can be most suited to data oriented applications.
Oracle XML DB provides access using SQL queries through the following APIs:

— Java (through JDBC) access. See Chapter 9, "Java API for XMLType".
— PL/SQL access. See Chapter 8, "PL/SQL API for XMLType".

These options for accessing Repository data are also discussed in Chapter 13,
"Oracle XML DB Foldering".

You can also consider the following access model criteria:

What level of security do you need? See Chapter 18, "Oracle XML DB Resource
Security".

What kind of indexing will best suit your application? Will you need to use
Oracle Text indexing and querying? See Chapter 4, "Using XMLType" and
Chapter 7, "Searching XML Data with Oracle Text".

Do you need to version the data? If yes, see Chapter 14, "Oracle XML DB
\ersioning".

Getting Started with Oracle XML DB 2-7

Oracle XML DB Application Design: c. Application Language

Figure 2-3 Data Access Models: How Will Users or Applications Access the Data?

Oracle XML DB
Data Access Options

Query-based Path-based
Access Access
Use SQL Use Repository
Available Language Available Languages
and XMLType APIs and APIs
— JDBC / Java bean — SQL (RESOURCE_ / PATH_VIEW)
— PL/SQL — JNDI
— FTP
= HTTP / WebDav

Oracle XML DB Application Design: c. Application Language

You can program your Oracle XML DB applications in the following languages:

« Java (JDBC, Java Servlets)

See Also:

« Chapter 9, "Java API for XMLType"

Chapter 17, "Oracle XML DB Resource API for Java"
Chapter 20, "Writing Oracle XML DB Applications in Java"

Appendix E, "Java DOM API for XMLType, Resource API for
Java: Quick Reference"

. PLSQL

2-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Application Design: d. Processing Models

See Also:
« Chapter 8, "PL/SQL API for XMLType"

« Chapter 16, "Oracle XML DB Resource API for PL/SQL
(DBMS_XDB)"

« Appendix F, "Oracle XML DB XMLType API, PL/SQL and
Resource PL/SQL APIs: Quick Reference”

Oracle XML DB Application Design: d. Processing Models

The following processing options are available and should be considered when
designing your Oracle XML DB application:

XSLT. Will you need to transform the XML to HTML, WML, or other languages,
and how will your application transform the XML? While storing XML
documents in Oracle XML DB you can optionally ensure that their structure
complies (is “valid” against) with specific XML Schema. See Chapter 6,
"Transforming and Validating XMLType Data".

DOM. See Chapter 8, "PL/SQL API for XMLType". Use object-relational
columns, VARRAYS, nested tables, as well as LOBs to store any element or
Element-subtree in your XML Schema, and still maintain DOM fidelity (DOM
stored == DOM retrieved). Note: If you choose the CLOB storage option,
available with XMLType since Oracle9i Release 1 (9.0.1), you can keep white
spaces. If you are using XML schema, see the discussion on DOM fidelity in
Chapter 5, "Structured Mapping of XMLType".

XPath searching. You can use XPath syntax embedded in an SQL statement or
as part of an HTTP request to query XML content in the database. See
Chapter 4, "Using XMLType",Chapter 7, "Searching XML Data with Oracle
Text", Chapter 13, "Oracle XML DB Foldering", and Chapter 15,
"RESOURCE_VIEW and PATH_VIEW".

XML Generation and XMLType views. Will you need to generate or regenerate
XML? If yes, see Chapter 10, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? See
Chapter 4, "Using XMLType" and Chapter 15, "RESOURCE_VIEW and
PATH_VIEW".

Will you need to update fragments or the whole document? You can use XPath to
specify individual elements and attributes of your document during updates,

Getting Started with Oracle XML DB 2-9

Oracle XML DB Design: Storage Models

without rewriting the entire document. This is more efficient, especially for large
XML documents. Chapter 5, "Structured Mapping of XMLType".

Is your application data-centric, document- and content-centric, or integrated (is
both data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging Options

Advanced Queueing (AQ) supports XML and XMLType applications. You can
create queues with payloads that contain XMLType attributes. These can be used for
transmitting and storing messages that contain XML documents. By defining Oracle
objects with XMLType attributes, you can do the following:

« Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

« Selectively dequeue messages with XMLType attributes using the operators
existsNode() , extract() ,and soon.

« Define transformations to convert Oracle objects to XMLType.

« Define rule-based subscribers that query message content using XMLType
operators such as existsNode() and extract()

See Also:

« Chapter 24, "Exchanging XML Data Using Advanced Queueing
(AQ) and Oracle Streams"

« Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle XML DB Design: Storage Models

Figure 2-4 summarizes the Oracle XML DB storage options with regards to using
XMLType tables or views. If you have existing or legacy relational data, use
XMLType Views.

Regardless of which storage options you choose for your Oracle XML DB
application, Oracle XML DB provides the same functionality. However, the option
you choose will affect your application’s performance and the data fidelity (data
accuracy).

Currently, the three main storage options for Oracle XML DB applications are:

« LOB-based storage? LOB-based storage assures complete textual fidelity
including whitespaces. This means that if you store your XML documents as

2-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Design: Storage Models

CLOBs, when the XML documents are retrieved there will be no data loss. Data
integrity is high, and the cost of regeneration is low.

« Structured storage? Structured storage loses whitespace information but
maintains fidelity to the XML DOM, namely DOM stored = DOM retrieved.
This provides:

— Better SQL ’queriability’ with improved performance
— Piece-wise updatability

« Hybrid or semi-structured storage. Hybrid storage is a special case of
structured storage in which a portion of the XML data is broken up into a
structured format and the remainder of the data is stored as a CLOB.

The storage options are totally independent of the following criteria:

« Data queryability and updatability, namely, how and how often the data is
gueried and updated.

« How your data is accessed. This is determined by your application processing
requirements.

« What language(s) your application uses. This is also determined by your
application processing requirements.
See Also:

« "Storing XML: Structured or Unstructured Storage", "Structured
Storage: XML Schema-Based Storage of XMLType" and "Storage
Options for Resources" in Chapter 3, "Using Oracle XML DB"

« Chapter 4, "Using XMLType","Storing XMLType Data in Oracle
XML DB" on page 4-4

« Chapter 5, "Structured Mapping of XMLType", "DOM Fidelity"
on page 5-21

Using XMLType Tables

If you are using XMLType tables you can store your data in:
« CLOBs (unstructured) storage
« Structured storage

« Hybrid or semi-structured storage

Getting Started with Oracle XML DB 2-11

Oracle XML DB Design; Storage Models

Using XMLType Views

Use XMLType views if you have existing relational data. You can use the following
options to define the XMLType views:

« SQLX operators. Using these operators you can store the data in relational
tables and also generate/regenerate the XML. See Chapter 10, "Generating XML
Data from the Database".

« Object Types:
— Object tables

— Object constructors. You can store the data in relational tables using object
constructors.

— Object views
Figure 2—4 Structured Storage Options

Oracle XML DB Data
Storage Options

Your Storage Option Affects Performance
and Data Fidelity

XMLType XMLType +—— If you have existing
Tables Views relational data use
XMLType Views

Can define the
views using:
CLOB or S q Hybrid or SQLX Object
Unstructured tructure Semi-structured Operators Types
Storage Storage Storage I
Relational
Tables
Object Object Object
Tables Views Constructors
Relational
Tables

2-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

3

Using Oracle XML DB

This chapter describes where and how you can use Oracle XML DB. It discusses and
includes examples on common Oracle XML DB usage scenarios including XMLType
data storage and access, updating and validating your data, and why it helps to
understand XPath and XML Schema. It provides you with ideas for how you can
use the Repository to store, access, and manipulate database data using standard
protocols from a variety of clients.

The chapter also discusses how you can define a default XML table for storing XML
schema-based documents and using XDBUriType to access hon-schema-based
content.

It contains the following sections:

« Storing Data in an XMLType Column or XMLType Table

« Accessing Data in XMLType Columns or XMLType Tables
« Using XPath with Oracle XML DB

« Updating XML Documents with updateXML()

« Introducing the W3C XSLT Recommendation

« Using XSL/XSLT with Oracle XML DB

« Other XMLType Methods

« Introducing the W3C XML Schema Recommendation

« Validating an XML Document Using an XML Schema

« Storing XML: Structured or Unstructured Storage

« Structured Storage: XML Schema-Based Storage of XMLType
« Oracle XML DB Repository

Using Oracle XML DB 3-1

« Query-Based Access to Oracle XML DB Repository

« Storage Options for Resources

« Defining Your Own Default Table Storage for XML Schema-Based Documents
« Accessing XML Schema-Based Content

« Accessing Non-Schema-Based Content With XDBUriType

« Oracle XML DB Protocol Servers

See Also:

« Chapter 25, "Oracle XML DB Case Study: Web Services Retrieve
and Display XML Documents"

« Chapter 26, "Oracle XML DB Basic Demo"

for further examples of where and how you can use Oracle XML
DB.

3-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing Data in an XMLType Column or XMLType Table

Storing Data in an XMLType Column or XMLType Table

When storing XML documents in Oracle9i database you can use a number of
approaches, including:

« Parsing the XML document apart, outside Oracle9i database, and storing the
data in the XML document as rows in one or more tables. In this scenario the
database has no idea that is managing XML content.

» Storing the XML document in Oracle9i database using a CLOBor VARCHAR
column. Again in this scenario the database has no idea that it is managing
XML content, but you can programmatically use XDK to perform XML
operations.

« Storing the XML document in Oracle9i database using the XMLType datatype.
Two options are available in this scenario.

« Thefirstis to store the XML document in an XMLType column.
« Thesecond is to store the XML document using an XMLType table.

Both these options mean that the database is aware that it is managing XML
content. Selecting this approach provides you with a number of significant
advantages, as the database provides a set of features that make it possible to
process XML content efficiently.

Example 3-1 Creating a Table with an XMLType Column

CREATE TABLE Examplel

(
KEYVALUE varchar2(10) primary key,

XMLCOLUMN xmitype
)

Example 3-2 Creating a Table of XMLType
CREATE TABLE XMLTABLE OF XMLType;

Example 3-3 Storing an XML Document by First Creating an XMLType Instance Using
getDocument()

To store an XML document in an XMLType table or column the XML document
must first be converted into an XMLType instance. This is done using the different
constructors provided by the XMLType datatype. For example, given a PL/SQL
function called getCLOBDocument():

create or replace function getClobDocument(

Using Oracle XML DB 3-3

Storing Data in an XMLType Column or XMLType Table

flename in varchar2,
charsetin varchar2 default NULL)
retum CLOB deterministic
is
fle bfile := bflename(DIR' flename);
charContent CLOB:=""
targetHle bfile;
lang_ctx number:=DBMS_LOB.default_lang_ctx;
charset id number:=0;
src_offset number:=1;
dst offset number:=1;
waming number,
begin
if charset is not null then
charset id =NLS_CHARSET _ID(charset);
endfif,
targetile :=fie;
DBMS_LOB fileopen(targetile, DBMS_LOB file_readonly);
DBMS_LOB.LOADCLOBFROMFILE(charContent, targetFile,
DBMS_LOB.getl ength(targetFile), src_offset, dst_offset,
charset_id, lang_ctx,waming);
DBMS_LOB fileclose(targetFile);
retum charContent;
end;
/
— create XMLDIR directory
— connect system/manager
— create directory XMLDIR as '<location_of xmifles_on_server>',
— grant read on directory xmidir to public with grant option;

—you can use getCLOBDocument() to generate a CLOB from a file containin
—an XML document. For example, the following statement inserts a row into the
— XMLType table Example2 created earlier:

INSERT INTO XMLTABLE
VALUES(XMLTYPE(getCLOBDocument(purchaseorderxml)));

Note the use of parameter, "charset". This is used to identify the character set of the
designated file. If omitted, the default character set id of the current database is
used.

For example, if a file, invoice.xml uses one of the Korean character sets,
KO16KSC5601, it can be loaded into XMLType table, XMLDOGs follows:

insertinto xmidoc

3-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB

values(xmitype(getClobDocument(invoice xml', KO16KSC5601)));

The following example uses the UTF8 file format:

insertinto xmidoc
values(xmitype(getClobDocument(invoice xml', UTF8)));

In the last example both the database and the file use the same character set such as
UTF8:

insert into xmidoc values(xmitype(getClobDocument(invoice xmlY)));

Note: Oracle XML DB can handle multibyte characters as long as
the client character set is the same as the database character set.

Accessing Data in XMLType Columns or XMLType Tables

Once a collection of XML documents have been stored as XMLType tables or
columns the next step is to be able to retrieve them. When working with a collection
of XML documents you have two fundamental tasks to perform:

« Decide how to select a subset of the available documents

« Determine how best to access some subset of the nodes contained within the
documents

Oracle9i database and XMLType datatype provide a number of functions that make
it easy to perform these tasks. These functions make use of the W3C XPath
recommendation to navigate across and within a collection of XML documents.

See Also: Appendix C, "XPath and Namespace Primer" for an
introduction to the W3C XPath Recommendation.

Using XPath with Oracle XML DB

A number of the functions provided by the Oracle XML DB are based on the W3C
XPath recommendation. XPath traverses nested XML elements by your specifying
the elements to navigate through with a slash-separated list of element and attribute
names. By using XPath to define queries within and across XML documents. With
Oracle XML DB you can express hierarchical queries against XML documents in a
familiar, standards compliant manner.

Using Oracle XML DB 3-5

Using XPath with Oracle XML DB

The primary use of XPath in Oracle XML DB is in conjunction with the extract()
extractValue(), and existsNode() functions.

The existsNode() function evaluates whether or not a given document contains a
node which matches a W3C XPath expression. The existsNode() function returns
true (1) if the document contains the node specified by the XPath expression
supplied to the function. The functionality provided by the existsNode()

function is also available through the XMLType datatype existNode() method.

See Also:
« Chapter 4, "Using XMLType"
« Chapter 10, "Generating XML Data from the Database"

PurchaseOrder XML Document

Examples in this section are based on the following PurchaseOrder XML
document:

<PurchaseQOrder
xmins:xsi="http/Amwv.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemal ocation="http:/Amww.oracle.com/xdb/poxsd">
<Reference>ADAMS-20011127121040988PST</Reference>
<Actions>
<Action>
<User>SCOTT</User>
<Date>2002-03-31</Date>
</Action>
</Actions>
<Reject>
<Requestor>Julie P. Adams</Requestor>
<User>ADAMS</User>
<CostCenter>R20</CostCenter>
<Shippinglnstructions>
<name>Julie P. Adams</name>
<address>Redwood Shores, CA 94065</address>
<telephone>650 506 7300</telephone>
</Shippinglnstructions>
<Speciallnstructions>Ground</Specialinstructions>
<Lineltems>
<Lineltem itemNumber="1">
<Description>The Ruling Class</Description>
<Part I[d="715515012423" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<Lineltem ltemNumber="2">

3-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB

<Description>Diabolique</Desctiption>
<Part I[d="037429135020" UnitPrice="29.95" Quantity="3"/>
</Lineltem>
<Lineltem ltemNumber="3">
<Description>8 1/2</Description>
<Part 1d="037429135624" UnitPrice="39.95" Quantity="4"/>
</Lineltem>
</Lineltems>
</PurchaseOrder>

Using existsNode()

The existsNode() syntax is shown in Figure 3-1.

Figure 3—1 existsNode() Syntax

-namespace
—]{ EXISTSNODE |->@->CXMLType_instance)@{xpath_string) J O L@»

Example 3—4 existsNode() Examples That Find a Node to Match the XPath Expression

Given this sample XML document, the following existsNode() operators return
true (1).

SELECT existsNode(value(X),/PurchaseOrder/Reference’)
FROM XMLTABLE X;

SELECT existsNode(value(X),
PurchaseOrder{Reference="ADAMS-20011127121040988PST'T)
FROM XMLTABLE X;

SELECT existsNode(value(X),
'PurchaseOrder/Lineltems/Lineltem[2)/Par{@Id="037429135020'T)
FROM XMLTABLE X;

SELECT existsNode(value(X),

PurchaseOrder/Lineltems/Lineltem[Description="8 1/2'T)
FROM XMLTABLE X;

Using Oracle XML DB 3-7

Using XPath with Oracle XML DB

Example 3-5 existsNode() Examples That Do Not Find a Node that Matches the XPath
Expression

The following existsNode() operations do not find a node that matches the
XPath expression and all return false(0):

SELECT existsNode(value(X),/PurchaseOrder/UserName’)
FROM XMLTABLE X;

SELECT existsNode(value(X),
/PurchaseOrderReference="ADAMS-XXXXXXXXXIXXXXT)
FROM XMLTABLE X;

SELECT existsNode(value(X),
/PurchaseQrder/Lineltems/Lineltem[3)/Parf@Id="037429135020'7)
FROM XMLTABLE X;

SELECT existsNode(value(X),
/PurchaseQrder/Lineltems/Lineltem[Description="Snow White'])
FROM XMLTABLE X;

The most common use for existsNode() is in the WHERE clause of SQL SELECT,
UPDATE, or DELETE statements. In this situation the XPath expression passed to
the existsNode() function is used to determine which of the XML documents
stored in the table will be processed by the SQL statement.

Example 3—-6 Using existsNode() in the WHERE Clause

SELECT count(*)
FROM XMLTABLE x
WHERE existsNode(value(x),/PurchaseOrderfUser="ADAMS'T) = 1,

DELETE FROM XMLTABLE x
WHERE existsNode(value(x),/PurchaseOrderfUser="ADAMS']) = 1,
Ccommit;

The extractValue() function is used to return the value of a text node or
attribute associated with an XPath Expression from an XML document stored as an
XMLType. It returns a scalar data type.

Using extractValue()
The extractValue() syntax is shown in Figure 3-2.

3-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB

Figure 3-2 extractValue() Syntax

O @
—] EXTRACTVALUE @{XMLType_instance XPath_string) @

The following are examples of extractValue()

Example 3—7 Valid Uses of extractValue()

SELECT extractValue(value(x),/PurchaseQrder/Reference)
FROM XMLTABLE X;

Returns the following:
EXTRACTVALUE(VALUE(X),/PURCHASEORDER/REFERENCE)

ADAMS-20011127121040988PST

SELECT extractValue(value(x),
IPurchaseOrder/Lineltems/Lineltem2)/Par/@Id’)
FROM XMLTABLE X;
Returns the following:

EXTRACTVALUE(VALUE(X),/PURCHASEORDER/LINEITEMS/LINEITEM[2J/PART/@ID)

037429135020
extractValue() can only return a the value of a single node or attribute value.
For instance the following example shows an invalid use of extractValue() .In

the first example the XPath expression matches three nodes in the document, in the
second example the Xpath expression identifies a nodetree, not a text node or
attribute value.

Example 3-8 Non-Valid Uses of extractValue()

SELECT extractValue(value(X),
’PurchaseOrder/Lineltems/Lineltem/Description’)
FROM XMLTABLE X;

- FROMXMLTABLE X;

*

-ERROR atline 3:
— ORA-19025: EXTRACTVALUE retums value of only one node

Using Oracle XML DB 3-9

Using XPath with Oracle XML DB

Using extract()

SELECT extractValue(value(X),
/PurchaseOrder/Lineltems/Lineltem[1])
FROM XMLTABLE X;

—FROMXMLTABLE X

*

—ERROR atline 3:
— ORA-19025; EXTRACTVALUE retums value of only one node

Example 3-9 Using extractValue() in the WHERE Clause

extractValue() can also be used in the WHERIElause of a SELECT UPDATEor
DELETEstatement. This makes it possible to perform joins between XMLType tables
or tables containing XMLType columns and other relational tables or XMLType
tables. The following query shows you how to use extractValue() in both the
SELECT list and the WHERE clause:

SELECT extractValue(value(x),/PurchaseOrder/Reference’)
FROM XMLTABLE X, SCOTT.EMP
WHERE extractValue(value(X), /PurchaseQrder/User’) = EMP.ENAME
AND EMP.EMPNO = 7876;

- This retums:
— EXTRACTVALUE(VALUE(X),/PURCHASEORDER/REFERENCE))

- ADAMS-20011127121040988PST

The extract() syntax is shown in Figure 3-3.

Figure 3-3 extract() Syntax

-namespace
—>| EXTRACT |—>®9(XMLType_instance)@{XPath_string) @-)

extract() is used when the XPath expression will result in a collection of nodes
being returned. The nodes are returned as an instance of XMLType. The results of
extract() can be either a Document or a DocumentFragment . The functionality
of extract is also available through the XMLType datatype’s extract() method.

3-10 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using XPath with Oracle XML DB

Example 3—-10 Using extract() to Return an XML Fragment

The following extract() statement returns an XMLType that contains an XML
document fragment containing occurrences of the Description node. These
match the specified XPath expression shown.

Note: In this case the XML is not well formed as it contains more
than one root node.

setlong 20000

SELECT extract(value(X),
PurchaseOrder/Lineltems/Linelten/Description’)
FROM XMLTABLE X;

— This retums:

— EXTRACT(VALUE(X),/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION))
— <Description>The Ruling Class</Description>
— <Description>Diabolique</Description>

— <Description>8 1/2</Description>

Example 3-11 Using extract() to Return a Node Tree that Matches an XPath
Expression

In this example extract() returns the node tree that matches the specified XPath
expression;

SELECT extract(value(X),
lPurchaseOrder/Lineltems/Lineltem[1])
FROM XMLTABLE X;
This returns:

EXTRACT(VALUE(X),/PURCHASEORDER/LINEITEMS/LINEITEML])

<Lineltem itemNumber="1">

<Description>The Ruling Class</Description>

<Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
<Lineltem>

Using XMLSequence()
The XMLSequence() syntax is shown in Figure 3-4.

Using Oracle XML DB 3-11

Using XPath with Oracle XML DB

Figure 3—-4 XMLSequence() Syntax

XMLType_instance

XMLSEQUENCE

An XML document fragment can be converted into a set of XMLTypes using the
XMLSequence() function. XMLSequence() takes an XMLType containing a
document fragment and returns a collection of XMLType objects. The collection will
contain one XMLType for each root level node in the fragment. The collection can
then be converted into a set of rows using the SQL TABLE function.

Example 3-12 Using XMLSequence() and TABLE() to Extract Description Nodes from
an XML Document

The following example shows how to use XMLSequence() and Table () to extract
the set of Description nodes from the purchaseorder = document.

setlong 10000
set feedback on
SELECT extractValue(value(t),/Description’)
FROM XMLTABLE X,
TABLE (xmisequence (
extract(value(X),
PurchaseOrder/Lineltems/Lineltem/Description’)
)
)t

This returns:
EXTRACTVALUE(VALUE(T),/DESCRIPTION)

The Ruling Class
Diabolique
812

3-12 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Documents with updateXML()

Updating XML Documents with updateXML()

The updateXML() syntax is shown in Figure 3-5.

Figure 3-5 updateXML() Syntax

—>| UPDATEXML F@-(XMLType_instance o XPath_string o value_expr>J—><namespace)->@—>

You can update XML documents using the updateXML() function. updateXML()
updates an attribute value, node, text node, or node tree. The target for the update
operation is identified using an XPath expression. The following examples show
how you can use updateXML() to modify the contents of an XML Document
stored as an XMLType.

Example 3-13 Using updateXML() to Update a Text Node Value Identified by an XPath
Expression

This example uses updateXML() to update the value of the text node identified by
the XPath expression ‘/PurchaseOrder/Reference’:

UPDATE XMLTABLE t
SET value(t) = update XML (value(t),
IPurchaseOrder/Referenceftext(),
'MILLER-200203311200000000PST)
WHERE existsNode(value(t),
/PurchaseQrderReference="ADAMS-20011127121040988PST]) = 1;

This returns:
1 row updated.

SELECT value()
FROM XMLTABLEt;

This returns:
VALUE(T)

<PurchaseOrder xmins:xsi="http:/Amww.w3.0rg/2001/ XMLSchema-instance™
xsi:noNamespaceSchemal ocation="http:/Amwv.oracle.com/xdb/poxsd">
<Reference>MILLER-200203311200000000PST</Reference>

</PurchaseOrder>

Using Oracle XML DB 3-13

Updating XML Documents with updateXML()

Example 3-14 Using updateXML() to Replace Contents of a Node Tree Associated
with XPath Elements

In this example updateXML() replaces the contents of the node tree associated
with the element identified by the XPath expression
‘/PurchaseOrders/Lineltems/Lineltem[2] .

Note: In this example, since the replacement value is a Node tree,
the third argument to the updateXML() function is supplied as an
instance of the XMLType datatype.

UPDATE XMLTABLE t
SET value(t) =
updateXML (value(t),
/PurchaseOrder/Lineltems/Lineltem(2],
xmitype(<Lineltem temNumber="4">
<Description>Andrei Rublev</Description>
<Part Id="715515009928" UnitPrice="39.95"
Quantity="2"/>
</Lineltem>'
)
)
WHERE existsNode(value(t),
IPurchaseOrder{Reference="MILLER-200203311200000000PST']
)=1;

This returns:

1 row updated.

SELECT value(t)
FROM XMLTABLEY;

And this returns:
VALUE(T)

<PurchaseOrder xmins:xsi="http:/Amwww.w3.org/2001/ XML Schema-instance” xsi:noNames
paceSchemal ocation="http:/Amwv.oracle.com/xdb/poxsd">
<Reference>MILLER-200203311200000000PST</Reference>

<Lineltems>

3-14 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XSLT Recommendation

<Lineltem ltemNumber="1">
<Description>The Ruling Class</Description>
<Part Id="715515012423" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<Lineltem ltemNumber="4">
<Description>Andrei Rublev</Description>
<Part I[d="715515009928" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<Lineltem ltemNumber="3">
<Description>8 1/2</Description>
<Part 1d="037429135624" UnitPrice="39.95" Quantity="4"/>
</Lineltem>
</Lineltems>
</PurchaseOrder>

Introducing the W3C XSLT Recommendation

The W3C XSLT Recommendation defines an XML language for specifying how to
transform XML documents from one form to another. Transformation can include
mapping from one XML schema to another or mapping from XML to some other
format such as HTML or WML.

See Also: Appendix D, "XSLT Primer" for an introduction to the
W3C XSL and XSLT recommendations.

Example 3-15 XSL Stylesheet Example: PurchaseOrder.xsl

The following example, PurchaseOrder.xsl , is an example fragment of an XSL
stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xslstylesheet version="1.0"
xmins:xsi="http/Amwv.w3.0rg/1999/XSL/ Transform
xmins:xdb="http:/xmins.oracle.com/xdb"
xmins:xsi="http:/Awv.w3.0rg/200/XMLSchema-instance>
<xsltemplate match="">
<htmi>
<head>
<bhody bgcolor="#003333" text="#FFFFCC" link="#~FCCO00"
Vink="#66CC99" alink="#669999">

<xsl-for-each select="PurchaseOrder'/>
<xsl-for-each select="PurchaseOrder">
<center>

Using Oracle XML DB 3-15

Using XSL/XSLT with Oracle XML DB

Purchase Order
</[FONT>

<fcenter>

<FONT FACE="Arial, Helvetica, sans-serif"
COLOR="#000000">
<xsl:for-each select="Part>
<xslvalue-of select="@Quantity*@UnitPrice'/>
</xslfor-each>

<fd>
<fr>
</tbody>
<xslfor-each>
</xslfor-each>
<fiable>
</xsl-for-each>

</body>
<htmp>
</xsltemplate>
</xslstylesheet>

See Also: Appendix D, "XSLT Primer" for the full listing of this
XSL stylesheet.

Using XSL/XSLT with Oracle XML DB

Oracle XML DB complies with the W3C XSL/XSLT recommendation by supporting
XSLT transformations in the database. In Oracle XML DB, XSLT transformations can
be performed using either of the following:

« XMLTransform() function
« XMLType datatype’s transform() method

Since XSL stylesheets are valid XML documents both approaches apply when the
XSL stylesheets are provided as instances of the XMLType datatype. The results of
the XSL transformation are also returned as an XMLType.

3-16 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Other XMLType Methods

Because the transformation takes place close to the data, Oracle XML DB can
optimize features such as memory usage, 1/0 operations, and network traffic
required to perform the transformation.

See Also: Chapter 6, "Transforming and Validating XMLType
Data"

Example 3-16 Using transform() to Transform an XSL

The following example shows how transform() can apply XSLT to an XSL

stylesheet, PurchaseOrder.xsl , to transform the PurchaseOrder.xml
document:
SELECT value(f).transform(xmitype(getDocument(purchaseQOrder.xsl)))

from XMLTABLE t

where existsNode(value(t),

/PurchaseCrderReference="MILLER-200203311200000000PST']
)=1

This returns:
VALUE(T).TRANSFORM(XMLTYPE(GETDOCUMENT(PURCHASEORDER.XSL)))

<htmb>
<head>
<body bgcolor="#003333" text="#FFFFCC" link="#FFCCO00" viink="#66CC99" alink="#
669999">

<center>

</body>
<htmb>

Since the transformed document using XSLT is expected as in instance of XMLType,
the source could easily be a database table.

Other XMLType Methods

The following describes additional XMLType methods:

« createXML (). A static method for creating an XMLType instance. Different
signatures allow the XMLType to created from an number of different sources
containing an XML document. Largely replaced by the XMLType constructor in
Oracle9i Release 2 (9.2).

Using Oracle XML DB 3-17

Introducing the W3C XML Schema Recommendation

« isFragment() .Returns true (1) if the XMLType contains a document
fragment . A document fragment is an XML document without a Root Node.
Document fragments are typically generated using the extract() function

and method.

« getClobval() .Returnsa CLOB containing an XML document based on the
contents of the XMLType.

« getRootElement() . Returns the name of the root element of the XML

document contained in the XMLType.

« getNameSpace() . Returnsthe name of the root element of the XML document
contained in the XMLType.

Introducing the W3C XML Schema Recommendation

XML Schema provides a standardized way of defining what the expected contents
of a set of XML documents should be. An XML schema is a an XML document that
defines metadata. This metadata specifies what the member contents of the
document class should be. The members of a document class can be referred to as
instance documents.

Since an XML schema definition is simply an XML document that conforms to the
class defined by the XML Schema http://www.w3.0rg/2001/XMLSchema . XML
schemas can be authored using a simple text editor, such as Notepad, vi, a
schema-aware editor, such as the XML editor included with the Oracle9i JDeveloper
tool, or an explicit XML schema authoring tool, such as XMLSpy from Altova
Corporation. The advantage of using a tool such as XMLSpy, is that these tools
allow the XML schema to be developed using an intuitive, graphical editor which
hides much of the details of the XML schema definition from the developer.

Example 3-17 XML Schema Example, PurchaseOrder.xsd

The following example PurchaseOrder.xsd , is a standard W3C XML Schema
example fragment, in its native form, as an XML Document:

<xs:schema xmins:xs="http:/Amwwv.w3.0rg/2001/ XMLSchema’*>
<xs:complexType name="ActionsType" >
<xs:sequence>
<xs:element name="Action" maxOccurs="4">

<xs.complexType >
<xs:sequence>

<xs.element ref="User'/>

<xs:element re="Date"/>
</xs:sequence>

3-18 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Schema Recommendation

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs.complexType name="RejectType" >
<xsal>
<xs:element ref="User" minOccurs="0"/>
<xs:element ref="Date" minOccurs="0"/>
<xs:element ref="Comments" minOccurs="0"/>
</xsal>
</xs:.complexType>
<xs:complexType name="ShippinginstructionsType" >
<xs:sequence>
<xs:element ref="name">
<xs:element re="address"/>
<xs:element ref="telephone'/>
</xs:sequence>

<xs:complexType>
<xs:attribute name="1d" >
<xs.simpleType>
<xsrestriction base="xs:string">
<xsminLength value="12"/>
<xsmaxLength value="14"/>
<Ixsrestriction>
</xs:simpleType>
<Ixs:attribute>
<xs:attribute name="Quantity" type="money'/>
<xs:attribute name="UnitPrice" type="quantity'/>
</xs:complexType>
</xs:element>
</xs:schema>

See Also: Appendix B, "XML Schema Primer" for the detailed
listing of PurchaseOrder.xsd

Using XML Schema with Oracle XML DB
Oracle XML DB supports the use of the W3C XML Schema in two ways.

« Automatic Validation of instance documents

« Definition of Storage models

Using Oracle XML DB 3-19

Introducing the W3C XML Schema Recommendation

To use a W3C XML Schema with Oracle XML DB, the XML schema document has
to be registered with the database. Once an XML schema has been registered
XMLType tables and columns can be created which are bound to the schema.

To register an XML schema you must provide two items. The first is the
XMLSchema document, the second is the URL which will be used by XML
documents which claim to conform to this Schema. This URL will be provided in
the root element of the instance document using either the
noNamespaceSchemalocation attribute or schemalocation attribute as
defined in the W3C XML Schema recommendation

XML schemas are registered using methods provided by PL/SQL package DBMS _
XMLSCHEMAchemas can be registered as global or local schemas. See Chapter 5,
"Structured Mapping of XMLType" for a discussion of the differences between
Global and Local Schemas.

Oracle XML DB provides a number of options for automatically generating default
database objects and Java classes as part of the schema registration process. Some of
these options are discussed later in this section.

Example 3-18 Registering PurchaseOrder.xsd as a Local XML Schema Using
registerSchema()

The following example shows how to register the preceding PurchaseOrder.xsd
XML schema as a local XML schema using the registerSchemay() method.
begin
dbms_xmischema.registerSchema(
“hitp:/Amww.oracle.comixsd/purchaseOrder.xsd),
getDocument(PurchaseOrder.xsd),
TRUE, TRUE, FALSE, FALSE
)
end;
/

~This retums:
—PL/SQL procedure successfully completed.

The registerSchema() procedure causes Oracle XML DB to perform the
following operations:

« Parse and validate the XML schema

« Create a set of entries in Oracle Data Dictionary that describe the XML schema

3-20 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing the W3C XML Schema Recommendation

« Create a set of SQL object definitions, based on the complexTypes defined in the
XML schema

Once the XML schema has been registered with Oracle XML DB, it can be
referenced when defining tables that contain XMLType columns, or creating
XMLType tables.

Example 3—-19 Creating an XMLType Table that Conforms to an XML Schema

This example shows how to create an XMLType table which can only contain XML
Documents that conform to the definition of the PurchaseOrder element in the
XML schema registered at

‘http://www.oracle.com/xsd/purchaseorder.xsd’

CREATE TABLE XML_PURCHASEORDER of XMLType
XMLSCHEMA "http:/Ammw.oracle.comixsdipurchaseOrder xsd"
ELEMENT "PurchaseOrder";

This results in:

Table created.
DESCRIBE XML_PURCHASEORDER

Returns the following:

Name Null? Type

TABLE of SYS XMLTYPE(XMLSchema "http:/Amwv.oracle.comixsd/purchaseOrder.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE "PurchaseOrder538 T

XMLSchema-Instance Namespace

Oracle XML DB must recognize that the XML document inserted into an XML
schema-based table or column is a valid member of the class of documents defined
by the XML schema. The XML document must correctly identify the XML schema
or XML schemas it is associated with.

This means that XML schema, for each namespace used in the document, must be
identified by adding the appropriate attributes to the opening tag for the root
element of the document. These attributes are defined by W3C XML Schema
recommendation and are part of the W3C XMLSchema-Instance namespace.
Consequently in order to define these attributes the document must first declare the
XMLSchema-instance namespace. This namespace is declared as foIIows
xmins:xsi=http://www.w3.0rg/2001/XMLSchema-instance

Using Oracle XML DB 3-21

Validating an XML Document Using an XML Schema

Once the XMLSchema-instance namespace has been declared and given a
namespace prefix the attributes that identify the XML schema can be added to the
root element of the instance document. A given document can be associated with
one or more XML schemas. In the preceding example, the namespace prefix for the
XMLSchema-instance namespace was defined as xsi .

noNameSpaceSchemalocation Attribute. ~ The XML schema associated with the
unqualified elements is defined using the attribute
noNamespaceSchemalLocation . In the case of the PurchaseOrder.xsd XML
schema, the correct definition would be as follows:

<PurchaseOrder
xmins:xsi=http/Amwv.w3.0rg/2001/XMLSchema-instance
xsi:noNamespaceSchemal ocation="http/Avwv.oracle.com/xsd/purchaseOrder.xsd >

Using Multiple Namespaces: schemalLocation Attribute. If the XML document uses
multiple namespaces then each namespace needs to be identified by a
schemalocation attribute. For example, assuming that the Purchaseorder
document used the namespace PurchaseOrder , and the PurchaseOrder
namespace is given the prefix po. The definition of the root element of a
PurchaseOrder document would then be as follows:

<po:PurchaseOrder
xmins:xsi=http:/Amwv.w3.0rg/200/XMLSchema-instance
xmins:po="PurchaseOrder”
xsi:schemalocation="PurchaseOrder
http/Amww.oracle.com/xsd/purchaseOrder.xsd™>

Validating an XML Document Using an XML Schema

By default Oracle XML DB performs a minimum amount of validation when a
storing an instance document. This minimal validation ensures that the structure of
the XML document conforms to the structure specified in the XML schema.

Example 3-20 Attempting to Insert an Invoice XML Document Into an XMLType Table
Conforming to PurchaseOrder XML Schema

The following example shows what happens when an attempt is made to insert an
XML Document containing an invoice into a XMLType table that is defined as
storing documents which conform to the PurchaseOrder Schema

INSERT INTO XML_PURCHASEORDER
values (xmitype(getDocument(Invoice xml)))
values (xmitype(getDocument(invoice xml)))

3-22 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating an XML Document Using an XML Schema

*

This returns:

ERROR atline 2:
ORA-19007: Schema and element do not match

The reason for not performing full instance validation automatically is based on the
assumption that, in the majority of cases it is likely that schema based validation
will have been performed prior to attempting to insert the XML document into the
database.

In situations where this is not the case, full instance validation can be enabled using
one of the following approaches:

« Atable level CHECKconstraint
« APL/SQL BEFORE INSERT trigger

Example 3-21 Using CHECK Constraints in XMLType Tables

This example shows how to use a CHECkeconstraint to an XMLType table and the
result of attempting to insert an invalid document into the table:

ALTER TABLE XML_PURCHASEORDER
add constraint VALID_PURCHASEORDER
check (XMLIsValid(sys_nc_rowinfo$)=1);

- This retums:
- Table altered

INSERT INTO XML_PURCHASEORDER
values (xmitype(getDocument('InvalidPurchaseOrder.xml)));
INSERT INTO XML_PURCHASEORDER,

*

—This retums:
—ERROR atline 1:
— ORA-02290: check constraint (DOC92.VALID _PURCHASEORDER) violated

Example 3-22 Using BEFORE INSERT Trigger to Validate Data Inserted Into XMLType
Tables

The next example shows how to use a BEFORE INSERT trigger to validate that the
data being inserted into the XMLType table conforms to the specified schema

CREATE TRIGGER VALIDATE_PURCHASEORDER
before insert on XML_PURCHASEORDER
for each row

Using Oracle XML DB 3-23

Storing XML: Structured or Unstructured Storage

Storing XML.:

declare
XMLDATA xmitype;
begin
XMLDATA = :new.sys_nc_rowinfo$;
xmitype.schemavalidate(XMLDATA);
end;
/

- This retums:
—Trigger created.

insertinto XML_PURCHASEORDER
values (xmitype(getDocument('InvalidPurchaseOrder.xml)));

- values (xmitype(getDocument('InvalidPurchaseOrder.xml)))

-ERROR atline 2:

— ORA-31154: invalid XML document

— ORA-19202: Error occurred in XML processing

— LSX-00213: only O occurrences of particle "User”, minimum is 1

— ORA-06512: at "SYS XMLTYPE", line O

— ORA06512: at "DOC92.VALIDATE_PURCHASEORDER", line 5

— ORA-04088: error during execution of trigger ' DOC92.VALIDATE._ PURCHASEORDER’

As can be seen both approaches ensure that only valid XML documents can be
stored in the XMLType table:

« Table CHECK Constraint. The TABLEconstraint approach’s advantage is that it
is simpler to code. Its disadvantage is that, since it is based on the
isSchemaValid() method, it can only indicate whether or not the instance
document is valid. When the instance document is not valid it cannot give any
information as to why a document is invalid.

« BEFORE INSERT Trigger. The BEFORE INSERTtrigger requires a little more
coding. Its advantage is that it is based on the schemaValidate() method.
This means that when the instance document is not valid it can provide
information about what was wrong with the instance document. It also has the
advantage of allowing the trigger to take corrective action when appropriate.

Structured or Unstructured Storage

When designing an Oracle XML DB application you must first decide whether the
XMLType columns and table will be stored using structured or unstructured storage
techniques.

3-24 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XML: Structured or Unstructured Storage

Table 3-1 Comparing Structured and Unstructured XML Storage

Table 3-1 compares using structured and structured storage to store XML.

Feature

Unstructured XML Storage

Structured XML Storage

Storage technique

Contents of XMLType columns and tables are
stored using the CLOB data type.

Contents of XMLType columns and tables are
stored as a collection of SQL objects. By
default, the underlying storage model for
XML schema-based XMLType columns and
tables is structured storage.

Can store
non-XML
schema-based
tables?

Only option available for XMLType tables
and columns that are not associated with an
XML schema.

Can only be used when the XMLType
column or table is based on an XML schema.
This means that the instance documents
must conform to the underlying XML
schema.

Performance:
Storage and
retrieval speed

It allows for higher rates of ingestion and
retrieval, as it avoids the overhead associated
with parsing and recomposition during
storage and retrieval operations.

Results in a slight overhead during ingestion
and retrieval operations in that the
document has to be shredded during
ingestion and re-constituted prior to
retrieval.

Performance:
operation speed

Slower than for structured storage.

When an XML schema is registered, Oracle
XML DB generates a set of SQL objects that
correspond to complexTypes defined in the
XML schema. XPath expressions sent to
Oracle XML DB functions are translated to
SQL statements that operate directly against
the underlying objects.

This re-writing of XMLType operations into
object-relational SQL statements results in
significant performance improvements
compared with performing the same
operations against XML documents stored
using unstructured storage.

Flexible. Can
easily process
varied content?

Allows for a great deal of flexibility in the
documents being processed making it an
appropriate choice when the XML
documents contain highly variable content.

Leverages the object-relational capabilities of
the Oracle9i database.

Using Oracle XML DB 3-25

Storing XML: Structured or Unstructured Storage

Table 3-1 Comparing Structured and Unstructured XML Storage (Cont.)

Feature

Unstructured XML Storage

Structured XML Storage

Memory usage:
Do the XML
documents need
parsing?

Oracle XML DB must parse the entire XML
document and load it into an in-memory
DOM structure before any validation, XSL
Transformation, or XPath operations can be
performed on it.

Allows Oracle XML DB to minimize memory
usage and optimize performance of
DOM-based operations on XMLType table
and columns by using:

« Lazy Manifestation (LM): Occurs when
Oracle XML DB constructs a DOM
structure based on an XML document.
With LM, instead of constructing the
whole DOM when the document is
accessed, Oracle XML DB only
instantiates the nodes required to
perform the immediate operation. As
other parts of the document are required
the appropriate node trees are
dynamically loaded into the DOM.

« Least Recently Used (LRU): Strategy to
discard nodes in the DOM that have not
been accessed recently.

Update
processing

When stored, any update operations on the
document will result in the entire CLOB
being re-written.

If any part of the document is updated using
updateXML() then the entire document has
to be fetched from the CLOB, updated, and
written back to the CLOB.

Can update individual elements, attributes,
or nodes in an XML document without
rewriting the entire document.

Possible to re-write the updateXML()
operation to an SQL UPDATE statement that
operates on columns or objects referenced by
the XPATH expression.

Indexing

You can use B*Tree indexes based on the
functional evaluation of XPath expressions
or Oracle Text inverted list indexes.

Unstructured storage make it impossible to
create B*TREE indexes based on the values
of elements or attributes that appear within
collections.

You can use B*Tree indexes and Oracle Text
inverted list indexes.

By tuning the way in which collections are
managed, indexes can be created on any
element or attribute in the document,
including elements or attributes that appear
with collections.

3-26 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XML: Structured or Unstructured Storage

Table 3-1 Comparing Structured and Unstructured XML Storage (Cont.)

Feature Unstructured XML Storage Structured XML Storage

Space needed Can be large. Since based on XML schema, it is not
necessary for Oracle XML DB to store XML
tag names when storing the contents of XML
documents. This can significantly reduce the
storage space required.

Data integrity - Makes it possible to use a set of
database integrity constraints that allow
the contents of an XML document to be
validated against information held
elsewhere in the database.

Tuning: None You can annotate XML schema, for fine grain
Fine-grained control over sets of SQL objects generated
object control from XML schema and how these objects are

stored in the database.

You can control how collections are
managed, define tablespace usage, and
partitioning of table or tables used to store
and manage the SQL objects. This makes it
possible to fine tune the performance of the
Oracle XML DB to meet the needs of the
application.

Other annotations control how Simple
elements and attributes are mapped to SQL
columns

Data Manipulation Language (DML) Independence

Oracle XML DB ensures that all Data Manipulation Language (DML) operations
based on Oracle XML DB functions return consistent results. By abstracting the
storage model through the use of the XMLType datatype, and providing a set of
operators that use XPath to perform operations against XML documents, Oracle
XML DB makes it possible for you to switch between structured and unstructured
storage, and to experiment with different forms of structured storage without
affecting the application.

DOM Fidelity in Structured and Unstructured Storage

To preserve DOM fidelity a system must ensure that a DOM generated from the
stored representation of an XML Document is identical to a DOM generated from

Using Oracle XML DB 3-27

Structured Storage: XML Schema-Based Storage of XMLType

the original XML document. Preserving DOM integrity ensures that none of the
information contained in the XML Document is lost as a result of storing it.

The problem with maintaining DOM integrity is that an XML document can contain
a lot of information in addition to the data contained in element and attribute
values. Some of this information is explicitly provided, using Comments and
Processing Instructions. Other information can be implicitly provided, such as:

« Ordering of the elements in a collection
« Ordering of child elements within the parent
« Relative position of Comments and Processing Instructions

One of the common problems application developers face when using a traditional
relational model to manage the contents of XML documents is how to preserve this
information. Table 3-2 compares DOM fidelity in structured and unstructured
storage:

Table 3-2 DOM Fidelity: Unstructured and Structured Storage

DOM Fidelity with Unstructured Storage DOM Fidelity with Structured Storage

Relational systems do not provide any implicit ~ Oracle XML DB can preserve DOM Fidelity even
ordering, nor do they provide the flexibility to with structured storage. When an XML
make it easy to preserve out of band data such as Document is shredded and stored using
comments and processing instructions. With a structured storage techniques, the Comments,
typical relational database, the only way to Processing Instructions, and any ordering
preserve DOM Fidelity is to store the source information implicit in the source document is
document using unstructured storage techniques preserved as part of the SQL objects that are
created when the document is shredded. When
the document is retrieved this information is
incorporated back into the generated XML
document.

Structured Storage: XML Schema-Based Storage of XMLType

Logically, an XML document consists of a collection of elements and attributes.
Elements can be either of the following:

« complexTypes , containing child elements and attributes
« simpleTypes |, containing scalar values

An XML schema defines the set of elements and attributes that can exist in a
particular class of XML document and defines the relationships between them.

3-28 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType

During XML schema registration, Oracle XML DB generates an SQL Object Type for
each complexType defined in the XML schema. The definition of the SQL object
mirrors the definition of the complexType .

Each child element and attribute defined by the complexType maps to an attribute
of the SQL object type.

« Ifachild element in the complexType is itself a complexType , the datatype of
the corresponding SQL attribute will be the appropriate SQL type.

« Ifthe child element is a simpleType or attribute, based on one of the scalar
datatypes defined by the W3C XML Schema recommendation, then the
datatype of the corresponding SQL attribute will be the appropriate primitive
SQL data type.

XML Schema Names and Defining Oracle XML DB Namespace

By default SQL Obijects generated when an XML schema is registered are given
system-generated names. However, with Oracle XML DB you can specify the names
of SQL objects by annotating the schema. To annotate an XML schema, you must
first include the Oracle XML DB namespace in the XMLSchematag, defined as:

http/ixmins.oracle.com/xdb

Hence an XML schema using Oracle XML DB annotations, must contain the
following attributes in the XMLSchematag:

<xs:schema xmins:xs="http:/Ammwv.w3.0rg/2001/ XML Schema”
xmins:xdb="http:/xmins.oracle.com/xdb" >

</xs:schema>

Once Oracle XML DB namespace has been defined, the annotations defined by
Oracle XML DB can be used.

Example 3-23 Defining the Name of SQL Objects Generated from complexTypes

This example uses xdb:SQLType to define the name of the SQL object generated
from complexType PurchaseOrder, as XML_PURCHASEORDER_TYPE

<xs.element name="PurchaseOrder">
<xs:complexType type="PurchaseOrderType"
xdb:SQLType="XML_PURCHASEORDER TYPE">
<xs:sequence>
<xs:element ref="Reference'/>
<xs:element name="Actions" type="ActionsType'/>

Using Oracle XML DB 3-29

Structured Storage: XML Schema-Based Storage of XMLType

<xs:element name="Reject" type="RejectType" minOccurs="0"/>
<xs:element ref="Requestor’/>
<xs:elementref="User'/>
<xs:element ref="CostCenter'/>
<xs:element name="ShippingInstructions"
type="ShippingInstructionsType'"/>
<xs:element ref="Speciallnstructions'/>
<xs:element name="Lineltems" type="LineltemsType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

So executing the following statement:

DESCRIBE XML_PURCHASEORDER_TYPE
XML_PURCHASEORDER TYPE is NOT FINAL;

Returns the following structure:

Name Null? Type

SYS_XDBPD$ XDBXDB$RAW_LIST T
Reference VARCHAR2(26)

Actions XML_ACTIONS _TYPE

Reject XML _REJECTION TYPE
Requestor VARCHAR2(128)

User VARCHAR2(10)

CostCenter VARCHAR2(4)
Shippinglnstructions XML_SHIPPINGINSTRUCTIONS_TYPE
Speciallnstructions VARCHAR2(2048)
Lineltems XML_LINEITEMS_TYPE

Note: In the preceding example, xdb:SQLType annotation was
also used to assign names to the SQL types that correspond to the
complexTypes: ActionsType , ShippinglnstructionsType

and LineltemsType

Using xdb:SQLName to Override Default Names

Oracle XML DB uses a predefined algorithm to generate valid SQL names from the
names of the XML elements, attributes, and types defined in the XML schema. The
xdb:SQLName annotation can be used to override the default algorithm and supply
explicit names for these items.

3-30 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType

Using xdb:SQLType to Override Default Mapping

Oracle XML DB also provides a default mapping between scalar datatypes defined
by the XML Schema recommendation and the primitive datatype defined by SQL.
Where possible the size of the SQL datatype is derived from restrictions defined for
the XML datatype. If required, the xdb:SQLType annotation can be used to
override this default mapping:

Example 3-24 Using xdb:SQLType and xdb:SQLName to Specify the Name and
Mapping of Objects Generated from complexTypes

This example shows how to override the name and type used for the
Speciallnstructions element and the effect these changes have on the
generated SQL Object type.

Note: The override for the name of the Speciallnstructions
element is applied where the element is used, inside the
PurchaseOrderType , not where it is defined

<xs:element name="Speciallnstructions" xdb:SQLType="CLOB" >
<xs:simpleType>
<xsrestriction base="xs:string">
<xs:minLength value="0"/>
<xsmaxLength value="2048"/>
</xsrrestriction>
<xs:simpleType>
</xs:element>

<xs:element name="PurchaseQOrder">
<xs:complexType type="PurchaseOrderType"
xdb:SQLType="XML_PURCHASEORDER _TYPE">
<xs:sequence>
<xs:element ref="Reference"/>
<xs:element name="Actions" type="ActionsType"/>
<xs:element name="Reject" type="RejectType" minOccurs="0"/>
<xs:element ref="Requestor’/>
<xs:element ref="User'/>
<xs:element ref="CostCenter"/>
<xs:element name="Shippinglnstructions"
type="ShippingInstructionsType"/>
<xs:element ref="Speciallnstructions"
xdb:SQLName="SPECINST"/>
<xs:element name="Lineltems" type="LineltemsType"/>

Using Oracle XML DB 3-31

Structured Storage: XML Schema-Based Storage of XMLType

</xs:sequence>
</xs:complexType>
</xs:element>
On executing the following statement:
DESCRIBE XML_PURCHASEORDER_TYPE
XML_PURCHASEORDER_TYPE is NOT FINAL

The following structure is returned:

Name Null? Type

SYS_XDBPD$ XDB.XDB$RAW_LIST_T
Reference VARCHAR2(26)

Actions XML_ACTIONS_TYPE

Reject XML _REJECTION_TYPE
Requestor VARCHAR2(128)

User VARCHAR2(10)

CostCenter VARCHAR2(4)
Shippinginstructions XML_SHIPPINGINSTRUCTIONS_TYPE
SPECINST CLOB

Lineltems XML_LINEITEMS_TYPE

Structured Storage: Storing complexType Collections

One issue you must consider when selecting structured storage, is what techniques
to use to manage Collections. Different approaches are available and each approach
offers different benefits. Generally, you can handle Collections in five ways:

« CLOBS. If acomplexType is defined with xdb:SQLType="CLOB” then the
type, and all child elements are stored using unstructured storage techniques

« Inline VARRAYS. If no other information is given for a complexType which
occurs more than once, the members of the collection are stored as a set of
serialized objects in-line as part of the SQL object for the parent element. You
cannot create B*Tree indexes on elements or attributes which are part of
collection

« Nested Object Tables. The members of the collection are stored in a nested
object table. The SQL object, as in previous option, contains an attribute of type
VARRAY, but is stored as a table. The parent row contains a unique setid (set
identifier) value which is used to associate with the corresponding nested table
rows.

3-32 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Structured Storage: XML Schema-Based Storage of XMLType

« Separate XMLType Table. The members of the collection are stored as a
separate XMLType table. Each member of the collection is stored as a row in the
table. The Parent SQL object contains an array of refs which point to the rows in
the child table which belong to this parent. All data is XMLType.

« Creating multiple XMLType columns based on the XML schema
« Linking from a child to the corresponding parent

« Separate XMLType Table with Link Table. The members of the collection are
stored as a separate XMLType table. An link table is created which cross
references which member in the child table are linked to which members of the
parent. Table. All data is visible as XMLTypes. Possible to link from the child
back to the parent. Problems with creating multiple XMLType columns based on
the Schema.

See Also: Chapter 5, "Structured Mapping of XMLType"

Structured Storage: Data Integrity and Constraint Checking

In addition to schema-validation, structured storage makes it possible to introduce
traditional relational constraints on to XMLType columns and Tables. With database
integrity checking you can perform instance validation beyond what is achievable
with XML Schema-based validation.

The W3C XML Schema Recommendation only allows for validation based on
cross-referencing of values with an instance document. With database integrity
checking you can enforce other kinds of validation, such as enforcing the
uniqueness of a element or attribute across a collection of documents, or validating
the value of a element or attribute against information stored elsewhere in the
database.

Note: In Oracle9i Release 2 (9.2) constraints have to be specified
using object-relational syntax.

Example 3-25 Adding a Unique and Referential Constraint to Table Purchaseorder

The following example shows how you can introduce a Unique and Referential
Constraint on the PurchaseOrder table.

XMLDATA.SQLAttributeName

alter table XML_PURCHASEORDER

add constraint REFERENCE _IS_UNQIUE

— unique(extractValue(/PurchaseOrder/Reference’)

Using Oracle XML DB 3-33

Structured Storage: XML Schema-Based Storage of XMLType

unique (xmidata."Reference”);

alter table XML_PURCHASEORDER

add constraint USER_IS_VALID

—foreign key extractValue(/PurchaseOrder/User) references
SCOTT.EMP(ENAME)

foreign key (xmidata."User") references SCOTT.EMP(ENAME);

As can be seen, when an attempt is made to insert an XML Document that contains
a duplicate value for the element /PurchaseOrder/Reference into the table, the
database detects that the insert would violate the unique constraint, and raises the
appropriate error.

insertinto xml_purchaseorder values (
xmitype(getDocument(ADAMS-20011127121040988PST.xml))

)
This returns:
1 row created.

insertinto xml_purchaseorder values (
xmitype(getDocument(ADAMS-20011127121040988PST.xml))

)

insertinto xml_purchaseorder values (
*

This returns:

ERROR atline 1:
ORA-00001: unique constraint (DOC92.REFERENCE._IS_UNQIUE) violated

Example 3-26 How Oracle9i Database Enforces Referential Constraint User_Is_Valid

The following example shows how the database will enforce the referential
constraint USER_IS VALID, which states that the value of the element
/PurchaseOrder/User , that translates to the SQLAttribute xmldata.user” ,
must match one of the values of ENAMEN SCOTT.EMP

insertinto xml_purchaseorder values (
xmitype(getDocument(HACKER-20011127121040988PST.xml))

insertinto xml_purchaseorder values (

3-34 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Repository

This returns:

ERROR atline 1:
ORA-02291: integrity constraint (SCOTT.USER_IS_VALID)
violated - parent key notfound

Oracle XML DB Repository

XML documents are by nature hierarchical animals. The information they contain is
represented by a hierarchy of elements, child elements, and attributes. XML
documents also view the world around them as a hierarchy. When an XML
document refers to another XML document, or any other kind of document, it does
so using a URL. URLs can be either relative or absolute. In either case, the URL
defines a path to the target document. The path is expressed in terms of a folder
hierarchy.

Oracle XML DB Repository makes it possible to view all of XML content stored in
the database using a File / Folder metaphor. The Repository provides support for
basic operations such as creating files and folders as well as more advanced features
such as version and access control.

The Repository is fully accessible, queryable, and updatable through SQL. It can
also be directly accessed through industry standard protocols such as HTTP,
WebDAV, and FTP.

See Also: Chapter 13, "Oracle XML DB Foldering"

Introducing the IETF WebDAV Standard

WebDAV is an Internet Engineering Task Force (IETF) Standard for Distributed
Authoring and Versioning of content. The standard is implemented by extending
the HTTP protocol allowing a Web Server to act as a File Server in a distributed
environment.

Oracle XML DB Repository is Based on WebDAV

Oracle XML DB Repository is based on the model defined by the WebDAV
standard. It uses the WebDAV resource model to define the basic metadata that is
maintained for each document stored in the Repository. The WebDAV protocol uses
XML to transport metadata between the client and the server.

Hence, you can easily create, edit, and access documents stored in Oracle XML DB
Repository using standard tools. For example, you can use:

« Microsoft Web Folders

Using Oracle XML DB 3-35

Oracle XML DB Repository

« Other WebDAV-enabled products, such as Microsoft Office, Macromedia, and
the Adobe range of authoring tools.

WebDAV uses the term Resource to define a file or folder. It defines a set of basic
operations that can be performed on a Resource. These operations require a
WebDAV server to maintain a set of basic metadata for each Resource. Oracle XML
DB exposes this metadata as a set of XML Documents in the following form:

Example 3-27 Oracle XML DB Exposes WebDAV Resource Metadata as XML
Documents

<Resource xmins="http:/xmins.oracle.com/xdb/XDBResource.xsd"
Hidden="false" Invalid="false" Container="false"
CustomRsiv="false">
<CreationDate> 2002-02-14T16:01.:01.066324000</CreationDate>
<ModificationDate> 2002-02-14T16:01:01.066324000</ModificationDate>
<DisplayName>testHle xmi</DisplayName>
<language>us english</Language>
<CharacterSet>utf-8</CharacterSet>
<ContentType>textixmi</ContentType>
<RefCount>1</RefCount>
<ACL>
<acl description="/sys/acls/all_all_aclxml"
xmins="http:/xmins.oracle.com/xdb/acl xsd"
xmins:xsi=http/Amwv.w3.0rg/2001/XMLSchema-instance
xsi:schemalLocation="http:/xmins.oracle.com/xdb/acl.xsd
http/ixmins.oracle.comixdb/acl.xsd>
<ace>
<grant>true</grant>
<privilege>
<all>
</privilege>
<principal>PUBLIC</principal>
<face>
<lacl>
</ACL>
<Owner>DOC92</Owner>
<Creator>DOC92</Creator>
<LastModifier>DOC92</LastModlifier>
<SchemaElement>
http:/xmins.oracle.com/xdb/XDBSchemaxsd#binary
</SchemaElement>
<Contents>
<binary>02C7003802C77B7000081000838B1C240000000002C71E7C</binary>
</Contents>

3-36 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query-Based Access to Oracle XML DB Repository

</Resource>

Query-Based Access to Oracle XML DB Repository
Oracle XML DB exposes the Repository to SQL developers as two views:
« RESOURCE_VIEW
« PATH_VIEW

It also provides a set of SQL functions and PL/SQL packages for performing
Repository operations.

See Also: Chapter 15, "RESOURCE_VIEW and PATH_VIEW"

Using RESOURCE_VIEW

RESOURCE_VIENY the primary way for querying Oracle XML DB Repository.
There is one entry in the RESOURCE_VIEWr each document stored in the
Repository. The REScolumn contains the resource entry for the document, the ANY _
PATHentry provides a valid folder path from the root to the resource.

The definition of the RESOURCE_VIE\¥:
SQL> describe RESOURCE_VIEW

Name Null? Type
RES SYSXMLTYPE
ANY_PATH VARCHAR2(4000)

Using PATH_VIEW

PATH_VIEWcontains an entry for each Path in the Repository. Since a Resource can
be linked into more than one folder, PATH_VIEWshows all possible Paths in the
Repository and the resources they point to. The definition of the PATH_VIEWis:

SQL> describe PATH_VIEW

Name Null? Type

PATH VARCHAR2(1024)
RES SYSXMLTYPE
LINK SYSXMLTYPE

Using Oracle XML DB 3-37

Query-Based Access to Oracle XML DB Repository

Creating New Folders and Documents

You can create new folders and documents using methods provided by DBMS_XDB
package. For example, a new folder can be created using the procedure
createFolder() and a file can be uploaded into that folder using
createResource() . The following examples show you how to do this:

Example 3-28 Creating a Repository Resource and Folder

SQL> declare

2 resultboolean;

3 begin

4 result:=dbms_xdb.createFolder(/publictestolder);
5 end;

6/

PL/SQL procedure successfully completed.

SQL> declare

2 resultboolean;

3 begin

4 result:=dbms_xdb.createResource(

5 IpublictestFolder/testilexml,
6 getDocument(testHlexml)
70

8 end;

9/

PL/SQL procedure successfully completed.

Querying Resource Documents

RESOURCE_VIEWAN be queried just like any other view. Oracle XML DB provides
a new operator, UNDER_PATHbhat provides a way for you to restrict queries to a
particular folder tree within the RESOURCE_VIEW

extractValue() and existsNode() can be used on the Resource documents
when querying the RESOURCE_VIEWhd PATH_VIEWResource documents.

Updating Resources
You can update Resources using updateXML()

3-38 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query-Based Access to Oracle XML DB Repository

Example 3-29 Updating Repository Resources

For example, the following query updates the OWNERNnd NAMBEof the document
created in the previous example.

update RESOURCE._VIEW
set RES=updateXML(RES,
'/Resource/DisplayNameftext()’, RenamedFile’,
'/Resource/Ownerftext(),SCOTT

)
where any_path = /publictestFolderftestFile xm’;

-1 row updated.

select r.res.getClobVal()

from RESOURCE_VIEWr

where ANY_PATH =’/publictestFolderftestFilexml’
/

—Results in:

- RRES.GETCLOBVAL()
— <Resource xmins="http:/xmins.oracle.com/xdb/XDBResource xsd"

- Hidden="false" Invalid="false"" Container="false"

CustomRsiv="false">

— <CreationDate> 2002-02-14T16:01:01.066324000</CreationDate>

- <ModificationDate> 2002-02-14T21:36:39.579663000</ModificationDate>
— <DisplayName>RenamedFile</DisplayName>

- <language>us english</Language>

— <CharacterSet>utf-8</CharacterSet>

— <ContentType>textixmi</ContentType>

- <RefCount>1</RefCount>

-<ACL>

-</ACL>

— <Owner>SCOTT</Owner>

- <Creator>DOC92</Creator>

- <LastModifier>DOC92</LastModifier>

—</Resource>

Deleting Resources

Resource can be deleted using deleteResource() . If the resource is a folder then
the folder must be empty before it can be deleted.

Using Oracle XML DB 3-39

Storage Options for Resources

Example 3-30 Deleting Repository Resources

The following examples show the use of the deleteResource() procedure.

call doms_xdb.deleteResource(/publictestFolder)
/
call doms_xdb.deleteResource(/publictestolder)
ERROR atline 1:
ORA-31007: Attempted to delete non-empty container fpublic/testFolder
ORA-06512; at "XDB.DBMS_XDB", line 151
ORA-06512: atline 1

call doms_xdb.deleteResource(/publictestFolderftestile xml)
/
Call completed.

call doms_xdb.deleteResource(/publictestFolder’)
/
Call completed.

Storage Options for Resources

RESOURCE_VIEWhd PATH_VIEWare based on tables stored in Oracle XML DB
database schema. The metadata exposed through RESOURCE_VIEWWhd PATH_
VIEWi s stored and managed using a set of tables in Oracle XML DB-supplied XML
schema, XDBSchema.xsd . The contents of the files are stored as BLOB or CLOB
columns in this XML schema.

See Also: Appendix G, "Example Setup scripts. Oracle XML DB -
Supplied XML Schemas", "xdbconfig.xsd: XML Schema for
Configuring Oracle XML DB" on page G-18

Defining Your Own Default Table Storage for XML Schema-Based

Documents

There is an exception to this storage paradigm when storing XML schema-based
XML documents. When an XML schema is registered with Oracle XML DB you can
define a default storage table for each root element defined in the XML schema.

You can define your own default storage tables by adding an xdb:defaultTable
attribute to the definition of the top level element When the schema is registered,
Oracle XML DB establishes a link between the Repository and the default tables

3-40 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Defining Your Own Default Table Storage for XML Schema-Based Documents

defined by your XML schema. You can choose to generate the default tables as part
of the XML schema registration.

Your Default Table is an XMLType Table and Hierarchically Enabled

A default table is an XMLType table, that is, it is an object table based on the
XMLType datatype. When an XML document, with a root element and XML schema
that match your default table’s root element and XML schema, is inserted into the
Repository, the XML content is stored as a row in the specified default table. A
resource is created that contains a reference to the appropriate row in the default
table.

One of the special features of an XMLType table is that it can be hierarchically enabled.
Default Tables, created as part of XML schema registration are automatically
hierarchically enabled. When a table is hierarchically enabled DML operations on
the default table may cause corresponding operations on the Oracle XML DB
Repository. For example, when a row is deleted from the default table, any entries
in the Repository which reference that row are deleted.

Example 3-31 Adding the xdb:defaultTable Attribute to the XML Schema’s Element
Definition

The following example shows the result of adding an xdb:defaultTable
attribute to the XML schema definition’s PurchaseOrder element and then
registering the XML schema with the Create Table option set to TRUE:

<xs:element name="PurchaseOrder" xdb:defaultTable="XML_PURCHASEORDER">
<xs:complexType type="PurchaseOrderType"
xdb:SQLType="XML_PURCHASEORDER_TYPE">
<xs:seguence>
<xs:element ref="Reference"/>
<xs:element name="Actions" type="ActionsType'/>
<xs:element name="Reject" type="RejectType" minOccurs="0"/>
<xs:element ref="Requestor’/>
<xs:elementref="User'/>
<xs:element ref="CostCenter'/>
<xs:element name="ShippingInstructions"
type="ShippingInstructionsType'"/>
<xs:element ref="Speciallnstructions"
xdb:SQLName="SPECINST'/>
<xs:element name="Lineltems" type="LineltemsType'/>
</xs:sequence>
</xs:complexType>
</xs:element>

Using Oracle XML DB 3-41

Defining Your Own Default Table Storage for XML Schema-Based Documents

SQL>begin

2 dbms_xmischema.registerSchema(

3 "hitp/Amwwv.oracle.comixsd/purchaseOrder.xsd,
4 getDocument(purchaseOrder3.xsd),

5 TRUE, TRUE, FALSE, TRUE

6)

7

8 end;

9/

PL/SQL procedure successfully completed.
SQL>describe XML_PURCHASEORDER

Name Null? Type

TABLE of SYSXMLTYPE(XMLSchema
http/Amww.oracle.com/xsd/purchaseOrder.xsd Element "PurchaseOrder”)
STORAGE Object-relational TYPE "XML_PURCHASEORDER_TYPE"

Example 3-32 Inserting an XML Document into Oracle XML DB Repository Causes a
Insertion of a Row into the Table

The following example shows how, once the XML schema is registered, and the
default table created, when inserting an XML document into Oracle XML DB
Repository causes a row to be inserted into the designated default table;

select count(*) rom XML_PURCHASEORDER;

Results in:
COUNT()

0

— create testFolder
declare
result boolean;
begin
result := dbms_xdb.createFolder(/publictestFolder);
end;
/

declare
result boolean,

begin

3-42 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Defining Your Own Default Table Storage for XML Schema-Based Documents

result := dbms_xdb.createResource(
IpublictestFolder/purchaseOrderl.xml,
getDocument(purchaseOrderl.xml)
)
end;
/

—PL/SQL procedure successfully completed.
commit;

— Commit complete.

select count(*) from XML_PURCHASEORDER,;

Results in:
COUNT()

1

Example 3-33 Deleting a Row Causes Deletion of Corresponding Entry from the
Repository

This example shows when deleting a row from the hierarchy-enabled default table,

the corresponding entry is deleted from the hierarchy:

select extractValue(res, Resource/DisplayName) "Filename™

from RESOURCE_VIEW where under_path(res,/publictestFolder) = 1;
/
Results in:

Filename

purchaseOrderl.xml

delete from XML_PURCHASEORDER,;
1 row deleted.

SQL> commit;
Commit complete.

select extractValue(res,Resource/DisplayName) "Filename™

from RESOURCE_VIEW where under_path(res,/publictestFolder) = 1
/
Results in:

Using Oracle XML DB

3-43

Accessing XML Schema-Based Content

no rows selected

Accessing XML Schema-Based Content

When a resource describes XML content that has been stored in a default table the
resource entry itself simply contains a reference to the appropriate row in the
default table. This reference can be used to perform join operations between the
resource and it’s content. This can be seen in the following example.

Accessing Non-Schema-Based Content With XDBUriType

XDBUriType can be used to access the contents of a file stored in the Repository
using a logical path. The following example shows how to access a resource
associated with a JPEG file. The JPEG file has been inserted into the Repository. The
example uses Oracle interMedia ordsys.ordimage class to extract the metadata
associated with the JPEG file.

create or replace function getimageMetaData (uri varchar2)
retum xmitype deterministic
is
resType xmitype;
resObject xdb.xdb$resource_t;
atributes CLOB;
xmlAttributes xmitype;
begin
DBMS_LOB.CREATETEMPORARY (attributes, FALSE, DBMS_LOB.CALL);
— ordsys.ordimage.getProperties(xdburitype(ur).getBlob(),
- attributes);
select res into resType from resource_view where any_path = urj;
resType.toObject(resObject);
ordsys.ordimage.getProperties(resObject XMLLOB attributes);
xmlAttributes := xmitype(attributes);
DBMS_LOB.FREETEMPORARY (attributes);
retum xmlAttributes;
end;
/

Oracle XML DB Protocol Servers

Oracle XML DB includes three protocol servers through which you can access the
Repository directly from standard file-based applications.

3-44 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers

See Also: Chapter 19, "Using FTP, HTTP, and WebDAV Protocols”

Using FTP Protocol Server

The FTP Protocol Server allows standard FTP clients to access content stored in the
Repository as if it were content behind a regular FTP server. FTP Protocol Server
works with standard FTP clients, including:

« Command line clients, such as the command line clients supplied with Unix
and Windows Command Prompt

« Graphical clients, such as WS-FTP
« Web Browsers that support the FTP protocol

Figure 3-6, Figure 3-7, Figure 3-8, and Figure 3-9 show examples of how you can
access the root level of the Repository using various of standard FTP clients.

Figure 3-6 Accessing the Repository Root Level from the DOS Command Prompt Command Line

E:"-.,WINNT"-.,Sysl:em32"-.,cn1d.e:-:e

Microsoft Windows 2888 [Uersion 5.86.21951
CC» Copyright 1985-2808 Microsoft Corp.

C:x>ftp

ftp> open xdbdemo 2188

Connected to xdbdemo.

220 mdrake—-sun FITP Server (RDBs0Oracle?i Enterprise Edition Release 9.2.8.H
eta) ready.

Uzer (xdbdemo:<{nonel>: scott

331 pass required for SCOTT

Pazsword:

238 SCOTT logged in

ftp> 1s -1

2080 PORT Command successful

158 ASCII Data Connection

dru—p——p—— 2 5Y¥S oracle @ FEB 16 17:58 home
dru—r——pr—— 2 SY¥S oracle 8 FEB 14 17:89 public
dru—pr—p—— 2 8Y¥5 oracle B FEB 14 17:8% =sys
—Pu—r——r—— 1 SY¥8 oracle 8 FEB 14 17:18 xdbconfig.xml
226 ASCII Transfer Complete

ftp: 258 bytes received in B.835%5econds 8.33Kbutes~-sec.

ftp> guit

221 QUIT Goodhye.

Casyr

Using Oracle XML DB 3-45

Oracle XML DB Protocol Servers

Figure 3—7 Accessing the Repository Root Level fro m IE Browser Web Folder Menu

_{o] x|
File Edit ‘Miew Faworites Tools Help ﬁ
‘= Back -~ = - | ‘@ search [Folders ®| B I X =) | Ex~
Address r@ Fto: i scott:tiger@xdbdemo: 2100) j @GD Links **
home public sys wdbconfig. xml
Lsep: scokk (= Local intranet i

3-46 Oracle9i/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers

Figure 3-8 Accessing the Repository Root Level fro m WS_FTP95LE FTP Interface Program

[1'ws_FTPA5S LE xdbdemo

—Local Systen —Remaote Spztem
l C:~Documents and Settings~glking~Deshk tj l -
* | N arne | Date | chopir | N arne | D ae
t kA k. Doir t
B[]] home 020216 1°
Ef [-d-] [public 020214 10
e [=vs 020214 10
¢ || |[¥] zdboonfig.zml 020214 1
Enec —I
Betiame _>|
[elete
Refresh
Dirlnfa
1 | 12 1 |
" ASCI % Binary [T Auto
180 ASCH Drata Connection
Received 250 bytes in 01 secs, [20.00 Ebpz], tranzsfer succeeded
226 A5CH Tranzfer Complete
Cloze | Cancel | Logt/nd | Help | Dptionz | About

Using Oracle XML DB 3-47

Oracle XML DB Protocol Servers

Figure 3-9 Accessing the Repository Root Level from a Telnet Session

2 qession - TNYTPlus

Session Edit Wiew Commands Script Help

0| S| &2 8] B 2|2 Of =

@|

Password:
Last login: Sun Feb 17 17:88:22 from 152.68.44.21
sun Wicrosystems Inc. SundS 5.6 Generic August 1997

ou have mail.

$ ftp localhost 2168

Connected to localhost.

220 mdrake-sun FTP Server (¥DBfOracle9i Enterprise Edition HRelease 9.2.0.1
Mame (localhost:oracle): scott
431 pass required for SCOTT
Fassword:

228 SCOTT logged 1n

fitp= 1s -1

288 PORT Command successtul
128 ASCII Data Connection

drw-r--r-- 2 5Y5 oracle 8 FEE 16 17:58 home
drw-r--r-- 2 5¥5 oracle 8 FEB 14 17:89 public
drw-r--r-- 2 5Y% oracle @ FEB 14 17:89 sys
-fW-r--r-- 1 5YE oracle @ FEE 14 17:18 xdbconfig.xml
226 ASCII Transfer Complete

remote: -1

258 bytes received in 8.82 seconds (12.88 kKbytes/s)

fip> guit

221 QUIT Goodbye.

§

3-48 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB Protocol Servers

Using HTTP/WebDAV Protocol Server

Oracle XML DB Repository can also be accessed using HTTP and WebDAV.
WebDAV support allows applications such as a Microsoft’s Web Folders client,
Microsoft Office, and Macromedia’s Dreamweaver to directly access Oracle XML
DB Repository. Figure 3-10 and Figure 3-11 are examples of using HTTP and
WebDAV to access the Repository.

Figure 3-10 Accessing the Repository Using HTTP/WebDAV from Microsoft Windows Explorer

X http://udbde

mo:3080,/ home,/SCOTT

File Edit Yiew Favorites Tools Help

T | Disearch | [Folders £4 | X X m | By

Address | http: /fxdbdemo: 8030/ homeSCOTT

Folders

> || Mame ¢ | Internet Address

:ﬂ Deskbop

=@

=0 a5
----- F’E Recycle Bin

EEI---% Sessions fo

% My Documents
-4 My Computer [sd http:)} xdbdema:2080/horr
-2 My Matwork Places (sl http:)} xdbdema:2080ihorr
‘@ Entire Metwork
&, Camputers Mear Me
El@ xdbdermo

E|C| home

D myResumes
{:I purchaseOrders
{:I wsd

{:I |

-] public

----- & Tnternet Explorer

e | [myR.esumes htkps i fxdbdemo:S00/hior
3 purchaseCrders hkkps i fdbdemo: S080/hiarr

SCOTT

r Metwork, dccess | |4 |

|4 abjectis)

Using Oracle XML DB 3-49

Oracle XML DB Protocol Servers

Figure 3-11 Accessing the Repository Using HTTP/WebDAV Protocol Server from Microsoft Web
Folders Client

“J HTTP 500 Internal server error - Microsoft Internet Explorer

File Edit ‘Miew Favorites Tools Help

-ic
i

sABack « = - @ -ﬁ- | @Search (3] Favarites @Media @ | %v 5 E b E

address [@] hitp: fxdbdemo:a080/ ~| @en

Lirl

Index of /

Mame Last modified SizE
home! Sat, 16 Feb 2002 17:58:53 GMT =
public/ Thu, 14 Fek 2002 17:02:24 GhT =
sys/ Thu, 14 Feb 2002 17:09:24 GhT =
zdbconfig zml Thu, 14 Feb 2002 17:10:08 Gh{T 0

&] Done I_I_I_ (=2 Local intranet

By providing support for standard industry protocols, Oracle XML DB makes it
possible to upload and access data and documents stored in Oracle9i database
using standard, familiar interfaces.

3-50 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part |

Storing and Retrieving XML Data in Oracle
XML DB

Part 1l of this manual introduces you to ways you can store, retrieve, validate, and
transform XML data using Oracle XML DB. It contains the following chapters:

« Chapter 4, "Using XMLType"

« Chapter 5, "Structured Mapping of XMLType"

« Chapter 6, "Transforming and Validating XMLType Data"
« Chapter 7, "Searching XML Data with Oracle Text"

A

Using XMLType

This chapter describes how to use the XMLType datatype, create and manipulate
XMLType tables and columns, and query on them. It contains the following
sections:

What Is XMLType?

When to Use XMLType

Storing XMLType Data in Oracle XML DB

XMLType Member Functions

How to Use the XMLType API

Guidelines for Using XMLType Tables and Columns
Manipulating XML Data in XMLType Columns/Tables
Inserting XML Data into XMLType Columns/Tables
Selecting and Querying XML Data

Updating XML Instances and Data in Tables and Columns
Deleting XML Data

Using XMLType In Triggers

Indexing XMLType Columns

Using XMLType 4-1

What Is XMLType?

Note:

« Non-schema-based: XMLType tables and columns described in
this chapter are not based on XML schema. You can, however,
use the techniques and examples provided in this chapter
regardless of which storage option you choose for your
XMLType tables and columns. See Chapter 3, "Using Oracle
XML DB" for further storage recommendations.

» XML schema-based: Appendix B, "XML Schema Primer" and
Chapter 5, "Structured Mapping of XMLType" describe how to
work with XML schema-based XMLType tables and columns.

What Is XMLType?

Oracle9i Release 1 (9.0.1) introduced a new datatype, XMLType, to facilitate native
handling of XML data in the database. The following summarizes XMLType:

« XMLType can be used in PL/SQL stored procedures as parameters, return
values, and variables.

« XMLType can represent an XML document as an instance (of XMLType) in SQL.

« XMLType has built-in member functions that operate on XML content. For
example, you can use XMLType functions to create, extract, and index XML data
stored in Oracle9i database.

« Functionality is also available through a set of Application Program Interfaces
(APIs) provided in PL/SQL and Java.

With XMLType and these capabilities, SQL developers can leverage the power of the
relational database while working in the context of XML. Likewise, XML
developers can leverage the power of XML standards while working in the context
of a relational database.

XMLType datatype can be used as the datatype of columns in tables and views.
Variables of XMLType can be used in PL/SQL stored procedures as parameters,
return values, and so on. You can also use XMLType in SQL, PL/SQL, and Java
(through JDBC).

4-2 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

What Is XMLType?

Note: In Oracle9i Release 1 (9.0.1), XMLType was only supported
in the server in SQL, PL/SQL, and Java. In Oracle9i Release 2 (9.2),
XMLType is also supported on the client side through SQL, Java,
and protocols such as FTP and HTTP/WebDav.

A number of useful functions that operate on XML content are provided. Many of
these are provided as both SQL and member functions of XMLType. For example,
the extract() function extracts a specific node(s) from an XMLType instance.

You can use XMLType in SQL queries in the same way as any other user-defined
datatypes in the system.

See Also:

« "Oracle XML DB Offers Faster Storage and Retrieval of
Complex XML Documents" on page 1-20

« Chapter 26, "Oracle XML DB Basic Demo"

« Oracle9i SQL Reference Appendix D, “Using XML in SQL
Statements”

Benefits of the XMLType Data Type and API

The XMLType datatype and API provides significant advantages. It enables SQL
operations on XML content, as well as XML operations on SQL content:

Versatile APIl. XMLType has a versatile API for application development, as it
includes built-in functions, indexing support, navigation, and so on.

XMLType and SQL. You can use XMLType in SQL statements combined with
other columns and datatypes. For example, you can query XMLType columns
and join the result of the extraction with a relational column, and then Oracle
can determine an optimal way to execute these queries.

Optimized evaluation using XMLType. XMLType is optimized to not
materialize the XML data into a tree structure unless needed. Therefore when
SQL selects XMLType instances inside queries, only a serialized form is
exchanged across function boundaries. These are exploded into tree format only
when operations such as extract() and existsNode() are performed. The
internal structure of XMLType is also an optimized DOM-like tree structure.

Using XMLType 4-3

When to Use XMLType

« Indexing. Oracle Text index has been enhanced to support XMLType columns.
You can also create function-based indexes on existsNode() and extract()
functions to speed up query evaluation.

See Also: Chapter 10, "Generating XML Data from the Database"

When to Use XMLType

Use XMLType when you need to perform the following:

« SQL queries on part of or the whole XML document: The functions
existsNode() and extract() provide the necessary SQL query functions
over XML documents.

« Strong typing inside SQL statements and PL/SQL functions: Strong typing
implies that you ensure that the values passed in are XML values and not any
arbitrary text string.

« XPath functionality provided by extract() and existsNode() functions:
Note that XMLType uses the built-in C XML parser and processor and hence
provides better performance and scalability when used inside the server.

« Indexing on XPath searches on documents: XMLType has member functions
that you can use to create function-based indexes to optimize searches.

« To shield applications from storage models. Using XMLType instead of CLOBs
or relational storage allows applications to gracefully move to various storage
alternatives later without affecting any of the query or DML statements in the
application.

« To prepare for future optimizations. New XML functionality will support
XMLType. Since Oracle9i database is natively aware that XMLType can store
XML data, better optimizations and indexing techniques can be done. By
writing applications to use XMLType, these optimizations and enhancements
can be easily achieved and preserved in future releases without your needing to
rewrite applications.

Storing XMLType Data in Oracle XML DB
XMLType data can be stored in two ways or a combination thereof:

« InLarge Objects (LOBs). LOB storage maintains content accuracy to the
original XML (whitespaces and all). Here the XML documents are stored
composed as whole documents like files. In this release, for non-schema-based
storage, XMLType offers a CLOB storage option. In future releases, Oracle may

4-4 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Storing XMLType Data in Oracle XML DB

provide other storage options, such as BLOBs, NCLOBS, and so on. You can
also create a CLOB-based storage for XML schema-based storage.

When you create an XMLType column without any XML schema specification, a
hidden CLOB column is automatically created to store the XML data. The
XMLType column itself becomes a virtual column over this hidden CLOB
column. It is not possible to directly access the CLOB column; however, you can
set the storage characteristics for the column using the XMLType storage clause.

« In Structured storage (in tables and views). Structured storage maintains DOM
(Document Object Model) fidelity. Here the XML documents are "broken up
(decomposed)’ into object- relational tables or views. XMLType achieves DOM
fidelity by maintaining information that SQL or Java objects normally do not
provide for, such as:

« Ordering of child elements and attributes.
« Distinguishing between elements and attributes.

« Unstructured content declared in the schema. For example,
content="mixed” or <any> declarations.

« Undeclared data in instance documents, such as processing instructions,
comments, and namespace declarations.

« Support for basic XML datatypes not available in SQL (Boolean, QName,
and so on).

« Support for XML constraints (facets) not supported directly by SQL, such as
enumerated lists.

Native XMLType instances contain hidden columns that store this extra information
that does not quite fit in the SQL object model. This information can be accessed
through APIs in SQL or Java, using member functions, such as extractNode()

Changing XMLType storage from structured storage to LOB, or vice versa, is
possible using database IMPORT and EXPORT. Your application code does not
have to change. You can then change XML storage options when tuning your
application, since each storage option has its own benefits.

Pros and Cons of XML Storage Options in Oracle XML DB

Table 4-1 summarizes some advantages and disadvantages to consider when
selecting your Oracle XML DB storage option.

Using XMLType 4-5

Storing XMLType Data in Oracle XML DB

Table 4-1 XML Storage Options in Oracle XML DB

Feature LOB Storage (with Oracle Text index) Structured Storage (with B*Tree index)

Database schema Very flexible when schemas change. Limited flexibility for schema changes. Similar

flexibility to the ALTER TABLE restrictions.

Data integrity Maintains the original XML byte for byte - Trailing new lines, whites pace within tags, and

and accuracy important in some applications. data format for non-string datatypes is lost. But
maintains DOM fidelity.

Performance Mediocre performance for DML. Excellent DML performance.

Access to SQL Some accessibility to SQL features. Good accessibility to existing SQL features,

such as constraints, indexes, and so on

Space needed Can consume considerable space. Needs less space in particular when used with
an Oracle XML DB registered XML schema.

When to Use CLOB Storage for XMLType
Use CLOB storage for XMLType in the following cases:

=« You need to store XML as a whole document in the database and retrieve it as a
whole document.

« You do not need to perform piece-wise updates on XML documents.

Note: XMLType and Varray:

« You cannot create VARRAYs of XMLType and store them in the
database since VARRAYs do not support CLOBs when stored
in tables.

= You cannot create columns of VARRAY types that contain
XMLType. This is because Oracle does not support LOB locators
inside VARRAYS.

See Also:
» Chapter 2, "Getting Started with Oracle XML DB"

« Chapter 3, "Using Oracle XML DB", "Storing XML.: Structured
or Unstructured Storage" on page 3-24

« Chapter 10, "Generating XML Data from the Database", for
information on how to generate XMLType data.

4-6 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

How to Use the XMLType API

XMLType Member Functions

Oraclei Release 1 (9.0.1) introduced several SQL functions and XMLType member
functions that operate on XMLType values. Oracle9i Release 2 (9.2) has expanded
functionality. It provides several new SQL functions and XMLType member
functions.

See Also:

« Appendix F, "Oracle XML DB XMLType API, PL/SQL and
Resource PL/SQL APIs: Quick Reference™

« Oracle9i XML API Reference - XDK and Oracle XML DB for a list
of all XMLType and member functions, their syntax, and
descriptions.

All XMLType functions use the built-in C parser and processor to parse XML data,
validate it, and apply XPath expressions on it. They also use an optimized
in-memory DOM tree for processing, such as extracting XML documents or
fragments.

See Also: Appendix C, "XPath and Namespace Primer”

How to Use the XMLType API

You can use the XMLType API to create tables and columns. The createXML()
static function of the XMLType API can be used to create XMLType instances for
insertion. By storing your XML documents as XMLType, XML content can be
readily searched using standard SQL queries.

Figure 4-1 shows the syntax for creating an XMLType table:

CREATE TABLE [schema.] table OF XMLTYPE
XMLTYPE XMLType_storage] XMLSchema._spec];

Using XMLType 4-7

How to Use the XMLType API

Figure 4-1 Creating an XMLType Table

|
—>| CREATE |->| TABLE | table XMLTYPE
[—>| XMLTYPE KXMLType_storageh XMLSchema_spec

This section shows some simple examples of how to create an XMLType column and
use it in a SQL statement, and how to create XMLType tables.

Creating, Adding, and Dropping XMLType Columns

The following are examples of creating, adding, and dropping XMLType columns:

Example 4-1 Creating XMLType: Creating XMLType Columns
The XMLType column can be created like any other user-defined type column:

CREATE TABLE warehouses(
warehouse_id NUMBER(4),
warehouse_spec XMLTYPE,
warehouse_name VARCHAR2(35),
location_id NUMBER(4));

Example 4-2 Creating XMLType: Creating XMLType Columns

As explained, you can create XMLType columns by simply using the XMLType as
the datatype. The following statement creates a purchase order document column,
poDoc, of XMLType:

CREATE TABLE po_xml_tal(
poid number,
poDoc XMLTYPE);

CREATE TABLE po_xtab of XMLType; — this creates a table of XML Type. The default
—is CLOB based storage.

Example 4-3 Adding XMLType Columns

You can alter tables to add XMLType columns as well. This is similar to any other
datatype. The following statement adds a hew customer document column to the
table:

4-8 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

How to Use the XMLType API

ALTER TABLE po_xml_tab add (custDoc XMLType);

Example 4-4 Dropping XMLType Columns

You can alter tables to drop XMLType columns, similar to any other datatype. The
following statement drops column custDoc :

ALTER TABLE po_xml_tab drop (custDoc);

Inserting Values into an XMLType Column
To insert values into the XMLType column, you need to bind an XMLType instance.

Example 4-5 Inserting into XMLTYpe Using the XMLType() Constructor

An XMLType instance can be easily created from a VARCHAR or a Character Large
Object (CLOB) by using the XMLType() constructor

INSERT INTO warehouses VALUES
(200, XMLType(
'<Warehouse whNo="100">
<Building>Owned</Building>
<Marehouse>'), Tower Records’, 1003);

This example creates an XMLType instance from a string literal. The input to
createXML() can be any expression that returns a VARCHAR2 or CLOB.
createXML() also checks that the input XML is well-formed.

Using XMLType in an SQL Statement

The following simple SELECT statement shows how you can use XMLType in an
SQL statement:

Example 4-6 Using XMLType and in a SELECT Statement

SELECT
w.warehouse_spec.extract(/MWarehouse/Buildingftext()).getStringVal()
"Building”
FROM warehouses w;

where warehouse_spec is an XMLType column operated on by member function
extract() . The result of this simple query is a string (varchar2):

Building

Using XMLType 4-9

How to Use the XMLType API

Owned
See Also: "How to Use the XMLType API" on page 4-7.

Updating an XMLType Column

An XML document in an XMLType can be stored packed in a CLOB. Then updates
have to replace the whole document in place.

Example 4-7 Updating XMLType

To update an XML document, you can execute a standard SQL UPDATE statement.
You need to bind an XMLType instance, as follows:

UPDATE warehouses SET warehouse_spec = XMLType
(<Warehouse whono="200">
<Building>Leased</Building>
<Marehouse>);

This example created an XMLType instance from a string literal and updates column
warehouse_spec with the new value.

Note: Any triggers would get fired on the UPDATE statement
You can see and modify the XML value inside the triggers.

Deleting a Row Containing an XMLType Column

Deleting a row containing an XMLType column is no different from deleting a row
containing any other datatype.

Example 4-8 Deleting an XMLType Column Row

You can use extract() and existsNode() functions to identify rows to delete
as well. For example to delete all warehouse rows for which the warehouse
building is leased, you can write a statement such as:

DELETE FROM warehouses e

WHERE e.warehouse_spec.extract(/Buildingftext()).getStringVal()
=’Leased

4-10 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using XMLType Tables and Columns

Note: In this release, Oracle supports XMLType as a public
synonym for sys. XMLType . XMLType now also supports a set of
user-defined constructors (mirroring the createXML static
functions). For example:

« In Oracle9i Release 1 (9.0.1), you could use the following
syntax: sys.XMLType.createXML('<Warehouse
whNo0="100">...)

« In Oracle9i Release 2 (9.2), you can use the following
abbreviated version: XMLType('<Warehouse
whNo="100">...)

Guidelines for Using XMLType Tables and Columns

The following are guidelines for storing XML data in XMLType tables and columns:

Define table/column of XMLType

First, define a table/column of XMLType. You can include optional storage
characteristics with the table/column definition.

Note: This release of Oracle supports creating tables of XMLType.
You can create object references (REFs) to these tables and use them
in the object cache.

Create an XMLType Instance

Use the XMLType constructor to create the XMLType instance before inserting into
the column/table. You can also use a variety of other functions that return
XMLType.

See Also: "SYS_XMLGEN(): Converting an XMLType Instance"
on page 10-48, for an example.

Select or Extract a Particular XMLType Instance

You can select out the XMLType instance from the column. XMLType also offers a
choice of member functions, such as extract() and existsNode() , to extract a
particular node and to check to see if a node exists respectively. See the table of
XMLType member functions in Oracle9i XML API Reference - XDK and Oracle XML
DB.

Using XMLType 4-11

Guidelines for Using XMLType Tables and Columns

See Also:
« "Selecting XMLType Columns using getClobVal()" on page 4-18

« "Extracting Fragments from XMLType Using extract()" on
page 4-30

You can Define an Oracle Text Index

You can define an Oracle Text index on XMLType columns. This enables you to use
CONTAINS, HASPATH, INPATH, and other text operators on the column. All the
Oracle Text operators and index functions that operate on LOB columns also work
on XMLType columns.

You Can Define XPath Index, CTXXPATH

In this release, a new Oracle Text index type, CTXXPATHSs introduced. This helps
existsNode() implement indexing and optimizes the evaluation of
existsNode() in a predicate.

See Also:

« "Indexing XMLType Columns" on page 4-39

« Chapter 7, "Searching XML Data with Oracle Text"

« Chapter 10, "Generating XML Data from the Database"

« Oracle9i Application Developer’s Guide - Large Objects (LOBS)

Specifying Storage Characteristics on XMLType Columns

XML data in an XMLType column can be stored as a CLOB column. Hence you can
also specify LOB storage characteristics for that column. In example, "Creating
XMLType: Creating XMLType Columns" on page 4-8, the warehouse_spec
column is an XMLType column.

Example 4-9 Specifying Storage When Creating an XMLType Table

You can specify storage characteristics on this column when creating the table as
follows:

CREATE TABLE po_xml_tab(
poid NUMBER(10),
poDoc XMLTYPE

)
XMLType COLUMN poDoc

4-12 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using XMLType Tables and Columns

STORE AS CLOB(
TABLESPACE lob_seg ts
STORAGE (INITIAL 4096 NEXT 4096)
CHUNK 4096 NOCACHE LOGGING

)

The STORE AS clause is also supported when adding columns to a table.

Example 4-10 Adding an XMLType Columns and Specifying Storage

To add a new XMLType column to this table and specify the storage clause for that
column, you can use the following SQL statement:

ALTER TABLE po_xml_tab add(
custDoc XMLTYPE

)
XMLType COLUMN custDoc

STORE AS CLOB(

TABLESPACE Iob_seq ts

STORAGE (INITIAL 4096 NEXT 4096)
CHUNK 4096 NOCACHE LOGGING

)

Changing Storage Options on an XMLType Column Using XMLData

In non- schema-based storage, you can use XMLDATAo change storage
characteristics on an XMLType column.

Example 4-11 Changing Storage Characteristics on an XMLType Column Using
XMLDATA

For example, consider table foo_tab

CREATE TABLE foo_tab (a xmitype);

To change the storage characteristics of LOB column a in foo_tab , you can use
the following statement:

ALTER TABLE foo_tab MODIFY LOB (axmidata) (storage (next 5K) cache);

XMLDATAdentifies the internal storage column. In the case of CLOB-based storage

this corresponds to the CLOB column. The same holds for XML schema-based
storage. You can use XMLDATAo explore structured storage and modify the values.

Using XMLType 4-13

Manipulating XML Data in XMLType Columns/Tables

Note: In this release, the XMLDAT Aattribute helps access the
XMLType’s internal storage columns so that you can specify storage
characteristics, constraints, and so on directly on that column.

You can use the XMLDAT Aattribute in constraints and indexes, in addition to
storage clauses.

See also: Oracle9i Application Developer’s Guide - Large Objects
(LOBS) f and Oracle9i SQL Reference for more information about LOB
storage options

Specifying Constraints on XMLType Columns
You can specify NOT NULL constraint on an XMLType column.

Example 4-12 Specifying Constraints on XMLType Columns

CREATE TABLE po_xml_tab (
poid number(10),

poDoc XMLType NOT NULL
)

prevents inserts such as:

INSERT INTO po_xml_tab (poDoc) VALUES (null;

Example 4-13 Using ALTER TABLE to Change NOT NULL of XMLType Columns
You can also use the ALTER TABLE statement to change NOT NULL information
of an XMLType column, in the same way you would for other column types:

ALTER TABLE po_xml_tab MODIFY (poDoc NULL);
ALTER TABLE po_xml_tab MODIFY (poDoc NOT NULL);

You can also define check constraints on XMLType columns. Other default values
are not supported on this datatype.

Manipulating XML Data in XMLType Columns/Tables

Since XMLType is a user-defined data type with functions defined on it, you can
invoke functions on XMLType and obtain results. You can use XMLType wherever
you use a user-defined type, including for table columns, views, trigger bodies, and
type definitions.

4-14 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Inserting XML Data into XMLType Columns/Tables

You can perform the following manipulations or Data Manipulation Language
(DML) on XML data in XMLType columns and tables:

« Inserting XML Data into XMLType Columns/Tables

« Selecting and Querying XML Data

« Updating XML Instances and Data in Tables and Columns
« Deleting XML Data

Inserting XML Data into XMLType Columns/Tables
You can insert data into XMLType columns in the following ways:
» By using the INSERT statement (in SQL, PL/SQL, and Java)

« By using SQL*Loader. See Chapter 22, "Loading XML Data into Oracle XML
DB"

XMLType columns can only store well-formed XML documents. Fragments and
other non-well-formed XML cannot be stored in XMLType columns.

Using INSERT Statements

To use the INSERT statement to insert XML data into XMLType , you need to first
create XML documents to perform the insert with. You can create the insertable
XML documents as follows:

« By using XMLType constructors. This can be done in SQL, PL/SQL, and Java.

« By using SQL functions like XMLElement() , XMLConcat() ,and XMLAGG().
This can be done in SQL, PL/SQL, and Java.

Example 4-14 Inserting XML Data Using createXML() with CLOB

The following examples use INSERT...SELECT and the XMLType constructor to first
create an XML document and then insert the document into the XMLType columns.
Consider table po_clob_tab that contains a CLOB, poClob , for storing an XML
document:

CREATE TABLE po_clob_tab

(
poid number,
poClob CLOB

)

Using XMLType 4-15

Inserting XML Data into XMLType Columns/Tables

—some value is presentin the po_clob_tab
INSERT INTO po_clob_tab
VALUES(100, '<?xml version="1.0"?>
<PO pono="1">
<PNAME>Po_1</PNAME>
<CUSTNAME>John</CUSTNAME>
<SHIPADDR>
<STREET>1033, Main Street</STREET>
<CITY>Sunnyvalue</CITY>
<STATE>CA</STATE>
</SHIPADDR>
<PO>);

Example 4-15 Inserting XML Data Using an XMLType Instance

You can insert a purchase order XML document into table, po_xml_tab , by simply
creating an XML instance from the CLOB data stored in the other po_clob_tab

INSERT INTO po_xml_tab
SELECT poid, XMLType(poClob)
FROM po_clob_tab;

Note: You can also get the CLOB value from any expression,
including functions that can create temporary CLOBSs or select out
CLOBs from other table or views.

Example 4-16 Inserting XML Data Using XMLType() with String

This example inserts a purchase order into table po_tab using the XMLType
constructor:

INSERT INTO po_xml_tab
VALUES(100, XMLType (’<?xmlversion="10"?>
<PO pono="1">
<PNAME>Po_1</PNAME>
<CUSTNAME>John</CUSTNAME>
<SHIPADDR>
<STREET>1033, Main Street</STREET>
<CITY>Sunnyvalue</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>));

4-16 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

Example 4-17 Inserting XML Data Using XMLElement()

This example inserts a purchase order into table po_xml_tab by generating it
using the XMLElement() SQL function. Assume that the purchase order is an
object view that contains a purchase order object. The whole definition of the
purchase order view is given in "DBMS_XMLGEN: Generating a Purchase Order
from the Database in XML Format" on page 10-34.

INSERT INTO po_xml_tab
SELECT XMLelement('po”, value(p))
FROMpop
WHERE p.pono=2001,

XMLElement() creates an XMLType from the purchase order object, which is then
inserted into table po_xml_tab . You can also use SYS_XMLGEN()in the INSERT
statement.

Selecting and Querying XML Data
You can query XML data from XMLType columns in the following ways:
« By selecting XMLType columns through SQL, PL/SQL, or Java

« By querying XMLType columns directly and using extract() and
existsNode()

« By using Oracle Text operators to query the XML content. See "Indexing
XMLType Columns" on page 4-39 and Chapter 7, "Searching XML Data with
Oracle Text".

SQL Functions for Manipulating XML data

SQL functions such as existsNode() ,extract() , XMLTransform() ,and
updateXML() operate on XML data inside SQL. XMLType datatype supports most
of these as member functions. You can use either the selfish style of invocation or
the SQL functions.

Selecting XML Data
You can select XMLType data using PL/SQL or Java. You can also use the
getClobVal(), getStringVal() , or getNumberVal() functions to retrieve

XML as a CLOB, VARCHAR, or NUMBER, respectively.

Using XMLType 4-17

Selecting and Querying XML Data

Example 4-18 Selecting XMLType Columns using getClobVal()
This example shows how to select an XMLType column using SQL*Plus:

SET long 2000

SELECT e.poDoc.getClobval() AS poXML
FROM po_xml_tabe;

POXML

<?xmlversion="1.0"?>
<PO pono="2">
<PNAME>Po_2</PNAME>
<CUSTNAME>Nance</CUSTNAME>
<SHIPADDR>
<STREET>2 Avocet Drive</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>

Querying XML Data

You can query XMLType data and extract portions of it using the existsNode()
and extract() functions. Both these functions use a subset of the W3C XPath
recommendation to navigate the document.

Using XPath Expressions for Searching XML Documents

XPath is a W3C recommendation for navigating XML documents. XPath models the
XML document as a tree of nodes. It provides a rich set of operations to “walk” the
tree and to apply predicates and node test functions. Applying an XPath expression
to an XML document can result in a set of nodes. For instance, /PO/PONO selects
out all “PONO” child elements under the “PO” root element of the document.

Table 4-2 lists some common constructs used in XPath.

4-18 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

Table 4-2 Some Common XPath Constructs

XPath Construct

Description

“f” Denotes the root of the tree in an XPath expression. For example, /PO refers to the
child of the root node whose name is “PO”.

“/” Also used as a path separator to identify the children node of any given node. For
example, /PO/PNAME identifies the purchase order name element, a child of the root
element.

“1/” Used to identify all descendants of the current node. For example, PO//ZIP matches

any zip code element under the “PO” element.

Used as a wildcard to match any child node. For example, /PO/*/STREET matches
any street element that is a grandchild of the “PO” element.

[]

Used to denote predicate expressions. XPath supports a rich list of binary operators
such as OR, AND, and NOT. For example, /PO[PONO=20 and PNAME="PO_
2”]/SHIPADDR select out the shipping address element of all purchase orders whose
purchase order number is 20 and whose purchase order name is “PO_2".[] is also
used for denoting an index into a list. For example, /PO/PONO[2] identifies the
second purchase order number element under the “PO” root element.

The XPath must identify a single or a set of element, text, or attribute nodes. The
result of the XPath cannot be a boolean expression.

See Also: Appendix C, "XPath and Namespace Primer"

Querying XML Data Using XMLType Member Functions

You can select XMLType data through PL/SQL, OCI, or Java. You can also use the
getClobVval() , getStringVal() ,or getNumberVal() functions to retrieve the
XML as a CLOB, VARCHAR or a number, respectively.

Example 4-19 Retrieving an XML Document as a CLOB Using getClobVal() and
existsNode()

This example shows how to select an XMLType column using getClobVal() and
existsNode()

setlong 2000
SELECT e.poDoc.getClobval() AS poXML

FROM po_xml_tabe
WHERE e.poDoc.existsNode(/POPNAME ="po_27)=1;

Using XMLType 4-19

Selecting and Querying XML Data

POXML

<?xml version="1.0"?>
<PO pono="2">
<PNAME>Po_2</PNAME>
<CUSTNAME>Nance</CUSTNAME>
<SHIPADDR>
<STREET>2 Avocet Drive</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>

existsNode Function

The syntax for the existsNode() function is described in Figure 4-2 and also as
follows:

existsNode(XMLType_instance IN XMLType,
XPath_string IN VARCHAR?Z, namespace_string IN varchar2 := null)
RETURN NUMBER

Figure 4-2 existsNode() Syntax

—J| EXISTSNODE @{XMLType_instance XPath_string @

existsNode() function on XMLType checks if the given XPath evaluation results
in at least a single XML element or text node. If so, it returns the numeric value 1,
otherwise, it returns a 0. Namespace can be used to identify the mapping of
prefix(es) specified in the XPath_string to the corresponding namespace(s).

Example 4-20 Using existsNode() on XMLType
For example, consider an XML document such as:

<PO>
<PONO>100</PONO>
<PNAME>Po_1</PNAME>
<CUSTOMER CUSTNAME="John"/>
<SHIPADDR>
<STREET>1033, Main Street</STREET>
<CITY>Sunnyvalue</CITY>

4-20 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

<STATE>CA</STATE>
</SHIPADDR>
</PO>

An XPath expression such as /PO/PNAME results in a single node. Therefore,
existsNode() will return 1 for that XPath. This is the same with
/PO/PNAME/text() , which results in a single text node.

An XPath expression such as /PO/POTYPE does not return any nodes. Therefore, an
existsNode() on this would return the value 0.

To summarize, existsNode() member function can be used in queries and to
create function-based indexes to speed up evaluation of queries.

Example 4-21 Using existsNode() to Find a node

The following example tests for the existence of the /Warehouse/Dock node in the
warehouse_spec column XML path of the sample table oe.warehouses

SELECT warehouse_id, EXISTSNODE(warehouse_spec, '/Warehouse/Docks’)
"Loading Docks"
FROM warehouses
WHERE warehouse_spec IS NOT NULL,;

WAREHOUSE_ID Loading Docks

AWN R
P OR Rk

Using Indexes to Evaluate existsNode()

You can create function-based indexes using existsNode() to speed up the
execution. You can also create a CTXXPATHnNdex to help speed up arbitrary XPath
searching.

See Also: "Creating XPath Indexes on XMLType Columns:
CTXXPATH Index" on page 4-41

extract () Function

The extract() function s similar to the existsNode () function. It applies a
VARCHAR2 XPathstring with an optional namespace parameter and returns an

Using XMLType 4-21

Selecting and Querying XML Data

XMLType instance containing an XML fragment. The syntax is described in
Figure 4-3 and as follows:

extract(XMLType_instance IN XMLType, XPath_string IN VARCHAR2,
namespace_string In varchar2 := null) RETURN XMLType;

Figure 4-3 extract() Syntax

-namespace
—>| EXTRACT |—>®{XMLType_instance)-)O—(XPath_string) @—)

extract() on XMLType extracts the node or a set of nodes from the document
identified by the XPath expression. The extracted nodes can be elements, attributes,
or text nodes. When extracted out, all text nodes are collapsed into a single text
node value. Namespace can be used to supply namespace information for prefixes
in the XPath string.

The XMLType resulting from applying an XPath through extract() need not be a
well-formed XML document but can contain a set of nodes or simple scalar data in
some cases. You can use the getStringVal() or getNumberVal() methods on
XMLType to extract this scalar data.

For example, the XPath expression /PO/PNAME identifies the PNAMElement inside
the XML document shown previously. The expression /PO/PNAME/text() , on the
other hand, refers to the text node of the PNAMElement.

Note: The latter is still considered an XMLType. In other words,
extract(poDoc,/PO/PNAME/text()") still returns an
XMLtype instance although the instance may actually contain only
text. You can use getStringVal() to get the text value out as a
VARCHAR?2 result.

Usetext() node test function to identify text nodes in elements before using the
getStringVal() or getNumberVal() to convert them to SQL data. Not having
thetext() node would produce an XML fragment.

For example, XPath expressions:
« /PO/PNAMEidentifies the fragment <PNAME>PO_1</PNAME>
« /PO/PNAME/text() identifies the text value “PO_1"

4-22 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

You can use the index mechanism to identify individual elements in case of
repeated elements in an XML document. For example, if you have an XML
document such as:

<PO>
<PONO>100</PONO>
<PONO>200</PONO>
</PO>

you can use:
« /[PONO[1] to identify the first “PONO” element (with value 100).

« /[PONO[2] to identify the second “PONO” element (with value 200).

The result of extract() is always an XMLType. If applying the XPath produces an
empty set, then extract() returns a NULL value.

Hence, extract() member function can be used in a number of ways, including
the following:

« Extracting numerical values on which function-based indexes can be created to
speed up processing

« Extracting collection expressions to be used in the FROM clause of SQL
statements

« Extracting fragments to be later aggregated to produce different documents

Example 4-22 Using extract() to Extract the Value of a Node

This example extracts the value of node, /Warehouse/Docks , of column,
warehouse_spec in table oe.warehouses

SELECT warehouse_name,
extract(warehouse_spec, '/Warehouse/Docks’).getStringVal()
"Number of Docks"
FROM warehouses
WHERE warehouse_spec IS NOT NULL,;

WAREHOUSE_NAME Number of Docks

Southlake, Texas <Docks>2</Docks>
San Francisco <Docks>1</Docks>
New Jersey <Docks/>

Seattle, Washington <Docks>3</Docks>

Using XMLType 4-23

Selecting and Querying XML Data

extractValue() Function

The extractValue() function takes as arguments an XMLType instance and an
XPath expression. It returns a scalar value corresponding to the result of the XPath
evaluation on the XMLType instance. extractValue() syntax is also described in
Figure 4-4.

« XML schema-based documents. For documents based on XML schema, if
Oracle9i can infer the type of the return value, then a scalar value of the
appropriate type is returned. Otherwise, the result is of type VARCHAR2

« Non-schema-based documents. For documents not based on XML schemas,
the return type is always VARCHARZ2

extractValue() tries to infer the proper return type from the XML schema of the
document. If the XMLType is non- schema-based or the proper return type cannot
be determined, Oracle XML DB returns a VARCHAR?2.

Figure 4-4 extractValue() Syntax

value_expr
—{ EXTRACTVALUE [{(()(XMLType_instance),)»(Pain_sting) 0

A Shortcut Function

extractValue() permits you to extract the desired value more easily than when
using the equivalent extract function. It is an ease-of-use and shortcut function. So
instead of using:

extract(x, path/text()).get(stringjnum)val()
you can replace extract().getStringVal() or
extract().gethumberval() with extractValue() as follows:

extractValue(x, ‘path/text()’)

With extractValue() you can leave off the text() , but ONLY if the node
pointed to by the 'path ' part has only one child and that child is a text node.
Otherwise, an error is thrown.

extractValue() syntax is the same as extract()

4-24 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

extractValue() Characteristics
extractValue() has the following characteristics:

It always returns only scalar content, such as NUMBER...VARCHARZ2, and so
on.

It cannot return XML nodes or mixed content. It raises an error at compile or
run time if it gets XML nodes as the result.

It always returns VARCHAR?2 by default. If the node’s value is bigger than 4K,
a runtime error would occur.

In the presence of XML schema information, at compile time,

extractValue() can automatically return the appropriate datatype based on
the XML schema information, if it can detect so at compile time of the query.
For instance, if the XML schema information for the path /PO/POID indicates
that this is a numerical value, then extractValue() returns a NUMBER.

If the XPath identifies a node, it automatically gets the scalar content from its
text child. The node must have exactly one text child. For example:

extractValue(xmlinstance, /PO/PNAME))

extracts out the text child of PNAMEThis is equivalent to:
extract(xmiinstance, /PO/PNAME/text()).getstringval()

Example 4-23 Extracting the Scalar Value of an XML Fragment Using extractValue()

The following example takes as input the same arguments as the example for
extract () Function on page 4-21. Instead of returning an XML fragment, as
extract() does, it returns the scalar value of the XML fragment:

SELECT warehouse_name,

extractValue(e.warehouse_spec, 'Warehouse/Docks’)
"Docks"

FROM warehouses e

WHERE warehouse_spec IS NOT NULL,;

WAREHOUSE_NAME Docks

Southlake, Texas 2
San Francisco 1
New Jersey

Seattle, Washington 3

Using XMLType 4-25

Selecting and Querying XML Data

ExtractValue() automatically extracted out the text child of Docks element and
returned that value. You can also write this using extract() as follows:

extract(e.warehouse_spec, '/Warehouse/Docks/text()’).getstringval()

More SQL Examples That Query XML

The following SQL examples illustrate ways you can query XML.

Example 4-24 Querying XMLType Using extract() and existsNode()

Assume the po_xml_tab table, which contains the purchase order identification
and the purchase order XML columns, and assume that the following values are
inserted into the table:

INSERT INTO po_xml_tab values (100,
xmitype(<?xml version="1.0"?>
<PO>
<PONO>221</PONO>
<PNAME>PO_2</PNAME>
<PO>));

INSERT INTO po_xml_tab values (200,
xmitype(<?xml version="1.0"?>
<PO>
<PONAME>PO_1</PONAME>
<PO>));

Now you can extract the numerical values for the purchase order numbers using
extract()

SELECT e.poDoc.extract(//PONO/text()).getNumberV/al() as pono
FROMpo_xml_tabe
WHERE e.podoc.existsnode(/PO/PONO’) =1 AND poid > 1;

Here extract() extracts the contents of tag, purchase order number, “PONO”.
existsNode() finds nodes where “PONO” exists as a child of “PO”.

Note: Here text() function is only used to return the text
nodes. getNumberVal() function can convert only text values
into numerical quantity

4-26 Oracle9i/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

See Also: "XMLType Member Functions" on page 4-7

Example 4-25 Querying Transient XMLType Data

The following example shows how you can select out the XML data and query it
inside PL/SQL.: create a transient instance from the purchase order table and then
perform some extraction on it. Assume po_xml_tab contains the data shown in
Example 4-16, "Inserting XML Data Using XMLType() with String", modified:

set serverout on
declare

poxml XMLType;

cust XMLType;

val VARCHAR2(200);
begin

—select the adt instance
select poDoc into poxml
from po_xml_tab p where p.poid = 100;

— do some traversals and print the output
cust := poxml.extract(//SHIPADDRY);

— do something with the customer XML fragment
val := cust.getStringVal();
dbms_outputput_line(The customer XML value is || val);

end;
/

Example 4-26 Extracting Data from an XML Document and Inserting It Into a Table
Using extract()

The following example shows how you can extract out data from an XML purchase

order and insert it into an SQL relational table. Consider the following relational
tables:

CREATE TABLE cust_tab

(
custid number primary key,
custname varchar2(20)

)

INSERT INTO cust_tab values (1001, 'John Nike);

Using XMLType 4-27

Selecting and Querying XML Data

CREATE TABLE po_rel tab
(
pono number,
pname varchar2(100),
custid number references cust_tab,
shipstreet varchar2(100),
shipcity varchar2(30),
shipzip varchar2(20)
)

You can write a simple PL/SQL block to transform XML of the form:
<?xmlversion="1.0"7>
<PO>
<PONO>2001</PONO>
<PNAME>Po_1</PNAME>
<CUSTOMER CUSTNAME="John Nike'/>
<SHIPADDR>
<STREET>323 College Drive</STREET>
<CITY>Edison</CITY>
<STATESNI</STATE>
<ZIP>08820</ZIP>
</SHIPADDR>
</PO>

into the relational tables, using extract().

Here is an SQL example assuming that the XML described in the previous example
is present in the po_xml_tab

INSERT INTO po_rel_tab
SELECT p.poDoc.extract(/PO/PONO/ext()).getnumberval() as pono,
p.poDoc.extract(/PO/PNAME/ext()).getstringval() as pname,

- getthe customer id coresponding to the customer name
(SELECT c.custid

FROM cust tabc

WHERE c.custname = p.poDoc.extract(/PO/CUSTOMER/@CUSTNAME).getstringval()
) as custid,

p.poDoc.extract(/PO/SHIPADDR/STREET/ext()).getstringval() as shipstreetr,
p.poDoc.extract(/ICITYext()).getstringval() as shipcity,

p.poDoc.extract(//ZIPtext()).getstringval() as shipzip
FROM po_xml_tab p;

Table po_tab should now have the following values:

4-28 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Selecting and Querying XML Data

PONO PNAME CUSTID SHIPSTREET SHIPCITY SHIPZIP

2001 Po 1 1001 323College Drive Edison 08820

Note: PNAMES null, since the input XML document did not have
the element called PNAMEinder PO. Also, the preceding example
used //CITY to search for the city element at any depth.

Example 4-27 Extracting Data from an XML Document and Inserting It Into a Table
Using extract() In a PL/SQL Block

You can do the same in an equivalent fashion inside a PL/SQL block, as follows:

DECLARE
poxml XMLType;
cname varchar2(200);
pono number;
pname varchar2(100);
shipstreet varchar2(100);
shipcity varchar2(30);
shipzip varchar2(20);

BEGIN

- selectthe adtinstance
SELECT poDoc INTO poxml FROM po_xml_tab p;

cname = poxml.extract(//CUSTOMER/@CUSTNAME).getstringval();

pono = poxml.extract(/PO/PONO/text()).gethumberval();

pname := poxml.extract(/PO/PNAMEAext()).getstringval();

shipstreet := poxml.extract(/PO/SHIPADDR/STREEText()).getstringval();
shipcity := poxml.extract(//CITY/text()).getstringval();

shipzip := poxml.extract(//ZIPfext()).getstringval();

INSERT INTO po_rel tab
VALUES (pono, pname,
(SELECT custid FROM cust_tab ¢ WHERE custname = cname),
shipstreet, shipcity, shipzip);
END;
/

Using XMLType 4-29

Selecting and Querying XML Data

Example 4-28 Searching XML Data with extract() and existsNode()

Using extract() and existsNode() functions, you can perform a variety of
search operations on the column, as follows:

SELECT e.poDoc.extract(/PO/PNAMEAext()).getStringVal() PNAME
FROM po_xml _tabe
WHERE e.poDoc.existsNode(/PO/SHIPADDR’) = 1 AND
e.poDoc.extract(//PONO/text()).getNumberVal() = 300 AND
e.poDoc.extract(//@CUSTNAME).getStringVal() like %6John%s;

This SQL statement extracts the purchase order name “PNAME from purchase order
element PQ from all XML documents containing a shipping address with a
purchase order number of 300, and a customer name “CUSTNAMEcontaining the
string “John”.

Example 4-29 Searching XML Data with extractValue()
Using extractValue() , you can rewrite the preceding query as:

SELECT extractvalue(e.poDoc, /PO/PNAME) PNAME
FROMpo_xml_tabe
WHERE e.poDoc.existsNode(/PO/SHIPADDR’) = 1 AND
extractvalue(e.poDoc,/PONO’) = 300 AND
extractvalue(e.poDoc, /@CUSTNAME) like ‘%John%o'

Example 4-30 Extracting Fragments from XMLType Using extract()

extract() member function extracts nodes identified by the XPath expression and
returns an XMLType containing the fragment. Here, the result of the traversal may
be a set of nodes, a singleton node, or a text value. You can check if the result is a
fragment by using the isFragment() function on the XMLType. For example:

SELECT e.poDoc.extract(/PO/SHIPADDR/STATE).isFragment()
FROM po_xml_tabe;

Note: You cannot insert fragments into XMLType columns. You
can use SYS_XMLGEN()to convert a fragment into a
well-formed document by adding an enclosing tag. See "SYS _
XMLGEN() Function" on page 10-42. You can, however, query
further on the fragment using the various XMLType functions.

The previous SQL statement returns 0, since the extraction /PO/SHIPADDR/STATE
returns a singleton well-formed node which is not a fragment.

4-30 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns

On the other hand, an XPath such as /PO/SHIPADDR/STATE/text() is
considered a fragment, since it is not a well-formed XML document.

Updating XML Instances and Data in Tables and Columns

This section talks about updating transient XML instances and XML data stored in
tables.

With CLOB-based storage, in this release, an update effectively replaces the whole
document. Use the SQL UPDATEstatement to update the whole XML document.
The right hand side of the UPDATE's SET clause must be an XMLType instance.
This can be created using the SQL functions and XML constructors that return an
XML instance, or using the PL/SQL DOM APIs for XMLType or Java DOM API,
that change and bind existing XML instances.

updateXML() SQL Function

updateXML() function takes in a source XMLType instance, and a set of XPath
value pairs. It returns a new XML instance consisting of the original XMLType
instance with appropriate XML nodes updated with the given values. The optional
namespace parameter specifies the namespace mapping of prefix(es) in the XPath
parameters.

updateXML() can be used to update, replace elements, attributes and other nodes
with new values. They cannot be directly used to insert new nodes or delete
existing ones. The containing parent element should be updated with the new
values instead.

(X
A) O
—>| UPDATEXML @{XMLType_instance o XPath_string ’ value_expr @—)

updateXML() updates only the transient XML instance in memory. Use an SQL
UPDATE statement to update data stored in tables. The updateXML() syntax is:

UPDATEXML(xmiinstance, xpathl, value_exprl
[xpath2, value_expr2]...,namespace_string]);

Example 4-31 Updating XMLType Using the UPDATE Statement

This example updates the XMLType using the UPDATE statement. It updates only
those documents whose purchase order number is 2001.

Using XMLType 4-31

Updating XML Instances and Data in Tables and Columns

UPDATE po_xml_tabe
SET e.poDoc = XMLType(
'<?xml version="1.0"?>
<PO pono="2">
<PNAME>Po_2</PNAME>
<CUSTNAME>Nance</CUSTNAME>
<SHIPADDR>
<STREET>2 Avocet Drive</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>)
WHERE e.poDoc. EXTRACT(/PO/PONO/text()).getNumberVal() = 2001,

Note: Updates for non- schema based XML documents always

update the whole XML document.

Example 4-32 Updating XMLType Using UPDATE and update XML()

To update the XML document in the table instead of creating a new one, you can
use the updateXML() in the right hand side of an UPDATE statement to update

the document.

Note: This will also update the whole document, not just the part

updated.

UPDATE po_xml_tab

SET poDoc = UPDATEXML(poDoc,
'IPO/CUSTNAME/text()’, 'John’);

1 row updated

SELECT e.poDoc.getstringval() AS newpo
FROM po_xml_tab e;

NEWPO

<?xml version="1.0"?>

<PO pono="2">
<PNAME>Po_2</PNAME>
<CUSTNAME> John </CUSTNAME>
<SHIPADDR>

4-32 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns

<STREET>2 Avocet Drive</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>

Example 4-33 Updating Multiple Elements in the Column Using updateXML()

You can update multiple elements within a single updateXML() expression. For
instance, you can use the same UPDATE statement as shown in the preceding
example and update purchase order, po:

UPDATE emp_tabe
SET e.emp_col = UPDATEXML(e.emp_col,
/EMPLOYEES/EMPEMPNAME="Joe'/SALARY/text()', 100000,
TEMPEMPNAME="Jack TEMPNAME/text()', Jackson,
IEEMPEMPNO=217] XMLTYPE.CREATEXML(
'<EMP><EMPNO>217<JEMPNO><EMPNAME>Jane</EMPNAME></EMP>)
WHERE EXISTSNODE(e.emp_cal, /EMP) =1,

This updates all rows that have an employee element with the new values.

Example 4-34 Updating Customer Name in Purchase Order XML Document Using
updateXML()

The following example updates the customer name in the purchase order XML
document, po:

Note: This example only selects the document and the update
occurs on a transient XMLType instance. The original document is
not affected.

SELECT
UPDATEXML(poDoc,
'IPO/CUSTNAME/text()’, 'John’).getstringval() AS updatedPO
FROM po_xml_tab;

UPDATEDPO

<2xml version="1.0"?>

<PO pono="2">
<PNAME>Po_2</PNAME>
<CUSTNAME>John</CUSTNAME>

Using XMLType 4-33

Updating XML Instances and Data in Tables and Columns

<SHIPADDR>
<STREET>2 Avocet Drive</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
</SHIPADDR>
</PO>

Example 4-35 Updating Multiple Transient XML Instances Using update XML ()

You can also use updateXML() to update multiple pieces of a transient instance.
For example, consider the following XML document stored in column emp_col of

table, emp_tab:

<EMPLOYEES>
<EMP>
<EMPNO>112</EMPNO>
<EMPNAME>Joe</EMPNAME>
<SALARY>50000</SALARY>
<EMP>
<EMP>
<EMPNO>217</EMPNO>
<EMPNAME>Jane</EMPNAME>
<SALARY>60000</SALARY>
<EMP>
<EMP>
<EMPNO>412</EMPNO>
<EMPNAME>Jack</EMPNAME>
<SALARY>40000</SALARY>
<EMP>
<EMPLOYEES>

To generate a new document with Joe’s salary updated to 100,000, update the Name

of Jack to Jackson, and modify the Employee element for 217, to remove the salary

element. You can write a query such as:

SELECT UPDATEXML(emp_col, TEMPLOYEES/EMPEMPNAME="Joe'/SALARY /text()’, 1200000,
YIEMPIEMPNAME="Jack JEMPNAME/text(), Jackson,

YEMPEMPNO=217],
XMLTYPE.CREATEXML(<EMP><EMPNO>217<EMPNO><EMPNAME>Jane</EMPNAME>))

FROMemp_tabe;
This generates the following updated XML:

<EMPLOYEES>
<EMP>
<EMPNO>112</EMPNO>

4-34 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns

<EMPNAME>Joe</EMPNAME>
<SALARY>100000</SALARY>
<EMP>
<EMP>
<EMPNO>217</EMPNO>
<EMPNAME>Jane</EMPNAME>
<EMP>
<EMP>
<EMPNO>412<EMPNO>
<EMPNAME>Jackson</EMPNAME>
<SALARY>40000</SALARY>
<EMP>
<EMPLOYEES>

Creating Views of XML Data with updateXML()

You can use updateXML() to create new views of XML data. This can be useful
when you do not want a particular set of users to see sensitive data such as
SALARY.

Example 4-36 Creating Views Using update XML ()
A view such as:

CREATE VIEW new_emp_view
AS SELECT
UPDATEXML(emp_col, EMPLOYEES/EMP/SALARY/text()', 0) emp_view_col
FROMemp_tabe;

ensures that users selecting from view, new_emp_view, do not see the SALARY
field for any employee.

Optimization of updateXML()

In most cases, updateXML() materializes the whole input XML document in
memory and updates the values. However, it is optimized for UPDATEstatements
on XML schema-based object-relationally stored XMLType tables and columns so
that the function updates the value directly in the column.

The conditions for rewrite are explained in Chapter 5, "Structured Mapping of
XMLType", "Query Rewrite with XML Schema-Based Structured Storage" on
page 5-51, in detail. If all of the rewrite conditions are met, then the updateXML()
is rewritten to update the object-relational columns directly with the values. For
example, the following UPDATE statement:

Using XMLType 4-35

Updating XML Instances and Data in Tables and Columns

UPDATE po_xml_tab
SET poDoc = UPDATEXML (poDoc,
'IPO/CUSTNAME/text()’, 'John’);

could get rewritten (if the rewrite rules are satisfied) to an UPDATE of the
custname column directly:

UPDATE po_xml_tabp
SET pxmidata. CUSTNAME = "John;

updateXML() and NULL Values

If you update an XML element to null, Oracle removes the attributes and children of
the element, and the element becomes empty. The type and namespace properties of
the element are retained. A NULL value for an element update is equivalent to
setting the element to empty.

If you update the text node of an element to null, Oracle removes the text value of
the element, and the element itself remains but is empty. For example, if you update
node, ''empno/text()’ with a NULL value, the text values for the empno
element are removed and the empno element becomes empty.

Setting an attribute to NULL, similarly sets the value of the attribute to the empty
string.

You cannot use updateXML() to remove, add, or delete a particular element or an
attribute. You have to update the containing element with a new value.

Note: Setting 'empno’ to NULL has the same effect as setting
‘'empno/text() 'to NULL, if empno is a simple scalar element with
no attributes.

Example 4-37 NULL Updates with update XML ()
Consider the XML document:

<PO>
<pono>21</ponc>
<shipAddr gate="yxx">
<street>333</street>
<city>333</city>
</shipAddr>
</PO>

The clause:

4-36 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Updating XML Instances and Data in Tables and Columns

updateXML (xmicol,/PO/shipAddr’,null)

is equivalent to making it:

<PO>
<pono>21</pono>
<shipAddr>
</PO>

If you update the text node to NULL, then this is equivalent to removing the text
value alone. For example:

UPDATEXML (xmicol,/PO/shipAddr/streetftext()’, null)
results in:

<PO>
<pono>21</pono>
<shipAddr>
<street/>
<city>333</city>
</shipAddr>
</PO>

Updating the Same XML Node More Than Once

You can update the same XML node more than once in the updateXML()

statement. For example, you can update both /EMP[EMPNO=217] and
/EMP[EMPNAME="Jane”[/EMPNO , where the first XPath identifies the EMPN®ode
containing it as well. The order of updates is determined by the order of the XPath
expressions in left-to-right order. Each successive XPath works on the result of the
previous XPath update.

XMLTransform() Function

The XMLTransform() function takes in an XMLType instance and an XSLT
stylesheet. It applies the stylesheet to the XML document and returns a transformed
XML instance. See Figure 4-5.

Figure 4-5 XMLTransform() Syntax

—{ XMLTRANSFORM A 1 XMLType_instance)a@{XMLType_instance)-)@»

Using XMLType 4-37

Deleting XML Data

XMLTransform() is explained in detail in Chapter 6, "Transforming and
Validating XMLType Data".

Deleting XML Data

DELETESs on the row containing the XMLType column are handled in the same way
as any other datatype.

Example 4-38 Deleting Rows Using extract()

For example, to delete all purchase order rows with a purchase order name of “Po_
2”, execute a statement such as:

DELETE FROM po_xml_tabe
WHERE e.poDoc.extract(/PO/PNAME/ext()).getStingVal()=Po_2;;

Using XMLType In Triggers

You can use the new and old binds inside triggers to read and modify the XMLType
column values. For INSERT and UPDATE statements, you can modify the new
value to change the value being inserted.

Example 4-39 Creating XMLType Triggers
For example, you can write a trigger to change the purchase order if it does not
contain a shipping address:

CREATE OR REPLACE TRIGGER po_trigger

BEFORE INSERT OR UPDATE ON po_xml_tab FOR EACH ROW
declare

pono Number,

begin
if inserting then:

if:NEW.poDoc.existsnode(//SHIPADDR') = 0 then
‘NEW.poDoc = xmitype(<PO>INVALID_PO</PO>); end f;
end ff;

when updating, if the old poDoc has purchase order number different from the new
one then make it an invalid PO.
if updating then:

if :OLD.poDoc.extract(/PONO/ext()).getNumberVal() 1=

4-38 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns

:NEW.poDoc.extract(/PONO/ext()).getNumberVal() then

:NEW.poDoc := xmitype(<PO>INVALID_PO</PO>);
endf;
endif;
end;
/

This example is only an illustration. You can use the XMLType value to perform
useful operations inside the trigger, such as validation of business logic or rules that
the XML document should conform to, auditing, and so on.

Indexing XMLType Columns

You can create the following indexes when using XMLType. Indexing speeds up
guery evaluation.

Creating Function-Based Indexes on XMLType Columns

You can speed up by queries by building function-based indexes on
existsNode() or those portions of the XML document that use extract()

Example 4-40 Creating a Function-Based Index on an extract() Function
For example, to speed up the search on the query,
SELECT*FROM po_xml_tabe
WHERE e.poDoc.extract(//PONO/ext()).getNumberVal()= 100;
you can create a function-based index on the extract() function as follows:
CREATE INDEX city_index ON po_xml_tab
(poDoc.extract(//PONO/ext()).getNumberVal();

The SQL query uses this function-based index, to evaluate the predicate instead of
parsing the XML document row by row, and evaluating the XPath expression.

Example 4-41 Creating a Function-Based index on an existsNode() Function

You can also create bitmapped function-based indexes to speed up the evaluation of
the operators. existsNode() is suitable, since it returns a value of 1 or 0
depending on whether the XPath is satisfied in the XML document or not.

Using XMLType 4-39

Indexing XMLType Columns

For example, to speed up a query that searches whether the XML document
contains an element called Shipping address (SHIPADDR at any level:

SELECT *FROM po_xml_tabe
WHERE e.poDoc.existsNode(/SHIPADDR)) = 1;

you can create a bitmapped function-based index on the existsNode() function
as follows:

CREATE BITMAP INDEX po_index ON po_xml_tab
(poDoc.existsNode(//SHIPADDRY);

This speeds up the query processing.

Creating Oracle Text Indexes on XMLType Columns

Oracle Text index works on CLOB and VARCHAR columns. It has been extended
in Oracle9i to also work on XMLType columns. The default behavior of Oracle Text
index is to automatically create XML sections, when defined over XMLType
columns. Oracle Text also provides the CONTAINSoperator which has been
extended to support XPath.

In general, Oracle Text indexes can be created using the CREATE INDEXSQL
statement with the INDEXTYPEspecified as for other CLOB or VARCHAR columns.
Oracle Text indexes on XMLType columns, however, are created as function-based
indexes.

Example 4-42 Creating an Oracle Text Index

CREATE INDEX po_text_index ON
po_xml_tab(poDoc) indextype is ctxsys.context,

You can also perform Oracle Text operations such as CONTAINSand SCOREon
XMLType columns. In Oracle9i Release (9.0.1), the CONTAINSoperator was
enhanced to support XPath using two new operators, INPATH and HASPATH

« INPATH checks if the given word appears within the path specified.
« HASPATH checks if the given XPath is present in the XML document.

Example 4-43 Searching XML Data Using HASPATH
For example:

SELECT *FROM po_xml_tab w
WHERE CONTAINS(w.poDoc,

4-40 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns

"haspath({PO[/@CUSTNAME="John Nike'])) > 0;

QUERY_REWRITE PRIVILEGE Is No Longer Needed

In Oracle9i Release (9.0.1), to create and use Oracle Text index in queries, in
addition to having the privileges for creating indexes and for creating Oracle Text
indexes, you also needed privileges and settings for creating function-based
indexes:

« QUERY_REWRITRrivilege. You must have this privilege granted to create text
indexes on XMLType columns in your own schema.

« GLOBAL_QUERY_REWRITEivilege. If you need to create Oracle Text indexes
on XMLType columns in other schemas or on tables residing in other schemas,
you must have this privilege granted.

Oracle Text index uses the PATH_SECTION_GROU& the default section group
when indexing XMLType columns. This default can be overridden during Oracle
Text index creation.

With this release, you no longer need the additional QUERY_REWRITRrivileges
when creating Oracle Text indexes.

See Also:

« Chapter 7, "Searching XML Data with Oracle Text"

« Chapter 10, "Generating XML Data from the Database"
= Oracle Text Reference

« Oracle Text Application Developer’s Guide

Note: The QUERY_REWRITE_INTEGRIT¥nd QUERY_REWRITE_
ENABLEDsession settings are no longer needed to create Oracle
Text or other function-based indexes on XMLType columns.

Creating XPath Indexes on XMLType Columns: CTXXPATH Index

existsNode() SQL function, unlike the CONTAINSoperator, cannot use Oracle
Text indexes to speed up its evaluation. To improve the performance of XPath
searches in existsNode() , this release introduces a new index type, CTXXPATH

CTXXPATHNdex is a new indextype provided by Oracle Text. It is designed to serve
as a primary filter for existsNode () processing, that is, it produces a superset of

Using XMLType 4-41

Indexing XMLType Columns

the results that would be produced by the existNode() function. The
existsNode() functional implementation is then applied on the results to return
the correct set of rows.

CTXXPATHnNdex can handle XPath path searching, wildcards, and string equality
predicates.

Example 4-44 Using CTXXPATH Index or existsNode() for XPath Searching

CREATE INDEX po_text_index ON
po_xml_tab(poDoc) indextype is ctxsys.coxpath;

For example, a query such as:

SELECT *
FROM po_xml_doc w
WHERE existsNode(w.poDoc, /PO[@CUSTNAME="John Nike'T) = 1,

could potentially use CTXXPATHNdexing to satisfy the existsNode() predicate.

See Also:
« Chapter 7, "Searching XML Data with Oracle Text"
» Chapter 10, "Generating XML Data from the Database"

Differences Between CONTAINS and existsNode()/extract()

The differences in XPath support when using CONTAINScompared to XPath
support with existsNode() and extract() functions are:

« Since Oracle Text index ignores spaces, the XPath expression may not yield
accurate results when spaces are significant.

« Oracle Text index also supports certain predicate expressions with string
equality, but cannot support numerical and range comparisons.

« Oracle Text index may give wrong results if the XML document only has tag
names and attribute names without any text. For example, consider the
following XML document:

<A>

<C>
</C>

<D>

4-42 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Indexing XMLType Columns

<E>
</D>
<IA>

the XPath expression - A/B/E falsely matches the preceding XML document.

Both the function-based indexes and Oracle Text indexes support navigation.
Thus you can use the Oracle Text index as a primary filter, to filter out all
documents that potentially match the criterion, efficiently, and then apply
secondary filters such as existsNode() or extract() operations on the
remainder of the XML documents.

See Also: Chapter 7, "Searching XML Data with Oracle Text",

Table 7-6, "Using CONTAINS() and existsNode() to Search
XMLType Data" on page 7-38

Using XMLType 4-43

Indexing XMLType Columns

4-44 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

D

Structured Mapping of XMLType

This chapter introduces XML Schema and explains how XML schema are used in
Oracle XML DB applications. It describes how to register your XML schema and
create storage structures for storing schema-based XML. It explains in detail the
mapping from XML to SQL storage types, including techniques for maintaining the
DOM fidelity of XML data.This chapter also describes how queries over XMLType
tables and columns based on this mapping are optimized using query rewrite
techniques. It discusses the mechanism for generating XML schemas from existing
object types.

This chapter contains the following sections:

Introducing XML Schema

XML Schema and Oracle XML DB

Using Oracle XML DB and XML Schema

Introducing DBMS_XMLSCHEMA

Registering Your XML Schema Before Using Oracle XML DB

Deleting Your XML Schema Using DBMS_XMLSCHEMA

Guidelines for Using Registered XML Schemas

Generating XML Schema Using DBMS_XMLSCHEMA .generateSchema()
XML Schema-Related Methods of XMLType

Managing and Storing XML Schema

DOM Fidelity

Creating XMLType Tables and Columns Based on XML Schema
Specifying SQL Object Type Names with SQLName, SQLType Attributes

Structured Mapping of XMLType 5-1

« Mapping of Types Using DBMS_XMLSCHEMA

« XML Schema: Mapping SimpleTypes to SQL

« XML Schema: Mapping complexTypes to SQL

« Oracle XML DB complexType Extensions and Restrictions

« Further Guidelines for Creating XML Schema-Based XML Tables

« Query Rewrite with XML Schema-Based Structured Storage

« Creating Default Tables During XML Schema Registration

« Ordered Collections in Tables (OCTs)

« Cyclical References Between XML Schemas

« Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

5-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema and Oracle XML DB

Introducing XML Schema

The XML Schema Recommendation was created by the World Wide Web
Consortium (W3C) to describe the content and structure of XML documents in
XML. It includes the full capabilities of Document Type Definitions (DTDs) so that

existing DTDs can be converted to XML schema. XML schemas have additional
capabilities compared to DTDs.

See Also: Appendix B, "XML Schema Primer"

XML Schema and Oracle XML DB

XML Schema is a schema definition language written in XML. It can be used to
describe the structure and various other semantics of conforming instance
documents. For example, the following XML schema definition, po.xsd, describes
the structure and other properties of purchase order XML documents.

This manual refers to an XML schema definition as an XML schema.

Example 5-1 XML Schema Definition, po.xsd
The following is an example of an XML schema definition, po.xsd :

<schema targetNamespace="http:/Avww.oracle.com/PO.xsd"
xmins:po="http:/Amww.oracle.com/PO.xsd"
xmins="http:/Amww.w3.0rg/200/XMLSchema™>
<complexType name="PurchaseOrderType">
<sequence>
<element name="PONum" type="decimal'/>
<element name="Company'>
<simpleType>
<resfriction base="string">
<maxLength value="100"/>
<restriction>
</simpleType>
</element>
<element name="tem" maxOccurs="1000">
<complexType>
<sequence>
<element name="Part">
<simpleType>
<restriction base="string">
<maxLength value="1000"/>
</restriction>
</smpleType>

Structured Mapping of XMLType 5-3

XML Schema and Oracle XML DB

<element>
<element name="Price" type="float'/>
</sequence>

</complexType>

</element>

</sequence>

</complexType>
<element name="PurchaseOrder" type="po:PurchaseOrderType'"/>

</schema>

Example 5-2 XML Document, po.xml Conforming to XML Schema, po.xsd
The following is an example of an XML document that conforms to XML schema

po.xsd :

<PurchaseOrder xmins="http:/Amww.oracle.com/PO.xsd"
xmins:xsi="http/Amwvw3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http:/Amwv.oracle.com/PO.xsd
http/Amww.oracle.com/PO xsd">
<PONum>1001</PONum>
<Company>Oracle Corp</Company>
<ltem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
<fitem>
</PurchaseOrder>

5-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XML DB and XML Schema

Note:

The URL ’http://www.oracle.com/PO.xsd’ used here is
simply a name that uniquely identifies the registered XML schema
within the database and need not be the physical URL at the which
the XML schema document is located. Also, the target namespace
of the XML schema is another URL, different from the XML schema
location URL, that specifies an abstract namespace within which
elements and types get declared.

An XML schema can optionally specify the target namespace URL.
If this attribute is omitted, the XML schema has no target
namespace. Note: The targethamespace is commonly the same
as XML schema’s URL.

An XML instance document must specify both the namespace of
the root element (same as the XML schema’s target namespace) and
the location (URL) of the XML schema that defines this root
element. The location is specified with attribute
xsi:schemalocation . When the XML schema has no target
namespace, use attribute xsi:noNamespaceSchemalocation to
specify the XML schema URL.

Using Oracle XML DB and XML Schema

Oracle XML DB uses annotated XML schema as metadata, that is, the standard
XML Schema definitions along with several Oracle XML DB-defined attributes.
These attributes are in a different namespace and control how instance documents
get mapped into the database. Since these attributes are in a different namespace
from the XML schema namespace, such annotated XML schemas are still legal XML
schema documents:

See Also: Namespace of XML Schema constructs:
http://www.w3.0rg/2001/XMLSchema

When using Oracle XML DB, you must first register your XML schema. You can
then use the XML schema URLs while creating XMLType tables, columns, and
views.

Oracle XML DB provides XML Schema support for the following tasks:
« Registering any W3C-compliant XML schemas.

Structured Mapping of XMLType 5-5

Using Oracle XML DB and XML Schema

« Validating your XML documents against a registered XML schema definitions.
« Registering local and global XML schemas.

« Generating XML schema from object types.

« Referencing an XML schema owned by another user.

« Explicitly referencing a global XML schema when a local XML schema exists
with the same name.

« Generating a structured database mapping from your XML schemas during
XML schema registration. This includes generating SQL object types, collection
types, and default tables, and capturing the mapping information using XML
schema attributes.

« Specifying a particular SQL type mapping when there are multiple legal
mappings.

« Creating XMLType tables, views and columns based on registered XML
schemas.

« Performing manipulation (DML) and queries on XML schema-based XMLType
tables.

« Automatically inserting data into default tables when schema-based XML
instances are inserted into Oracle XML DB Repository using FTP,
HTTP/WebDav protocols and other languages.

See Also: Chapter 26, "Oracle XML DB Basic Demo"

Why Do We Need XML Schema?

As described in Chapter 4, "Using XMLType", XMLType is a datatype that facilitates
storing XML in columns and tables in the database. XML schemas further facilitate
storing XML columns and tables in the database, and they offer you more storage
and access options for XML data along with space- performance-saving options.

For example, you can use XML schema to declare which elements and attributes can
be used and what kinds of element nesting, and datatypes are allowed in the XML
documents being stored or processed.

XML Schema Provides Flexible XML-to-SQL Mapping Setup

Using XML schema with Oracle XML DB provides a flexible setup for XML storage
mapping. For example:

5-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle XML DB and XML Schema

« If your data is highly structured (mostly XML), each element in the XML
documents can be stored as a column in a table.

« If your data is unstructured (all or mostly non-XML data), the data can be
stored in a Character Large Object (CLOB).

Which storage method you choose depends on how your data will be used and
depends on the queriability and your requirements for querying and updating your
data. In other words. Using XML schema gives you more flexibility for storing
highly structured or unstructured data.

XML Schema Allows XML Instance Validation

Another advantage of using XML schema with Oracle XML DB is that you can
perform XML instance validation according to the XML schema and with respect to
Oracle XML Repository requirements for optimal performance. For example, an
XML schema can check that all incoming XML documents comply with definitions
declared in the XML schema, such as allowed structure, type, number of allowed
item occurrences, or allowed length of items.

Also, by registering XML schema in Oracle XML DB, when inserting and storing
XML instances using Protocols, such as FTP or HTTP, the XML schema information
can influence how efficiently XML instances are inserted.

When XML instances must be handled without any prior information about them,
XML schema can be useful in predicting optimum storage, fidelity, and access.

DTD Support in Oracle XML DB

In addition to supporting XML schema that provide a structured mapping to object-
relational storage, Oracle XML DB also supports DTD specifications in XML
instance documents. Though DTDs are not used to derive the mapping, XML
processors can still access and interpret the DTDs.

Inline DTD Definitions

When an XML instance document has an inline DTD definition, it is used during
document parsing. Any DTD validations and entity declaration handling is done at
this point. However, once parsed, the entity references are replaced with actual
values and the original entity reference is lost.

Structured Mapping of XMLType 5-7

Introducing DBMS_XMLSCHEMA

External DTD Definitions

Oracle XML DB also supports external DTD definitions if they are stored in the
Repository. Applications needing to process an XML document containing an
external DTD definition such as “/public/flights.dtd”, must first ensure that the
DTD document is stored in Oracle XML DB at the path “/public/flights.xsd”.

Introducing DBMS_XMLSCHEMA

Oracle XML DB’s XML schema functionality is available through the PL/SQL
supplied package, DBMS_XMLSCHEIVWserver-side component that handles the
registration of XML schema definitions for use by Oracle XML DB applications.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Two of the main DBMS_XMLSCHEMénctions are:
« registerSchema() . This registers an XML schema given:

« XML schema source, which can be in a variety of formats, including string,
LOB, XMLType, and URIType

« Itsschema URL or XMLSchema name

« deleteSchema() . This deletes a previously registered XML schema,
identified by its URL or XMLSchema name.

Registering Your XML Schema Before Using Oracle XML DB

An XML schema must be registered before it can be used or referenced in any
context by Oracle XML DB. XML schema are registered by using DBMS _
XMLSCHEMA. registerSchema() and specifying the following:

« The XML schema source document as a VARCHAR, CLOB, XMLType, or
URIType.

« The XML schema URL. This is a name for the XML schema that is used within
XML instance documents to specify the location of the XML schema to which
they conform.

After registration has completed:

« XML documents conforming to this XML schema, and referencing it using the
XML schema’s URL within the XML document, can be processed by Oracle
XML DB.

5-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Registering Your XML Schema Before Using Oracle XML DB

« Tables and columns can be created for root XML elements defined by this XML
schema to store the conforming XML documents.

Registering Your XML Schema Using DBMS_XMLSCHEMA

Use DBMS XMLSCHEM®@register your XML schema. This involves specifying the
XML schema document and its URL, also known as the XML schema location.

Example 5-3 Registering an XML Schema That Declares a complexType Using
DBMS_XMLSCHEMA

Consider the following XML schema. It declares a complexType called
PurchaseOrderType and an element PurchaseOrder of this type. The schema

is stored in the PL/SQL variable doc . The following registers the XML schema at
URL.: http://www.oracle.com/PO.xsd

declare
doc varchar2(1000) :='<schema
targetNamespace="http:/Amwv.oracle.com/PO.xsd"
xmins:po="http:/Ammwv.oracle.com/PO.xsd"
xmins="http:/Amww.w3.0rg/200/XMLSchema™>
<complexType name="PurchaseOrderType">
<sequence>
<element name="PONum" type="decimal'/>
<element name="Company'>
<simpleType>
<restriction base="string">
<maxLength value="100"/>
<restriction>
</smpleType>
</element>
<element name="tem" maxOccurs="1000">
<complexType>
<sequence>
<element name="Part">
<smpleType>
<restriction base="string">
<maxLength value="1000"/>
</restriction>
</simpleType>
<element>
<element name="Price" type="float />
</sequence>
</complexType>

Structured Mapping of XMLType 5-9

Registering Your XML Schema Before Using Oracle XML DB

</element>

</sequence>
</complexType>
<element name="PurchaseQOrder" type="po:PurchaseOrderType'"/>
</schema>’,
begin

dbms_xmischema.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);

end;

The registered schema can be used to created XML schema-Based tables, or XML
schema-based columns. For example, the following statement creates an a table
with an XML schema-based column.

create table po_tab(
id number,

po sys.XMLType

)

xmitype column po
XMLSCHEMA "http/Ammwv.oracle.com/PO.xsd"

element "PurchaseOrder”,

The following shows an XMLType instance that conforms to the preceding XML
schema being inserted into the preceding table. The schemalocation attribute
specifies the schema URL:

insertinto po_tab values (1,
xmitype(<po:PurchaseOrder xmins:po="http/Amwv.oracle.com/PO.xsd"
xmins:xsi="http:/Ammww.w3.0rgl200/XMLSchema-instance”
xsi:schemal ocation="http:/Amwv.oracle.com/PO.xsd
http:/Amwv.oracle.com/PO.xsd">
<PONum>1001</PONum>
<Company>Oracle Corp</Company>
<ftem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
</tem>
<ltem>
<Part>8i Doc Set</Part>
<Price>350</Price>
<fitem>
</po:PurchaseQrder>));

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

5-10 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Registering Your XML Schema Before Using Oracle XML DB

Local and Global XML Schemas

XML schemas can be registered as local or global:

« Local XML schema: An XML schema registered as a local schema is, by default,
visible only to the owner.

« Global XML schema: An XML schema registered as a global schema is, by
default, visible and usable by all database users.

When you register an XML schema, DBMS_XMLSCHEMAds an Oracle XML DB
resource corresponding to the XML schema into the Oracle XML DB Repository.
The XML schema URL determines the path name of the resource in Oracle XML DB
Repository according to the following rules:

Local XML Schema

In Oracle XML DB, local XML schema resources are created under the
/sys/schemas/<username> directory. The rest of the path name is derived from
the schema URL.

Example 5—-4 A Local XML Schema
For example, a local XML schema with schema URL:

http/Amww.myco.com/PO.xsd

registered by SCOTT, is given the path name:
/sys/schemas/SCOT TAwwv.myco.com/PO.xsd.

Database users need appropriate permissions (ACLS) to create a resource with this
path name in order to register the XML schema as a local XML schema.

See Also: Chapter 18, "Oracle XML DB Resource Security"

By default, an XML schema belongs to you after registering the XML schema with
Oracle XML DB. A reference to the XML schema document is stored in Oracle XML
DB Repository, in directory:

Isysischemas/<usemame>....

For example, if you, SCOTT, registered the preceding XML schema, it is mapped to
the file:

Isyslischemas/SCOT TAwwv.oracle.com/PO.xsd

Structured Mapping of XMLType 5-11

Registering Your XML Schema Before Using Oracle XML DB

Such XML schemas are referred to as local. In general, they are usable only by you to
whom they belong.

Note: Typically, only the owner of the XML schema can use it to
define XMLType tables, columns, or views, validate documents, and
so on. However, Oracle supports fully qualified XML schema URLs
which can be specified as:

http://xmins.oracle.com/xdb/schemas/SCOTT/www.orac
le.com/PO.xsd

This extended URL can be used by privileged users to specify XML
schema belonging to other users.

Global XML Schema

In contrast to local schema, privileged users can register an XML schema as a global
XML schema by specifying an argument in the DBMS_XMLSCHENMgyistration
function.

Global schemas are visible to all users and stored under the
/sys/schemas/PUBLIC/ directory in Oracle XML DB Repository.

Note: Access to this directory is controlled by Access Control Lists
(ACLs) and, by default, is writable only by a DBA. You need
WRITE privileges on this directory to register global schemas.

XDBAdmin role also provides WRITE access to this directory,
assuming that it is protected by the default “protected” ACL.

See also Chapter 18, "Oracle XML DB Resource Security" for further
information on privileges and for details on XDBAdmin role.

You can register a local schema with the same URL as an existing global schema. A
local schema always hides any global schema with the same name (URL).

Example 5-5 A Global XML Schema
For example, a global schema registered by SCOTT with the URL:

www.myco.com/PO.xsd

is mapped to Oracle XML DB Repository at:

5-12 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Deleting Your XML Schema Using DBMS_XMLSCHEMA

/sysischemas/PUBLIC imwwv.myco.com/PO.xsd

Database users need appropriate permissions (ACLS) to create this resource in order
to register the XML schema as global.

Registering Your XML Schema: Oracle XML DB Sets Up the Storage and Access

Infrastructure

As part of registering an XML schema, Oracle XML DB also performs several other
steps to facilitate storing, accessing, and manipulating XML instances that conform
to the XML schema. These steps include:

Creating types: When an XML schema is registered, Oracle creates the
appropriate SQL object types that enable the structured storage of XML
documents that conform to this XML schema. You can use Oracle XML
DB-defined attributes in XML schema documents to control how these object
types are generated.

Creating default tables: As part of XML schema registration, Oracle XML DB
generates default XMLType tables for all root elements. You can also specify any
column and table level constraints for use during table creation.

See Also:

« "Specifying SQL Object Type Names with SQLName, SQLType
Attributes" on page 5-24

« Chapter 3, "Using Oracle XML DB"

Deleting Your XML Schema Using DBMS_XMLSCHEMA

You can delete your registered XML schema by using the DBMS _
XMLSCHEMA.deleteSchema procedure. When you attempt to delete an XML
schema, DBMS_XMLSCHEMHRecks:

That the current user has the appropriate privileges (ACLSs) to delete the
resource corresponding to the XML schema within Oracle XML DB Repository.
You can thus control which users can delete which XML schemas by setting the
appropriate ACLs on the XML schema resources.

For dependents. If there are any dependents, it raises an error and the deletion
operation fails. This is referred to as the RESTRICT mode of deleting XML
schemas.

Structured Mapping of XMLType 5-13

Guidelines for Using Registered XML Schemas

FORCE Mode

A FORCE mode option is provided while deleting XML schemas. If you specify the
FORCE mode option, the XML schema deletion proceeds even if it fails the
dependency check. In this mode, XML schema deletion marks all its dependents as
invalid.

CASCADE Mode

The CASCADE mode option drops all generated types and default tables as part of a
previous call to register XML schema.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
the chapter on DBMS_XMLSCHEMA

Example 5-6 Deleting the XML Schema Using DBMS_XMLSCHEMA

The following example deletes XML schema PO.xsd . First, the dependent table
po_tab is dropped. Then, the schema is deleted using the FORCEand CASCADE
modes with DBMS_XMLSCHENDELETESCHEMA

drop table po_tab;

EXEC dbms_xmischema.deleteSchema(http:/Ammv.oracle.com/PO.xsd,
dbms_xmischema.DELETE_CASCADE_FORCE);

Guidelines for Using Registered XML Schemas

The following sections describe guidelines for registering XML schema with Oracle
XML DB.

Objects That Depend on Registered XML Schemas

The following objects depend on a registered XML schemas:

« Tables or views that have an XMLType column that conforms to some element
in the XML schema.

« XML schemas that include or import this schema as part of their definition.

« Cursors that reference the XML schema name, for example, within DBMS_
XMLGEN operators. Note that these are purely transient objects.

5-14 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Guidelines for Using Registered XML Schemas

Creating XMLType Tables, Views, or Columns

After an XML schema has been registered, it can be used to create XML
schema-based XMLType tables, views, and columns by referencing the following:

« The XML schema URL of a registered XML schema

« The name of the root element

Example 5-7 Post-Registration Creation of an XMLType Table
For example you can create an XML schema-based XMLType table as follows:

CREATE TABLE po_tab OF XMLTYPE
XMLSCHEMA "http:/Ammw.oracle.com/PO.xsd" ELEMENT "PurchaseOrder”;

The following statement inserts XML schema-conformant data:

insertinto po_tab values (
xmitype(<PurchaseOrder xmins="http:/Amwv.oracle.com/PO.xsd"
xmins:xsi="http:/Amw.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http:/Amwv.oracle.com/PO.xsd
http/Amww.oracle.com/PO.xsd">
<PONum>1001</PONum>
<Company>Oracle Comp</Company>
<ltem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
<ftem>
<ftem>
<Part>8i Doc Set</Part>
<Price>350</Price>
<ftem>
</PurchaseOrder>));

Validating XML Instances Against the XML Schema: schemaValidate()

You can validate an XMLType instance against a registered XML schema by using
one of the validation methods.

See Also: Chapter 6, "Transforming and Validating XMLType
Data"

Structured Mapping of XMLType 5-15

Guidelines for Using Registered XML Schemas

Example 5-8 Validating XML Using schemaValidate()
The following PL/SQL example validates an XML instance against XML schema
PO.xsd :

declare
xmidoc xmitype;
begin

— populate xmidoc (by fetching from table)
select value(p) into xmidoc from po_tab p;

- validate against XML schema
xmidoc.schemavalidate();

if xmidoc.isschemavalidated() = 1 then
dbms_outputput_line(Data is valid);
else
dbms_outputput_line(Data is invalid);
endif;
end;

Fully Qualified XML Schema URLSs

By default, XML schema URL names are always referenced within the scope of the
current user. In other words, when database users specify XML Schema URLSs, they
are first resolved as the names of local XML schemas owned by the current user.

« If there are no such XML schemas, then they are resolved as names of global
XML schemas.

« If there are no global XML schemas, then Oracle XML DB raises an error.

XML Schema That Users Cannot Reference

These rules imply that, by default, users cannot reference the following kinds of
XML schemas:

« XML schemas owned by a different database user

« Global XML schemas that have the same name as local XML schemas

Fully Qualified XML Schema URLs Permit Explicit Reference to XML Schema
URLs

To permit explicit reference to XML schemas in these cases, Oracle XML DB
supports a notion of fully qualified XML schema URLS. In this form, the name of the

5-16 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()

database user owning the XML schema is also specified as part of the XML schema
URL, except that such XML schema URLs belong to the Oracle XML DB namespace
as follows:

http://xmIns.oracle.com/xdb/schemas/<database-user-name>/<schemaURL-
minus-protocol>

Example 5-9 Using Fully Qualified XML Schema URL

For example, consider the global XML schema with the following URL:
http://www.example.com/po.xsd

Assume that database user SCOTT has a local XML schema with the same URL.:
http/Amw.example.comvpo.xsd

User JOE can reference the local XML schema owned by SCOTT as follows:
http/ixmins.oracle.com/xdb/schemas/SCOT TAwwv.example.com/po.xsd

Similarly, the fully qualified URL for the global XML schema is:
http:/ixmins.oracle.com/xdb/schemas/PUBLICAwWwv.example.com/po.xsd

Transactional Behavior of XML Schema Registration

Registration of an XML schema is non transactional and auto committed as with
other SQL DDL operations, as follows:

« If registration succeeds, the operation is auto committed.

« If registration fails, the database is rolled back to the state before the registration
began.

Since XML schema registration potentially involves creating object types and tables,
error recovery involves dropping any such created types and tables. Thus, the entire
XML schema registration is guaranteed to be atomic. That is, either it succeeds or
the database is restored to the state before the start of registration.

Generating XML Schema Using DBMS XMLSCHEMA.generateSchema()

An XML schema can be generated from an object-relational type automatically
using a default mapping. The generateSchema() and generateSchemas()
functions in the DBMS_XMLSCHENbAckage take in a string that has the object type
name and another that has the Oracle XML DB XML schema.

Structured Mapping of XMLType 5-17

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()

« generateSchema() returnsan XMLType containing an XML schema. It can
optionally generate XML schema for all types referenced by the given object
type or restricted only to the top-level types.

« generateSchemas() issimilar, except that it returns an XMLSequenceType
of XML schemas, each corresponding to a different namespace. It also takes an
additional optional argument, specifying the root URL of the preferred XML
schema location:

http//xmins.oracle.com/xdb/schemas/<schema>xsd

They can also optionally generate annotated XML schemas that can be used to
register the XML schema with Oracle XML DB.

Example 5-10 Generating XML Schema: Using generateSchema()
For example, given the object type:

connect il
CREATE TYPE employee tAS OBJECT

(
empno NUMBER(10),

ename VARCHAR2(200),
salary NUMBER(10,2)
)

You can generate the schema for this type as follows:
select doms_xmischema.generateschema(TL1', EMPLOYEE_T) from dual;
This returns a schema corresponding to the type EMPLOYEE _.TThe schema declares

an element named EMPLOYEE_Bnd a complexType called EMPLOYEE_TType
The schema includes other annotation from http://xmlIns.oracle.com/xdb

DBMS_XMLSCHEMA GENERATESCHEMA(T1,EMPLOYEE_T)

<xsd:schema targetNamespace="http:/ns.oracle.com/xdb/T1" xmins="httpz/ns.oracl
e.comxdb/T1" xmins:xsd="http:/Amww.w3.0rg2001/XMLSchema xmins:xdb="http:/xml
ns.oracle.com/xdb" xmins:xsi="http/Amwv.w3.0rg/2001/XMLSchema-instance” xsi:sch
emalocation="http:/xmins.oracle.com/xdb http/xmins.oracle.com/xdb/XDBSchemax
sd>

<xsd:element name="EMPLOYEE_T"type="EMPLOYEE_TType"xdb:SQLType="EMPLOYEE T"
xdb:SQLSchema="T1"/>

<xsd.complexType name="EMPLOYEE_TType">

<xsd:sequence>
<xsd:element name="EMPNO" type="xsd:double'" xdb:SQLName="EMPNO" xdb:SQLTyp

5-18 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Managing and Storing XML Schema

e="NUMBER'>

<xsd:element name="ENAME" type="xsd:string" xdb:SQLName="ENAME" xdb:SQLTyp
e="VARCHARZ2' />

<xsd:element name="SALARY" type="xsd:double" xdb:SQLName="SALARY" xdb:SQLT
ype="NUMBER'/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Schema-Related Methods of XMLType

Table 5-1 lists the XMLType API’'s XML schema-related methods.

Table 5-1 XMLType APl XML Schema-Related Methods
XMLType API Method Description

isSchemaBased() Returns TRUE if the XMLType instance is based on an XML schema, FALSE
otherwise.

getSchemaURL() Returns the XML schema URL, name of root element, and the namespace for an

getRootElement() XML schema-based XMLType instance.

getNamespace()

schemaValidate() An XMLType instance can be validated against a registered XML schema using

isSchemaValid() the validation methods. See Chapter 6, "Transforming and Validating

_ , XMLType Data".
is SchemaValidated()

setSchemaValidated()

Managing and Storing XML Schema

XML schema documents are themselves stored in Oracle XML DB as XMLType
instances. XML schema-related XMLType types and tables are created as part of the
Oracle XML DB installation script, catxdbs.sql

Root XML Schema, XDBSchema.xsd

The XML schema for XML schemas is called the root XML schema,
XDBSchema.xsd . XDBSchema.xsd describes any valid XML schema document
that can be registered by Oracle XML DB. You can access XDBSchema.xsd through
Oracle XML DB Repository at:

Structured Mapping of XMLType 5-19

Managing and Storing XML Schema

Isysischemas/PUBLIC/xmins.oracle.com/xdb/XDBSchemaxsd

See Also:

« Chapter 21, "Managing Oracle XML DB Using Oracle
Enterprise Manager"

« Appendix A, "Installing and Configuring Oracle XML DB"

How Are XML Schema-Based XMLType Structures Stored?

XML Schema-based XMLType structures are stored in one of the following ways:
« Inunderlying object type columns. This is the default storage mechanism.

— SQL object types can be created optionally during the XML schema
registration process. See "Creating XMLType Tables and Columns Based on
XML Schema" on page 5-22.

— See "Specifying SQL Object Type Names with SQLName, SQLType
Attributes” on page 5-24.

« Inasingle underlying LOB column. Here the storage choice is specified in the
STORE ASclause of the CREATE TABLEstatement:

CREATE TABLE po_tab OF xmitype
STOREAS CLOB
ELEMENT "http/Amww.oracle.com/PO xsd#PurchaseOrder”;

Design criteria for storing XML data are discussed inChapter 2, "Getting Started
with Oracle XML DB" and Chapter 3, "Using Oracle XML DB".

Specifying the Storage Mechanism

Instead of using the STORE ASlause, you can specify that the table and column be
stored according to a mapping based on a particular XML schema. You can specify
the URL for the XML schema used for the mapping.

Non-schema-based XML data can be stored in tables using CLOBs. However you
do not gain benefits such as indexing, query-rewrite, and so on.

5-20 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

DOM Fidelity

DOM Fidelity

Document Object Model (DOM) fidelity is the concept of retaining the structure of a
retrieved XML document, compared to the original XML document, for DOM
traversals. DOM fidelity is needed to ensure the accuracy and integrity of XML
documents stored in Oracle XML DB.

See Also: "Setting the SQLInLine Attribute to FALSE for
Out-of-Line Storage" on page 5-37

How Oracle XML DB Ensures DOM Fidelity with XML Schema

All elements and attributes declared in the XML schema are mapped to separate
attributes in the corresponding SQL object type. However, some pieces of
information in XML instance documents are not represented directly by these
element or attributes, such as:

« Comments
« Namespace declarations
« Prefix information

To ensure the integrity and accuracy of this data, for example, when regenerating
XML documents stored in the database, Oracle XML DB uses a data integrity
mechanism called DOM fidelity.

DOM fidelity refers to how identical the returned XML documents are compared to
the original XML documents, particularly for purposes of DOM traversals.

DOM Fidelity and SYS_XDBPDS$

To guarantee that DOM fidelity is maintained and that the returned XML documents
are identical to the original XML document for DOM traversals, Oracle XML DB
adds a system binary attribute, SYS_XDBPDg$to each created object type.

This positional descriptor attribute stores all pieces of information that cannot be
stored in any of the other attributes, thereby ensuring the DOM fidelity of all XML
documents stored in Oracle XML DB. Examples of such pieces of information
include: ordering information, comments, processing instructions, namespace
prefixes, and so on. This is mapped to a Positional Descriptor (PD) column.

Structured Mapping of XMLType 5-21

Creating XMLType Tables and Columns Based on XML Schema

Note: The PD attribute is mainly intended for Oracle internal use
only. You should never directly access or manipulate this column.

How to Suppress SYS_XDBPD$

If DOM fidelity is not required, you can suppress SYS_XDBPD$n the XML schema
definition by setting the attribute, maintainDOM=FALSE .

Note: The attribute SYS_XDBPD$s omitted in many examples
here for clarity. However, the attribute is always present as a
Positional Descriptor (PD) column in all SQL object types generated
by the XML schema registration process.

In general however, it is not a good idea to suppress the PD
attribute because the extra pieces of information, such as,
comments, processing instructions, and so on, could be lost if there
is no PD column.

Creating XMLType Tables and Columns Based on XML Schema

Oracle XML DB creates XML schema-based XMLType tables and columns by
referencing:

« The XML schema URL of a registered XML schema
« The name of the root element
Figure 5-1 shows the syntax for creating an XMLType table:

CREATE TABLE [schema.] table OF XMLTYPE
XMLTYPE XMLType_storage] XMLSchema._spec];

Figure 5-1 Creating an XMLType Table

|
—>| CREATE |->| TABLE | table XMLTYPE
f_)| XMLTYPE KXMLType_storageh XMLSchema_spec

5-22 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Creating XMLType Tables and Columns Based on XML Schema

A subset of the XPointer notation, shown in the following example, can also be used
to provide a single URL containing the XML schema location and element name.

Example 5-11 Creating XML Schema-Based XMLType Table

This example creates the XMLType table po_tab using the XML schema at the
given URL:

CREATE TABLE po_tab OF XMLTYPE
XMLSCHEMA "http/Amwwv.oracle.com/PO.xsd" ELEMENT "PurchaseOrder”;

An equivalent definition is:

CREATE TABLE po_tab OF XMLTYPE
ELEMENT "http:/Amwv.oracle.com/PO xsd#PurchaseOrder”;

SQL Object-Relational Types Store XML Schema-Based XMLType Tables

When an XML schema is registered, Oracle XML DB creates the appropriate SQL
object types that enable structured storage of XML documents that conform to this
XML schema. All SQL object types are created based on the current registered XML
schema, by default.

Example 5-12 Creating SQL Object Types to Store XMLType Tables

or example, when PO.xsd is registered with Oracle XML DB, the following SQL
types are created.

Note: The names of the types are generated names, and will not
necessarily match ltemxxx_t , ltemxxx_COLL and
PurchaseOrderTypexxx_T , where xxx is a 3-digit integer.

CREATE TYPE "ltemxxx_T" as object

(
part varchar2(1000),
price number

)

CREATE TYPE "ltermxxx_COLL" AS varray(1000) OF "tem_T";
CREATE TYPE "PurchaseOrderTypexxx_T'AS OBJECT
(

ponum number,
company varchar2(100),

Structured Mapping of XMLType 5-23

Specifying SQL Object Type Names with SQLName, SQLType Attributes

item ltem_varray COLL

)

Note: The names of the object types and attributes in the
preceding example can be system-generated.

« If the XML schema already contains the SQLName, SQLType,
or SQLColType attribute filled in (see "Specifying SQL Object
Type Names with SQLName, SQLType Attributes" for details),
this name is used as the object attribute's name.

« If the XML schema does not contain the SQLNamaattribute, the
name is derived from the XML name, unless it cannot be used
because of length or conflict reasons.

If the SQLSchemaattribute is used, Oracle XML DB attempts to
create the object type using the specified database schema. The
current user must have the necessary privileges to perform this.

Specifying SQL Object Type Names with SQLName, SQLType Attributes

To specify specific names of SQL objects generated include the attributes SQLName
and SQLType in the XML schema definition prior to registering the XML schema.

If you specify the SQLNameand SQLType values, Oracle XML DB creates the
SQL object types using these names.

If you do not specify these attributes, Oracle XML DB uses system-generated
names.

Note: You do not have to specify values for any of these
attributes. Oracle XML DB fills in appropriate values during the
XML schema registration process. However, it is recommended
that you specify the names of at least the top-level SQL types so
that you can reference them later.

All annotations are in the form of attributes that can be specified within attribute
and element declarations. These attributes belong to the Oracle XML DB
namespace: http://xmins.oracle.com/xdb

Table 5-2 lists Oracle XML DB attributes that you can specify in element and
attribute declarations.

5-24 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes

Table 5-2 Attributes You Can Specify in Elements

Attribute Values Default Description

SQLName Any SQL identifier Element name Specifies the name of the attribute within
the SQL object that maps to this XML
element.

SQLType Any SQL type name Name generated Specifies the name of the SQL type

from element name correspondingtothis XML
element declaration.

SQLCollType Any SQL collection Name generated Specifies the name of the SQL collection
type name from element name type corresponding to this XML element
that has maxOccurs > 1.

SQLSchema Any SQL username User registering Name of database user owning the type
XML schema specified by SQLType.

SQLCollSchema Any SQL username User registering Name of database user owning the type
XML schema specified by SQLCollType .

maintainOrder true | false true If true, the collection is mapped to a

VARRAY. If false, the collection is
mapped to a NESTED TABLE.

SQLInline true | false true If true this element is stored inline as an
embedded attribute (or a collection if
maxOccurs > 1). If false, a REF (or
collection of REFs if maxOccurs > 1) is
stored. This attribute will be forced to
false in certain situations (like cyclic
references) where SQL will not support
inlining.

maintainDOM true | false true If true, instances of this element are
stored such that they retain DOM fidelity
on output. This implies that all comments,
processing instructions, namespace
declarations, and so on are retained in
addition to the ordering of elements. If
false, the output need not be guaranteed
to have the same DOM behavior as the
input.

Structured Mapping of XMLType 5-25

Specifying SQL Object Type Names with SQLName, SQLType Attributes

Table 5-2 Attributes You Can Specify in Elements(Cont.)

Attribute

Values

Default

Description

columnProps

Any valid column
storage clause

NULL

Specifies the column storage clause that is
inserted into the default CREATE TABLE
statement. It is useful mainly for elements
that get mapped to tables, namely
top-level element declarations and
out-of-line element declarations.

tableProps

Any valid table
storage clause

NULL

Specifies the TABLE storage clause that is
appended to the default CREATE TABLE
statement. This is meaningful mainly for
global and out-of-line elements.

defaultTable

Any table name

Based on element
name.

Specifies the name of the table into which
XML instances of this schema should be
stored. This is most useful in cases when
the XML is being inserted from APIs
where table name is not specified, for
example, FTP and HTTP.

beanClassname

Any Java class name

Generated from
element name.

Can be used within element declarations.
If the element is based on a global
complexType , this name must be
identical to the beanClassname value
within the complexType declaration. If a
name is specified by the user, the bean
generation will generate a bean class with
this name instead of generating a name
from the element name.

JavaClassname

Any Java class name

None

Used to specify the name of a Java class
that is derived from the corresponding
bean class to ensure that an object of this
class is instantiated during bean access. If
a JavaClassname is not specified,
Oracle XML DB will instantiate an object
of the bean class directly.

5-26 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes

Table 5-3 Attributes You Can Specify in Elements Declaring Global complexTypes

Attribute Values Default Description
SQLType Any SQL type name Name generated from Specifies the name of the SQL type
element name corresponding tothis XML
element declaration.
SQLSchema Any SQL username User registering XML Name of database user owning the type
schema specified by SQLType.
beanClassname Any Java class name Generated from Can be used within element declarations.
element name. If the element is based on a global
complexType , this name must be
identical to the beanClassname value
within the complexType declaration. Ifa
name is specified by the user, the bean
generation will generate a bean class with
this name, instead of generating a name
from the element name.
maintainDOM true | false true If true, instances of this element are

stored such that they retain DOM fidelity
on output. This implies that all comments,
processing instructions, namespace
declarations,.and so on, are retained in
addition to the ordering of elements. If
false, the output need not be guaranteed
to have the same DOM behavior as the
input.

Table 5-4 Attributes You Can Specify in XML Schema Declarations

Attribute

Values

Default

Description

mapUnboundedStringToLob true | false

false

If true, unbounded strings are mapped to
CLOB by default. Similarly, unbounded
binary data gets mapped to BLOB, by
default. If false, unbounded strings are
mapped to VARCHAR2(4000) and
unbounded binary components are
mapped to RAW(2000).

storeVarrayAsTable

true | false

false

If true, the VARRAY is stored as a table
(OCT). If false, the VARRAY is stored in a
LOB.

Structured Mapping of XMLType 5-27

Specifying SQL Object Type Names with SQLName, SQLType Attributes

SQL Mapping Is Specified in the XML Schema During Registration

Information regarding the SQL mapping is stored in the XML schema document.
The registration process generates the SQL types, as described in "Mapping of
Types Using DBMS_XMLSCHEMA" on page 5-31 and adds annotations to the XML

schema document to store the mapping information. Annotations are in the form of
new attributes.

Example 5-13 Capturing SQL Mapping Using SQLType and SQLName Attributes

The following XML schema definition shows how SQL mapping information is
captured using SQLType and SQLNamaattributes:

declare
doc varchar2(3000) :="<schema
targetNamespace="http:/Amwv.oracle.com/PO.xsd"
xmins:po="http:/Ammw.oracle.com/PO.xsd" xmins:xdb="http:/xmins.oracle.com/xdb"
xmins="http:/Amww.w3.0rg2001/XMLSchema™>
<complexType name="PurchaseOrderType'">
<sequence>
<element name="PONum" type="decimal xdb:SQLName="PONUM"
xdb:SQLType="NUMBER'/>
<element name="Company" xdb:SQLName="COMPANY" xdb:SQLType="VARCHAR2">
<simpleType>
<restriction base="string">
<maxLength value="100"/>
<restriction>
</simpleType>
</element>
<element name="ltem" xdb:SQLName="TTEM" xdb:SQLType="TTEM_T"
maxOccurs="1000">
<complexType>
<sequence>
<element name="Part" xdb:SQLName="PART" xdb:SQLType="VARCHAR2">
<smpleType>
<restriction base="string">
<maxLength value="1000"/>
<Jrestriction>
</simpleType>
<element>
<element name="Price" type="float" xdb:SQLName="PRICE"
xdb:SQLType="NUMBER'/>
</sequence>
</complexType>
</element>

5-28 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Specifying SQL Object Type Names with SQLName, SQLType Attributes

</sequence>
</complexType>
<element name="PurchaseQrder" type="po:PurchaseOrderType'"/>
</schema>",
begin

dbms_xmischema.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);
end;

Figure 5-2 shows how Oracle XML DB creates XML schema-based XMLType tables
using an XML document and mapping specified in an XML schema. An XMLType
table is first created and depending on how the storage is specified in the XML
schema, the XML document is mapped and stored either as a CLOB in one
XMLType column, or stored object-relationally and spread out across several

columns in the table.

Structured Mapping of XMLType 5-29

Specifying SQL Object Type Names with SQLName, SQLType Attributes

Figure 5-2 How Oracle XML DB Maps XML Schema-Based XMLType Tables

XML data: employee_2002.xml

<employee>
<first_name>Scott</first_name>
<last_name>Tiger</last_name>
<email>scott.itger@oracle.com</email>

<hire_date>040402</hire_date>

<"(ljepar1ment_id>1234</department_id>

</employee> > Cronio
XMLType
XML schema definition: employee.xsd —p| Table
<sequence>

<element name="first name" type="string"/>
<element name="last name" type="string"/>
<element name="email" type="string"/> -

<element name="hire_date" type="date"/>

<element name="department_id" type="integer"/>

</sequence>
Structured
Store as CLOB Storage

employee_2002 tables employee_2002 tables

. | XMLType Columnl o | . first_namel Iast_namel email | dept_id
scott tiger CLOB | ... | ... scott tiger ..1234
CLOB AU
CLOB
CLOB
CLOB

Here the whole XML document or parts Here the XML elements are mapped
of it are stored in CLOBs in tables. to columns in tables.

An XMLType table is first created and depending on how the storage is specified in
the XML schema, the XML document is mapped and stored either as a CLOB in one
XMLType column, or stored object-relationally and spread out across several
columns in the table.

5-30 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Mapping of Types Using DBMS_XMLSCHEMA

Mapping of Types Using DBMS_XMLSCHEMA

Use DBMS_ XMLSCHEM®@set the mapping of type information for attributes and
elements.

Setting Attribute Mapping Type Information

An attribute declaration can have its type specified in terms of one of the following:

Primitive type

Global simpleType , declared within this XML schema or in an external XML
schema

Reference to global attribute (ref=".."), declared within this XML schema or
in an external XML schema

Local simpleType

In all cases, the SQL type and associated information (length and precision) as well
as the memory mapping information, are derived from the simpleType on which
the attribute is based.

Overriding SQL Types
You can explicitly specify an SQLType value in the input XML schema document.

In this case, your specified type is validated. This allows for the following specific
forms of overrides:

If the default type is a STRING, you can override it with any of the following:
CHAR, VARCHAR, or CLOB.

If the default type is RAW, you can override it with RAW or BLOB.

Setting Element Mapping Type Information

An element declaration can specify its type in terms of one of the following:

Any of the ways for specifying type for an attribute declaration. See "Setting
Attribute Mapping Type Information" on page 5-31.

Global complexType , specified within this XML schema document or in an
external XML schema.

Reference to a global element (ref="..."), which could itself be within this
XML schema document or in an external XML schema.

Structured Mapping of XMLType 5-31

Mapping of Types Using DBMS_XMLSCHEMA

Local complexType .

Overriding SQL Type

An element based on a complexType is, by default, mapped to an object type
containing attributes corresponding to each of the sub-elements and attributes.
However, you can override this mapping by explicitly specifying a value for
SQLType attribute in the input XML schema. The following values for SQLType are
permitted in this case:

VARCHAR?2
RAW

CLOB

BLOB

These represent storage of the XML in a text or unexploded form in the database.
The following special cases are handled:

If a cycle is detected, as part of processing the complexTypes used to declare
elements and elements declared within the complexType), the SQLInline
attribute is forced to be “false” and the correct SQL mapping is set to REF
XMLTYPE

If maxOccurs >1 , a VARRAY type may need to be created.

— If SQLInline ="true" , avarray type is created whose element type is the
SQL type previously determined.

* Cardinality of the VARRAY is determined based on the value of
maxOccurs attribute.

* The name of the VARRAY type is either explicitly specified by the user
using SQLCollType attribute or obtained by mangling the element
name.

— If SQLInline="false" , the SQL type is set to XDB.XDB$XMLTYPE_REF _
LIST_T, a predefined type representing an array of REFs to XMLType.

If the element is a global element, or if SQLInline="false” , a default table
needs to be created. It is added to the table creation context. The name of the
default table has either been specified by the user, or derived by mangling the
element name.

5-32 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping SimpleTypes to SQL

XML Schema: Mapping SimpleTypes to SQL

This section describes how XML schema definitions map XML schema
simpleType to SQL object types. Figure 5-3 shows an example of this.

Table 5-5 through Table 5-8 list the default mapping of XML schema simpleType
to SQL, as specified in the XML schema definition. For example:

« An XML primitive type is mapped to the closest SQL datatype. For example,
DECIMAL, POSITIVEINTEGER, and FLOAT are all mapped to SQL NUMBER.

« An XML enumeration type is mapped to an object type with a single RAW(n)
attribute. The value of n is determined by the number of possible values in the
enumeration declaration.

« An XML list or a union datatype is mapped to a string (VARCHAR2/CLOB)
datatype in SQL.

Figure 5-3 Mapping simpleType: XML Strings to SQL VARCHARZ2 or CLOBs

<element name = "Resume" type = "string">

v

Employee_tab of type OBJ_T
| |Resume|...

| |CLOB—||...
|

Entire resume
value is stored
in the CLOB

Structured Mapping of XMLType 5-33

XML Schema: Mapping SimpleTypes to SQL

Table 5-5 Mapping XML String Datatypes to SQL

Length or

XML Primitive MaxLength Default Mapping Compatible Datatype

Type Facet

string n VARCHARZ2(n) if n <4000, else CHAR,VARCHAR?2,
VARCHAR2(4000) CLOB

string - VARCHAR2(4000) if CHAR, VARCHAR?2, CLOB
mapUnboundedStringToLob="false”,
CLOB

Table 5-6 Mapping XML Binary Datatypes (hexBinary/base64Binary) to SQL

Length or ; :
XML Primitive MaxLength Default Mapping Compatible Datatype
Type Facet
hexBinary, n RAW(n) if n <2000, else RAW/(2000) RAW, BLOB
base64Binary
hexBinary, - RAW(2000) if RAW, BLOB
base64Binary mapUnboundedStringToLob=""false”,
BLOB

Table 5-7 Default Mapping of Numeric XML Primitive Types to SQL

XML Simple Type 8?;?:Iuelt totalDigits (m), fractionDigits(n) Compatible Datatypes
DataType Specified

float NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
double NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
decimal NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
integer NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
nonNegativelnteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
positivelnteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
nonPositivelnteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE

5-34 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping SimpleTypes to SQL

Table 5-7 Default Mapping of Numeric XML Primitive Types to SQL(Cont.)

XML Simple Type B?Lill:elt totalDigits (m), fractionDigits(n) Compatible Datatypes
DataType Specified

negativelnteger NUMBER NUMBER(m,n) NUMBER, FLOAT, DOUBLE
long NUMBER(20) NUMBER(m,n) NUMBER, FLOAT, DOUBLE
unsignedLong NUMBER(20) NUMBER(m,n) NUMBER, FLOAT, DOUBLE
int NUMBER(10) NUMBER(mM,n) NUMBER, FLOAT, DOUBLE
unsignedint NUMBER(10) NUMBER(mM,n) NUMBER, FLOAT, DOUBLE
short NUMBER(5) NUMBER(m,n) NUMBER, FLOAT, DOUBLE
unsignedShort NUMBER(5) NUMBER(m,n) NUMBER, FLOAT, DOUBLE
byte NUMBER(3) NUMBER(m,n) NUMBER, FLOAT, DOUBLE
unsignedByte NUMBER(3) NUMBER(m,n) NUMBER, FLOAT, DOUBLE

Table 5-8 Mapping XML Date Datatypes to SQL

XML Primitive Type Default Mapping Compatible Datatypes
datetime TIMESTAMP DATE

time TIMESTAMP DATE

date DATE DATE

gDay DATE DATE

gMonth DATE DATE

gYear DATE DATE

gYearMonth DATE DATE

gMonthDay DATE DATE

duration VARCHAR2(4000) none

Structured Mapping of XMLType 5-35

XML Schema: Mapping SimpleTypes to SQL

Table 5-9 Default Mapping of Other XML Primitive Datatypes to SQL

XML Simple Type Default Oracle DataType Compatible Datatypes

boolean RAW(1) VARCHAR2
Language(string) VARCHAR2(4000) CLOB, CHAR
NMTOKEN(string) VARCHAR2(4000) CLOB, CHAR
NMTOKENS(string) VARCHAR2(4000) CLOB, CHAR
Name(string) VARCHAR2(4000) CLOB, CHAR
NCName(string) VARCHAR2(4000) CLOB, CHAR
1D VARCHAR2(4000) CLOB, CHAR
IDREF VARCHAR2(4000) CLOB, CHAR
IDREFS VARCHAR2(4000) CLOB, CHAR
ENTITY VARCHAR2(4000) CLOB, CHAR
ENTITIES VARCHAR2(4000) CLOB, CHAR
NOTATION VARCHAR2(4000) CLOB, CHAR
anyURI VARCHAR2(4000) CLOB, CHAR
anyType VARCHAR2(4000) CLOB, CHAR
anySimpleType VARCHAR2(4000) CLOB, CHAR
QName XDB.XDB$QNAME -

simpleType: Mapping XML Strings to SQL VARCHAR?2 Versus CLOBs

If the XML schema specifies the datatype to be string with a maxLength value of
less than 4000, it is mapped to a VARCHAR?2 attribute of the specified length.
However, if maxLength is not specified in the XML schema, it can only be mapped
to a LOB. This is sub-optimal when most of the string values are small and only a
small fraction of them are large enough to need a LOB.

See Also: Table 5-5, "Mapping XML String Datatypes to SQL"

5-36 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping complexTypes to SQL

XML Schema: Mapping complexTypes to SQL
Using XML schema, a complexType is mapped to an SQL object type as follows:

« XML attributes declared within the complexType are mapped to object
attributes. The simpleType defining the XML attribute determines the SQL
datatype of the corresponding attribute.

« XML elements declared within the complexType are also mapped to object
attributes. The datatype of the object attribute is determined by the
simpleType or complexType defining the XML element.

If the XML element is declared with attribute maxOccurs > 1, it is mapped to a
collection attribute in SQL. The collection could be a VARRAY (default) or
nested table if the maintainOrder attribute is set to false. Further, the default
storage of the VARRAY is in Ordered Collections in Tables (OCTs) instead of LOBs.
You can choose LOB storage by setting the storeAsLob attribute to true.

See Also: "Ordered Collections in Tables (OCTs)" on page 5-71

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage

By default, a sub-element is mapped to an embedded object attribute. However,
there may be scenarios where out-of-line storage offers better performance. In such
cases the SQLInline attribute can be set to false, and Oracle XML DB generates an
object type with an embedded REFattribute. REFpoints to another instance of
XMLType that corresponds to the XML fragment that gets stored out-of-line. Default
XMLType tables are also created to store the out-of-line fragments.

Figure 5-4 illustrates the mapping of a complexType to SQL for out-of-line
storage.

Structured Mapping of XMLType 5-37

XML Schema: Mapping complexTypes to SQL

Figure 5-4 Mapping complexType to SQL for Out-of-Line Storage

<e|ement‘name ="Addr" xdb : SQLInLine = "false">

1
1
1
Employee_tab of type OBJ_T2 This XML fragment is
Name |Age | Addr REF XMLType stored out-of-line
I
B |
Addr_tab of type OBJ_T1
|Street | City
REF points
to another
XMLType
instance XMLType table

Example 5-14 Oracle XML DB XML Schema: complexType Mapping - Setting
SQLinLine Attribute to False for Out-of-Line Storage

In this example element Addr ’s attribute, xdb:SQLInLine , is set to false.The

resulting object type OBJ_T2 has a column of type XMLType with an embedded
REF attribute. The REFattribute points to another XMLType instance created of
object type OBJ_T1in table Addr_tab .Addr_tab hascolumns Street and City .
The latter XMLType instance is stored out-of-line.

declare
doc varchar2(3000) = '<schema xmins="http:/Ammwv.w3.0rgl2001/XMLSchema’
targetNamespace="http:/Amwv.oracle.com/emp.xsd"
xmins:emp="htp:/Avww.oracle.com/emp.xsd"
xmins:xdb="http:/xmins.oracle.com/xdb™>
<complexType name = "Employee" xdb:SQLType="OBJ_T2">
<sequence>
<element name ="Name" type = "string/>
<element name ="Age" type = "decimal’/>
<element name = "Addr" xdb:SQLInline ="false">
<complexType xdb:SQLType="OBJ_T1">
<sequence>
<element name ="Street" type ="string"/>
<element name ="City" type = "string"/>
</sequence>
</complexType>

5-38 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XML Schema: Mapping complexTypes to SQL

</element>
</sequence>
</complexType>
</schema>’;
begin
dbms_xmischema.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);
end;

On registering this XML schema, Oracle XML DB generates the following types and
XMLType tables:

CREATE TYPE OBJ_T1AS OBJECT

(
SYS XDBPD$ XDB.XDB$RAW_LIST_T,

Street VARCHAR2(4000),
City VARCHAR2(4000)
)

CREATE TYPE OBJ_T2 AS OBJECT

(
SYS_XDBPD$ XDBXDB$RAW_LIST_T,

Name VARCHAR2(4000),
Age NUMBER,
Addr REF XMLType

)

Mapping XML Fragments to Large Objects (LOBS)

You can specify the SQLType for a complex element as a Character Large Object
(CLOB) or Binary Large Object (BLOB) as shown in Figure 5-5. Here the entire XML
fragment is stored in a LOB attribute. This is useful when parts of the XML
document are seldom queried but are mostly retrieved and stored as single pieces.
By storing XML fragments as LOBs, you can save on
parsing/decomposition/recomposition overheads.

Example 5-15 Oracle XML DB XML Schema: complexType Mapping XML Fragments
to LOBs

In the following example, the XML schema specifies that the XML fragment’s
element Addr is using the attribute SQLType="CLOB":

declare

doc varchar2(3000) = '<schema xmins="http:/Ammwv.w3.0rgl2001/XMLSchema’
targetNamespace="http:/Amwv.oracle.com/emp.xsd"
xmins:emp="htp:/Avww.oracle.com/emp.xsd"

Structured Mapping of XMLType 5-39

XML Schema: Mapping complexTypes to SQL

xmins:xdb="http:/xmins.oracle.com/xdb">
<complexType name = "Employee” xdb:SQLType="OBJ_T2">
<sequence>
<element name ="Name" type = "string"/>
<element name ="Age" type ="decimal’/>
<element name = "Addr" xdb:SQL Type ="CLOB">
<complexType >
<sequence>
<element name = "Street" type ="string'/>
<element name ="City" type = "string"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</schema>’;
begin
dbms_xmischema.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);
end;

On registering this XML schema, Oracle XML DB generates the following types and
XMLType tables:

CREATE TYPE OBJ_T AS OBJECT

(
SYS_XDBPD$ XDB.XDB$RAW_LIST T,
Name VARCHAR2(4000),
Age NUMBER,

Addr CLOB

)

5-40 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions

Figure 5-5 Mapping complexType XML Fragments to Character Large Objects
(CLOBs)

<e|ement. name = "Addr" xdb : SQLType = "CLOB">

v

Employee_tab of type OBJ_T
Name |Age |Addr

| | CLOB—I

[

Street and
city are stored
in the CLOB

Oracle XML DB complexType Extensions and Restrictions

In XML schema, complexTypes are declared based on complexContent and
simpleContent

« simpleContent is declared as an extension of simpleType
« complexContent is declared as one of the following:

« Basetype

« complexType extension

« complexType restriction.

complexType Declarations in XML Schema: Handling Inheritance

For complexType , Oracle XML DB handles inheritance in the XML schema as
follows:

« For complexTypes declared to extend other complexTypes, the SQL type
corresponding to the base type is specified as the supertype for the current SQL
type. Only the additional attributes and elements declared in the
sub-complextype are added as attributes to the sub-object-type.

Structured Mapping of XMLType 5-41

Oracle XML DB complexType Extensions and Restrictions

« For complexTypes declared to restrict other complexTypes, the SQL type for the
sub-complex type is set to be the same as the SQL type for its base type. This is
because SQL does not support restriction of object types through the
inheritance mechanism. Any constraints are imposed by the restriction in XML
schema.

Example 5-16 Inheritance in XML Schema: complexContent as an Extension of
complexTypes

Consider an XML schema that defines a base complexType “Address ” and two
extensions “USAddress ” and “IntlAddress .

declare
doc varchar2(3000) :='<xs:schema
xmins:xs="http/Ammv.w3.0rg/2001/ XMLSchema”
xmins:xdb="http:/xmins.oracle.com/xdb">
<xs:.complexType name="Address" xdb:SQLType="ADDR_T">
<xs:sequence>
<xs:element name="street" type="xs:string />
<xs:element name="city" type="xs:string"/>
</xs:sequence>
<xs:complexType>

<xs:complexType name="USAddress" xdb:SQLType="USADDR_T">
<xs:complexContent>
<xs:extension base="Address">
<xs:sequence>
<xs:element name="zip" type="xs:string'/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="InlAddress" final="#all" xdb:SQLType="INTLADDR_T">
<xs:complexContent>
<xs:extension base="Address">
<xs:sequence>
<xs:element name="country’" type="xs:string"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>';
begin
dbms_xmischema.registerSchema(http:/Amwv.oracle.com/PO.xsd', doc);

5-42 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions

end;

Note: Type INTLADDR_Tis created as a final type because the
corresponding complexType specifies the “final " attribute. By
default, all complexTypes can be extended and restricted by other
types, and hence, all SQL object types are created as not final types.

create type ADDR _T as object (
SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
"street" varchar2(4000),
"city" varchar2(4000)

) not final;

create type USADDR_T under ADDR_T (
"Zip" varchar2(4000)
) not final;

create type INTLADDR _T under ADDR _T (
"country varchar2(4000)
)final;

Example 5-17 Inheritance in XML Schema: Restrictions in complexTypes

Consider an XML schema that defines a base complexType Address and a
restricted type LocalAddress that prohibits the specification of country
attribute.

declare
doc varchar2(3000) :="<xs:schema
xmins:xs="http:/Amwwv.w3.0rg/2001/ XMLSchema’
xmins:xdb="http:/xmins.oracle.com/xdb">
<xs:complexType name="Address" xdb:SQLType="ADDR_T">
<xs:seguence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city'" type="xs:string'/>
<xs:element name="zip" type="xs:string'/>
<xs:element name="country" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="LocalAddress" xdb:SQLType="USADDR_T">

<xs:complexContent>
<xsrestriction base="Address">

Structured Mapping of XMLType 5-43

Oracle XML DB complexType Extensions and Restrictions

<xssequence>
<xs:element name="street" type="xs:string'/>
<xs:element name="city’" type="xs:string'/>
<xs:element name="zip" type="xs:string'/>
<xs:element name="country" type="xs:string"
minOccurs="0" maxOccurs="0"/>
</xs:sequence>
<Ixsrestriction>
</xs:complexContent>
<xs:complexType>
</xs:schema>';
begin
dbms_xmischemav.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);
end;

Since inheritance support in SQL does not support a notion of restriction, the SQL
type corresponding to the restricted complexType is a empty subtype of the parent
object type.For the preceding XML schema, the following SQL types are generated:

create type ADDR _T as object (
SYS_XDBPD$ XDB.XDB$RAW_LIST T,
"street" varchar2(4000),
"city" varchar2(4000),
"Zip" varchar2(4000),
"country varchar2(4000)

) not final;

create type USADDR_T under ADDR _T;

Mapping complexType: simpleContent to Object Types

A complexType based on asimpleContent declaration is mapped to an object
type with attributes corresponding to the XML attributes and an extra SYS_
XDBBODMttribute corresponding to the body value. The datatype of the body
attribute is based on simpleType which defines the body's type.

Example 5-18 XML Schema complexType: Mapping complexType to simpleContent

declare
doc varchar2(3000) :='<schema xmins="http:/Ammw.w3.0rg2001/XMLSchema”
targetNamespace="http:/Amwv.oracle.com/emp.xsd"
xmins:emp="http:/Amww.oracle.com/emp.xsd"
xmins:xdb="http:/xmins.oracle.comixdb">
<complexType name="name" xdb:SQLType="OBJ_T">
<simpleContent>

5-44 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions

<restriction base = "string">
</restriction>
</simpleContent>
</complexType>
</schema>",
begin
dbms_xmischema.registerSchema(http:/Amww.oracle.com/emp.xsd’, doc);

end;

On registering this XML schema, Oracle XML DB generates the following types and
XMLType tables:

create type OBJ_T as object
(

SYS XDBPD$ xdb.xdb$raw list t,
SYS XDBBODY$ VARCHAR2(4000)

)

Mapping complexType: Any and AnyAttributes

Oracle XML DB maps the element declaration, any, and the attribute declaration,

anyAttribute , to VARCHAR?2 attributes (or optionally to Large Objects (LOBSs))
in the created object type. The object attribute stores the text of the XML fragment
that matches the any declaration.

« The namespace attribute can be used to restrict the contents so that they
belong to a specified namespace.

« The processContents attribute within the any element declaration, indicates
the level of validation required for the contents matching the any declaration.

Example 5-19 Oracle XML DB XML Schema: Mapping complexType to
Any/AnyAttributes

This XML schema example declares an any element and maps it to the column
SYS_XDBANY, in object type OBJ_T. This element also declares that the attribute,
processContents , skips validating contents that match the any declaration.

declare
doc varchar2(3000) :='<schema xmins="http:/Amww.w3.0rg/ 2001/ XMLSchema”
targetNamespace="http:/Amwv.oracle.com/any xsd"
xmins:emp="http:/Amww.oracle.com/any xsd"
xmins:xdb="http:/xmins.oracle.com/xdb">

<complexType name = "Employee" xdb:SQLType="OBJ_T">

<sequence>

Structured Mapping of XMLType 5-45

Oracle XML DB complexType Extensions and Restrictions

<element name ="Name" type = "string" />
<element name ="Age" type = "decimal’/>
<any namespace = "http:/Amvwvin3.org/l2001/xhiml" processContents = "skip"/>
</sequence>
</complexType>
</schema>’,
begin
dbms_xmischema.registerSchema(http:/Amwv.oracle.com/emp.xsd’, doc);
end;

It results in the following statement:

CREATE TYPEOBJ_T AS OBJECT

(
SYS_XDBPDS$ xdbxdo$raw._ist t,

Name VARCHAR2(4000),
Age NUMBER,
SYS_XDBANY$ VARCHAR2(4000)

)

Handling Cycling Between complexTypes in XML Schema

Cycles in the XML schema are broken while generating the object types, because
object types do not allow cycles, by introducing a REFattribute at the point at
which the cycle gets completed. Thus part of the data is stored out-of-line yet still
belongs to the parent XML document when it is retrieved.

Example 5-20 XML Schema: Cycling Between complexTypes

XML schemas permit cycling between definitions of complexTypes . Figure 5-6
shows this example, where the definition of complexType CT1 can reference
another complexType CT2 , whereas the definition of CT2 references the first type
CTL

XML schemas permit cycling between definitions of complexTypes . Thisis an
example of cycle of length 2:

declare
doc varchar2(3000) :='<xs:schema xmins:xs="http:/Amwwv.w3.0rg/2001/XMLSchema’’
xmins:xdb="http:/xmins.oracle.com/xdb">
<xs:complexType name="CT1" xdb:SQLType="CT1">
<xs:seguence>
<xs:element name="el" type="xs:string"/>
<xs:elementname="e2" type="CT2'/>
</xs:sequence>

5-46 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB complexType Extensions and Restrictions

</xs:complexType>

<xs:complexType name="CT2" xdb:SQLType="CT2">
<xs:sequence>
<xs:element name="el" type="xs:string"/>
<xs:elementname="e2" type="CT1'/>
</xs:sequence>
</xs:complexType>
</xs:schema>’;
begin
dbms_xmischemav.registerSchema(http:/Avwv.oracle.comemp.xsd’, doc);
end;

SQL types do not allow cycles in type definitions. However, they support weak
cycles, that is, cycles involving REF(references) attributes. Therefore, cyclic XML
schema definitions are mapped to SQL object types such that any cycles are avoided
by forcing SQLInline="false” at the appropriate point. This creates a weak
cycle.

For the preceding XML schema, the following SQL types are generated:

create type CT1 as object

(
SYS_XDBPD$ xdb.xdb$raw _list t,
"e1" varchar2(4000),
"e2" ref xmitype;

) not final;

create type CT2 as object

(
SYS_XDBPD$ xdb.xdb$raw_ist t,
"e1" varchar2(4000),
"e2"'CT1

) not final;

Structured Mapping of XMLType 5-47

Oracle XML DB complexType Extensions and Restrictions

Figure 5-6 Cross Referencing Between Different complexTypes in the Same XML
Schema

XML schema, emp. xsd

<xs:complexType name= <xs:complexType name=
"CT1"...> "CT2"...>
<xs:elemént name= <xs:e|emént name=
"e2" type = "CT2"/> "e2" type="CT1"/>

Example 5-21 XML Schema: Cycling Between complexTypes, Self-Referencing

Another example of a cyclic complexType involves the declaration of the
complexType having a reference to itself. The following is an example of type
<SectionT> that references itself:

declare
doc varchar2(3000) :="<xs:schema
xmins:xs="http:/Ammv.w3.0rg/2001/ XMLSchema”
xmins:xdb="http:/xmins.oracle.com/xdb">
<xs:complexType name="SectionT" xdb:SQLType="SECTION_T">
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:choice maxOccurs="unbounded">
<xs:element name="body" type="xs:string" xdb:SQLCallType="BODY_COLL"/>
<xs:element name="section" type="SectionT"/>
</xs:choice>
</xs:sequence>
<Ixs:complexType>
</xs:schema>';
begin
dbms_xmischema.registerSchema(http:/Amww.oracle.comv/section.xsd’, doc);
end;

The following SQL types are generated.

5-48 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Further Guidelines for Creating XML Schema-Based XML Tables

Note: The section attribute is declared as a varray of REFsto
XMLType instances. Since there can be more than one occurrence of
embedded sections, the attribute is a VARRAY. And it’'s a VARRAY
of REFs to XMLTypes in order to avoid forming a cycle of SQL
objects.

create type BODY_COLL as varray(32767) of VARCHAR2(4000);

create type SECTION_T as object

(
SYS_XDBPD$ xdb.xdb$raw _list t,
"tile" varchar2(4000),
"body' BODY_COLL,
"section" XDB.XDB$REF_LIST_T
) not final;

Further Guidelines for Creating XML Schema-Based XML Tables

Assume that your XML schema, identified by

“http://www.oracle.com/PO.xsd ”, has been registered. An XMLType table,
myPOs can then be created to store instances conforming to element,
PurchaseOrder , of this XML schema, in an object-relational format as follows:

CREATE TABLE MyPOs OF XMLTYPE
ELEMENT "http:/Amww.oracle.com/PO.xsd#PurchaseOrder”;

Figure 5-7 illustrates schematically how a complexTypes can reference or cycle
itself.

See Also: "Cyclical References Between XML Schemas" on
page 5-71

Structured Mapping of XMLType 5-49

Further Guidelines for Creating XML Schema-Based XML Tables

Figure 5-7 complexType Self Referencing Within an XML Schema

XML schema, emp. xsd

<xs:complexType name=
"SectionT"...>

<xs:element name="section" type =
"SectionT"/>

Hidden columns are created. These correspond to the object type to which the
PurchaseOrder element has been mapped. In addition, an XMLExtra object
column is created to store the top-level instance data such as namespace
declarations.

Note: XMLDATAS a pseudo-attribute of XMLType that enables
direct access to the underlying object column. See Chapter 4, "Using
XMLType", under “Changing the Storage Options on an XMLType
Column Using XMLData”.

Specifying Storage Clauses in XMLType CREATE TABLE Statements

To specify storage, the underlying columns can be referenced in the XMLType
storage clauses using either Object or XML notation:

« Object notation: XMLDATA.<attr1>.<attr2>....
For example:

CREATE TABLE MyPOs OF XMLTYPE
ELEMENT "http/Amww.oracle.com/PO xsd#PurchaseOrder*
lob (xmidata.lobatir) STORE AS (tablespace ...);

« XML notation: extractValue(xmltypecol, ‘/attrl/attr2")

For example:

CREATE TABLE MyPOs OF XMLTYPE
ELEMENT "http:/Amww.oracle.com/PO .xsd#PurchaseOrder”
lob (ExtractValue(MyPOs, lobattr’)) STORE AS (tablespace ...);

5-50 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Referencing XMLType Columns Using CREATE INDEX

As shown in the preceding examples, columns underlying an XMLType column can
be referenced using either an object or XML notation in the CREATE TABLE
statements. The same is true in CREATE INDEX statements:

CREATE INDEX ponum_idx ON MyPOs (xmidata.ponum);
CREATE INDEX ponum_idx ON MyPOs p (ExtractValue(p, /ponum);

Specifying Constraints on XMLType Columns

Constraints can also be specified for underlying XMLType columns, using either the
object or XML notation:

« Object notation

CREATE TABLE MyPOs OF XMLTYPE
ELEMENT "http/Amww.oracle.com/PO xsd#PurchaseOrder*
(unique(xmidata.ponum));

« XML notation

CREATE TABLE MyPOs P OF XMLTYPE
ELEMENT
“http/Amww.oracle.com/PO xsd#PurchaseOrder ‘(unique(ExtractValue(p, foonum))

)

Inserting New Instances into XMLType Columns
New instances can be inserted into an XMLType columns as follows:

INSERT INTO MyPOs VALUES
(xmitype.createxml(<PurchaseOrder>....</PurchaseOrder>));

Query Rewrite with XML Schema-Based Structured Storage

What Is Query Rewrite?

When the XMLType is stored in structured storage (object-relationally) using an
XML schema and queries using XPath are used, they are rewritten to go directly to
the underlying object-relational columns. This enables the use of B*Tree or other
indexes, if present on the column, to be used in query evaluation by the Optimizer.
This query rewrite mechanism is used for XPaths in SQL functions such as
existsNode() ,extract() ,extractValue() , and updateXML() . This enables

Structured Mapping of XMLType 5-51

Query Rewrite with XML Schema-Based Structured Storage

the XPath to be evaluated against the XML document without having to ever
construct the XML document in memory.

Example 5-22 Query Rewrite
For example a query such as:

SELECT VALUE(p) FROM MyPOs p
WHERE extractValue(value(p),/PurchaseOrder/Company’) = ‘Oracle’;

is trying to get the value of the Company element and compare it with the literal
'Oracle . Since the MyPOstable has been created with XML schema-based
structured storage, the extractValue operator gets rewritten to the underlying
relational column that stores the company information for the purchaseorder

Thus the preceding query is rewritten to the following:

SELECT VALUE(p) FROM MyPOs p
WHERE p.xmidata.company = 'Oracle’;

See Also: Chapter 4, "Using XMLType"

If there was a regular index created on the Company column, such as:

CREATE INDEX company_index ON MyPos e
(extractvalue(value(e),/PurchaseOrder/Company));

then the preceding query would use the index for its evaluation.

When Does Query Rewrite Occur?
Query rewrite happens for the following SQL functions:

« extract()

« existsNode()
« extractValue
« updateXML

The rewrite happens when these SQL functions are present in any expression in a
qguery, DML, or DDL statement. For example, you can use extractValue() to
create indexes on the underlying relational columns.

5-52 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Example 5-23 SELECT Statement and Query Rewrites
This example gets the existing purchase orders:

SELECT EXTRACTVALUE(value(x),/PurchaseOrder/Company’)
FROM MYPOs x
WHERE EXISTSNODE(value(X), /PurchaseOrder/item[1}/Part) = 1;

Here are some examples of statements that get rewritten to use underlying columns:

Example 5-24 DML Statement and Query Rewrites
This example deletes all purchaseorders where the Company is not Oracle :

DELETE FROM MYPOs x
WHERE EXTRACTVALUE(value(x),/PurchaseOrder/Company’) = 'Oracle Corp’;

Example 5-25 CREATE INDEX Statement and Query Rewrites

This example creates an index on the Company column, since this is stored object
relationally and the query rewrite happens, a regular index on the underlying
relational column will be created:

CREATE INDEX company_index ON MyPos e
(extractvalue(value(e),/PurchaseQOrder/Company’));

In this case, if the rewrite of the SQL functions results in a simple relational column,
then the index is turned into a B*Tree or a domain index on the column, rather than
a function-based index.

What XPath Expressions Are Rewritten?

XPath involving simple expressions with no wild cards or descendant axes get
rewritten. The XPath may select an element or an attribute node. Predicates are
supported and get rewritten into SQL predicates.

Table 5-10 lists the kinds of XPath expressions that can be translated into
underlying SQL queries in this release.

Structured Mapping of XMLType 5-53

Query Rewrite with XML Schema-Based Structured Storage

Table 5-10 Supported XPath Expressions for Translation to Underlying SQL Queries

XPath Expression for Translation Description

Simple XPath expressions: Involves traversals over object type attributes only, where the attributes

/PurchaseOrder/@PurchaseDate are smplg scalar or obJec_t types themselves. The only axes supported
are the child and the attribute axes.

/PurchaseOrder/Company

Collection traversal expressions: Involves traversal of collection expressions. The only axes supported are
child and attribute axes. Collection traversal is not supported if the SQL
/PurchaseOrder/Item/Part operator is used during CREATE INDEXor updateXML()

Predicates: Predicates in the XPath are rewritten into SQL predicates. Predicates are

[Company="Oracle"] not rewritten for update XML()

List indexe: Indexes are rewritten to access the n’th item in a collection. These are

lineitem[1] not rewritten for updateXML()

Unsupported XPath Constructs ~ The following XPath constructs do not get rewritten:
« XPath Functions

« XPath Variable references

« All axis other than child and attribute axis

« Wild card and descendant expressions

=« UNION operations

Unsupported XML Schema Constructs ~ The following XML schema constructs are not

supported. This means that if the XPath expression includes nodes with the
following XML schema construct then the entire expression will not get rewritten:

« XPath expressions accessing children of elements containing open content,
namely any content. When nodes contain any content, then the expression
cannot be rewritten, except when the any targets a hamespace other than the
namespace specified in the XPath. any attributes are handled in a similar way.

« CLOB storage. If the XML schema maps part of the element definitions to an
SQL CLOB, then XPath expressions traversing such elements are not supported.

« Enumeration types.

« Substitutable elements.

5-54 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Non-default mapping of scalar types. For example, number types mapped to
native storage, such as native integers, and so on.

Child access for inherited complexTypes where the child is not a member of
the declared complexType .

For example, consider the case where we have a address complexType
which has a street element. We can have a derived type called shipAddr
which contains shipmentNumber element. If the PurchaseOrder had an
address element of type address, then an XPath like
"/PurchaseOrder/address/street” would get rewritten whereas
"/PurchaseOrder/address/shipmentNumber" would not.

Non-coercible datatype operations, such as a boolean added with a number.

How are the XPaths Rewritten?

The following sections use the same purchaseorder XML schema explained
earlier in the chapter to explain how the functions get rewritten.

Example 5-26 Rewriting XPaths During Object Type Generation
Consider the following purchaseorder XML schema:

declare
doc varchar2(1000) :='<schema
targetNamespace="http:/Amwv.oracle.com/PO.xsd"

xmins:po="http:/Amww.oracle.com/PO xsd" xmins="http:/Amww.w3.0rg2001/ XMLSchema’
elementFormDefault="qualified">

<complexType name="PurchaseOrderType">
<sequence>
<element name="PONum" type="decimal'/>
<element name="Company’>>
<simpleType>
<restriction base="string">
<maxLength value="100"/>
<restriction>
</simpleType>
</element>
<element name="tem" maxOccurs="1000">
<complexType>
<seguence>
<element name="Part">
<simpleType>
<restriction base="string">

Structured Mapping of XMLType 5-55

Query Rewrite with XML Schema-Based Structured Storage

<maxLength value="1000"/>
</restriction>
</smpleType>
</element>
<element name="Price" type="float />
</sequence>
</complexType>
</element>
</sequence>
</complexType>
<element name="PurchaseOrder" type="po:PurchaseOrderType'"/>
</schema>’,
begin
dbms_xmischema.registerSchema(http:/Amww.oracle.com/PO.xsd', doc);
end;

— Atable is created conforming to this schema
CREATE TABLE MyPOs OF XMLTYPE

ELEMENT "htip/Amww.oracle.com/PO xsd#PurchaseOrder™;

—The inserted XML document is partially validated against the schema before
- itisinserted.
insertinto MyPos values (xmitype('<PurchaseQOrder
xmins="http:/Amww.oracle.com/PO.xsd"
xmins:xsi="http/Amwvw3.0rg/200/XMLSchema-instance”
xsi:schemalocation="http:/Amwv.oracle.com/PO.xsd
http/Amwv.oracle.com/POxsd">
<PONum>1001</PONum>
<Company>Oracle Corp</Company>
<tem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
</tem>
<tem>
<Part>8i Doc Set</Part>
<Price>350</Price>
</tem>
</PurchaseQrder>));

Since the XML schema did not specify anything about maintaining the ordering, the
default is to maintain the ordering and DOM fidelity. Hence the types have SYS_

XDBPD#attribute to store the extra information needed to maintain the ordering of
nodes and to capture extra items such as comments, processing instructions and so

on.

5-56 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

The SYS_XDBPD#%ttribute also maintains the existential information for the
elements (that is, whether the element was present or not in the input document).
This is needed for elements with scalar content, since they map to simple relational
columns. In this case, both empty and missing scalar elements map to NULL values
in the column and only the SYS_XDBPD#%ttribute can help distinguish the two
cases. The query rewrite mechanism takes into account the presence or absence of
the SYS_XDBPD%ttribute and rewrites queries appropriately.

Assuming that this XML schema is registered with the schema URL.:
http://www.oracle.com/PO.xsd

you can create the po_tab table with this schema as follows:

CREATE TABLE po_tab OF XMLTYPE
XMLSCHEMA "http/Avwv.oracle.com/PO.xsd" ELEMENT "PurchaseOrder’;

Now this table has a hidden XMLData column of type "PurchaseOrder T " that
stores the actual data.

Rewriting XPath Expressions: Mapping Types and Issues

XPath expression mapping of types and topics are described in the following
sections:

« "Mapping for a Simple XPath"

« "Mapping for Scalar Nodes"

« "Mapping of Predicates"

« "Mapping of Collection Predicates"

« "Document Ordering with Collection Traversals"
= "Collection Index"

« "Non-Satisfiable XPath Expressions"

« "Namespace Handling"

« "Date Format Conversions"

Mapping for a Simple XPath A rewrite for a simple XPath involves accessing the
attribute corresponding to the XPath expression. Table 5-11 lists the XPath map:

Structured Mapping of XMLType 5-57

Query Rewrite with XML Schema-Based Structured Storage

Table 5-11 Simple XPath Mapping for purchaseOrder XML Schema

XPath Expression Maps to

[PurchaseOrder column XMLData

[PurchaseOrder/@PurchaseDate column XMLData."PurchaseDate"

[PurchaseOrder/PONum column XMLData."PONum"
[PurchaseOrder/Item elements of the collection XMLData."ltem"
[PurchaseOrder/Item/Part attirbute "Part" in the collection XMLData."ltem"

Mapping for Scalar Nodes An XPath expression can contain atext() operator which
maps to the scalar content in the XML document. When rewriting, this maps
directly to the underlying relational columns.

For example, the XPath expression “/PurchaseOrder/PONum/text() ” maps to
the SQL column XMLData."PONurhdirectly.

A NULL value in the PONuntolumn implies that the text value is not available,
either because the text node was not present in the input document or the element
itself was missing. This is more efficient than accessing the scalar element, since we
do not need to check for the existence of the element in the SYS_XBDPD#%ttribute.

For example, the XPath “/PurchaseOrder/PONum ™ also maps to the SQL
attribute XMLData.”"PONum” ,

However, in this case, query rewrite also has to check for the existence of the
element itself, using the SYS_XDBPD$n the XMLData column.

Mapping of Predicates Predicates are mapped to SQL predicate expressions.

Example 5-27 Mapping Predicates
For example the predicate in the XPath expression:

/PurchaseOrderfPONum=1001 and Company = "Oracle Corp']

maps to the SQL predicate:
(XMLData."PONum" = 20 and XMLData."Company’ = "Oracle Corp')

For example, the following query is rewritten to the structured (object-relational)
equivalent, and will not require Functional evaluation of the XPath.

select extract(value(p), /PurchaseOrder/ite’).getClobval()

5-58 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

frommypos p
where existsNode(value(p), /PurchaseOrderfPONum=1001 and Company ="Oracle

Corp') =L,

Mapping of Collection Predicates ~ XPath expressions may involve relational operators
with collection expressions. In Xpath 1.0, conditions involving collections are
existential checks. In other words, even if one member of the collection satisfies the
condition, the expression is true.

Example 5-28 Mapping Collection Predicates
For example the collection predicate in the XPath:

/PurchaseOrder{ltems/Price > 200]
—maps to a SQL collection expression:
EXISTS (SELECT null
FROM TABLE (XMLDATA."tem") X
WHERE x."Price">200)

For example, the following query is rewritten to the structured equivalent.

select extract(value(p), /PurchaseOrderfitern’).getClobval()

from mypos p
where existsNode(value(p), /PurchaseOrder{item/Price > 400]) = 1

More complicated rewrites occur when you have a collection <condition>
collection. In this case, if at least one combination of nodes from these two collection
arguments satisfy the condition, then the predicate is deemed to be satisfied.

Example 5-29 Mapping Collection Predicates, Using existsNode()

For example, consider a fictitious XPath which checks to see if a Purchaseorder
has Items such that the price of an item is the same as some part number:

/PurchaseOrder{ltems/Price = ltems/Parf]
—maps to a SQL collection expression:
EXISTS (SELECT null
FROM TABLE (XMLDATA."Item") x
WHERE EXISTS (SELECT null
FROM TABLE(XMLDATA."Item") y
WHERE vy."Part’ =x."Price"))

For example, the following query is rewritten to the structured equivalent:

select extract(value(p), /PurchaseOrderfitern’).getClobval()
from mypos p

Structured Mapping of XMLType 5-59

Query Rewrite with XML Schema-Based Structured Storage

where existsNode(value(p), /PurchaseOrderitern/Price = ltem/Part]) = 1;

Document Ordering with Collection Traversals Most of the rewrite preserves the original
document ordering. However, since the SQL system does not guarantee ordering on
the results of subqueries, when selecting elements from a collection using the
extract() function, the resultant nodes may not be in document order.

Example 5-30 Document Ordering with Collection Traversals
For example:

SELECT extract(value(p), /PurchaseOrder/itemn[Price>2100)/Part)
FROM mypos p;

is rewritten to use subqueries as shown in the following:

SELECT (SELECT XMLAgg(XMLForest(x."Part’ AS "Part’))
FROM TABLE (XMLData."ttem") x
WHERE x."Price" >2100)
FROM po_tabp;

Though in most cases, the result of the aggregation would be in the same order as
the collection elements, this is not guaranteed and hence the results may not be in
document order. This is a limitation that may be fixed in future releases.

Collection Index An XPath expression can also access a particular index of a

collection For example, “/PurchaseOrder/ltem[1]/Part” is rewritten to
extract out the first Item of the collection and then access the Part attribute within
that.

If the collection has been stored as a VARRAY, then this operation retrieves the
nodes in the same order as present in the original document. If the mapping of the
collection is to a nested table, then the order is undetermined. If the VARRAY is
stored as an Ordered Collection Table (OCT), (the default for the tables created by
the schema compiler, if storeVarrayAsTable="true” is set), then this collection
index access is optimized to use the IOT index present on the VARRAY.

Non-Satisfiable XPath Expressions ~ An XPath expression can contain references to
nodes that cannot be present in the input document. Such parts of the expression
map to SQL NULLs during rewrite. For example the XPath expression:
“/PurchaseOrder/ShipAddress” cannot be satisfied by any instance document
conforming to the PO.xsd XML schema, since the XML schema does not allow for
ShipAddress elements under PurchaseOrder . Hence this expression would
map to a SQL NULL literal.

5-60 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Namespace Handling Namespaces are handled in the same way as the function-based
evaluation. For schema based documents, if the function (like existsNode() or
extract()) does not specify any namespace parameter, then the target namespace
of the schema is used as the default namespace for the XPath expression.

Example 5-31 Handling Namespaces

For example, the XPath expression /PurchaseOrder/PONum s treated as
/a:PurchaseOrder/a:PONum with

xmins:a="http://www.oracle.com/PO.xsd ” if the SQL function does not
explicitly specify the namespace prefix and mapping. In other words:

SELECT *FROM po_tabp
WHERE EXISTSNODE(value(p), /PurchaseOrder/PONum’) = 1;

is equivalent to the query:

SELECT*FROM po_tabp
WHERE EXISTSNODE(value(p), /PurchaseOrder/PONum,
xmins="http:/Amww.oracle.com/PO.xsd) = 1;

When performing query rewrite, the namespace for a particular element is matched
with that of the XML schema definition. If the XML schema contains
elementFormDefault="qualified” then each node in the XPath expression
must target a namespace (this can be done using a default namespace specification
or by prefixing each node with a namespace prefix).

If the elementFormDefault is unqualified (which is the default), then only the
node that defines the namespace should contain a prefix. For instance if the PO.xsd
had the element form to be unqualified, then the existsNode() function should
be rewritten as:

EXISTSNODE(value(p),/a:PurchaseOrder/PONunT,
xmins:a="http/Amww.oracle.com/PO.xsd") = 1;

Note: For the case where elementFormDefault is unqualified,
omitting the namespace parameter in the SQL function
existsNode() in the preceding example, would cause each node
to default to the target namespace. This would not match the XML
schema definition and consequently would not return any result.
This is true whether the function is rewritten or not.

Structured Mapping of XMLType 5-61

Query Rewrite with XML Schema-Based Structured Storage

Date Format Conversions The default date formats are different for XML schema and
SQL. Consequently, when rewriting XPath expressions involving comparisons with
dates, you need to use XML formats.

Example 5-32 Date Format Conversions
For example, the expression:

[@PurchaseDate="2002-02-01']

cannot be simply rewritten as:
XMLData."PurchaseDate" = "2002-02-01"

since the default date format for SQL is not YYYY-MM-DDHence during query
rewrite, the XML format string is added to convert text values into date datatypes
correctly. Thus the preceding predicate would be rewritten as:

XMLData."PurchaseDate" = TO_DATE("2002-02-01","SYYYY-MM-DD"),

Similarly when converting these columns to text values (needed for extract()
and so on), XML format strings are added to convert them to the same date format
as XML.

XPath Expression Rewrites for existsNode()

existsNode() returns a numerical value 0 or 1 indicating if the XPath returns any
nodes (text() or element nodes). Based on the mapping discussed in the earlier
section, an existsNode() simply checks if a scalar element is non-NULL in the
case where the XPath targets atext() = node or a non-scalar node and checks for
the existence of the element using the SYS_XDBPD®therwise. If the SYS_XDBPD$
attribute is absent, then the existence of a scalar node is determined by the NULL
information for the scalar column.

existsNode Mapping with Document Order Maintained Table 5-12 shows the mapping of
various XPaths in the case of existsNode() when document ordering is
preserved, that is, when SYS_XDBPD%xists and maintainDOM="true " in the
schema document.

5-62 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Table 5-12 XPath Mapping for existsNode() with Document Ordering Preserved

XPath Expression

Maps to

[PurchaseOrder

CASE WHEN XMLData IS NOT NULL THEN 1 ELSE 0 END

[PurchaseOrder/@PurchaseDate

CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPDS$, 'PurchaseDate’) =1
THEN 1 ELSE 0 END

[PurchaseOrder/PONum

CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, 'PONum’) = 1
THEN 1 ELSE 0 END

[PurchaseOrder[PONum = 2100]

CASE WHEN XMLData."PONum" = 2100 THEN 1 ELSE 0

[PurchaseOrder[PONum =
2100]/@PurchaseDate

CASE WHEN XML Data."PONum" = 2100 AND Check_Node_Exists(XMLData.SYS_XDBPD$,
'PurchaseDate’) = 1

THEN 1 ELSE 0 END

[PurchaseOrder/PONum/text()

CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0

[PurchaseOrder/ltem

CASE WHEN EXISTS (
SELECT NULL FROM TABLE (XMLData."ltem") x
WHERE value(x) IS NOT NULL) THEN 1 ELSE 0 END

[PurchaseOrder/ltem/Part

CASE WHEN EXISTS (
SELECT NULL FROM TABLE (XMLData."ltem") x
WHERE Check_Node_Exists(x.SYS_XDBPD$, 'Part’) = 1)
THEN 1 ELSE 0 END

[PurchaseOrder/ltem/Part/text()

CASE WHEN EXISTS (
SELECT NULL FROM TABLE (XMLData."ltem") x
WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

Example 5-33 existsNode Mapping with Document Order Maintained

Using the preceding mapping, a query which checks whether the purchaseorder
with number 2100 contains a part with price greater than 2000:

SELECT count(*)

FROM mypos p
WHERE EXISTSNODE(value(p), /PurchaseOrderfPONum=1001 and ltem/Price > 2000])=

1

would become:
SELECT count(*)

Structured Mapping of XMLType 5-63

Query Rewrite with XML Schema-Based Structured Storage

FROM myposp
WHERE CASE WHEN

pXMLData."PONum" = 1001 AND
EXISTS (SELECT NULL
FROM TABLE (XMLData."ttem’) p
WHERE p."Price" >2000)) THEN 1 ELSEOEND =1;

The CASEexpression gets further optimized due to the constant relational equality
expressions and this query becomes:

SELECT count(*)

FROM myposp
WHERE p.XMLData."PONum"=1001 AND

EXISTS (SELECT NULL
FROM TABLE (pXMLData."ltem’) x
WHERE x"Price" > 2000);

which would use relational indexes for its evaluation, if present on the Part and
PONuntolumns.

existsNode Mapping Without Maintaining Document Order If the SYS_XDBPD®loes not
exist (that is, if the XML schema specifies maintainDOM="false") then NULL
scalar columns map to non-existent scalar elements. Hence you do not need to
check for the node existence using the SYS_XDBPD%ttribute. Table 5-13 shows the
mapping of existsNode() in the absence of the SYS_XDBPD$ attribute.

Table 5-13 XPath Mapping for existsNode Without Document Ordering

XPath Expression Maps to

[PurchaseOrder CASE WHEN XMLData IS NOT NULL THEN 1 ELSE 0 END
[PurchaseOrder/@PurchaseDate CASE WHEN XMLData.'PurchaseDate’ IS NOT NULL THEN 1 ELSE 0 END
[/PurchaseOrder/PONum CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0 END
[/PurchaseOrder[PONum = 2100] CASE WHEN XMLData."PONum" = 2100 THEN 1 ELSE 0 END
[PurchaseOrder[PONum = CASE WHEN XMLData."PONum" = 2100 AND
2100}/@PurchaseOrderDate XMLData."PurchaseDate” NOT NULL THEN 1 ELSE 0 END
[PurchaseOrder/PONum/text() CASE WHEN XMLData."PONum" IS NOT NULL THEN 1 ELSE 0 END

5-64 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Table 5-13 XPath Mapping for existsNode Without Document Ordering (Cont.)

XPath Expression Maps to

[PurchaseOrder/ltem CASE WHEN EXISTS (
SELECTNULL FROM TABLE (XMLData."ltem") x
WHERE value(x) IS NOT NULL) THEN 1 ELSE 0 END

[PurchaseOrder/ltem/Part CASE WHEN EXISTS (
SELECT NULL FROM TABLE (XMLData."ltem") x
WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

[PurchaseOrder/ltem/Part/text() CASE WHEN EXISTS (
SELECT NULL FROM TABLE (XMLData."ltem") x
WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

Rewrite for extractValue()

extractValue() is a shortcut for extracting text nodes and attributes using
extract() and then using a getStringVal() or getNumberVal() to get the
scalar content. extractValue returns the text nodes for scalar elements or the
values of attribute nodes. extractValue() cannot handle returning multiple
values or non-scalar elements.

Table 5-14 shows the mapping of various XPath expressions in the case of
extractValue(). If an XPath expression targets an element, extractValue retrieves
the text node child of the element. Thus the two XPath expressions,

/PurchaseOrder/PONum and /PurchaseOrder/PONum/text() are handled
identically by extractValue and both of them retrieve the scalar content of
PONum

Table 5-14 XPath Mapping for extractValue()

XPath Expression Maps to

[PurchaseOrder Not supported - ExtractValue can only retrieve values for scalar
elements and attributes

[PurchaseOrder/@PurchaseDate XMLData."PurchaseDate"

[PurchaseOrder/PONum XMLData."PONum"

[/PurchaseOrder[PONum = 2100] (Zslglé)ECT TO_XML(x.XMLData) FROM Dual WHERE x."PONum" =

Structured Mapping of XMLType 5-65

Query Rewrite with XML Schema-Based Structured Storage

Table 5-14 XPath Mapping for extractValue() (Cont.)

XPath Expression Maps to

[PurchaseOrder[PONum = (SELECT x.XMLData."PurchaseDate")

2100)/@PurchaseDate FROM Dual
WHERE x."PONum" = 2100)

[PurchaseOrder/PONum/text() XMLData."PONum"

[PurchaseOrder/ltem Not supported - ExtractValue can only retrieve values for scalar
elements and attributes

[PurchaseOrder/ltem/Part Not supported - ExtractValue cannot retrieve multiple scalar values

[PurchaseOrder/ltem/Part/text() Not supported - ExtractValue cannot retrieve multiple scalar values

Example 5-34 Rewriting extractValue()
For example, an SQL query such as:

SELECT ExtractValue(value(p),/PurchaseOrder/PONun)

FROM myposp
WHERE ExtractValue(value(p),/PurchaseOrder/PONum) = 1001;

would become:

SELECT p.XMLData."PONum"

FROM mypos p
WHERE p.XMLData."PONum" =1001;

Since it gets rewritten to simple scalar columns, indexes if any, on the PONum
attribute may be used to satisfy the query.

Creating Indexes ExtractValue can be used in index expressions. If the expression
gets rewritten into scalar columns, then the index is turned into a B*Tree index
instead of a function-based index.

Example 5-35 Creating Indexes with extract
For example:

create index my_po_index on mypos x
(Extract(value(x),/PurchaseOrder/PONum#ext()’).getnumberval());

would get rewritten into:

create index my_po_index on mypos X (x.XMLData."PONum");

5-66 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

and thus becomes a regular B*Tree index. This is useful, since unlike a
function-based index, the same index can now satisfy queries which target the
column such as:

EXISTSNODE(value(x),/PurchaseOrderfPONum=1001]) = 1;

Rewrite for extract()
extract() retrieves the results of XPath as XML. The rewrite for extract() is
similar to that of extractValue() for those Xpath expressions involving text
nodes.

Extract Mapping with Document Order Maintained ~ Table 5-15 shows the mapping of
various XPath in the case of extract() when document order is preserved (that is,
when SYS_XDBPD%xists and maintainDOM="true" in the schema document).

Note: The examples show XMLElement() and XMLForest()
with an empty alias string " to indicate that you create a XML
instance with only text values. This is shown for illustration only.

Table 5-15 XPath Mapping for extract() with Document Ordering Preserved

XPath Maps to

[PurchaseOrder XMLForest(XMLData as "PurchaseOrder")

[PurchaseOrder/@PurchaseDate CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPDS$, 'PurchaseDate’) =1
THEN XMLElement("™ , XMLData."PurchaseDate") ELSE NULL END

[PurchaseOrder/PONum CASE WHEN Check_Node_Exists(XMLData.SYS_XDBPD$, 'PONum’) =1
THEN XMLElement("PONum", XMLData."PONum") ELSE NULL END

[/PurchaseOrder[PONum = 2100] (SELECT XMLForest(XMLData as "PurchaseOrder") from Dual

where x."PONum" = 2100)

[PurchaseOrder[PONum = 2100)/@PurchaseDate (SELECT CASE WHEN

Check_Node_Exists(x.XMLData.SYS_XDBPD$, PurchaseDate") = 1
THEN XMLElement(™, XMLData."PurchaseDate")
ELSE NULL END
from Dual where x."PONum" = 2100)

Structured Mapping of XMLType 5-67

Query Rewrite with XML Schema-Based Structured Storage

Table 5-15 XPath Mapping for extract() with Document Ordering Preserved (Cont.)

XPath Maps to
[PurchaseOrder/PONum/text() XMLElement(™, XMLData.PONum)
[PurchaseOrder/ltem (SELECT XMLAgg(XMLForest(value(p) as "ltem"))
from TABLE (x.XMLData."ltem") p
where value(p) IS NOT NULL)
[PurchaseOrder/ltem/Part (SELECT XMLAgg(
CASE WHEN Check_Node_Exists(p.SYS_XDBPD$, Part") = 1
THEN XMLForest(p."Part" as "Part") ELSE NULL END)
from TABLE (x.XMLData."ltem") p)
[PurchaseOrder/ltem/Part/text() (SELECT XMLAgg(XMLElement(" ", p."Part"))

from TABLE (x.XMLData."ltem") x)

Example 5-36 XPath Mapping for extract() with Document Ordering Preserved

Using the mapping in Table 5-15, a query that extracts the PONum element where
the purchaseorder contains a part with price greater than 2000:

SELECT Extract(value(p),/PurchaseOrder{lterm/Part > 2000/PONum)
FROM po_tabp;

would become:

SELECT (SELECT CASE WHEN Check _Node_Exists(p.XMLData.SYS_XDBPD$, PONum’) =1
THEN XMLElement("PONum’, p.XMLData."PONum'’)
ELSE NULL END)
FROM DUAL
WHERE EXISTS(SELECT NULL
FROM TABLE (XMLData."ttem") p
WHERE p."Part">2000)
)
FROM po_tabp;

Check_Node_Exists is an internal function that is for illustration purposes only.

Extract Mapping Without Maintaining Document Order If the SYS_XDBPD#$loes not exist,
that is, if the XML schema specifies maintainDOM="false" , then NULL scalar
columns map to non-existent scalar elements. Hence you do not need to check for
the node existence using the SYS_XDBPD$attribute. Table 5-16 shows the mapping
of existsNode() in the absence of the SYS_XDBPD&ttribute.

5-68 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Query Rewrite with XML Schema-Based Structured Storage

Table 5-16 XPath Mapping for extract() Without Document Ordering Preserved

XPath

Equivalent to

[PurchaseOrder

XMLForest(XMLData AS "PurchaseOrder")

[PurchaseOrder/@PurchaseDate

XMLForest(XMLData."PurchaseDate" AS ")

/PurchaseOrder/PONum

XMLForest(XMLData."PONum" AS "PONum")

[PurchaseOrder[PONum = 2100]

(SELECT XMLForest(XMLData AS "PurchaseOrder")
from Dual where x."PONum" = 2100)

[PurchaseOrder[PONum =
2100)/@PurchaseDate

(SELECT XMLForest(XMLData."PurchaseDate" AS ")
from Dual where x."PONum" = 2100)

[PurchaseOrder/PONum/text()

XMLForest(XMLData.PONum AS ™)

[PurchaseOrder/ltem

(SELECT XMLAgg(XMLForest(value(p) as "ltem")
from TABLE (x.XMLData."ltem") p
where value(p) IS NOT NULL)

[PurchaseOrder/ltem/Part

(SELECT XMLAgg(XMLForest(p."Part" AS "Part")
from TABLE (x.XMLData."ltem") p)

[PurchaseOrder/ltem/Part/text()

(SELECT XMLAgg(XMLForest(p. "Part" AS "Part"))
from TABLE (x.XMLData."ltem") p)

Optimizing Updates Using updateXML()

A regular update using updateXML()

involves updating a value of the XML

document and then replacing the whole document with the newly updated
document.

When XMLType is stored object relationally, using XML schema mapping, updates
are optimized to directly update pieces of the document. For example, updating the
PONunelement value can be rewritten to directly update the XMLData.PONum
column instead of materializing the whole document in memory and then
performing the update.

updateXML() must satisfy the following conditions for it to use the optimization:

« The XMLType column supplied to updateXML() must be the same column
being updated in the SET clause. For example:

UPDATE po_tab p SET value(p) = updatexml(value(p),...);

Structured Mapping of XMLType 5-69

Creating Default Tables During XML Schema Registration

« The XMLType column must have been stored object relationally using Oracle
XML DB’s XML schema mapping.

« The XPath expressions must not involve any predicates or collection traversals.
« There must be no duplicate scalar expressions.

« All XPath arguments in the updateXML() function must target only scalar
content, that is, text nodes or attributes. For example:

UPDATE po_tab p SET value(p) =
updatexmi(value(p),/PurchaseOrder/@PurchaseDate’, 2002-01-02,
/PurchaseOrder/PONum/text()’, 2200);

If all the preceding conditions are satisfied, then the updateXML is rewritten into a
simple relational update. For example:

UPDATE po_tab p SET value(p) =
updatexmi(value(p),/PurchaseOrder/@PurchaseDate’,2002-01-02,
'lPurchaseOrder/PONum/text()’, 2200);
becomes:

UPDATE po_tabp
SET pXMLData."PurchaseDate" = TO_DATE(2002-01-02,SYYYY-MM-DD),
pXMLData."PONum’* = 2100;

DATE Conversions Date datatypes such as DATE, gMONTH, gDATE, and so on, have
different format in XML schema and SQL. In such cases, if the updateXML() hasa
string value for these columns, the rewrite automatically puts the XML format
string to convert the string value correctly. Thus string value specified for DATE
columns, must match the XML date format and not the SQL DATE format.

Creating Default Tables During XML Schema Registration

As part of XML schema registration, you can also create default tables. Default
tables are most useful when XML instance documents conforming to this XML
schema are inserted through APIs that do not have any table specification, such as
with FTP or HTTP. In such cases, the XML instance is inserted into the default table.

If you have given a value for attribute defaultTable , the XMLType table is
created with that name. Otherwise it gets created with an internally generated
name.

Further, any text specified using the tableProps and columnProps attribute are
appended to the generated CREATE TABLEstatement.

5-70 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Cyclical References Between XML Schemas

Ordered Collections in Tables (OCTs)

Arrays in XML schemas (elements with maxOccurs > 1) are usually stored in
VARRAYSs, which can be stored either in a Large Object (LOB) or in a separate store
table, similar to a nested table.

Note: When elements of a VARRAY are stored in a separate table,
the VARRAY is referred to as an Ordered Collection in Tables
(OCT). In the following paragraphs, references to OCT also assume
that you are using Index Organized Table (IOT) storage for the
“store” table.

This allows the elements of a VARRAY to reside in a separate table based on an IOT.
The primary key of the table is (NESTED_TABLE_ID ARRAY_INDEX NESTED _
TABLE_ID is used to link the element with their containing parents while the
ARRAY_INDEXcolumn keeps track of the position of the element within the
collection.

Using OCT for VARRAY Storage
There are two ways to specify an OCT storage:

By means of the schema attribute “storeVarrayAsTable” . By default this is
“false” and VARRAYSs are stored in a LOB. If this is set to “true” , all
VARRAYS, all elements that have maxOccurs > 1 , will be stored as OCTs.

By explicitly specifying the storage using the “tableProps attribute. The
exact SQL needed to create an OCT can be used as part of the tableProps
attribute:

“VARRAY xmidata.<array> STORE AS TABLE <myTable> (PRIMARY KEY (NESTED _
TABLE_ID, ARRAY_INDEX)) ORGANIZATION INDEX)’

The advantages of using OCTs for VARRAY storage include faster access to
elements and better queryability. Indexes can be created on attributes of the element
and these can aid in better execution for query rewrite.

Cyclical References Between XML Schemas

XML schema documents can have cyclic dependencies that can prevent them from
being registered one after the other in the usual manner. Examples of such XML
schemas follow:

Structured Mapping of XMLType 5-71

Cyclical References Between XML Schemas

Example 5-37 Cyclic Dependencies

An XML schema that includes another xml schema cannot be created if the included
xml schema does not exist.

begin dbms_xmischema.registerSchema(xm40.xsd,
'<schema xmins="http:/Amww.w3.0rg/2001/XMLSchema’" xmins:my="xm40"
targetNamespace="xm40">
<include schemalocation="xm40a.xsd"/>
<I- Define a global complextype here —>
<complexType name="Company">
<segquence>
<element name="Name" type="string'/>
<element name="Address" type="string'/>
</sequence>
</complexType>
<l Define a global element depending on included schema —>
<element name="Emp" type="my.Employee'/>
</schema>',
true, true, false, true); end;
/

It can however be created with the FORCE option:
begin doms_xmischema.registerSchema(xm40.xsd,

'<schema xmins="http:/Amww.w3.0rg/2001/ XMLSchema’" xmins:my="xm40"
targetNamespace="xm40">
<include schemalocation="xm40a.xsd"/>
<I- Define a global complextype here —
<complexType name="Company">
<sequence>
<element name="Name" type="string'/>
<element name="Address" type="string'/>
</sequence>
</complexType>
<l Define a global element depending on included schema —>
<element name="Emp" type="my.Employee'/>
</schema>,
true, true, false, true, true); end;
/

Attempts to use this schema and recompile will fail:
create table foo of sysxmltype xmischema "xm40.xsd" element "Emp";

5-72 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Cyclical References Between XML Schemas

Now create the second XML schema with FORCBoption. This should also make the
first XML schema valid:

begin dbms_xmlischema.registerSchema(xm40a.xsd,
’<schema xmins="http:/Amww.w3.0rg/2001/XMLSchema’" xmins:my="xm40"
targetNamespace="xm40">

<include schemalocation="xm40.xsd"/>

<l Define a global complextype here —

<complexType name="Employee">

<sequence>
<element name="Name" type="string'/>

<element name="Age" type="positivelnteger'/>
<element name="Phone" type="string'/>
</sequence>
</complexType>
<I- Define a global element depending on included schema —>
<element name="Comp" type="my:Company"/>
</schema>,
true, true, false, true, true); end;
/
Both XML schemas can be used to create tables, and so on:

create table foo of sysxmitype xmischema "xm40.xsd" element "Emp";
create table foo2 of sys.xmltype xmischema "xmd0axsd" element "Comp";

To register both these XML schemas which have a cyclic dependency on each other,
you must use the FORCEparameter in DBMS_XMLSCHEMA.registerSchema as
follows:

1. Step 1: Register “sl.xsd” in FORCE mode:
dbms_xmischema.registerSchema('s1.xsd", "<schema...", ..., force =>true)

At this point, s1.xsd is invalid and cannot be used.
2. Step 2: Register “s2.xsd” in FORCE mode:
dbms_xmischema.registerSchema('s2.xsd", "<schema...", ..., force => true)

The second operation automatically compiles s1.xsd and makes both XML
schemas valid.

See Figure 5-8. The preceding example is illustrated in the lower half of the figure.

Structured Mapping of XMLType 5-73

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

Figure 5-8 Cyclical References Between XML Schemas

XML schema 1, S1

XML schema 2, S2

References
<
S3 S1
XML schema 3, S3
References References
S2
OR
XML schema 1, S1 References > XML schema 2, S2
References
<

S2

S1

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based

Issues

Why Do | Appear to get Memory Leaks When Using Bind Variables for XPath

Expressions?

Consider the following simple XML document that is blown up to 3.6 Megabytes:

<?xml version="1.0"?>

<PurchaseOrder xmins="http:/Amwv.vector.com/po.xsd’

xmins:xdb="http:/xmins.oracle.com/xdb"

xmins:xsi="http/Amwv.w3.0rg/200/XMLSchema-instance”

xsi:schemalocation="http:/Ammnv.vector.com/po.xsd
http:/Amww.vector.comv/po.xsd”>
<PONum>1001</PONum>

<Company>Oracle Comp</Company>

5-74 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

<ltem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
</tem>
<ltem>
<Part>8i Doc Set</Part>
<Price>350</Price>
</ltem>
<lterm>
<Part>7i Doc Set</Part>
<Price>50</Price>
</ltem>
</PurchaseQrder>

This document is stored in an XMLTYPRable object-relationally. The XML schema
was not annotated.

<xsd:schema xmins:xsd="http:/Amww.w3.0rg/2001/ XMLSchema'>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
<xsd:element name="PONum" type="xsd:decimal'/>
<xsd:element name="Company">
<xsd:smpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100">
</xsd:restriction>
<Ixsd'simpleType>
</xsd:element>
<xsd:element name="ltem" maxOccurs="2147483647">
<xsd:complexType>
<xsd:sequence>
Name Null? Type
FILENAME NOT NULL VARCHAR2(20)
CONTENT NOT NULL

XMLTYPE(XMLSchema "http:/Amwwv.vector.com/po.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE
"PurchaseOrderTypel627_T"

The statement:

SQL> select existsnode(srp.content, /PurchaseOrder/item[Part="7i Doc SetT)
into :i from xmitable srp where filename=po6.xml;

Structured Mapping of XMLType 5-75

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

takes about 6 seconds on my laptop. When | use a bind variable such as:

SQL> var xpath varchar2(50)
SQL> exec xpath:=/PurchaseOrder/item[Part="7i Doc Set'T

PL/SQL procedure successfully completed.
SQL> select existsnode(smp.content,:xpath) into :i from xmitable sip
where flename=po6.xml;

| wait ...The statement hangs; the CPU is busy by 100% and the memory
consumption is high:

Answer: If you use bind variables, Oracle does not rewrite the query, hence you are
seeing a full function-based XPath versus a relational rewrite.

Question 2: We need bind variables for SQL sharing. What happens if you set the
CURSOR_SHARIN® FORCE

Answer 2: Basically, query rewrite means that Oracle is changing the input XPath
expression into some underlying columns. This means that for a given XPath, there
is a particular set of columns/tables,... that will be referenced underneath. This has
to be a compile time operation, since the shared cursor has to know exactly which
tables and columns, it references. This cannot change with each row or
instantiation of the cursor.

So if the XPath expression itself is a bind variable, Oracle cannot do any rewrite,
since each instantiation of the cursor can have totally different XPath. This is akin to
the user binding the name of the table/column in a SQL query. For example,
SELECT * FROM table(:1).

Note: You can specify bind variables in the right-hand side of the query
and that would work fine. For example:

SELECT * FROM purchaseorder p WHERE
extractvalue(value(p),/PurchaseOrder/Lineltems/Linelte
m/ltemNumber’) = :1;

would use Oracle’s usual bind variable sharing. ...

When CURSOR_SHARINT set to FORCEby default all string constants including
XPath become a bind variable. At that time when Oracle encounters
extractvalue(),existsnode(), ..., Oracle look at the XPath bind variables to
check if they are really constants. If so Oracle uses them and rewriteS the query.

Hence there the big difference inwhere the bind variable is used.

5-76 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

How Do | Check that Query Rewrite is Working Correctly?

I have a question about query rewrite with XML schema-Based object-relational
storage. How can | check that query rewrite is working correctly? Should | use an
SQL trace, events, and so on?

Answer: You can check query rewrites in two ways:

« Use an EXPLAIN plan. This shows you the use of indexes,... that prove the use
of query rewrites.

« Use EVENTS. For example:

Event 19027 - tums off query rewrite - no level information needed

Event 19021 - XML operations - general event. Use this with different levels
to get different behavior..

Level Ox1 - Tum off all functional evaluation..

Level 0x2 - Tum off functional evaluation of EXTRACT

Level 0x4 - Tum off functional evaluation of EXISTSNODE

Level 0x8 - Tum off functional evaluation of TRANSFORM

Level 0x10 - Tum off functional evaluation of EXTRACTVALUE

Level 0x20 - Tum off functional evaluation of UPDATEXML

Using the second event 19021, you can selectively, raise errors, if the functional
evaluation of these operators are chosen. For example:
ALTER SESSION SET EVENTS "19021 trace name context forever, level 1';
would turn off the functional evaluation of ALL XML operators listed above.
Hence when you fire a query such as:

SELECT extract(value(X), /purchaseorder/reference’)

FROM purchaseorder_xml_tab

if the query rewrite does not happen, then the extract() raises an
ORA-19022 XPath functions are disabled error;

Question 2: According to your suggestions,l used event 19021. Here is the test case
| used:

1-setevent

SQL> alter session set events 19021 trace name context forever, level 2,
Session altered.

2—extract function used

| tried this with both XML schema-based and non-schema-based.

For XML schema-based object-relational storage:

Structured Mapping of XMLType 5-77

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

SQL> SELECT value(X).extract(/a:PO/Company,
2 xmins:a="http:/Ammw.oracle.com/PO™)
3 FROMpo_tabx;

But I get the following error:

ERROR:

ORA-19022: XML XPath functions are disabled
ORA-06512: at"SYS.XMLTYPE", line 0
ORA-06512: atline 1

For non-schema-based CLOB storage:

SQL> SELECT extract(value(p),/PO/PODATE)
2 FROMpo_tabp;

results in the following error:

ERROR:
ORA-19022: XML XPath functions are disabled

This result indicates that query rewrite does not occur. Are there other ways to
check query rewrite?

Answer 2: You are doing the right thing. Setting event 19021 turns off functional
evaluation, so that all XMLType functions will be turned off, and if query rewrite
does not happen, you will get error ORA-19022 (XML XPath functions are
disabled).

The reason the second example (non-schema based) is not working is that query
rewrite can happen only for non-schema-based (NSB) XMLType views (XVs),
defined over objects. It does not happen for non-schema-based XMLType tables,
since the storage is CLOB-based.

The reason the first example (schema-based) is not working is probably the
namespace parameter.

Query rewrite does not currently function for extract() or existsNode()
XMLType methods. You can however use the operator equivalents instead of the
XMLType methods. For example, use extract() operator instead of
xmitype.extract() method.

Why Does the XML DB Query Not Use My Index?

I ran the demo script that orchestrates running all the other scripts. It creates an
index like this:

5-78 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

create index director_name on movies(
extractValue(movieDoc,/Movie/Director/Last));

But when | try an Explain Plan on this query:

SELECT extractValue(movieDoc, Movie/@Title’)
FROM movies
WHERE extractValue(movieDoc, Movie/Director/Last) = 'Minghella’

It does not appear to use my index. Here is the EXPLAIN plan from the
JDeveloper9i Explain Plan GUI:

SELECT STATEMENT
- Filter
- Table Access (FULL) SCOTT.MOVIES
- Collection Iterator (PICKLER FETCH)

Is this because | do not have enough movies in my table, so the Optimizer decides
that a full table scan is fastest? | also tried:

SELECT £+ INDEX(movies director_name) */
extractValue(movieDoc, Movie/@Title’)

FROMmovies
WHERE extractValue(movieDoc, Movie/Director/Last) = 'Minghella’

but it still does a full table scan of MOVIES.

Answer: When you create a non-schema-based index on XMLType, the indexes end
up as function-based indexes. You can check user_functional_indexes. For a
function-based index, the string must match exactly and you need to use ALTER
SESSIONas follows:

ALTER SESSION SET query_rewrite_enabled=true
ALTER SESSION SET query_Rewrite_integrity=trusted

for it to detect the indexes.

How Do | Specify Attributes in a complexType XML Schema Declaration?

Answer: If you have an element based on a global complexType , the SQLType
(and SQLSchem3 attributes should be specified for the complexType declaration.
In addition you can (optionally) include the same SQLType and SQLSchema
attributes within the element declaration.

The reason is that if you do not specify the SQLType for the global complexType
XML DB creates an SQLType with an internally generated name. The elements that

Structured Mapping of XMLType 5-79

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

reference this global type cannot then have a different value for SQLType. In other
words, this is fine:

<xsd:complexType name="PURCHASEORDERLINEITEM_TYPEType">
<xsd:sequence>
<xsd:element name="@LineNo" type="xsd:double" xdb:SQLName="@LineNo"
xdb:SQLType="NUMBER'"/>
<xsd:element name="Decription" type="xsd:string"xdb:SQLName="Decription"
xdb:SQLType="VARCHAR2'/>
<xsd:element name="Part" type="PURCHASEORDERPART_TYPEType"xdb:SQLName="Part"
/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PURCHASEORDERPART_TYPEType" xdb:SQLSchema="XMLUSER"
xdb:SQLType="PURCHASEORDERPART_TYPE">
<xsd:sequence>
<xsd:element name="@Id" type="xsd:string"
xdb:SQLName="@Id"xdb:SQLType="VARCHAR2"/>
<xsd:element name="@Quantity" type="xsd:double"xdb:SQLName="@Quantity"
xdb:SQLType="NUMBER'/>
<xsd:element name="@cost" type="xsd:double"
xdb:SQLName="@cost xdb:SQLType="NUMBER"/>
</xsd:sequence>
</xsd:complexType>

The following is also okay:

<xsd:complexType name="PURCHASEORDERLINEITEM_TYPEType">
<xsd:sequence>
<xsd:element name="@LineNo" type="xsd:double" xdb:SQLName="@LineNo"
xdb:SQLType="NUMBER'"/>
<xsd:element name="Decription" type="xsd:string'xdb:SQLName="Decription"
xdb:SQLType="VARCHAR2'/>
<xsd:element name="Part" type="PURCHASEORDERPART_TYPEType"xdb:SQLName="Part'
xdb:SQLSchema="XMLUSER"
xdb:SQLType="PURCHASEORDERPART_TYPE"/>
</xsd:sequence>
</xsd:complexType>

5-80 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

Why Do the XML Schema and Element Not Match?
Given this table definition
SQL> describe "rechnung’®;

Name Nul? Type

ID NOTNULL NUMBER(10)

rechnung

SYSXMLTYPE(XMLSchema "http:/fcczarski.de.oracle.com/Rec
hnung/Test001.xsd"

Element "rechnung”) STORAGE Object-relational TYPE "RECHNUNG_T"
DATUM DATE

And this schema

<?xml version="1.0" encoding="is0-8859-1"?>
<xsd:schema xmins:xsd="http:/imww.w3.0rg/2001/ XMLSchema”
targetNamespace="http://cczarski.de.oracle.com/Rechnung/Test001.xsd"
xmins:xdb="http://xmins.oracle.com/xdb"
xminsrechn="http://cczarski.de.oracle.com/Rechnung/Test001.xsd"
elementFormDefault="qualified"
version="1.0">
<l- Zundchst wird der Kunde definiert —

Why does inserting this document:

<rechnung xmins="http:/../ Test001.xsd" xmins:xsi="
http:/Avww.w3.0rg/2001/XMLSchemarinstance” xsi:schemal ocation="http://cczarskid
e.oracle.com/Rechnung/Test001.xsd">

<kunde>
Report
ERROR atline 2:
ORA-19007: Schema and element do not match

Answer: xsi:schemalocation takes two parameters: "NS SchemaURL"

try:

xsi:schemal ocation="http://cczarski.de.oracle.com/Rechnung/Test001.xsd
http://cczarski.de.oracle.com/Rechnung/Test001.xsd">

Structured Mapping of XMLType 5-81

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

How Do | Pull a Stylesheet From RESOURCE_VIEW [S/MIME]?

I am having trouble pulling out the saved stylesheet from RESOURCE_VIEWith
the following statement:

SELECT EXTRACT
(tab.res,
':Resource/r.Contentsinode()/xsk:stylesheet,
xmins:r="http:/xmins.oracle.com/xdb/XDBResource.xsd" ||
xmins:xdb="http:/fxmins.oracle.com/xdb™ ||
xmins:xsk="http:/Amww.w3.0rg/1999/XSL/ Transform'™
).getclobval()
FROM resource view rtab
WHERE rtab.any_path =
Ipublic/spec_proto/XDB_Stylesheet Render XML.xsl

Did I err in terms of the namespace?

Answer: Do you have the XSL schema registered? At this time, extracting from
resource contents will not work unless the contents are from a registered XML
schema.

Why for Our XML Parser Does selectSingleNode return NULL When the xmins
Attribute is Added?

Our code parses an XML file that is an instance of our own XML schema
ApplicationStructure . It works fine, until we add
xmlns="http://www.oracle.com/JHeadstart/ApplicationStructure"

in the top-level tag. Then the call to selectSingleNode suddenly returns NULL.
If we remove the xmins attribute, selectSingleNode again returns the node we
want. Our code:

import oracle xml.parser.v2.%;

private XMLDocument mXmidoc;

mXmidoc = XMLLoader.getXMLDocument(mSource);

Il Select Service node

XMLNode serviceNode = (XMLNode)mXmidoc.selectSingleNode('Service');

What are we doing wrong?

It seems that there is another constructor of selectSingleNode , Which accepts a
second parameter NSResolver . How must we use this and can we make it work
with XML files with the xmiIns attribute and without it?

5-82 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

We would like to be able to use the xmIns attribute, so that we can benefit from the
JDeveloper9i Code Insight for our own registered XML Schema.

Answer: XPath has no syntax for searching on elements that are qualified with the
default namespace. The XPath pattern "foo" always searches for the element <foo>
with a null namespace. So that even though the default namespace
SYNTACTICALLY allows you the convenience of writing:

<foo xmins="um:mynamespace'/>

To the XML Parser internally, this is an Element named: <{urn:mynamespace}:foo>
and not just;

<foo>

So, moral of the story, is that to search for anything with a namespace URI,
including default namespace, use the following:

« A namespace prefix in the <foo xmIns="urn:mynamespace"/>

« An XPath pattern like "someprefix:foo" where you have mapped the
"someprefix" prefix to the "urn:mynamespace" namespace URI.

Here's an example:

package test;
import oracle xml.parserv2.*;
import orgw3c.dom.*;
import javaio®;
public class Demo {
private static final String URI =
“http:/Amww.oracle.com/JHeadstart/ApplicationStructure”,
private static final String TESTDOC =
"<foo xmins="+URH"/>";
private static final NSResolver nsr = new MyNSResolver();
public static void main(String[] args) throws Throwable {
System.out printin("Document to parse is”);
System.out prinin(TESTDOC);
DOMParser dp = new DOMParser();
dp.parse(new StringReader(TESTDOC));
XMLDocument doc = dp.getDocument();
Node n = doc.selectSingleNode("xxx:foo", nsr); // Provide NSResolver!
System.out.printin("Found " + ((n!=null) ?"it! " : " nothing'));
}

static class MyNSResolver implements NSResolver {
public String resolveNamespacePrefix(String pref) {

Structured Mapping of XMLType 5-83

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

if (pref.equals(’)) retum URI;
else retum null;
}
}
}

Why Do | Get Error ORA-19007: Schema and Element Do Not Match?

This script runs successfully until | insert sample data into the table. It then fails
with ORA-19007: Schema and element do not match . It should work:

—testPo.sql
set serverout on

drop table po_tab1;

declare
urvar varchar2(100);
xsdfile varchar2(2000);
begin
urvar := http:/Avwwv.oracle.com/PO.xsd’,

— xmins:po="http/Ammv.oracle.com/PO.xsd">
xsdfile =
‘<schema xmins="http:/Ammv.w3.0rg/2001/XMLSchema”
targetNamespace="http:/Amwv.oracle.com/PO.xsd"
xmins:po="http:/Amww.oracle.com/PO.xsd">
<complexType name="PurchaseOrderType">
<sequence>
<element name="PONum" type="decimal"/>
<element name="Company'" type="string"/>
<element name="ltem"" maxOccurs="1000">
<complexType>
<seguence>
<element name="Part" type="string"/>
<element name="Price" type="decimal’/>
</sequence>
</complexType>
</element>
</sequence>
<attribute name ="PurchaseDate" type = "date'/>
</complexType>
<element name="PurchaseCQrder" type = "po:PurchaseOrderType'/>
</schema>';

5-84 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

begin

dbms_xmischema.deleteschema(urvar,dbms_xmischema.delete_cascade force);
exception
when others then nulll;
end,

dbms_xmlschema.registerschema(urivar,xsdfile);
end,;
/

set heading off
set pagesize 0
setlong 10000
set maxdata 12000
setarraysize 1

select a.schema.getstringval() from user_xml_schemas a
where a.schema._ur = http:/Amww.oracle.com/PO.xsd);

CREATE TABLE po_tabl OF XMLTYPE ELEMENT
"http:/Amwv.oracle.com/PO xsd#PurchaseOrder”,

insertinto po_tab1 values (xmitype(
<PurchaseOrder xmins="http/Amwv.oracle.com/PO.xsd"
xmins:xsi="http:/Ammww.w3.0rgl200/XMLSchema-instance”
xsi:schemal ocation="http:/Amwv.oracle.com/PO.xsd"

PurchaseDate="1967-08-13">

<PONum>1</PONum>
<Company>The Business</Company>
<ltem>
<Part>Part 1</Part>
<Price>1000</Price>
</tem>

</PurchaseQOrder>);

select* from po_tabl,;

Answer: The schemalocation attribute should be a pair of <namespace> and
<schemaloc> values as follows:

xsi:schemalocation="http:/Amwv.oracle.com/PO.xsd
http/Amwwv.oracle.com/PO xsd"

Structured Mapping of XMLType 5-85

Frequently Asked Questions (FAQs): XML DB, XML Schema-Based Issues

Is it Possible to Register XML Schema for Schemas?

I am trying to register the XML schema for schemas with something like. | have
downloaded XMLSchema.xsd , XMLSchema.dtd , datatypes.dtd and made
them available at my local webserver after checking that XMLSchema.xsd can be
validated:
begin
dbms_xmlischema.registeruri(schemaURL =>
‘hitp/Avww.denmark dk/MD/XMLSchema!
, schemaDocUri => 'http://144.21.226.78/XMLSchema.xsd'
, local =>false
)
end;
/
declare
*
ERROR atline 1:
ORA-31011: XML parsing failled
ORA-19202: Error occurred in XML processing
LPX-00233: namespace prefixes starting with “xml" are reserved
Error at line 70
ORA-06512: at"XDB.DBMS_XMLSCHEMA _INT", line 0
ORA-06512: at"XDB.DBMS_XMLSCHEMA'", line 160
ORA-06512: atline 34

I need a table for storing all the XML schemas. The content of this table | want to be
validated against schema for schemas as well as the built-in capability of searching
through the object-relational structures afterwards in order to do analyses that are
more complex. Is it possible to Register XML schema for schemas?

In the original XMLSchema.xsd no XML namespace is declared; hence | could not
validate it in XMLSpy. The | added the xmIns:xml namespace declaration to
validate success in XMLSpy, but I get an error.

Answer: It's illegal to have namespaces that start with “xml”. Pick another

namespace prefix such as, “foo” or "xsd" or “xs” or “x”.

5-86 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

6

Transforming and Validating XMLType Data

This chapter describes the SQL functions and XMLType APIs for transforming
XMLType data using XSLT stylesheets. It also explains the various functions and
APIs available for validating the XMLType instance against an XML schema. It
contains the following sections:

« Transforming XMLType Instances

« XMLTransform() Examples

« Validating XMLType Instances

« Validating XML Data Stored as XMLType: Examples

Transforming and Validating XMLType Data 6-1

Transforming XMLType Instances

Transforming XMLType Instances

XML documents have structure but no format. To add format to the XML
documents you can use Extensible Stylesheet Language (XSL). XSL provides a way
of displaying XML semantics. It can map XML elements into other formatting or
mark-up languages such as HTML.

In Oracle XML DB, XMLType instances or XML data stored in XMLType tables,
columns, or views in Oracle9i database, can be (formatted) transformed into HTML,
XML, and other mark-up languages, using XSL stylesheets and XMLType’s
function, transform(). This process conforms to W3C’s XSLT 1.0 recommendation.

XMLType instance can be transformed in the following ways:

« Using the XMLTransform() SQL function (or the transform() member
function of XMLType) in the database

« Using XDK transformation options in the middle tier, such as XSLT Processor
for Java.
See Also:

« Chapter 26, "Oracle XML DB Basic Demo", the section, "8.3
Transforming PurchaseOrder Using XSLT"

« Appendix D, "XSLT Primer”

« Oracle9i XML Developer’s Kits Guide - XDK, the chapter on XSQL
Pages Publishing Framework

XMLTransform() and XMLType.transform()

Figure 6-1 shows the XMLTransform() syntax. The XMLTransform() function
takes as arguments an XMLType instance and an XSL stylesheet (which is itself an
XMLType instance). It applies the stylesheet to the instance and returns an XMLType
instance.

Note: You can also use the syntax, XMLTYPE.transform() . This
is the same as XMLtransform()

Figure 6-2 shows how XMLTransform() transforms the XML document by using
the XSL stylesheet passed in. It returns the processed output as XML, HTML, and so
on, as specified by the XSL stylesheet. You typically need to use XMLTransform()

6-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples

when retrieving or generating XML documents stored as XMLType in Oracle9i
database.

See Also: Figure 1-1, "Oracle XML DB Architecture: XMLType
Storage and Repository" in Chapter 1, "Introducing Oracle XML
DBII

Figure 6-1 XMLTransform() Syntax

—J XMLTRANSFORM |(I XMLType_instance)a@{XMLType_instance)-)@»

Figure 6-2 Using XMLTransform()

XMLType function

XSL stylesheet XMLtransf transformed XMLT
XMLType instance ransiorme ype

. (HTML, XML, ...)
(table, cloumn, view)

XMLTransform() Examples

Use the following code to set up the XML schema and tables needed to run the
examples in this chapter:

—register schema
begin
dbms_xmischema.deleteSchema(http:/Awwv.example.com/schemas/ipo.xsd’,4);
end;
/
begin
dbms_xmischema.registerSchema(http:/Avww.example.com/schemasfipoxsd,
'<schema targetNamespace="http:/Awwv.example.comIPO"
xmins="http:/Ammw.w3.0rg/200/XMLSchema’
xmins:ipo="http:/Avwwv.example.comIPO'">
<l- annotation>
<documentation xmllang="en">
Intemational Purchase order schema for Example.com
Copyright 2000 Example.com. All rights reserved.
</documentation>
</annotation —
<element name="purchaseQrder" type="ipo:PurchaseQrderType"/>

Transforming and Validating XMLType Data 6-3

XMLTransform() Examples

<element name="comment" type="string"/>
<complexType name="PurchaseOrderType>
<sequence>
<element name="shipTo" type="ipo:Address"/>
<elementname="hillTo" type="ipo:Address'/>
<element ref="ipo:comment" minOccurs="0"/>
<elementname="items" type="ipo:tems"/>
</sequence>
<atribute name="orderDate" type="date'/>
</complexType>
<complexType name="ltems">
<sequence>
<element name="tem" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="productName" type="string'/>
<element name="quantity">
<simpleType>
<restriction base="positivelnteger">
<maxExclusive value="100"/>
<Jrestriction>
</simpleType>
</element>
<element name="USPrice" type="decimal’/>
<element ref="ijpo:comment"’ minOccurs="0"/>
<element name="shipDate" type="date" minOccurs="0"/>
</sequence>
<attribute name="partNum'’* type="ipo:SKU" use="required"/>
</complexType>
</element>
</sequence>
</complexType>
<complexType name="Address">
<sequence>
<element name="name" type="string'/>
<element name="street" type="string"/>
<elementname="city" type="string'/>
<element name="state" ="string">
<element name="country' type="string"/>
<elementname="zip" type="string"/>
</sequence>
</complexType>
<simpleType name="SKU">
<restriction base="string">
<pattem value="t{8HA-Z2} >

6-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples

<frestriction>

</simpleType>
</schema>,

TRUE, TRUE, FALSE),
end;
/

— create table to hold XML instance documents
DROP TABLE po_tab;

CREATE TABLE po_tab (id number, xmicol xmitype)
XMLTYPE COLUMN xmicol

XMLSCHEMA "http:/Amaw.example.com/schemasfipo.xsd"

ELEMENT "“purchaseOrder";

INSERT INTO po_tab VALUES(L, xmitype(
'<?xmlversion="1.0"?>
<ipo:purchaseOrder

xmins:xsi="http:/Amww.w3.0rg/200/XMLSchema-instance”

xminsipo="http/Amwv.example.com/IPO"
xsi:schemalLocation="http:/Amwwv.example.comIPO
http/Amwwv.example.com/schemasfipo.xsd”
orderDate="1999-12-01">
<shipTo xsitype="ipo:Address">
<name>Helen Zoe</name>
<street>121 Broadway</street>
<city>Cardiff</city>
<state>\Wales</state>
<country>UK</country>
<zip>CR2 1QJ</zip>
</shipTo>
<billTo xsi:type="ipo:Address">
<name>Raobert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>CA</state>
<country>US</country>
<zip>95819</zip>
<hillTo>
<items>
<item partNum="833-AA">
<productName>Lapis necklace</productName>
<quantity>1</quantity>
<USPrice>99.95</USPrice>

<ipo:comment>Want this for the holidays!</ipo:comment>

<shipDate>1999-12-05</shipDate>

Transforming and Validating XMLType Data 6-5

XMLTransform() Examples

<ftem>
<ftems>
<fipo:purchaseOrder>));

The following examples illustrate how to use XMLTransform() to transform XML
data stored as XMLType to HTML, XML, or other languages.

Example 6-1 Transforming an XMLType Instance Using XMLTransform() and
DBUriType to Get the XSL Stylesheet

DROP TABLE stylesheet_tab;
CREATE TABLE stylesheet_tab(id NUMBER, stylesheet xmitype);
INSERT INTO stylesheet_tab VALUES (1, xmitype(
'<?xml version="1.0" 7>
<xsl:stylesheet version="1.0" xmins:xs="http:/Amwwv.w3.0rg/1999/XSL/ Transform™>
<xsltemplate match="*>
<td>
<xslchoose>
<xslwhen test="count(child:*) > 1">
<xsl.calHemplate name="nested"/>
<Ixslwhen>
<xslotherwise>
<xslvalue-of select="name(.)"/>:<xsl.value-of select="text()"/>
<Ixslotherwise>
</xsl:choose>
<ftd>
</xsltemplate>
<xsltemplate match="*' name="nested" priority="-1" mode="nested2">

<l xslvalue-of select="count(child:*)"/ —
<xsl:choose>
<xslwhen test="count(child:*) > 1">
<xslvalue-of select="name(.)"/>:<xsl:apply-templates mode="nested2'/>
<Ixslwhen>
<xslotherwise>
<xslvalue-of select="name(.)"/>:<xslvalue-of select="text()"/>
</xslotherwise>
</xsl:choose>

</xsltemplate>
</xslstylesheet>'
)3

SELECT XMLTransform(xxmicol,
dburiType(/SCOTT/STYLESHEET TAB/ROWI[ID =

6-6 Oracle9/i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLTransform() Examples

1JSTYLESHEET/ext()).getXML()).getStringVal()
AS result
FROM po_tabx;

— The preceding statement produces the following output:
—RESULT

—<td>

ipo:purchaseOrder:

— shipTo:

- nhame:Helen Zoe

- street:100 Broadway
- city:Cardifi

- state:Wales

- country:UK

- zip:.CF2 1QJ

-

- hilTo:

— name:Robert Smith
— street8 Oak Avenue</o>
- city:Old Town

- state:CA

- country:US

- 7ip:95819

-

tems: <>

-

—<hd>

Example 6-2 Transforming an XMLType Instance Using XMLTransform() and a
Subquery SELECT to Retrieve the XSL Stylesheet

This example illustrates the use of a stored stylesheet to transfdbiype instances.
Unlike the previous example, this example uses a scalar subquery to retrieve the stored
stylesheet:

SELECT XMLTransform(xxmicol,
(select stylesheet from stylesheet_tab where id = 1)).getStringVal()
AS result
FROM po_tabx;

Example 6-3 Transforming XMLType Instances Using Transient Stylesheets and

XMLTransform()
This example describes how you can transf8Mi Type instances using a transient

Transforming and Validating XMLType Data 6-7

Validating XMLType Instances

stylesheet:

SELECT xxmicol.transform(xmitype(
'<?xml version="1.0" 7>
<xslstylesheet version="1.0" xmins:xsi="http:/Amvwv.w3.0rg/1999/XSL/ Transform™>
<xsltemplate match="*>
<td>
<xsl:choose>
<xslwhen test="count(child:*) > 1">
<xsl:calHtemplate name="nested"/>
</xslwhen>
<xslotherwise>
<xslvalue-of select="name(.)"/>:<xslvalue-of select="text()"/>
</xslotherwise>
</xsl:choose>
<ftd>
</xsltemplate>
<xsltemplate match="*" hame="nested" priority="-1" mode="nested2">
<>
<l xslvalue-of select="count(child:*)"/ —
<xsl.choose>
<xslwhen test="count(child:*) > 1">
<xslvalue-of select="name(.)"/>:<xsl:apply-templates mode="nested2'/>
<Ixslwhen>
<xslotherwise>
<xslvalue-of select="name(.)'/>:<xsl:value-of select="text()"/>
</xslotherwise>
</xsl:choose>

</xsltemplate>
</xslstylesheet>’
))-getStringVal()
FROM po_tabx;

Validating XMLType Instances

Often, besides knowing that a particular XML document is well-formed, it is
necessary to know if a particular document conforms to a specific XML schema, that
is, is VALID with respect to a specific XML schema.

By default, Oracle9i does check to make sure that XMLType instances are
well-formed. In addition, for schema-based XMLType instances, Oracle9i performs
few basic validation checks. Since full XML schema validation (as specified by the

6-8 Oracle9/ XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating XMLType Instances

XMLIsValid()

W3C) is an expensive operation, when XMLType instances are constructed, stored,
or retrieved, they are not also fully validated.

To validate and manipulate the “validated” status of XML documents, the
following functions and SQL operator are provided:

XMLIsValid() isan SQL Operator. It checks if the input instance conforms to a
specified XML schema. It does not change the validation status of the XML instance.
If an XML schema URL is not specified and the XML document is schema-based,
the conformance is checked against the XMLType instance’s own schema. If any of
the arguments are specified to be NULL, then the result is NULL. If validation fails,
0 is returned and no errors are reported explaining why the validation has failed.

Syntax
XMLisValid (XMLType_inst[, schemaur [, elem])

Parameters:

« XMLType_inst - The XMLType instance to be validated against the specified
XML Schema.

« schurl - The URL of the XML Schema against which to check conformance.

« elem - Element of a specified schema, against which to validate. This is useful
when we have a XML Schema which defines more than one top level element,
and we want to check conformance against a specific one of these elements.

schemaValidate

schemaValidate is a member procedure. It validates the XML instance against its
XML schema if it has not already been done. For non-schema-based documents an
error is raised. If validation fails an error is raised otherwise, the document’s status
is changed to VALIDATED.

Syntax
MEMBER PROCEDURE schemaValidate

isSchemaValidated()

isSchemaValidated() is a member function. It returns the validation status of
the XMLType instance and tells if a schema-based instance has been actually
validated against its schema.lt returns 1 if the instance has been validated against
the schema, 0 otherwise.

Transforming and Validating XMLType Data 6-9

Validating XML Data Stored as XMLType: Examples

Syntax
MEMBER FUNCTION isSchemaValidated retum NUMBER deterministic

setSchemaValidated()
setSchemaValidated() is a member function. It sets the VALIDATION state of the
input XML instance.

Syntax
MEMBER PROCEDURE setSchemaValidated(fiag IN BINARY_INTEGER :=1)

Parameters:

flag ,0- NOT VALIDATED; 1 - VALIDATED; The default value for this parameter
is 1.

isSchemaValid()
isSchemaValid() is a member function. It checks if the input instance conforms
to a specified XML schema. It does not change the validation status of the XML
instance. If an XML Schema URL is not specified and the XML document is
schema-based, the conformance is checked against the XMLType instance’s own
schema. If the validation fails, exceptions are thrown with the reason why the
validation has failed.

Syntax
member function isSchemaValid(schurl IN VARCHARZ := NULL, elem IN VARCHAR2 :=
NULL) retum NUMBER deterministic
Parameters:
schurl - The URL of the XML Schema against which to check conformance.

elem - Element of a specified schema, against which to validate. This is useful when
we have a XML Schema which defines more than one top level element, and we
want to check conformance against a specific one of these elements.

Validating XML Data Stored as XMLType: Examples

The following examples illustrate how to use isSchemaValid(),
setSchemaValidated() , and isSchemaValidated() to validate XML data
being stored as XMLType in Oracle XML DB.

6-10 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Validating XML Data Stored as XMLType: Examples

Example 6-4 Using isSchemaValid()

SELECT xxmicolisSchemaValid(http:/Avwwv.example.com/schemas/ipoxsd,
‘purchaseOrder’)
FROM po_tabx;

Example 6-5 Validating XML Using isSchemaValid()

The following PL/SQL example validates an XML instance against XML schema
PO.xsd :

declare
xmidoc xmitype;
begin
- populate xmidoc (for example, by fetching from table)
- validate against XML schema
xmidoc.isSchemaValid(http:/Amwv.oracle.com/PO xsd);
if xmldoc.isSchemaValid = 1 then -
else -
endif;

end;

Example 6-6 Using schemaValidate() Within Triggers

The schemaValidate() method of XMLType can be used within INSERT and
UPDATE TRIGGERS to ensure that all instances stored in the table are validated
against the XML schema:

DROP TABLE po_tab;
CREATE TABLE po_tab OF xmitype
XMLSchema "http:/Amww.example.com/schemas/ipo.xsd" element "purchaseOrder”;

CREATE TRIGGER emp_trig BEFORE INSERT OR UPDATE ON po_tab FOR EACH ROW
DECLARE
newxml xmitype;
BEGIn
newxml :=:new.sys nc_rowinfo$;
xmitype.schemavalidate(newxml);
END;
/

Example 6-7 Using XMLIsSchemaValid() Within CHECK Constraints
This example uses XMLIsValid() to:

« Verify that the XMLType instance conforms to the specified XML schema

Transforming and Validating XMLType Data 6-11

Validating XML Data Stored as XMLType: Examples

« Ensure that the incoming XML documents are valid by using CHECK
constraints

DROP TABLE po_tab
CREATE TABLE po_tab OF XMLTYPe
(CHECK (XMLIsValid(sys_nc_rowinfo$) = 1))
XMLSchema "http:/Amww.example.com/schemas/ipo.xsd" element "purchaseOrder”;

Note: The validation functions and operators described in the
preceding section, facilitate validation checking. Of these,
isSchemaValid() is the only one that throws errors that include
why the validation has failed.

6-12 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

v

Searching XML Data with Oracle Text

This chapter explains the use of Oracle Text functionality in indexing and querying
XML data. It contains the following sections:

Searching XML Data with Oracle Text

Introducing Oracle Text

Assumptions Made in This Chapter’s Examples

Oracle Text Users and Roles

Querying with the CONTAINS Operator

Using the WITHIN Operator to Narrow Query Down to Document Sections
Introducing SECTION_GROUPS

INPATH or HASPATH Operators Search Using XPath-Like Expressions
Building a Query Application with Oracle Text

Step 1. Create a Section Group Preference

Step 2. Set the Preference’s Attributes

Step 3. Create an Index Using the Section Preference Created in Step 2
Step 4. Create Your Query Syntax

Presenting the Results of Your Query

XMLType Indexing

Using Oracle Text with Oracle XML DB

Full-Text Search Functions in XPath Using ora:contains

Oracle XML DB: Creating a Policy for ora:contains()

Searching XML Data with Oracle Text 7-1

« Oracle XML DB: Using CTXXPATH Indexes for existsNode()
« Using Oracle Text: Advanced Techniques

« Case Study: Searching XML-Based Conference Proceedings
« Frequently Asked Questions About Oracle Text

Note: In Oracle9i, you can use the WITHIN or INPATH operators.
INPATH was introduced in Oracle9i Release 1 (9.0.1) to handle
XPath searching in XML documents. Everything you can do with
the WITHIN operator, you can also do using INPATH. INPATH is the
recommended syntax in Oracle9i Release 1 (9.0.1) and higher when
searching XML data.

7-2 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing Oracle Text

Searching XML Data with Oracle Text

This chapter describes the following aspects of Oracle Text:

How to create a section group and index your XML document(s)

How to build an XML query application with Oracle Text, to search and retrieve
data from your XML document(s)

Using Oracle Text to search XMLType data

Introducing Oracle Text

Note: Oracle Text is a strictly server-based implementation.

See Also: http://otn.oracle.com/products/text

Oracle Text (aka interMedia Text) can be used to search XML documents. It extends
Oracle9i by indexing any text or document stored in Oracle. It can also search
documents in the file system and URLs.

Oracle Text enables the following:

Content-based queries, such as, finding text and documents which contain
particular words, using familiar, standard SQL.

File-based text applications to use Oracle9i to manage text and documents in an
integrated fashion with traditional relational information.

Concept searching of English language documents.
Theme analysis of English language documents using the theme/gist package.

Highlighting hit words. With Oracle Text, you can render a document in different
ways. For example, you can present documents with query terms highlighted,
either the “words” of a word query or the “themes” of an ABOUT query in
English. Use the CTX_DOC.MARKUP or HIGHLIGHT procedures for this.

Highlighting hit words. With Oracle Text, you can render a document in
different ways. For example, you can present documents with query terms
highlighted, either the "words" of a word query or the "themes" of an ABOUT
query in English. Also, you can present XML documents with the
INPATH/HASPATH query element(s) highlighted. Use CTX_DOC.MARKUP or
HIGHLIGHT procedures for this.

Searching XML Data with Oracle Text 7-3

Assumptions Made in This Chapter's Examples

« With Oracle Text you can use PL/SQL packages for document presentation and
thesaurus maintenance.

You can query XML data stored in the database directly, without using Oracle Text.
However, Oracle Text is useful for boosting query performance.

See Also :

« Oracle Text Reference

« Oracle Text Application Developer’s Guide

« http://otn.oracle.com/products/text

Accessing Oracle Text

Oracle Text is a standard feature that comes with every Oracle9i Standard,
Enterprise, and Personal edition license. It needs to be selected during installation.
No special installation instructions are required.

Oracle Text is essentially a set of schema objects owned by CTXSYS. These objects
are linked to the Oracle kernel. The schema objects are present when you perform
an Oracle9i installation.

Oracle Text Now Supports XMLType
You can now perform Oracle Text searches on tables containing XMLType columns.

Further Oracle Text Examples

You can find more examples for Oracle Text and for creating section group indexes
at the following site: http://otn.oracle.com/products/text

Assumptions Made in This Chapter's Examples

XML text is aVARCHAR2 or CLOB type in an Oracle9i database table with
character semantics. Oracle Text can also deal with documents in a file system or in
URLSs, but we are not considering these document types in this chapter.

To simplify the examples included in this chapter they use a subset of the Oracle
Text options and make the following assumptions:

« All XML data here is represented using US-ASCII, a 7 bit character set.

« Issues about whether a character such as "*" is treated as white space or as part
of a word are not included.

7-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle Text Users and Roles

« Storage characteristics of the Oracle schema object that implement the Oracle
Text index are not considered.

« They focus on the SECTION GROUP parameter in the CREATE INDEXor
ALTER INDEX statement. Other parameter types available for CREATE | NDEX
and ALTER INDEX, are DATASTORE-ILTER, LEXER STOPLIST, and
WORDLIST

Here is an example of using SECTION GROUP in CREATE INDEX

CREATE INDEX my_index
ON my_table (my_column)
INDEXTYPE IS ctxsys.context
PARAMETERS ('SECTION GROUP my_section_group') ;

« Specifically, the examples focus on using AUTO_SECTION_GROUWRnd
XML_SECTION_GROUé&nhd PATH_SECTION_GROUP

« Tagged or marked up data. In this chapter, the examples focus on how to
handle XML data. Oracle Text handles many other kinds of data besides XML
data.

See Also:
« Oracle Text Application Developer’s Guide

« Oracle Text Reference, for more information on these parameter
types.

Oracle Text Users and Roles
With Oracle Text you can use the following users/roles:
« user CTXSYSto administer users

« role CTXAPPto create and delete Oracle Text preferences and use Oracle Text
PL/SQL packages

User CTXSYS

User CTXSYSis created at install time. Administer Oracle Text users as this user.
User CTXSY Shas the following privileges:

« Modify system-defined preferences

« Drop and modify other user preferences

Searching XML Data with Oracle Text 7-5

Querying with the CONTAINS Operator

« Call procedures in the CTX_ADMPL/SQL package to start servers and set
system-parameters

« Start actxsrv server
« Query all system-defined views

« Perform all the tasks of a user with the CTXAPProle

Role CTXAPP

Any user can create an Oracle Text index and issue a Text query. For additional
tasks, use the CTXAPProle. This is a system-defined role that enables you to
perform the following tasks:

« Create and delete Oracle Text preferences

« Use Oracle Text PL/SQL packages, such as the CTX_DDLpackage

Querying with the CONTAINS Operator

Oracle Text’s main purpose is to provide an implementation for the CONTAINS
operator. The CONTAINSoperator can be used in the WHERE clause of a SELECT
statement to specify the query expression for a Text query.

CONTAINS Syntax
Here is the CONTAINSsyntax:

..-WHERE CONTAINS([schema.]Jcolumn,text_query VARCHARZ [label NUMBERY)

where:

Table 7-1 CONTAINS Operator: Syntax Description

Syntax Description

[schema.] column Specifies the text column to be searched on. This column must
have a Text index associated with it.

text_query Specifies the query expression that defines your search in
column.

label Optionally specifies the label that identifies the score generated

by the CONTAINSoperator.

7-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Querying with the CONTAINS Operator

For each row selected, CONTAINSreturns a number between 0 and 100 that
indicates how relevant the document row is to the query. The number 0 means that
Oracle found no matches in the row. You can obtain this score with the SCORE
operator.

Note: You must use the SCORE operator with a label to obtain
this number.

Example 7-1 Using a Simple SELECT Statement with CONTAINS

The following example illustrates how the CONTAINSoperator is used in a SELECT
statement:

SELECT id FROM my_table
WHERE
CONTAINS (my_column, receipts’) >0

The’receipts’ parameter of the CONTAINSoperator is called the “Text Query
Expression”.

Note: The SQL statement with the CONTAINSoperator requires an
Oracle Text index in order to run.

Example 7-2 Using the Score Operator with a Label to Obtain the Relevance

The following example searches for all documents in the text column that contain
the word Oracle. The score for each row is selected with the SCOREbperator using a
label of 1:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, ‘oracle’, 1) >0 ORDER BY SCORE(1) DESC;

The CONTAINSoperator must always be followed by the > 0 syntax. This specifies
that the score value calculated by the CONTAINSoperator must be greater than zero
for the row selected.

When the SCORBbperator is called, such as in a SELECTclause, the operator must
reference the label value as shown in the example.

Searching XML Data with Oracle Text 7-7

Using the WITHIN Operator to Narrow Query Down to Document Sections

Using the WITHIN Operator to Narrow Query Down to Document

Sections

When documents have internal structure such as in HTML and XML, you can
define document sections using embedded tags before you index. This enables you
to query within the sections using the WITHIN operator.

Note: This is only true for XML_SECTION_GROUBut not true for
AUTO_ or PATH_SECTION_GROUP

Introducing SECTION_GROUPS

You can query within attribute sections when you index with either
XML_SECTION_GROURUTO_SECTION_GROWST PATH_SECTION_GROUWpRuUr
section group type. Consider the following XML document:

<book tile="Tale of Two Cities">lt was the best of times.</book>

XML_SECTION_GROUP

If you use XML_SECTION_GROUfou can specify any of the following sections:
« Zone sections

« Field sections

« Attribute section

« Special sections

This chapter only focuses on Zone, Field, and Attribute sections. For more
information on Special sections see Oracle Text Reference and Oracle Text Application
Developer’s Guide.

Zone Sections: CTX _DLL.ADD ZONE_SECTION Procedure
The syntax for this is:

CTX_DDL.ADD_ZONE_SECTION(
group_name in varchar2,
section_name in varchar2,

tag in varchar2);

7-8 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing SECTION_GROUPS

To define a chapter as a Zone section, create an XML_SECTION_GROU#hd define
the Zone section as follows:

EXEC ctx_dd|_create_section_group(myxmigroup', XML_SECTION_GROUP));

EXEC ctx_ddl.add_zone_section(myxmigroup’, ‘chapter, ‘chapter);

When you define Zone section as such and index the document set, you can query
the XML chapter Zone section as follows:

'Cities within chapter

Field Sections: CTX_DLL.ADD_FIELD_SECTION Procedure
The syntax for this is:

CTX_DDLADD FIELD SECTION(
group_name in varchar2,
section_name in varchar2,

tag in varchar2);

To define a abstract as a Field section, create an XML_SECTION_GROUéhd
define the Field section as follows:

EXEC ctx_dd| _create_section_group(myxmigroup', XML_SECTION_GROUP);

EXECctx ddladd_ field_section(myxmigroup’, ‘abstract, ‘abstract);

When you define Field section as such and index the document set, you can query
the XML abstract Field section as follows:

'Cities within abstract

Attribute Section: CTX DLL.ADD_ATTR_SECTION Procedure

The syntax for this is:
CTX_DDLADD_ATTR_SECTION(
group_name in varchar2,
section_ name in varchar2,

tag in varchar2);

To define the booktitle attribute as an Attribute section, create an
XML_SECTION_GROU#d define the Attribute section as follows:

EXEC ctx_dd|_create_section_group(myxmigroup', XML_SECTION_GROUP);
EXEC ctx_ddl.add_attr_section(myxmigroup', booktitle', ook @tite);

Searching XML Data with Oracle Text 7-9

Introducing SECTION_GROUPS

When you define the Attribute section as such and index the document set, you can
guery the XML booktitle attribute text as follows:

'Cities within bookiitie'
Constraints for Querying Attribute or Field Sections

The following constraints apply to querying within Attribute or Field sections:

« Regular queries on attribute text will not work unless qualified in a WITHIN
clause. Using the following XML document:

<book tile="Tale of Two Cities">It was the best of times.</book>

guerying on Tale will not work unless qualified with "WITHIN title@book’.

= You cannot use Attribute or Field sections in a nested WITHIN query.

« Phrases ignore attribute text. For example, if the original document looked like:
...Now is the time for all good <word type="noun"> men <Avord> to come to

The search would result in a regular query’s, “good men”, and ignore the
intervening attribute text.

AUTO_ SECTION_GROUP/ PATH_SECTION_GROUP for INPATH and HASPATH

When you use the AUTO_SECTION_GROU PATH_SECTION_GROU® index
XML documents, Oracle9i automatically creates sections.

To search on Tale within the Attribute section booktitle , include the following
WITHIN clause in your SELECT statement:

« Ifyou are using XML_SECTION_GROUP
.. WHERE CONTAINS (Tale INPATH bookiitle)>0;

« Ifyou are using PATH_SECTION_GROUP
... WHERE CONTAINS (Tale INPATH tite@book)>0;

See Also: "Distinguishing Tags Across DocTypes" on page 7-51.

Dynamically Adding Sections or Stop Section Using ALTER INDEX
The syntax for ALTER INDEX is:

7-10 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing SECTION_GROUPS

ALTER INDEX [schema.Jindex REBUILD [ONLINE] [PARAMETERS (paramstring)];

where

paramstring = 'replace [datastore datastore_pref]

[fiter fiter_pref]

[lexer lexer_pref]

[wordlist wordlist_pref]

[storage storage_pref]

[stoplist stoplisf]

[section group section_group]
[memory memsize]

| ..

| add zone section section_name tag tag

| add field section section_name tag tag [(VISIBLE | INVISIBLE)]
| add atfr section section_name tag tag@attr

| add stop section tag’

The added section applies only to documents indexed after this operation. Thus
for the change to take effect, you must manually re-index any existing
documents that contain the tag. The index is not rebuilt by this statement.

WITHIN Syntax for Section Querying
Here is the WITHIN syntax for querying sections:
..WHERE CONTAINS(text, XML WITHIN tite’) >0;...
This searches for expression text within a section. If you are using

XML_SECTION_GROURe following restrictions apply to the pre-defined zone,
field, or attribute section:

« If section is a zone, expression can contain one or more WITHIN operators
(nested WITHIN) whose section is a zone or special section.

« If section is a field or attribute section, expression cannot contain another
WITHIN operator.

You can combine and nest WITHIN clauses. For finer grained searches of XML
sections, you can use WITHIN clauses inside CONTAINSselect statements.

WITHIN Operator Limitations
The WITHIN operator has the following limitations:

Searching XML Data with Oracle Text 7-11

INPATH or HASPATH Operators Search Using XPath-Like Expressions

« You cannot embed the WITHIN clause in a phrase. For example, you cannot
write: term1 WITHIN section term2

« You cannot combine WITHIN with expansion operators, such as $! and *.

« Since WITHIN is a reserved word, you must escape the word with braces to
search on it.

See Also: Oracle Text Reference

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Path Indexing and Path Querying with Oracle Text

In Oracle9i Oracle Text introduced a new section type and new query operators
which support an XPath-like query language. Indexes of type context with XML
path searching are able to perform very complex section searches on XML
documents. Here are the basic concepts of path indexing and path querying.

Path Indexing
Section searching is enabled by defining section groups. To use XML path searching,
the Oracle Text index must be created with the new section group,
PATH_SECTION_GROU4 follows:
begin

ctx_ddl.create_section_group(mypathgroup',PATH_SECTION_GROUP);
end;

To create the Oracle Text index use this command:

create index order_idx on library_catalog(text)
indextype is ctxsys.context
parameters (SECTION GROUP mypathgroup’);

Path Querying

The Oracle Text path query language is based on W3C XPath. For Oracle9i Release 1
(9.0.1) and higher, you can use the INPATH and HASPATHperators to express path
queries.

7-12 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Using INPATH Operator for Path Searching in XML Documents

You can use INPATH operator to perform path searching in XML documents.
Table 7-2 summarizes the ways you can use the INPATH operator for path

searching.

Table 7-2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax

Description

Simple Tag Searching virginia INPATH (//STATE)

Finds all documents where the word “virginia”
appears between <STATE> and </STATE>. The
STATE element can appear at any level of the
document structure.

Case-sensitivity virginia INPATH (STATE)

virginia INPATH (State)

Tags and attribute names in path searching are
case-sensitive. virginia INPATH STATE -- finds
<STATE>virginia</STATE> but NOT
<State>virginia</State> . To find the latter
you must do virginia INPATH State.

Top-Level Tag

virginia INPATH (Legal)
Searching

virginia INPATH (/Legal)

For example, the following
query finds Quijote where it
occurs between <order> and
</order>:

select id from library_catalog where

contains(text,'Quijote INPATH(order)) >

Here <order> must be the top
level tag.

Finds all documents where “virginia” appears in a
Legal element which is the top-level tag.'Legal’
MUST be the top-level tag of the document.’virginia'

may appear anywhere in this tag regardless of other
intervening tags. For example:

<?xml version="1.0" standalone="yes”?>

<l-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>
<CourtFiling>
<Filing ID="f001" FilingType="Civil">
<LeadDocument>
<CaseCaption>
<CourtInformation>
<Location>
<Address>
<AddressState>VIRGINIA</AddressState>
</Address> ... </Legal>

Searching XML Data with Oracle Text 7-13

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Table 7-2 Path Searching XML Documents Using the INPATH Operator (Cont.)
Path Search Feature Syntax

Description

Any Level Tag virginia INPATH (//Address) 'Virginia' can appear anywhere within an 'Address'

Searching tag, which may appear within any other tags. for
example:

For example, a double slash .

indicates "any number of levels" <?xml version="1.0" standalone="yes"?>

down. The following query finds <!-- <?xml-stylesheet type="text/xsl"

Quijote inside a <title> tag that href="./xsl/vacourtfiling(html).xsI"?> -->

occurs at the top level or any <Legal>

lower level:

<CourtFiling>
select id from library_catalog

<Filing ID="f001" FilingType="Civil">
where contains(text, Quijote <LeadDocument>
INPATH(/title)") > 0; <CaseCaption>
<CourtInformation>
<Location>
<Address>

<AddressState> VIRGINIA </AddressState>...
</Legal>

Direct Parentage Path virginia INPATH

Finds all documents where “virginia” appears in a
Searching (/ICourtinformation/Location) Location element which is a direct child of a
for example: Courtinformation element. For example:
select id from library_catalog where <?xml version="10" standalone="yes"?>
contains(text, virginia <l-- <?xml-stylesheet type="text/xsl"
INPATH(order/item)’) > 0; href="./xsl/vacourtfiling(html).xs|"?> -->
<Legal>

<CourtFiling>
<Filing ID="f001" FilingType="Civil">
<LeadDocument>
<CaseCaption>
<CourtInformation>
<Location>
<Address>

<AddressState> VIRGINIA </AddressState>
</Address>... </Courtinformation>

7-14 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Table 7-2 Path Searching XML Documents Using the INPATH Operator (Cont.)
Path Search Feature Syntax

Description

Single-Level Wildcard virginia INPATH(A/*/B)

Finds all documents where “virginia” appears in a B
Searching

irginia INPATH glement which is a grandqh_ild of an A element. For
(lICaseCaption/*/Location)’ instance, <A><D>virginia</D>
The intermediate element does not need to be an
indexed XML tag. For example:

<?xml version="1.0" standalone="yes"?>

<l-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xs|"?> -->

<Legal>
<CourtFiling>
<Filing ID="f001" FilingType="Civil">
<LeadDocument>
<CaseCaption>
<CourtInformation>
<Location>
<Address>

<AddressState>VIRGINIA</AddressState>...
</Legal>

Searching XML Data with Oracle Text 7-15

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Table 7-2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description

Multi-level Wildcard 'virginia INPATH

'Legal’ must be a top-level tag, and there must be
Searching (Legal/*/Filing/*/*/Courtinformation)'

exactly one tag-level between 'Legal' and 'Filing’,
and two between 'Filing' and ‘Courtinformation'.
'Virginia' may then appear anywhere within
'‘Courtinformation’. For example:

<?xml version="1.0" standalone="yes"?>

<l-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xs|"?> -->

<Legal>
<CourtFiling>
<Filing ID="f001" FilingType="Civil">
<LeadDocument>
<CaseCaption>
<CourtInformation>
<Location>
<Address>
<AddressState>VIRGINIA</AddressState>
</Address>
</Location>
<CourtName>
IN THE CIRCUIT COURT OF LOUDOUN COUNTY
</CourtName>
</Courtinformation>....

Descendant Searching virginia INPATH(A//B) Finds all documents where “virginia” appears in a B

element which is some descendant (any level) of an
A element.

Attribute Searching virginia INPATH(A/@B) Finds all documents where “virginia” appears in the

B attribute of an A element. You can search within
an attribute value using the syntax
<tag>/@<attribute>:

select id from library_catalog where contains(text,'dvd
INPATH(/item/@type)’) > 0; AND and OR

You can use boolean AND and OR to combine
existence or equality predicates in a test.

select id from library_catalog where contains(text,'Levy or
Cervantes INPATH(/Hitle)) >0;

7-16 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Table 7-2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax Description
Descendant/Attribute virginia INPATH (A[B]) Finds all documents where “virginia” appears in an
Existence Testing A element which has a B element as a direct child.

« Vvirginia INPATH A[.//B] -- Finds all
documents where “virginia” appears in an A
element which has a B element as a descendant

You can search for documents
using the any-level tag

searching:
(any level).
lect id from li log wh o .
igrigtir:g (rtgg Ig)lrjei}ggcata 0g where « virginia INPATH A[@B] -- Finds all documents
INPATH(/orde’r/titIe)') >0 where “virginia” appears in an A element

which has a B attribute
You can also use the "*" as a

single level wildcard. The *
matches exactly one level.:

select id from library_catalog where
contains (text,'Cervantes
INPATH(/order/*/author)") > 0;

Searching XML Data with Oracle Text 7-17

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Table 7-2 Path Searching XML Documents Using the INPATH Operator (Cont.)

Path Search Feature Syntax

Description

Attribute Value
Testing

virginia INPATH A[@B = “fo0"]

Within Equality 3¢ means that:

virginia INPATH (A[@B = "pot of
gold™]), would, with the default
lexer and stoplist, match any of

the following:
virginia

By default, lexing is
case-independent, so “pot”
matches “POT”, <A B="POT
BLACK GOLD”>virginia

By default, “of” is a stopword,
and, in a query, would match
any word in that position, <A
B=" PotOF Gold
“>virginia

Finds all documents where “virginia” appears in an
A element which has a B attribute whose value is
55f0011.

« Only equality is supported as a test. Range
operators and functions are not supported.

« The left-hand-side of the equality MUST be an
attribute or tag. Literals here are not allowed.

« Theright-hand-side must be a literal. Tags and
attributes here are not allowed.

Within equality (See "Using INPATH Operator for
Path Searching in XML Documents" on page 7-13) is
used to evaluate the test.

Whitespace is mainly ignored in text indexing.
Again, lexing is case-independent:

virginia

Underscore is a non-alphabetic character, and is not
a join character by default. As a result, it is treated
more or less as whitespace and breaks up that string
into three words.

Example:

select id from library_catalog where contains(text,'(Bob the
Builder) INPATH(//item[@type="dvd"])") > 0;

The following will not return rows:

select id from library_catalog where contains(text,'(Bob the
Builder) INPAT H(/litem[@type="book"])’) > 0;

Numeric Equality

virginia INPATH (A[@B = 5))

Numeric literals are allowed. But they are treated as
text. The within equality is used to evaluate. This
means that the query does NOT match. That is, virginia does not match A[@B=5]
where "5.0", a decimal is not considered the same as
5, an integer.

Conjunctive Testing

virginia INPATH (A[B AND C])

virginia INPATH (A[B AND @C =
“f00")...

Predicates can be conjunctively combined.

Combining Path and
Node Tests

virginia INPATH (A[@B = *fo0’)/C/D)
virginia INPATH(A//B[@C)/DIE])...

Node tests can be applied to any node in the path.

7-18 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Using HASPATH Operator for Path Searching in XML Documents

Use the HASPATHbperator to find all XML documents that contain a specified
section path. HASPATHSs used when you want to test for path existence. It is also
very useful for section equality testing. To find all XML documents where an order
has an item within it:

selectid from library_catalog
where contains(text HASPATH(orderfitem)) > 0;

will return all documents where the top-level tag is a order element which has a
item element as a direct child.

In Oracle9i, Oracle Text introduces a new section type and new query operators
which support an XPath-like query language. Indexes of type context with XML
path searching are able to perform very complex section searches on XML
documents. Here are more examples of path querying using INPATH and HASPATH
Assuming the following XML document:

<?xml version="1.0"?>
<order>
<item type="book">
<tile>Crypto<ftitie>
<author>Levi</author>
<ftem>
<item type="dvd">
<tite> Bob the Builder<ftitle>
<author>Auerbach</author>
<ftem>
<item type="book>
<tile>Don Quijote<fitie>
<author>Cervantes</author>
<ftem>
<forder>

In general, use INPATH and HASPATHbperators only when your index has been
created with PATH_SECTION_GROUBse of PATH_SECTION_GROUdhables path
searching. Path searching extends the syntax of the WITHIN operator so that the
section name operand (right-hand-side) is a path instead of a section name.

Searching XML Data with Oracle Text 7-19

INPATH or HASPATH Operators Search Using XPath-Like Expressions

Using HASPATH Operator for Path Existence Searching

Note: The HASPATHbperator functions in a similar fashion to the
existsNode() in XMLType.

Only use the HASPATHbperator when your index has been created with the
PATH_SECTION_GROUPhe syntax for the HASPATHbperator is:

« WHERE CONTAINS(column, '"HASPATH(path)'...): Here HASPATHsearches an
XML document set and returns a score of 100 for all documents where path
exists. Parent and child paths are separated with the / character, for example,
A/B/C. For example, the query:

.WHERE CONTAINS (col, HASPATH(A/BIC))>0;

finds and returns a score of 100 for the document:
<AS<C>Virginia</C>

without having to reference Virginia at all.

« WHERE CONTAINS(column, '"HASPATH(A="value”)’...): Here the HASPATH
clause searches an XML document set and returns a score of 100 for all
documents that have element A with content value and only that value.
HASPATHSs used to test equality. This is the "Section Equality Testing" feature of
the HASPATHbperator. The query:

.. WHERE CONTAINS virginia INPATH A
finds <A>virginia, but it also finds <A>virginia state. To limit the

guery to the term virginia and nothing else, you can use a section equality test
with the HASPATHbperator. For example:

.. WHERE CONTAINS (col HASPATH(A='Virginia"y

finds and returns a score of 100 only for the first document, and not the second.

Tag Value Equality Testing
You can do tag value equality test with HASPATH

selectid from library_catalog
where CONTAINS(text, HASPATH (//author="Auerbach')) >0;

7-20 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 1. Create a Section Group Preference

Building a Query Application with Oracle Text
To build a Oracle Text query application carry out the following steps:

1. Create a section preference group. Before you create a section group and
Oracle text index you must first determine the role you will need and grant the
appropriate privilege. See "Oracle Text Users and Roles" on page 7-5, and grant
the appropriate privilege.

After creating and preparing your data, you are ready to perform the next step.
See "Step 1. Create a Section Group Preference” on page 7-21.

2. Add sections or stop_sections

3. Create an Oracle Text index based on the section group you created. Using the
section preference created, you then create an Oracle Text index. See Building a
Query Application with Oracle Text.

4. Build your query application using the CONTAINSoperator. Now you can
finish building your query application. See "Building a Query Application with
Oracle Text".

What Role Do You Need?

First determine the role you need. See Oracle Text Reference and "Oracle Text Users
and Roles" on page 7-5, and grant the appropriate privilege as follows:

CONNECT system/manager
GRANT ctxapp to scott;
CONNECT scottfiger

Step 1. Create a Section Group Preference

The first thing you must do is create a preference. This section describes how to
create section preferences using PATH_SECTION_GROURML_SECTION_GROUP
and AUTO_SECTION_GROURible 7-3 describes the groups and summarizes their
features.

Searching XML Data with Oracle Text 7-21

Step 1. Create a Section Group Preference

Table 7-3 Comparing Oracle Text Section Groups

Section Group

Description

XML_SECTION_GROUP

Use this group type for indexing XML documents and for defining sections in
XML documents.

AUTO_SECTION_GROUP

Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. The section names derived from XML
tags are case-sensitive as in XML. Attribute sections are created automatically for
XML tags that have attributes. Attribute sections are named in the form
attribute@tag. Stop sections, empty tags, processing instructions, and comments
are not indexed. The following limitations apply to automatic section groups:

« You cannot add zone, field or special sections to an automatic section group.

« Automatic sectioning does not index XML document types (root elements.)
However, you can define stop-sections with document type.

« The length of the indexed tags including prefix and namespace cannot exceed
64 characters. Tags longer than this are not indexed.

PATH_SECTION_GROUP

Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUWIth this section group you can do path searching with
the INPATH and HASPATHbperators. Queries are case-sensitive for tag and
attribute names.

How is PATH_SECTION_GROUP Similar to AUTO_SECTION_GROUP?

Documents are assumed to be XML, Every tag and every attribute is indexed by
default, Stop sections can be added to prevent certain tags from being indexed,
Only stop sections can be added -- ZONE, FIELD , and SPECIAL sections cannot
be added, When indexing XML document collections, you do not need to
explicitly define sections as Oracle automatically does this for you.

How Does PATH_SECTION_GROUP Differ From AUTO_SECTION_GROUP?

Path Searching is allowed at query time (see "Case Study: Searching XML-Based
Conference Proceedings” and "You can use INPATH operator to perform path
searching in XML documents. Table 7-2 summarizes the ways you can use the
INPATH operator for path searching.” on page 7-13) with the new INPATH and
HASPATHbperators, Tag and attribute names are case-sensitive in queries.

Note: If you are using the AUTO_SECTION_GROUBr
PATH_SECTION_GROU® index an XML document collection, you
need not explicitly define sections since the system does this for
you during indexing.

7-22 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 1. Create a Section Group Preference

Deciding Which Section Group to Use

How do you determine which section groups is best for your application? This
depends on your application. Table 7-4 lists some general guidelines to help you
decide which of the XML_, AUTO, or PATH_section groups to use when indexing
your XML documents, and why.

Table 7-4 Guidelines for Choosing XML_, AUTO_, or PATH_ Section Groups

Application Criteria XML_section_... AUTO_section_... PATH_section_...

You are using XPATH search features -- - Yes

You know the layout and structure of Yes - -

your XML documents, and you can

predefine the sections on which users

are most likely to search.

You do not know which tags users - Yes -

are most likely to search.

Query performance, in general Fastest Little slower than Little slower than
XML _section_... AUTO_section_...

Indexing performance, in general Fastest Little slower than Little slower than
XML _section_... AUTO_section_...

Index size Smallest Little larger than Little larger than

XML_section_...

AUTO_section_...

Other features

Mappings can be
defined so that tags in
one or different DTDs
can be mapped to one
section. Good for DTD
evolution and data
aggregation.

Simplest. No need to
define mapping,
add_stop_section can
be used to ignore
some sections.

Designed for more
sophisticated XPATH-
like queries

Creating a Section Preference with XML_SECTION_GROUP

The following command creates a section group called, xmlgroup, with the
XML_SECTION_GROUgtoup type:

EXEC ctx_ddl.create_section_group(myxmigroup’, XML_SECTION_GROUP);

Creating a Section Preference with AUTO_SECTION_GROUP

You can set up your indexing operation to automatically create sections from XML
documents using the section group AUTO_SECTION_GROURere, Oracle creates

Searching XML Data with Oracle Text 7-23

Step 2. Set the Preference’s Attributes

zone sections for XML tags. Attribute sections are created for those tags that have
attributes, and these attribute sections are named in the form “tag@attribute.”

The following command creates a section group called autogroup with the
AUTO_SECTION_GROUWJjroup type. This section group automatically creates
sections from tags in XML documents.

EXEC ctx_ddl.create_section_group(autogroup’,'’AUTO_SECTION_GROUPY;

Note: You can add attribute sections only to XML section groups.
When you use AUTO_SECTION_GROU&tribute sections are
created automatically. Attribute sections created automatically are
named in the form tag@attribute.

Creating a Section Preference with PATH_SECTION_GROUP

To enable path section searching, index your XML document with
PATH_SECTION_GROUFRor example:

EXEC ctx_ddl.create_section_group(xmipathgroup','PATH_SECTION_GROUP);

Step 2. Set the Preference’s Attributes

To set the preference’s attributes for XML_SECTION_GROU#&se the following
procedures:

« Add_Zone_Section

« Add_Attr_Section

« Add_Field_Section

« Add_Special_Section

To set the preference’s attributes for AUTO_SECTION_GROUind
PATH_SECTION_GROU#se the following procedures:

« Add_Stop_Section

There are corresponding CTX_DDLDROPsections and CTX_DDLREMOVEection
commands.

7-24 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 2. Set the Preference’s Attributes

2.1 XML_SECTION_GROUP: Using CTX_DDL.add zone_section
The syntax for CTX_DDLadd_zone_section follows:

CTX _DDL.Add_Zone_Section (

group_name =>'my_section_group' *whatever you called itin the
preceding section */

section_name =>‘author' *what you want to call this section */

tag =>'my_tag'/* what represents itin XML */);

where ‘'my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_zone_section Guidelines
add_zone_section guidelines are listed here:

« Call CTX_DDLAdd_Zone_Section for each tag in your XML document that
you need to search on.

2.2 XML_SECTION_GROUP: Using CTX_DDL.Add_Attr_Section
The syntax for CTX_DDLADD_ATTR_SECTIONollows:

CTX _DDL.Add_Attr_Section (/* call this as many times as you heed to describe
the attribute sections */

group_name =>'my_section_group' /* whatever you called itin the

preceding section */

section_name =>'author' /*what you want to call this section */

tag =>'my_tag'/* what represents it in XML */);

where 'my_tag’ implies opening with <my_tag> and closing with </my_tag>.

Add_Attr_Section Guidelines
Add_Attr_Section guidelines are listed here:

« Consider meta_data attribute author:
<meta_data author = “John Smith” title="How to get to Mars”>

ADD_ATTR_SECTIOMdds an attribute section to an XML section group. This
procedure is useful for defining attributes in XML documents as sections. This
enables searching XML attribute text with the WITHIN operator.

The section_name:

« Isthe name used for WITHIN queries on the attribute text.

Searching XML Data with Oracle Text 7-25

Step 2. Set the Preference’s Attributes

« Cannot contain the colon (:) or dot (.) characters.
« Must be unique within group_name.

« Iscase-insensitive.

« Can be no more than 64 bytes.

The tag specifies the name of the attribute in tag@attr format. This is case-sensitive.

Note: Inthe ADD_ATTR_SECTIONrocedure, you can have many
tags all represented by the same section name at query time.
Explained in another way, the names used as the arguments of the
keyword WITHIN can be different from the actual XML tag names.
That is many tags can be mapped to the same name at query time.
This feature enhances query usability.

2.3 XML_SECTION_GROUP: Using CTX_DDL.Add_Field_Section
The syntax for CTX_DDLAdd_Field_Section follows:

CTX_DDL.Add Field_Section (
group_name => 'my_section_group' / whatever you called it in the preceding
section*/
section_name =>'qq' #*what you want to call this section */
tag =>'my_tag' /*what represents itin XML */);
visble =>TRUEorFALSE);

Add_Field_Section Guidelines
Add_Field_Section guidelines are listed here:

« Searches using Field_Sections are faster than those using Zone_Section.

« Visible attribute: This is available in Add_Field_Section but not available in the
Add_Zone_section. If VISIBLE is set to TRUE then the text within the Field
section will be indexed as part of the enclosing document. For example:

<state> Virginia </state>

CTX _DDL.Add_Field Section (
group_name =>'my_section_group'
section_name =>'state’
g =@
visble =>TRUEorFALSE);

7-26 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 2. Set the Preference’s Attributes

If visible s set to TRUE, then searching on Virginia without specifying the
state Field section produces a hit.

If visible is set to FALSE, then searching on Virginia without specifying the
state Field section does not produce a hit.

How Attr_Section Differs from Field_Section
Attribute section differs from Field section in the following ways:

Attribute text is considered invisible, hence the following clause:
WHERE CONTAINS (..., ... jeeves’,..)...

does NOT find the document. This is similar to when Field sections have
visible set to FALSE. Unlike Field sections, however, Attribute section within
searches can distinguish between occurrences. Consider the document:

<comment author="jeeves™>
I really like Oracle Text
</comment>
<comment author="bertram’>
Metoo
</comment>

the query:
WHERE CONTAINS (..., (cryil and bertram) WITHIN author’, ..)...

will NOT find the document, because "jeeves" and "bertram™ do not occur
within the SAME attribute text.

Attribute section names cannot overlap with zone or field section names
although you can map more than one tag@attr to a single section name.
Attribute sections do not support default values. Given the document:

<IDOCTYPE foo |
<IELEMENT foo (bar)>
<IELEMENT bar (#PCDATA)>

<IATTLIST bar

rev CDATA"8"™>
P
<foo>
<bar>whatever</bar>
<ffoo>

and attribute section:

Searching XML Data with Oracle Text 7-27

Step 3. Create an Index Using the Section Preference Created in Step 2

ctx_ddladd_attr_section(mysg,barrev, bar@rev;

the query:

8i within barrev does not hit the document, although in XML semantics, the
“bar” element has a default value for its “rev” attribute.

2.5 AUTO_SECTION_GROUP: Using CtX_DDL.Add_Stop_Section

CtX_DDL.Add_Stop_Section (

group_name =>'my_section_group'/* whatever you called itin the preceding
section */

section_name =>'qq #*what you want to call this section */);

Step 3. Create an Index Using the Section Preference Created in Step 2

Create an index depending on which section group you used to create a preference:

Creating an Index Using XML_SECTION_GROUP

To index your XML document when you have used XML_SECTION_GROUffou can
use the following statement:

CREATE INDEX myindex ON docs(htmifile) INDEXTYPE IS ctxsys.context
parameters(‘'section group xmigroup));

See Also: "Creating an Index Using XML_SECTION_GROUP" on
page 7-29.

Creating an Index Using AUTO_SECTION_GROUP

The following statement creates the index, myindex, on a column containing XML
files using the AUTO_SECTION_GROUP

CREATE INDEX myindex ON xmidocs(xmiffile) INDEXTYPE IS cixsys.context PARAMETERS
(‘'section group autogroup));

Creating an Index Using PATH_SECTION_GROUP

To index your XML document when you have used PATH_SECTION_GROUfou
can use the following statement:

CREATE INDEX myindex ON xmidocs(xmlfile) INDEXTYPE IS cixsys.context PARAMETERS
(‘'section group xmipathgroup);

7-28 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 3. Create an Index Using the Section Preference Created in Step 2

See Also: Oracle Text Reference for detailed notes on CTX_DDL

Example 7-3 Creating an Index Using XML_SECTION_GROUP
EXEC ctx_dd|_create_section_group(myxmigroup', XML_SECTION_GROUP);

/* ADDING A FIELD SECTION */
EXEC ctx_ddl.Add_Field_Section * THISISKEY ¥/
(group_name =>'my_section_group',
section_name =>author'/* do this for EVERY tag used after "WITHIN"*/
tag =>author
)

EXEC ctx_ddl.Add_Field_Section * THISISKEY ¥/
(group_name =>my_section_group',
section_name =>'document. fdo this for EVERY tag after "WITHIN"*/
tag =>document
)

/
F* ADDING AN ATTRIBUTE SECTION */
EXEC ctx_ddl.add_attr_section(myxmigroup’, booktite', ook @tite);

F*The more sections you add to your index, the longer your search will take.*/

F* Useful for defining attributes in XML documents as sections. This allows*/

F*you to search XML attribute text using the WITHIN operator.*/

F The section name:

F**|s used for WITHIN queries on the attribute text.

** Cannot contain the colon () or dot () characters.

** Must be unique within group_name.

**|s case-insensitive.

** Can be no more than 64 bytes.

* The tag specifies the name of the attribute in tag@attr format. This is
case-sensitive. */

FNames used as arguments of the keyword WITHIN can be different from the
actual XML tag names. Many tags can be mapped to the same name at query
time*/

F Cal CTX_DDL.Add_Zone_Section for each tag in your XML document that you need

tosearchon.*/

EXEC ctx_ddl.add_zone_section(myxmigroup’, mybooksec', 'mydocname(book));

CREATE INDEX my_index ON my_table (my_column)
INDEXTYPE IS ctxsys.context

Searching XML Data with Oracle Text

7-29

Step 4. Create Your Query Syntax

PARAMETERS ('SECTION GROUP my_section_group');

SELECT my_column FROM my_table
WHERE CONTAINS(my_column, 'smith WITHIN author) > 0;

Step 4. Create Your Query Syntax

See the section, "Querying with the CONTAINS Operator" for information about
how to use the CONTAINSoperator in query statements.

Querying Within Attribute Sections

You can query within attribute sections when you index with either
XML_SECTION_GROUst AUTO_SECTION_GROUR your section group type.

Assume you have an XML document as follows:
<hook tile="Tale of Two Cities">lt was the best of times.</book>
You can define the section titte@book as the attribute section title. You can do so

with the CTX_DLLAdd_Attr_Section procedure or dynamically after indexing
with ALTER INDEX.

Note: When you use the AUTO_SECTION_GROUB index XML
documents, the system automatically creates attribute sections and
names them in the form attribute @tag

If you use the XML_SECTION_GROU¥ou can name attribute sections anything
with CTX_DDLADD_ATTR_SECTION

To search on Tale within the attribute section title, issue the following query:
WHERE CONTAINS (..., Tale WITHIN title', ...)

When you define the TITLE attribute section as such and index the document set,
you can query the XML attribute text as follows:

... WHERE CONTAINS (..., Cities WITHIN bookitie',)...

When you define the AUTHOR attribute section as such and index the document
set, you can query the XML attribute text as follows:

... WHERE 'England WITHIN authors'

7-30 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 4. Create Your Query Syntax

Example 7-4 Querying an XML Document
This example does the following:

1. Creates and populates table res_xml

2. Creates an index, section_group, and preferences
3. Paramaterizes the preferences

4. Runs atest query against res_xml

drop table res_xml;

CREATE TABLE res_xm (
pk NUMBERPRIMARY KEY,
text CLOB

);

insertinto res_xml values(111,

‘ENTITY chap8 "Chapter 8, <g>Keeping it Tidy: the XML Rule Book </g>"> this is
the document section’);
commit;

— scriptto create index onres_xml

— cleanup, in case we have run this before
DROP INDEX res_index ;
EXEC CTX_DDL.DROP_SECTION_GROUP ('res_sections') ;

— Create a section group

BEGIN
CTX_DDL.CREATE_SECTION_GROUP ('res_sections, XML_SECTION_GROUF');
CTX _DDLADD_FIELD SECTION ('res_sections, ‘chap8, '<g>) ;

END;

/

begin
ctx_ddl.create_preference
(

preference_name =>'my_basic_lexer,

object name =>'basic_lexer

)

ctx_ddl.set attibute
(

Searching XML Data with Oracle Text 7-31

Step 4. Create Your Query Syntax

preference_name =>'my_basic_lexer’,
atiribute_name =>index_text,
attribute_value => frue’

ctx_ddl.set_attribute
(
preference_name =>'my_basic_lexer’,
atiribute_name =>index_themes,
attribute_value => false);
end,;
/

CREATE INDEX res_index
ONres_xmi(text)
INDEXTYPE IS cixsys.context
PARAMETERS ('lexer my_basic_lexer SECTION GROUP res_sections') ;

Test the preceding index with a test query, such as:
SELECT pk FROM res_xml WHERE CONTAINS(text, keeping WITHIN chap8' >0 ;

Example 7-5 Creating an Index and Performing a Text Query
drop table explain_ex;

create table explain_ex

(
id number primary key,
text varchar(2000)

)

insertinto explain_ex (id, text)
values (1, thinks thinking thought go going goes gone went || chr(10) ||

'oracle orackle oricle dog cat bird' [| chr(@0) ||
‘President Clinton');
insertinto explain_ex (id, text)
values (2, 'Last summer | went to New England' [l chr(20) ||
Thiked a lot' || chr(20) ||
lcampedabit');
commit;

Example 7-6 Text Query Using "ABOUT" in the Text Query Expression

Set Define Off
select text
from explain_ex

7-32 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Step 4. Create Your Query Syntax

WHERE CONTAINS (text,
'($(think &go) , ?oracle) & (dog, (cat & bird)) & about(mammal
during Bill Clinton)') > 0;
select text
from explain_ex
WHERE CONTAINS (text, ‘about (camping and hiking in new england)’) >0;

Example 7-7 Creating an Index Using AUTO_SECTION_GROUP
ctx_ddl_create_section_group(auto’,'’AUTO_SECTION_GROUPY);
CREATE INDEX myindex ON docs(xmlfile_column)

INDEXTYPE IS cixsys.context
PARAMETERS (fitter ctxsys.null_fitter SECTION GROUP auto);

SELECT xmifile_column FROM docs
WHERE CONTAINS (xmlfile_column, ‘virginia WITHIN tite’)>0;

Example 7-8 Creating an Index Using PATH_SECTION_GROUP
EXEC ctx_ddl.create_section_group(xmlpathgroup’, PATH_SECTION_GROUP);

CREATE INDEX myindex ON xmidocs(xmlfile_column)
INDEXTYPE IS ctxsys.context
PARAMETERS (‘section group xmipathgroup));

SELECT xmifile_column FROM xmidocs
... WHERE CONTAINS (column, Tale WITHIN tile@book’)>0;

Example 7-9 Using XML_SECTION_GROUP and add_attr_section to Aid Querying
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">

It was the best of imes. </BOOK>

<Author="Charles Dickens">

Bom in England in the town, Stratford_Upon_Avon </Author>

Recall the CTX_DDLADD_ATTR_SECTIONyntax is:
CTX _DDL.Add_Atlr_Section (group_name, section_name, tag);

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:

ctx_ddl create_section_group(myxmigroup’, XML_SECTION_GROUP);

Searching XML Data with Oracle Text 7-33

Presenting the Results of Your Query

ctx_ddladd_attr_section(myxmigroup’, booktitie', book@titie);
ctx_ddladd_atir_section(myxmigroup’, ‘authors,, ‘author’;
end;

Note:

« Oracle knows what the end tags look like from the group_type
parameter you specify when you create the section group. The
start tag you specify must be unique within a section group.

« Section names need not be unique across tags. You can assign
the same section name to more than one tag, making details
transparent to searches.

Presenting the Results of Your Query

An Oracle Text query application enables viewing documents returned by a query.
You typically select a document from the hit list and then your application presents
the document in some form.

With Oracle Text, you can render a document in different ways. For example, with
the query terms highlighted. Highlighted query terms can be either the words of a
word query or the themes of an ABOUT query in English. This rendering uses the
CTX_DOMHIGHLIGHT or CTX_DOQVARKURrocedures.

You can also obtain theme information from documents with the CTX_DOCHEMES
PL/SQL package. Besides these there are several other CTX_DOGrocedures for
presenting your query results.

INPATH does not support working with highlighting or themes.

See Also: Oracle Text Reference for more information on the
CTX_DOackage.

7-34 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

XMLType Indexing

XMLType Indexing

The Oracle9i datatype for storing XML, XMLType, is a core database feature.

You Need Query Rewrite Privileges

Note: These privileges are only required for Oracle9i Release 1
(9.0.2).

You can create an Oracle Text index on this type, but you need a few database
privileges first:

1.

The user creating the index must have Query Rewrite privileges:
GRANT QUERY REWRITE TO <user>

Without this privilege, the create index will fail with:

ORA-01031: insufficient privileges

<user> should be the user creating the index. The database schema that owns
the index, if different, does not need the grant.

query_rewrite_enabled should be true, and query_rewrite_integrity should be
trusted. You can add them to the init.ora file:

query_rewrite_enabled=true
query_rewrite_integrity=trusted

or turn it on for the session as follows:
ALTER SESSION SET query_rewrite_enabled=true;
ALTER SESSION SET query_rewrite_integrity=trusted;
Without these, queries will fail with:
DRG-10599: column is not indexed

These privileges are needed because XMLType is really an object, and you access it
through a function, hence an Oracle Text index on an XMLType column is actually a
function-based index on the getclobval() method of the type. These are the
standard grants you need to use function-based indexes, however, unlike
function-based B-Tree indexes, you do not need to calculate statistics.

Searching XML Data with Oracle Text 7-35

XMLType Indexing

Note: Oracle9i SQL Reference under CREATE INDEX, states:

To create a function-based index in your own schema on your own
table, in addition to the prerequisites for creating a conventional
index, you must have the QUERY REWRITE system privilege.

To create the index in another schema or on another schema's table,
you must have the GLOBAL QUERY REWRITE privilege. In both
cases, the table owner must also have the EXECUTE object
privilege on the function(s) used in the function-based index.

In addition, in order for Oracle to use function-based indexes in
queries, the QUERY_REWRITE_ENABLED parameter must be set
to TRUE, and the QUERY_REWRITE_INTEGRITY parameter must
be set to TRUSTED.

System Parameter is Set to the Default, CTXSYS.PATH_SECTION_GROUP

When an XMLType column is detected, and no section group is specified in the
parameters string, the default system examines the new system parameter
DEFAULT _XML_SECTIONnd uses the section group specified there. At install time
this system parameter is set to CTXSYS.PATH_SECTION_GROURhich is the
default path sectioner.

The default filter system parameter for XMLType is DEFAULT_FILTER_TEXT
which means that the INSO filter is not engaged by default.

XMLType Indexes Work Like Other Oracle Text Indexes

Other than the database privileges and the special default section group system
parameter, indexes on XMLType columns work like any other Oracle Text index.

Example 7-10 Creating a Text Index on XMLType Columns
Here is a simple example:

connect ctxsys/ctxsys
GRANT QUERY REWRITE TO xtest;
connect xtest/xtest

CREATE TABLE xtest(doc sysxmitype);
INSERT INTO xtest VALUES (sys.xmitype.createxml(<A>simple");

CREATE INDEX xtestx ON xtest(doc)

7-36 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text with Oracle XML DB

INDEXTYPE IS ctxsys.context;
ALTER SESSION SET query_rewrite_enabled =true;
ALTER SESSION SET query_rewrite_integrity = trusted;

SELECT a.doc.getclobval() FROM xtest a
WHERE CONTAINS (doc, 'simple INPATH(A))>0;

Using Oracle Text with Oracle XML DB

Creating an Oracle Text Index on an UriType Column

UriType columns can be indexed natively in Oracle9i database using Oracle Text.
No special datastore is needed.

Example 7-11 Creating an Oracle Text Index on a UriType Column
For example:

CREATE TABLE table uri_tab (ur sys.httpuritype);

INSERT INTO uri_tab VALUES
(sys. httpuritype.createUri(http:/Avwv.oracle.com));

CREATE INDEX urix ON uri_tab(ur]) INDEXTYPE IS ctxsys.context;
SELECT url FROM uri_tab WHERE CONTAINS(url, ‘Oracle’)>0;

Table 7-5 lists system parameters used for default preference names for Oracle Text
indexing, when the column type is UriType :

Table 7-5 rUriType Column Default Preference Names for Oracle Text Indexing

URIType Column Default Preference Names
DATASTORE DEFAULT_DATASTORE
FILTER DEFAULT_FILTER_TEXT
SECTION GROUP DEFAULT_SECTION_HTML
LEXER DEFAULT_LEXER
STOPLIST DEFAULT_STOPLIST
WORDLIST DEFAULT_WORDLIST
STORAGE DEFAULT_STORAGE

Searching XML Data with Oracle Text 7-37

Using Oracle Text with Oracle XML DB

Querying XML Data: Use CONTAINS or existsNode()?

Oracle9i Release 1(9.0.1) introduced the Oracle Text PATH_SECTION_GROUP,
INPATH() , and HASPATHY{ query operators. These allow you to do XPath-like text
guery searches on XML documents using the CONTAINSoperator. CONTAINS
however, supports only a subset of XPath functionality. Also, there are important
semantic differences between the CONTAINSoperator and the existsNode()
function.

The existsNode , extract() and extractValue() SQL functions (and the
corresponding member functions of XMLType) provide full XPath support. This
release of Oracle9i also introduces new extension functions to XPath to support full
text searches.

Note: This release does not support theme querying for Oracle
Text CONTAINS() and existsNode() searching.

Table 7-6 lists and compares CONTAINS() and existsNode() features for
searching XMLType data.

Table 7-6 Using CONTAINS() and existsNode() to Search XMLType Data
Feature CONTAINS() existsNode()

XPath Conformance -- -

Predicate Support

« String equality

« Numerical equality

« Range Predicates

« XPath functions

« Spaces

- Namespaces

« Value case sensitivity

« Entity handling

z|\ 2|12 z2z|z2|2|2|2|<
<|=<|=<|=<|=<|=<|=<|=<|=<

= Parent-ancestor and
sibling axes

7-38 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text with Oracle XML DB

Table 7-6 Using CONTAINS() and existsNode() to Search XMLType Data (Cont.)

Feature CONTAINS() existsNode()
« Attribute searching Y Y
under wild cards. For
example, */@Aor ../
« Uses XML schema or N Y
DTD information
« Empty elements may Y N
lead to false matches
Synchronous - --
. DML N CTXXPath =N
Other indexes =Y
« Query N Y
Linguistic search capability In INPATH() ->Y Using ora:contains() -> Y
Index type ctxsys.context ctxsys.ctxxpath
Query rewrites N Y, if XML schema-based
and stored

object-relationally

Functional indexes

N Y. Can create Functional
Index on existsNode() and
extractValue() expressions.

Features supported if context
index is already built

. About

Y N

« Highlighting

Y N

Text searching in general

Supports full text Supports limited text
searching. searching with
ora:contains.

XPath searching in general

Limited XPath Full XPath searching.
searching. Synchronous.
Non-synchronous.

Searching XML Data with Oracle Text

7-39

Full-Text Search Functions in XPath Using ora:contains

Full-Text Search Functions in XPath Using ora:contains

Though XPath specifies a set of builtin text functions such as substring() and
CONTAINS(), these are considerably less powerful than Oracle's full text search
capabilities. New XPath extension functions are defined by Oracle to enable a richer
set of text search capabilities. These extension functions are defined within the
Oracle XML DB namespace : http://xmins.oracle.com/xdb

They can be used within XPath queries appearing in the context of existsNode()
extract() and extractValue() functions operating on XMLType instances.

Note: Like other procedures in CTX_DDLpackage, you must have
CTXAPPprivilege in order to execute the
CTX_DDL.CREATE_POLICY() procedure.

ora:contains Features
The following lists the ora:contains features:

« The text search extension functions support most of text query operators such
as stemming, fuzzy matching, and proximity search.

« These functions do not require a ConText index for their evaluation.

« The score values computed by these functions may differ from the regular
index based query processing (through Contains SQL operator). Due to absence
of document statistics, the weight for each term is fixed to 10. This means that a
score for a word search is the number of occurrence multiplied by 10. If it
exceeds 100, it is truncated to 100. This is also true for fuzzy matched terms.

ora:contains Syntax
The following is the syntax for the ora:contains function:
number contains(string, string, string?, string?)
where:
« string , the first argument is input text value
« string |, the second argument is the text query string
« string? |, the optional third argument is the policy name

« string? , the optional fourth argument is the policy owner

7-40 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Full-Text Search Functions in XPath Using ora:contains

The contains extension function in the Oracle XML DB namespace, takes the
input text value as the first argument and the text query string as the second
argument. It returns the score value - a number between 0 and 100.

The optional third and fourth arguments can be used to specify the name and
owner of the CTX policy which is to be used for processing the text query. If the
third argument is not specified, it defaults to the CTX policy named
DEFAULT_POLICY_ORACONTABbwned by CTXSYSIf the fourth argument is not
specified, the policy owner is assumed to be the current user.

ora:contains Examples

Assume the table xmltab contains XML documents corresponding to books with
embedded chapters, each chapter containing atitle and a body.

<book>

<chapter>
<title>...<fitle>
<body>...</body>

</chapter>

<chapter>
<title>...<fitle>
<body>...</body>

</chapter>

</book>

Example 7-12 Using ora:contains to Find a Text Query String
Find books containing a chapter whose body contains the specified text query
string:

select* from xmitab x where
existsNode(value(x), book/chapterjora:contains(body,"dog OR cat)>0],
xmins:ora="http://xmins.oracle.com/xdb™) = 1;

Example 7-13 Using ora:contains and extract() to Find a Text Query String

Extract chapters whose body contains the specified text query string.
select extract(value(x),
’bookichapterfora:contains(body,"dog OR cat')>0],
xmins:ora="http:/xmins.oracle.com/xdb'™)
from xmitab x;

Searching XML Data with Oracle Text 7-41

Oracle XML DB: Creating a Policy for ora:contains()

See Also: Oracle XML DB: Creating a Policy for ora:contains() on
page 7-42.

Oracle XML DB: Creating a Policy for ora:contains()

This section includes syntax and examples for creating, updating, and dropping a
policy for ora:contains()

The following CTX_DDLprocedures creates/updates/drops a policy used by
ora:contains()

A policy is a set of preferences used for processing ora:contains()

See Also:
« Oracle Text Application Developer’s Guide

= Oracle Text Reference

for a description of the Oracle Text preferences.

Table 7-7 describes the CTX_DDLfunctions for creating, updating, and dropping
policies for use in your XPath searches.

7-42 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB; Creating a Policy for ora:contains()

Table 7-7 CTX_DDL Syntax for Creating, Updating, and Dropping Policies

CTX_DDL Function

Description

CREATE_POLICY

CTX_DDL.create_policy(policy_name in varchar2, filter

in varchar2 default NULL, section_group in varchar2 default
NULL, lexer n varchar2 default NULL, stoplist in varchar2
default NULL, wordlist in varchar2 default NULL);

Defines a policy.

Arguments:

policy_name - the name for the new policy

filter - the filter preference to use (reserved for future use)

section_group - the section group to use (currently only
NULL_SECTION_GROUP is supported)

lexer - the lexer preference to use. This should not have
theme indexing turned on.

stoplist - the stoplist preference to use
wordlist - the wordlist preference to use

UPDATE_POLICY

CTX_DDL.update_policy(policy_name invarchar2, filter

in varchar2 default NULL, section_group in varchar2 default
NULL, lexer in varchar2 default NULL, stoplist in varchar2
default NULL, wordlist in varchar2 default NULL);

Updates a policy by replacing specified preferences.
Arguments:
policy_name - the name for the policy

filter - the new filter preference to use (reserved for future
use)

section_group - the new section group to use (currently only
NULL_SECTION_GROUP is supported)

lexer - the new lexer preference. This should not have theme
indexing turned on.

stoplist - the new stoplist preference to use
wordlist - the new wordlist preference to use

DROP_POLICY
CTX_DDL.drop_policy(policy_name in varchar2);

Deletes a policy.
Arguments:
policy_name - the name of the policy

Example 7-14 Creating a Policy for ora:contains

Create lexer preference named mylex:

begin

ctx_ddl.create_preference(mylex, BASIC_LEXERY);
ctx_ddl.set_attribute(mylex, ‘printjoins’,”_-);
ctx_ddl.set_attribute ('mylex, index_themes’, 'NO));
ctx_ddl.set_attribute ('mylex, index_text, 'YES));

end;

Searching XML Data with Oracle Text 7-43

Oracle XML DB: Creating a Policy for ora:contains()

Create a stoplist preference named mystop.
begin
ctx_ddl.create_stoplist'mystop’,' BASIC_STOPLIST);
ctx_ddl.add_stopword(mystop’, 'because’);
ctx_ddl.add_stopword(mystop', ‘nonetheless’);

ctx_ddl.add_stopword(mystop’, ‘therefore);
end;

Create a wordlist preference named 'mywordlist’.
begin

ctx_ddl.create_preference(mywordiist, BASIC_WORDLIST);
ctx_ddl.set_attribute(mywordiist, FUZZY_MATCH', ENGLISH);
ctx_ddl.set_attribute(mywordlist, FUZZY_SCORE',0);
ctx_ddlset_attribute(mywordiistFUZZY_NUMRESULTS','5000);
ctx_ddl.set attribute(mywordlist, SUBSTRING_INDEX, TRUE);
ctx_ddl.set

_attribute(mywordlist, STEMMER’ ENGLISHY);

end;

exec ctx_ddl.create_policy(my_policy’, NULL, NULL, 'mylex, 'mystop’,
‘mywordist);
or

exec ctx_ddl.create_palicy(policy_name =>'my_policy’,
lexer =>'mylex,
stoplist =>"mystop),
wordlist =>"mywordiist);

Then you can issue the following existsNode() guery with your own defined
policy:

select * from xmitab x where
existsNode(value(x),
'book/chapter{ora:contains(body,"dog OR cat", "my_poalicy >0,
xmins:ora="http//xmins.oracle.com/xdb™) = 1;

You can also update your policy by using the following:

exec ctx_ddl.update_policy(policy_name =>'my_poalicy,
lexer=>"my_new_lex);

You can drop your policy by using:

7-44 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB; Using CTXXPATH Indexes for existsNode()

exec ctx_ddl.drop_policy(policy_name =>'my_policy);

Querying Using Other User’s Policy
You can also issue the existsNode() guery using another user’s policy, in this
case, using Scott’s policy:

Example 7-15 Querying Another User’s Policy

select* from xmitab x where
existsNode(value(x),
'hook/chapter{ora:contains(body,"dog OR cat", "Scotts_policy’","Scott >0,
xmins:ora="http:/xmins.oracle.comxdb™) = 1,

Oracle XML DB: Using CTXXPATH Indexes for existsNode()

The existsNode() SQL function, unlike the CONTAINSoperator, cannot use
ConText indexes to speed up its evaluation. To improve the performance of XPath
searches in existsNode() , this release introduces a new index type, CTXXPATH

The CTXXPATHNdex is a new indextype provided by Oracle Text. It is designed to
serve as a primary filter for existsNode() processing, that is, it produces a
superset of the results that would be produced by the existNode() function.

Why do We Need CTXXPATH When ConText Indexes Can Perform XPath Searches?

The existing ConText index type already has some XPath searching capabilities,
but the ConText index type has some limitations:

« For the ConText index to be usable as a primary filter for existsNode()
= You must create the index using PATH_SECTION_GROUP

= You cannot create the index with USER_LEXERIr MULTI_LEXER
preference.

« You must create the index with DIRECT DATASTORE.
« You must create the index with NULL FILTER.

This limits the linguistic searching capabilities that ConText index type
provides.

« The ConText index is asynchronous and does not follow the same
transactional semantics as existsNode()

Searching XML Data with Oracle Text 7-45

Oracle XML DB: Using CTXXPATH Indexes for existsNode()

The ConText index does not handle namespaces nor user-defined entities.

With all these limitations in mind, CTXXPATHnNdex type was designed specifically
to serve the purpose of existsNode() primary filter processing. You can still
create ConText indexes with whichever preferences you need on XMLType
columns, and this will be used to speed up CONTAINSoperators. At the same time,
you can create a CTXXPATHNdex to speedup the processing of existsNode()

CTXXPATH Index Type
CTXXPATHNdex type has the following characteristics:

This index can only be used to speed up existsNode() processing. It acts as
a primary filter for the existsNode() function. In other words, it provides a
superset of the results that existsNode() would provide

The index can only handle a limited set of XPath expressions. See the Section,
"Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing”
for the list of XPath expressions not supported by the index.

The only supported parameter is the TABLESPACE parameter. See "Creating
CTXXPATH Storage Preferences with CTX_DDL. Statements” on page 7-47.

DMLs are asynchronous. Users are required to issue a special DDL command to
synchronize the DMLs, similar to that of ConText index.

Despite the asynchronous nature of DML, it still follows transactional semantics
of existsNode() by also returning unindexed rows as part of its result set in
order to guarantee its requirement of returning a superset of the valid results.

Creating CTXXPATH Indexes

You create CTXXPATHNdexes the same way you create ConText indexes. The
syntax is the same as that of ConText index:

CREATE INDEX [schema.]index ON [schema_]table(XMLType column)

INDEXTYPE IS ctxsys.CTXXPATH [PARAMETERS(paramstring);

where

paramstring = [storage storage_pref] [memory memsize] [populate | nopopulate]

Example 7-16 Creating CTXXPATH Indexes
For example:

CREATE INDEX xml_idx ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH;

7-46 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Oracle XML DB; Using CTXXPATH Indexes for existsNode()

or

CREATE INDEX xml_idx ON xml_tab(col_xmi) indextype is ctxsys.CTXXPATH
PARAMETERS('storage my_storage memory 40M);

The index can only be used to speed up queries using existsNode()

SELECT xml_id FROM xml_tab x WHERE
x.col_xml.existsnode(/book/chapter{@tile="XML"T)>1;

See Also: Chapter 4, "Using XMLType" for more information on
using existsNode()

Creating CTXXPATH Storage Preferences with CTX_DDL. Statements

The only preference allowed for CTXXPATHnNdex type is the STORAGPreference.
You create the STORAGPreference the same way you would for a ConText index

type.

Example 7-17 Creating Storage Preferences for CTXXPATH Indexes
For example:

begin

ctx_ddl.create _preference(mystore’, ' BASIC_STORAGE);

ctx_ddl.set_attribute(mystore’,’| TABLE_CLAUSE,
tablespace foo storage (initial 1K));

ctx_ddl.set_attribute(mystore’,'K_TABLE_CLAUSE,
tablespace foo storage (initial 1K));

ctx_ddl.set_attribute(mystore’,'R_TABLE _CLAUSE,
‘tablespace foo storage (initial 1K));

ctx_ddl.set_attribute(mystore’,'N_TABLE_CLAUSE,
‘tablespace foo storage (initial 1K));

ctx_ddl.set_attribute(mystore’,| INDEX_CLAUSE,
tablespace foo storage (initial 1K));

end;

Performance Tuning CTXXPATH Index: Synchronizing and Optimizing the Index

To synchronize DMLs, you can use the SYNC_INDEXprocedure provided in the
CTX_DDLpackage.

Searching XML Data with Oracle Text 7-47

Oracle XML DB: Using CTXXPATH Indexes for existsNode()

Example 7-18 Optimizing the CTXXPATH Index

For example:

exec ctx_ddl.sync_index(xml_idx);

To optimize the CTXXPATHnNdeX, you can use the OPTIMIZE_INDEX() procedure
provided in the CTX_DDLpackage. For example:

exec ctx_ddl.optimize_index(xml_idx, FAST);

or
exec ctx_ddl.optmize_index(xml_idx, 'FULL);

See Also:
« Oracle Text Application Developer’s Guide

« Oracle Text Reference

Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing

It is not guaranteed that a CTXXPATHnNdex will always be used to speed up
existsNode() processing . The following is a list of reasons why Oracle Text
index may not be used under existsNode():

« The Cost Based Optimizer decides it is too expensive to use CTXXPATHndex as
primary filter.

« The XPath expression cannot be handled by CTXXPATHnNdex. Here are a list of
XPath constructs CTXXPATHnNdex cannot handle:

« XPATH functions.

« Numerical Range operators.
« Numerical equality.

« Arithmetic operators.

« Union operator “|”

« Existence of attribute

« Positional/Index predicate, that is, /A/B[5].
« Parent and sibling axes

. attribute following a *, //,.., in other words,’/A/*/@attr’, '/A//@attr’,
IA// . /Qattr’

7-48 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques

« . or ' atthe end of the path expression.
« predicate following ’.” or ™.
« String literal equality is supported with the following restrictions:

* The left hand side must be a path (’." self by itself is not
allowed,.="dog™).

* The right hand side must be a literal.

For the Optimizer to better estimate the costs and selectivities for the
existsNode() function, you must gather statistics on CTXXPATHndex by using
ANALYZE command or DBMS_STAT$ackage. You can analyze the index and
compute the statistics using the ANALYZE command as follows:

ANALYZE INDEX myPathindex COMPUTE STATISTICS;

or you can simply analyze the whole table:
ANALYZE TABLE XMLTAB COMPUTE STATISTICS;

Using Oracle Text: Advanced Techniques

The following sections describe several Oracle Text advanced techniques for
fine-tuning your XML data search.

Highlight Support for INPATH/HASPATH Text Operators

Oracle Text provides the CTX_DOC.HIGHLIGHT() procedure to generate highlight
offsets and lengths for a Text query on a document. These offsets and lengths are
generated for the terms in the document that satisfy a word query, phrase query, or
about query. In Oracle9i Release 2 (9.2.0.2), Oracle Text extends highlight support
for INPATH and HASPATHperators.

Highlighting XML Documents with INPATH

For INPATH, CTX_DOC.HIGHTLIGHT() calculates the offset and length for the left
hand child of the INPATH operator just as with the WITHIN operator. This only
applies to cases where the path child points to an element. For example, if the Text
guery expression is:

txt INPATH(AB) or
txt INPATH(AB[@atr="atxt" and .='Bixt])

Searching XML Data with Oracle Text 7-49

Using Oracle Text: Advanced Techniques

then CTX_DOC.HIGHTLIGHT() generates offsets and lengths for all occurrences of
‘txt" in the document satisfying the INPATH query.

If the path child points to an attribute, then nothing is highlighted. For example, if
the Text query expression is:

‘aixt INPATH(A/B/@att)

then no highlight information is generated.

Highlighting XML Documents with HASPATH

For HASPATHIif its path operand points to an element, CTX_DOC.HIGHTLIGHT()
calculates the offset and length for the bodies of the element pointed to by the
XPath expression. For example, if the Text query expression is:

HASPATH(A/B) or
HASPATH(AB[@alt="atxt

then offsets and lengths are calculated for the bodies of elements pointed to by
/A/B.

If the path operand points to an attribute, such as, 'HASPATH(/A/B/@Battr)' ,
then no highlight information is generated.

If the operand does WITHIN-EQUAL/SECTION-EQUAL testing, then
CTX_DOC.HIGHTLIGHT() outputs offsets and lengths of the elements pointed to
by the path child of '=". If the path child of '=' points to an attribute, then no
highlight information is generated. For example, if the Text query expression is:

'HASPATH(/A/B ="ABtt") or

HASPATH(/AB[@att="axt|= "ABtxt")

then offsets and lengths are generated for the bodies of elements pointed to by
/A/B. On the other hand, if the Text query expression is;

'HASPATH(A/B/@att = "atxt")

then no highlight information is generated because the path child '/A/B/@att'
points to an attribute, not an element.

7-50 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques

Note: While CTX_DOC.HIGHTLIGHT() calculates and outputs
the offsets and lengths, CTX_DOC.MARKUP()goes one step further
by returning a version of the document with query terms or
element bodies marked up using specified tags.

Note that mark-ups can make the target XML document invalid.

Distinguishing Tags Across DocTypes

In previous releases, XML_SECTION_GROUP was unable to distinguish between
tags in different DTDs. For example, suppose you use the following DTD for storing
contact information:

<IDOCTYPE contact>
<contact>
<address>506 Blue Pool Road</address>
<email>dudeman@radical.com</email>
</contact>

Appropriate sections might look like:

ctx_ddladd_field_section(mysg',email, ‘email);

ctx_ddladd field_section(mysg',address’, address);

This is fine until you have a different kind of document in the same table:

<IDOCTYPE mail>

<mait>
<address>dudeman@radical.com</address>

</mail>

Now your address section, originally intended for street addresses, starts picking
up email addresses, because of tag collision.

Specifying Doctype Limiters to Distinguish Between Tags

Oracle8i release 8.1.5 and higher allow you to specify doctype limiters to distinguish
between these tags across doctypes. Simply specify the doctype in parentheses
before the tag as follows:

ctx_ddladd field_section(mysg',email,,email);
ctx_ddladd field section(mysg',address’, (contact) address);
ctx_ddladd field_section(mysg',,email’ (mail) address);

Searching XML Data with Oracle Text 7-51

Using Oracle Text: Advanced Techniques

Now when the XML section group sees an address tag, it will index it as the address
section when the document type is contact , or as the email section when the
document type is mail .

Doctype-Limited and Unlimited Tags in a Section Group
If you have both doctype-limited and unlimited tags in a section group:
ctx_ddladd field_section(mysg',/'secl’,typel)tagl);
ctx_ddladd field_section(mysg',;sec2,tagl);
Then the limited tag applies when in the doctype, and the unlimited tag applies in
all other doctypes.

Querying is unaffected by this. The query is done on the section hame, not the tag,
so querying for an email address would be done like:

radical WITHIN email

which, since we have mapped two different kinds of tags to the same section name,
finds documents independent of which tags are used to express the email address.

XML_SECTION_GROUP Attribute Sections

In Oracle8i Release 1(8.1.5) and higher, XML_SECTION_GROU#ffers the ability to
index and search within attribute values. Consider a document with the following

lines:
<comment author="jeeves >

I really like Oracle Text
</comment>

Now XML_SECTION_GROU#ffers an attribute section. This allows the inclusion of
attribute values to index. For example:

ctx_ddladd_attr_section(mysg',author,’comment@author);
The syntax is similar to other add_section calls. The first argument is the name of
the section group, the second is the name of the section, and the third is the tag, in

the form <tag_name>@<attribute_name>. This tells Oracle Text to index the
contents of the author attribute of the comment tag as the section “author”.

Query syntax is just like for any other section:
WHERE CONTAINS (... jeeves WITHIN author...’...)...

7-52 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques

and finds the document.

Attribute Value Sensitive Section Search

Attribute sections allow you to search the contents of attributes. They do not allow
you to use attribute values to specify sections to search. For instance, given the
document:

<comment author="jeeves >
I really like Oracle Text
</comment>
You can find this document by asking:
jeeves within comment@avthor
which is equivalent to “find me all documents which have a comment element
whose author attribute's value includes the word jeeves”.
However, there you cannot currently request the following:
interMedia within comment where (@author = "jeeves")
in other words, “find me all documents where interMedia appears in a comment

element whose author is jeeves”. This feature -- attribute value sensitive section
searching -- is planned for future versions of the product.

Dynamic Add Section

Because the section group is defined before creating the index, Oracle8i Release 1
(8.1.5) is limited in its ability to cope with changing structured document sets; if
your documents start coming with new tags, or you start getting new doctypes, you
have to re-create the index to start making use of those tags.

With Oracle8i Release 2 (8.1.6) and higher you can add new sections to an existing
index without rebuilding the index, using alter index and the new add section
parameters string syntax:

add zone section <section_name> tag <tag>
add field section <section_name> tag <tag> [visible | invisible]

For instance, to add a new zone section named tsec using the tag title:

alter index <indexname> rebuild
parameters (‘add zone section tsec tag title)

To add a new field section named asec using the tag author:

Searching XML Data with Oracle Text 7-53

Using Oracle Text: Advanced Techniques

alter index <indexname> rebuild
parameters (‘add field section asec tag author)

This field section would be invisible by default, just like when using
ADD_FIELD_SECTION To add it as visible field section:

alter index <indexname> rebuild
parameters (add field section asec tag author visible')

Dynamic add section only modifies the index metadata, and does not rebuild the
index in any way. This means that these sections take effect for any document
indexed after the operation, and do not affect any existing documents -- if the index
already has documents with these sections, they must be manually marked for
re-indexing (usually with an update of the indexed column to itself).

This operation does not support addition of special sections. Those would require
all documents to be re-indexed, anyway. This operation cannot be done using
rebuild online, but it should be a fairly quick operation.

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

« Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book tite="Tale of Two Cities">It was the best of times.</book>
A query on Tale by itself does not produce a hit on the document unless

qualified with WITHIN title@book. This behavior is like field sections when you
set the visible flag set to false.

= You cannot use attribute sections in a nested WITHIN query.
« Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun'> men <Avord>to come to the

aid.

Then this document would hit on the regular query good men, ignoring the
intervening attribute text.

WITHIN queries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, for the following document:

<book tile="Tale of Two Cities >It was the best of imes.</book>
<book tite="Of Human Bondage">The sky broke dull and gray.</book>

7-54 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Using Oracle Text: Advanced Techniques

Assume the book is a zone section and book@author is an attribute section.
Consider the query:

(Tale and Bondage) WITHIN book@author

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book@author.

Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For
example, if <H1> denotes a heading section, they can repeat in the same documents
as follows:

<H1> The Brown Fox <H1>

<H1> The Gray Wolf <H1>

Assuming that these zone sections are named Heading.
The query:

WHERE CONTAINS (..., Brown WITHIN Heading’, ...)...

returns this document.
But the query:
WHERE CONTAINS (..., (Brown and Gray) WITHIN Heading’,..)..

does not.

Overlapping Zone Sections

Zone sections can overlap each other. For example, if and <I> denote two
different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic <> plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD>
<TABLE>
<TD>nested cell/TD>
</TABLE>

Searching XML Data with Oracle Text 7-55

Using Oracle Text: Advanced Techniques

</TD>

Using the WITHIN operator, you can write queries to search for text in sections
within sections.

Nested Section Query Example

For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents docl and doc2:

docl:
<book1><author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:
<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:
‘Scott WITHIN author WITHIN book1'

This query returns only docl.

Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View

The CTX_OBJECT_ATTRIBUTESiew displays attributes that can be assigned to
preferences of each object. It can be queried by all users.

Check out the structure of CTX_OBJECTS and CTX_OBJECT_ATTRIBUTEview,
with the following DESCRIBE commands. Because we are only interested in
guerying XML documents in this chapter, we focus on XML_SECTION_GROU#&hd
AUTO_SECTION_GROUP

Describe ctx_objects

SELECT ohj_class, obj name FROM ctx_objects

ORDRRBY obj_class, obj hame;

The result is:

SECTION_GROUP AUTO_SECTION GROUP <<=
SECTION_GROUP BASIC_SECTION_GROUP
SECTION_GROUP HTML_SECTION_GROUP
SECTION_GROUP NEWS_SECTION_GROUP
SECTION_GROUP NULL_SECTION_GROUP
SECTION_GROUP XML_SECTION_GROUP <<=

7-56 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings

Describe ctx_object_attributes
SELECT oat_attribute FROM ctx_object_attributes

WHERE oat_object="XML_SECTION_GROUP,
The result is:

OAT_ATTRIBUTE

ATTR
FIELD
SPECIAL
ZONE

SELECT oat_attribute FROM ctx_object_attrioutes
WHERE oat_object='"AUTO_SECTION_GROUP"

The result is:
OAT_ATTRIBUTE

STOP

Example 7-19 Case Study: See the following section.

Case Study: Searching XML-Based Conference Proceedings

This case study uses INPATH, HASPATHand extract() to search a XML-based
conference proceedings.

Note: You can download this sample application from
http://otn.oracle.com/products/text

Searching for Content and Structure in XML Documents

Documents are structured presentations of information. You can define a document
as an asset that contains structure, content, and presentation. This case study
describes how to search for content and structure at the same time. All features
described here are available in Oracle9i Release 1 (9.0.1) and higher.

Searching XML Data with Oracle Text 7-57

Case Study: Searching XML-Based Conference Proceedings

Consider an online conference proceedings search where the conference attendees
can perform full text searches on the structure of the papers, for example search on
title, author, abstract, and so on.

Searching XML-Based Conference Proceedings Using Oracle Text
Follow these tasks to build this conference proceedings search case study:

Task 1. Grant System Privileges. Set Initialization Parameters

You must be granted with QUERY REWRITE system privileges to create a
Functional Index. You must also have the following initialization parameters
defined to create a Functional Index:

« QUERY_REWRITE_INTEGRITY set to TRUSTED
« QUERY_REWRITE_ENABLED set to TRUE
« COMPATIBLE set to 8.1.0.0.0 or a greater value

Task 2. Create Table Proceedings

For example, create a table, Proceedings with two columns: tk , the paper’s id, and
papers , the content. Store the paper’s content as an XMLType.

CREATE TABLE Proceedings (tk number, papers XMLTYPE);

Task 3. Populate Table with Data
Now populate table Proceedings with some conference papers:

INSERT INTO Proceedings(tk,papers) VALUES (1, XMLType.createXML(
‘<?xml version="1.0"?>
<paper>
<tite>Accelerating Dynamic Web Sites using Edge Side Includes<fitle>
<authors>S00 Yun and Scott Davies</authors>
<company> Oracle Corporation </company>
<abstract> The main focus of this presentation is on Edge Side Includes
(ESI). ESlis a simple markup language which is used to mark cacheable and
non-cacheable fragments of a web page. An "ESI aware server’, such as Oracle Web
Cache and Akamai EdgeSuite, can take in ESI marked content and cache and
assemble pages closer to the users, at the edge of the network, rather than at
the application server level. This session will discuss the challenge many
dynamic websites face today, discuss what ESI is, explain how ESI| can be used to
alleviate these issues. The session will also describe how to build pages with
ES|, and detail the ESI and JESI (Edge Side Includes for Java) libraries.
</abstract>

7-58 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings

<track> Fast Track to OracleSi </frrack>
</paper>));

Task 4. Create an Oracle Text Index on the XMLType Column

Create an Oracle Text index on the XMLType column, papers , using the usual
CREATE INDEXstatement:

CREATE INDEX proc_idx ON Proceedings(papers)
INDEXTYPE IS cixsys.context
parameters(FILTER ctxsys.null_fiter SECTION GROUP ctxsys.path_section_group));

Task 5. Querying the Conference Proceedings with XPath and Contains()

Oracle9i Release 1 (9.0.1) introduced two new SQL functions existsNode() and
extract() that operate on XMLType values as follows:

« existsNode() :given an XPath expression, checks if the XPath applied over
the XML document can return any valid nodes.

« extract() :given an XPath expression, applies the XPath to the XML
document and returns the fragment as an XMLType.

For example, select the authors only from the XML document:

SELECT p.papers.extract(/paperfauthorstext()).getStringVal()
FROM Proceedings p;

You can use the Oracle Text CONTAINS() operator to search for content in a text or
XML document. For example, to search for papers that contain “Dynamic” in the
title you can use:

SELECT tk FROM Proceedings
WHERE CONTAINS(papers, Dynamic INPATH(papertitie))>0

Using the CONTAINS() operator Oracle9i returns the columns selected. For an XML
document it returns the entire document. To extract fragments of XML, you can
combine the extract() function to manipulate the XML. For example, select the
authors of papers that contain “Dynamic” in the title:

SELECT p.papers.extract(/paperfauthorstext()).getStringVal()
FROM Proceedings p
WHERE CONTAINS(papers, Dynamic INPATH(papertite))>0

You can use all the functionality of an Oracle Text query for the content search. The

following example selects the authors of papers containing “Dynamic” or “Edge” or
“Libraries” in the title:

Searching XML Data with Oracle Text 7-59

Case Study: Searching XML-Based Conference Proceedings

SELECT p.papers.extract(/paperfauthorstext()).getString\Val()
FROM Proceedings p
WHERE CONTAINS(papers, Dynamic or Edge or Libraries INPATH(paperfite))>0

Traditional databases allow searching of XML content or structure, but not both at
the same time. Oracle provides unique features that enable querying of both XML
content and structure at the same time.

Figure 7-1 illustrates entering the search for “Libraries” in the structure of the
Conference Proceedings documents. You can search for “Libraries” within Authors,
abstract, title, company, or track. In this example, you are searching for the term
“Libraries” in the abstracts only. Since it is an XML document your are searching,
you can even select which fragment of the XML document you want to display. This
example only displays the title of the paper.

Figure 7-2 shows the search results.

For the .jsp code to build this look-up application, see "Searching Conference
Proceedings Example: jsp" on page 7-62.

See Also:
« Oracle Text Reference
= Oracle Text Application Developer’s Guide

« http://otn.oracle.com/products/text

7-60 Oracle9/ XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings

Figure 7-1 Using Oracle Text to Search for “Libraries” in the Conference Proceedings Abstracts

B osne

fla Edl Yewm [o [owsmcso Hap

1 4 = B3 X & B S £ ! € 1
Bak ¢ Aekad Howe Sesch Welwape Pinl Seeily Shoo

T Bl orw Pape Base 8] Medemch Sems

OO Proceedings Search

Sagech far [Likoariss

e [Brrortzy =] [Basch |

LAy fibar] =
Drizplay e

Author(s) T Abstrack © Tile & :.E.—p-m,

Track ©
Track

Figure 7-2 Oracle Text Search Results

AT (0w Paper 5 ook - Rebospe

B Edi Yam Bn Dsswsiars o
1 A & A B 2 =H I
Em i Relew] Home

$ g @
Sesch Welloape Panl Sepwdly Shoo
18] orw Papes Seae 1 MedSamoh S

OO Proceedings Search

Seprh B ||..:|:|:-|:_l||::|:-:a =_3 Eiaich |
Dirplay
Ancheers) T Abstracs © Tele & Comgesy © Track ©
Accaleratmg Dhmamic ' Welb Sgee usng Edge Side Inchedes
Wearsng Libeares ato the Weh, Buldeg o Gobal Dagial Come ey

Searching XML Data with Oracle Text 7-61

Case Study: Searching XML-Based Conference Proceedings

Searching Conference Proceedings Example: jsp

Here is the full jsp example illustrating how you can use Oracle Text to create an
online XML-based Conference Proceedings look-up application.

<%@ page import="java.sql.* , oracle jsp.dbutil.** %>

<jsp:useBean id="name" class="oracle.jsp.jml.JmIString" scope="request’ >
<sp:setProperty name="name" property="value" param="query’' />
</jsp:useBean>

<%

String connStr="jdbc:oracle:thin:@oalonso-sun:1521:betadev”;
java.util.Properties info = new java.util. Properties();
Connection conn = null;

ResultSet rset=null;

Statement stmt = nul;

if (name.isEmpty()) { 96>
<himb>
<lite>OOW Paper Search<fitie>
<body>
<center>
<h3>00W Proceedings Search <h3>
<form method=post>
Search for
<input type=text size=15 maxlength=25 name=query>
in
<select name="tagvalue">
<option value="authors">Author(s)
<option value="abstract>Abstract
<option value="tile">Title
<option value="company">Company
<option value="track>Track
</select>
<input type=submit value="Search">
<p>Display</o>

<table>
<tr>
<to>
Author(s)<input type="radio" name="section" value="authors">
<ftd>
<td>
Abstract <input type="radio" name="section" value="abstract>
<ftd>
<to>

Tile <input type="radio" name="section" value="tile" checked>

7-62 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Case Study: Searching XML-Based Conference Proceedings

<fd>
<td>
Company <input type="radio" name="section" value="company'*>
<ftd>
<tc>
Track <inputtype="radio" name="section" value="track>
<fd>
<>
<ftable>
<fform>
</center>
<hr>

</body>
<htmb>

<%

}
else{
%>

<htmb>
<tile>O0W Paper Search<fitie>
<body>
<center>
<h3>00W Proceedings Search <h3>
<form method=post action="oowpapersearch.jsp">
Search for
<input type=text size=15 maxlength=25 name="query" value=<%o=
name.getValue() %6>>
in
<select name="tagvalue">
<option value="authors">Author(s)
<option value="abstract">Abstract
<option value="title">Title
<option value="company">Company
<option value="track">Track
</select>
<input type=submit value="Search">
<p>Display</>

Author(s)<input type="radio" name="section value="authors">
Abstract <input type="radio" name="section" value="abstract">
Tile <input type="radio" name="section" value="title" checked>
Company <input type="radio" hame="section" value="company'">
Track <inputtype="radio" name="section" value="track>
<fform>

Searching XML Data with Oracle Text 7-63

Case Study: Searching XML-Based Conference Proceedings

</center>

<%
Lt

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
info.put (“user”, "ctxdemo”);

info.put (“password","ctxdema”);

conn = DriverManager.getConnection(connSitr,info);

stmt = conn.createStatement();
String theQuery = requestgetParameter('query)+
INPATH(paper/+request getParameter(tagvalue')+

String tagValue = request.getParameter(“tagvalue'y;
String sectionValue = request.getParameter('section’);

I select p.papers.extract(/paper/authors).getStringVal()

I/from oowpapers p
IIwhere contains(papers,language inpath(paper/abstract))>0

String myQuery ="select
p.papers.extract(/paper/+request. getParameter('sectiony+"ftext()).getStringV
al() from oowpapers p where contains(papers,"+theQuery+">0",

rset = stmt.executeQuery(myQuery);
String color ="ffffff";
String myDesc = null;

intitems=0;
while (rsetnext()) {
myDesc = (Sting)rset getSting(1);
items++;
if (tems =1){
%>

<center>
<table border="0">
<ir bgcolor="#6699CC">
<th><%=sectionValue %><th>
<fr>
<% }%>

<tr bgcolor="#<%o= color %>">
<td> <%= myDesc %></td>

7-64 Oracle9i XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

<fr>
<%
if (color.compareTo(ffffif) == 0)
color ="eeeeee";
else
color = "ffffff";

}
} catch (SQLException €) {

%>
Error: <%= e %o><p>
<%

Hinally {

if (conn = null) conn.close();
if (stmt '= null) stmt.close();
if (rset = null) rset.close();

}

%>

<ftable>

</center>

<Joody></hitmi>
<%

}

%>

Frequently Asked Questions About Oracle Text

This Frequently Asked Questions (FAQs) section is divided into the following
categories:

« FAQs: General Questions About Oracle Text
« FAQs: Searching Attribute Values with Oracle Text
« FAQs: Searching XML Documents in CLOBs Using Oracle Text

FAQs: General Questions About Oracle Text

Can | Use a CONTAINS() Query with an XML Function to Extract an XML
Fragment?

Answer: Yes you can. See "Querying XML Data: Use CONTAINS or existsNode()?"
on page 7-38.

Searching XML Data with Oracle Text 7-65

Frequently Asked Questions About Oracle Text

Can XML Documents Be Queried Like Table Data?
I know that an intact XML document can be stored in a CLOBin Oracle’s XML
solution.

Can XML documents stored in a CLOBor a BLOBbe queried like table schema? For
example:

[XML document stored in BLOB]...<name id="1111"><first>lee</first>
<sencond>jumee</second></name>...

Can value (lee, jumee) be queried by elements, attributes, and the structure of
XML document?

Answer: Using Oracle Text, you can find this document with a queries such as:

lee within first
jumee within second
1111 within name@id

You can combine these like this:

lee within first and jumee within second, or
(lee within first) within name.

For more information, please read the Oracle Text Technical Overview available on
OTN at http://otn.oracle.com/products/text

Can | Edit Individual XML Elements?

If some element or attribute is inserted, updated, or deleted, must the whole
document be updated? Or can insert, update, and delete function as in table
schema?

Answer: Oracle Text indexes CLOBand BLOB and this has no knowledge about
XML specifically, so you cannot really change individual elements. You have to edit
the document as a whole.

How Are XML Files Locked in CLOBs and BLOBs?
About locking, if we manage an XML document stored in a CLOBor a BLOB can
anyone access the same XML document?

Answer: Just like any other CLOB if someone is writing to the CLOB they have it
locked and nobody else can write to the CLOB Other users can read it, but not write
to it. This is basic LOBbehavior.

7-66 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

An alternative is to decompose the XML document and store the information in
relational fields. Then you can modify individual elements, have element-level
simultaneous access, and so on. In this case, using something called the
USER_DATASTOR#&Nd PL/SQL, you can reconstitute the document to XML for text
indexing. Then, you can search the text as if it were XML, but manage the data as if
it were relational data. Again, see the Oracle Text Technical Overview for more
information at: http://otn.oracle.com/products/text

How Can | Search XML Documents and Return a Zone?

I need to store a large XML file, search it, and return a specific tagged area. Using
Oracle Text some of this is possible:

« | can store an XML file in a CLOBfield
« | canindex it with ctxsys.context

« | can create <Zones> and <Fields> to represent the tags in my XML file Ex.
ctx_ddl.add_zone_section(xmigroup,’dublincore”, dc);

« | cansearch for text within a zone or fieldEx . Select title from mytable where
CONTAINS(textField,”some words WITHIN doubleness”)

How do | return a zone or a field based on a text search?

Answer: Oracle Text will only return the “hits”. You can use Oracle Text doc service
to highlight or mark up the section, or you can store the CLOB in an XM_Type
column and use the extract() function.

How Do | Load XML Documents into the Database?

How do | insert XML documents into a database? | need to insert the XML
document as-is in column of datatype CLOBInto a table.

Answer: Oracle's XML SQL Utility for Java offers a command-line utility that can be
used for loading XML data. More information can be found on the XML SQL Utility
at the following Web site:

http://otn.oracle.com/tech/xml

as well as in Chapter 7, "XML SQL Utility (XSU)".

You can insert the XML documents as you would any text file. There is nothing
special about an XML-formatted file from a CLOBperspective.

Searching XML Data with Oracle Text 7-67

Frequently Asked Questions About Oracle Text

How Do | Search XML Documents with Oracle Text?

Can Oracle Text be used to index and search XML stored in CLOB? How can we get
started?

Answer: Versions of Oracle Text before Oracle8i Release 2 (8.1.6) only allowed
tag-based searching. The current version allows for XML structure and attribute
based searching. There is documentation on how to have the index built and the
SQL usage in the Oracle Text documentation.

See Also: Oracle Text Reference.

How Do | Search XML Using the WITHIN Operator?
I have this XML code:
<person>
<name>efrat</name>
<childrens>
<chilo>
<id>1<fid>
<name>keren</name>
</child>
</chidrens>
</person>

How do | find the person who has a child name keren but not the person's name
keren ? This assumes | defined every tag with the add_zone_section that can be
nested and can include themselves.

Answer: Use ’(keren within name) within child

Where Can | Find Examples of Using Oracle Text to Search XML?
Answer: See the following manuals:

= Oracle Text Application Developer’s Guide

= Oracle Text Reference

Does Oracle Text Automatically Recognize XML Tags?

Can Oracle Text recognize the tags in my XML document or do | have to use the
add_field_section command for each tag in the XML document? My XML
documents have hundreds of tags. Is there an easy way to do this?

7-68 Oracle9/ XML Database Developer’'s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

Answer: Which version of the database are you using? | believe you need to use
that command for Oracle8 release 8.1.5 but not in Oracle8i release 2 (8.1.6). You can
use AUTO_SECTION_GROUR Oracle8i release 2 (8.1.6).

XSQL Servlet ships with a complete (albeit simple from the Oracle Text standpoint)
example of a SQL script that creates a complex XML datagram out of object types,
and then creates an Oracle Text index on the XML document fragment stored in the
Insurance Claim type.

If you download the XSQL Servlet, and look at the file

Ixsgl/demolinsclaim.sql you'll be able to see the Oracle Text stuff at the
bottom of the file. One of the key new features in Oracle Text in Oracle8i release 2
(8.1.6) was the AUTGOSection for XML.

Can | Do Range Searching with Oracle Text?

I have an XML document that | have stored in CLOB | have also created the indexes
on the tags using section_group , and so on. One of the tags is <SALARY>
</SALARY>. | want to write a SQL statement to select all the records that have
salary of greater than 5000. How do | do this? | cannot use the WITHIN operator.
I want to interpret the value present in this tag as a number. This could be a floating
point number also since this is salary.

Answer: You cannot do this in Oracle Text. Range search is not really a text
operation. The best solution is to use the other Oracle XML parsing utilities to
extract the salary into a NUMBERield. Then, you can use Oracle Text for text
searching, and normal SQL operators for the more structured fields, and achieve the
same results.

Can Oracle Text Do Section Extraction?

We are storing all our documents in XML format in a CLOB. Are there utilities
available in Oracle, perhaps Oracle Text, to retrieve the contents a field at a time?
That is, given a field name, can | get the text between tags, as opposed to retrieving
the whole document and traversing the structure?

Answer: Oracle Text does not do section extraction. See the XML SQL Utility for
this.

Can | Create a Text Index on Three Columns?

I have created a view based on seven to eight tables and it has columns like
custordnumber , product_dsc , qty , prdid , shipdate ,ship_status ,and so
on. | need to create an Oracle Text index on the three columns:

Searching XML Data with Oracle Text 7-69

Frequently Asked Questions About Oracle Text

« custordnumber

« product_dsc

« ship_status

Is there a way to create a Text index on these columns?
Answer: The short answer is yes. You have two options:

1. Use the USER_DATASTORG®EDbject to create a concatenated field on the fly
during indexing; or

2. Concatenate your fields and store them in an extra CLOBfield in one of your
tables. Then, create the index on the CLOBfield. If you're using Oracle8i release
2 (8.1.6) or higher, then you also have the option of placing XML tags around
each field prior to concatenation. This gives you the capability of searching
within each field.

How Fast Is Oracle9i at Indexing Text? Can | Just Enable Boolean Searches?

We are using mySQL to do partial indexing of 9 million Web pages a day. We are
running on a 4-processor Sparc 420 and are unable to do full text indexing. Can
Oracle8i or Oracle9i do this?

We are not interested in transactional integrity, applying any special filters to the
text pages, or in doing any other searching other than straight boolean word
searches (no scoring, no stemming, no fuzzy searches, no proximity searches, and so
on).

I have are the following questions:
« Will Oracle8i or Oracle9i be any faster at indexing text than mySQL?

« Ifso, is there a way to disable all the features of text indexing except for boolean
word searches?

Answer: Yes. Oracle Text can create a full-text index on 9 million Web pages - and
pretty quickly. In a benchmark on a large Sun box, we indexed 100 GB of Web pages
(about 15 million) in 7 hours. We can also do partial indexing through regular DML
or (in Oracle9i) through partitioning.

You can do “indexing lite” to some extent by disabling theme indexing. You do not
need to filter documents if they are already in ASCIIl, HTML, or XML, and most
common expansions, like fuzzy, stemming, and proximity, are done at query time.

7-70 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

FAQs: Searching Attribute Values with Oracle Text

Can | Build Text Indexes on Attribute Values?

Currently Oracle Text has the option to create indexes based on the content of a
section group. But most XML elements are of the type Element . So, the only option
for searching would be attribute values. Can | build indexes on attribute values?

Answer: Oracle8 release 8.1.6 and higher allow attribute indexing. See the following
site:

http://otn.oracle.com/products/intermedia/htdocs/text_trainin
g_816/Samples/imt_816_techover.html#SCN

FAQs: Searching XML Documents in CLOBs Using Oracle Text

How Can | Search Different XML Documents Stored in CLOBs?

I store XML in CLOB and use the DOM or SAX parsers to reparse the XML later as
needed. How can | search this document repository? Oracle Text seems ideal. Do
you have an example of setting this up using interMedia in Oracle8i, demonstrating
how to define the XML_SECTION_GROU4hd where to use a ZONEas opposed to a
FIELD, and so on? For example:

How would | define interMedia parameters so that | would be able to search my
CLOBcolumn for records that had the values aorta and damage using the
following XML (the DTD of which is implied)

WelKnownFileName.gif <keyword>echo</keyword>
<keyword>cardiogram aorta</keyword>

This is an image of the vessel damage.

Answer: Oracle8i release 2 (8.1.6) and higher allow searching within attribute text.
That's something like: state within book@author . Oracle now offers attribute
value sensitive search, more like the following:

state within book{@author = “Enc”:

begin ctx_ddl.create_section_group(mygm),basic_section_group));
ctx_ddl.add field_section(mygrp’, keyword', keyword);
ctx_ddl.add field_section(mygrp', caption’/caption);

end;

create index myidx on mytab(mytxcolumn)indextype is cixsys.contextparameters

Searching XML Data with Oracle Text 7-71

Frequently Asked Questions About Oracle Text

(‘section group mygrp);
select * from mytab where contains(mytxtcolumn, ‘aorta within keyword)>0;

options:

« Use XML section group instead of basic section group if your tags have
attributes or you need case-sensitive tag detection.

« Use zone sections instead of field sections if your sections overlap, or if you
need to distinguish between instances. For instance, if keywords is a field

section, then (aorta and echo cardiogram) within keywords finds
the document. If it is a zone section, then it does not, because they are not in the
SAMEnstance of keywords .

How Do | Store an XML Document in a CLOB Using Oracle Text?

I need to store XML files, which are currently on the file system, in the database. |
want to store them as whole documents; that is, | do not want to break the
document down by tags and then store the info in separate tables or fields. Rather, |
want to have a universal table, that | can use to store different XML documents. |
think internally it will be stored in a CLOBtype of field. My XML files will always
contain ASCII data.

Can this be done using Oracle Text? Should we be using Oracle Text or Oracle Text
Annotator for this? | downloaded Annotator from OTN, but | could not store XML
documents in the database.

I am trying to store XML documents in a CLOBcolumn. Basically | have one table
with the following definition:

CREATE TABLE xml_store_testing
(

xml_doc_id NUMBER,

xml_doc CLOB)

I want to store my XML document in an xml_doc field.

I have written the following PL/SQL procedure, to read the contents of the XML
document. The XML document is available on the file system and contains just
ASCII data, no binary data.

CREATE OR REPLACE PROCEDURE FileExec
(
p_Directory INVARCHAR2,
p_FileName INVARCHAR?)
AS v_CLOBLocator CLOB;
v_FieLocator BFILE;

7-72 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

BEGIN
SELECT xml_doc
INTO v_CLOBLocator
FROM xml_store_testing
WHERE xml_doc id=1
FOR UPDATE;
v_FileLocator := BFILENAME(p_Directory, p_FileName);
DBMS_LOB.FILEOPEN(v_FileLocator, DBMS_LOB.FILE_ READONLY);
dbms_outputput _line(to_char(DBMS_LOB.GETLENGTH(v_FileLocator)));
DBMS_LOB.LOADFROMFILE(v_CLOBLocator, v_FileLocator,
DBMS_LOB.GETLENGTH(v_FileLocator));
DBMS_LOB.FILECLOSE(v_FileLocator);
END FileExec;

Answer: Put the XML documents into your CLOBcolumn, then add an Oracle Text
index on it using the XML_SECTION_GROUSee the documentation and overview
material at this Web site: http://otn.oracle.com/products/intermedia.

Is Storing XML in CLOBs Affected by Character Set?

When | put my XML documents in a CLOBcolumn, then add an Oracle Text index
using the XML section-group, it executes successfully. But when | select from the
table | see unknown characters in the table in CLOBfield. Could this be because of
the character set difference between operating system, where XML file resides, and
database, where CLOBdata resides?

Answer: Yes. If the character sets are different then you probably have to pass the
data through UTL_RAW.CONVERID do a character set conversion before writing to
the CLOB

Can | Only Insert Structured Data When the Table is Created?

I need to insert data in the database from an XML file. Currently | can only insert
structured data with the table already created. Is this correct?

I am working in a law project where we need to store laws containing structured
data and unstructured data, and then search the data using Oracle Text. Can | insert
unstructured data too? Or do | need to develop a custom application to do it? Then,
if | have the data stored with some structured parts and some unstructured parts,
can | use Oracle Text to search it? If | stored the unstructured part in a CLOB and the
CLOBhas tags, how can | search only data in a specific tag?

Answer: Consider usingOracle9iFS, which enables you to break up a document and
store it across tables and in a LOB Oracle Text can perform data searches with tags
and is knowledgeable about the hierarchical XML structure. From Oracle8i release 2

Searching XML Data with Oracle Text 7-73

http://technet.oracle.com/products/intermedia
http://technet.oracle.com/products/intermedia

Frequently Asked Questions About Oracle Text

(8.1.6), Oracle Text has had this capability, along with name/value pair attribute
searches.

Can | Break an XML Document Without Creating a Custom Development?

Is document breaking possible if | don't create a custom development? Although
Oracle Text does not understand hierarchical XML structure, can | do something
like this?

<report>
<day>yesterday</day> there was a disaster <cause>hurricane</cause>
<lreport>

Indexing with Oracle Text, | would like to search LOBs where cause was hurricane.
Is this possible?

Answer: You can perform that level of searching with the current release of Oracle
Text. Currently, to break a document up you have to use the XML Parser with XSLT
to create a style sheet that transforms the XML into DDL. Oracle9iFS gives you a
higher level interface.

Another technique is to use a JDBC program to insert the text of the document or
document fragment into a CLOBor LONGcolumn, then do the searching using the
CONTAINS() operator after setting up the indexes.

What Is the Syntax for Creating a Substring Index with XML_SECTION_GROUP?

| have a CLOB column that has an existing XML_SECTION_GROUiRdex on certain
tags within the XML content of the CLOB, as follows:
begin
ctx_ddl.create_section_group(XMLDOC,XML_SECTION_GROUPY);
end;

/

begin

ctx_ddl.add zone_section (XMLDOC title' ite);
ctx_ddl.add_zone_section(XMLDOC' keywords', keywords));
ctx_ddl.add_zone_section(XMLDOC''author',/author);

end;

/

create index xmidoc_idx on xml_documents(xmidoc)

indextype is ctxsys.context

parameters (‘'section group xmidoc) ;

I need to search on the 'author' zone section by the first letter only. | believe | should
use a substring index but | am unsure of the syntax to create a substring index.

7-74 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

Especially when | have already declared a SECTION_GROUP preference on this
column and | would also need to create a WORDLIST preference.

Answer. The main problem here is that you cannot apply that fancy substring
processing just to the author section. It will apply to everything, which will
probably blow up the index size. Anything you do will require reindexing the
documents, so you cannot really get around having to rebuild the index entirely.
Here are various ways to solve your problem:

1.

Do nothing. Query just like: Z% WITHIN AUTHOR
Pro: You do not have to rebuild the index.

Con: The query is slow. Some queries cannot be executed due to wildcard
maxterms limits.

Create a wordlist preference with PREFIX_INDEX set to TRUE,
PREFIX_MIN_LENGTH set to 1, and PREFIX_MAX_LENGTH set to 1. The
query looks like: Z% WITHIN AUTHOR

Pro: This is a moderately fast query.

Con: You must use Oracle8i Release 3 (8.1.7) or higher or you will get ’junk’
from words from other sections.

As in the preceding, plus make AUTHOR, KEYWORDS, TITLE field sections.
Pro: This faster query than 2.

Con: The field sections are less flexible with regards to. nesting and repeating
occurrences.

Use a user_datastore or procedure_filter to transform the data so that:
<AUTHOR>Steven King</AUTHOR>

becomes

<AUTHORINIT>AIK</AUTHORINIT><AUTHOR>Steven King<AUTHOR>

Use field section for AUTHORINIT and query becomes:
AIK within AUTHORINIT

I used AIK instead of just K so that you do not have to make | and A
non-stopwords.

Pro: This is the fastest query and the smallest index.

Searching XML Data with Oracle Text 7-75

Frequently Asked Questions About Oracle Text

Con: It involves the most work as you have to massage the data so it slows
down indexing.

Why Does the XML Search for Topic X with Relevance Y Give Wrong Results?

We are using Sun SPARC Solaris 5.8, Oracle8i Enterprise Edition Release 3
(8.1.7.2.0), Oracle Text. We are indexing XML documents that contain attributes
within the XML tags. One of the sections in the XML is a list of subjects associated
with the document. Each subject has a relevance associated with it. We want to
search for topic x with relevance y but we get the wrong results. For example: The
data in some of the rows look like this, considering subject PA:

DOC 1> Story_seq_hum =561106

<ne-metadata.subjectlist>
<ne-subject code="PA" source="NEWZ" relevance="50" confidence="100"/>
<ne-subject code="CONW" source="NEWZ' relevance="100" confidence="100"/>
<ne-subject code="LENF" source="NEWZ" relevance="100" confidence="100"/>
<ne-subject code="TRAN" source="NEWZ" relevance="100" confidence="100"/>

</ne-metadata.subjectlist>

DOC 2> Story_seq_num =561107

<ne-metadata.subjectlist>
<ne-subject code="CONW" source="NEWZ' relevance="100" confidence="100"/>

If users wants subject PA with relevance = 100, only DOC 2 should be returned.
Here is a test case showing the results:

Are these the expected results?
TABLE

droptablet _storiesl;
create table t_stories1 as select* fromt_Stories_bck
where story_Seq_numin (561114,562571,562572,561106,561107);

INDEX SECTIONS

BEGIN

— Drop the preference if it already exists
CTX_DDL.DROP_SECTION_GROUP(sg_nitf_story_body?2);

END;

/

BEGIN

—Define a section group

ctx_ddl.create_section_group (‘'sg_nitf_story_body2'’xml_section_group);
— Create field sections for headline and body

ctx_ddladd field_section(sg_nitf_story_body2,HL',hedliine'true);

7-76 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

ctx_ddladd field_section(sg_nitf_story _body2,'ST',body.content, true);
—Define attribute sections for the source fields

ctx_ddladd atir_section('sg_nitf_story_body2, 'P', ‘ne-provider@id));
ctx_ddladd_attr_section('sg_nitf_story_body?2', 'C', 'ne-publication@id);
ctx_ddladd_attr_section('sg_nitf_story_body2', 'S, ‘ne-publication@section’);
ctx_ddladd_attr_section('sg_nitf_story_body2, ‘D, 'date.issue@norm));
ctx_ddladd_atir_section('sg_nitf_story _body2, 'SJ, 'ne-subject@code));
ctx_ddladd_atir_section('sg_nitf_story _body2, 'SIR', ‘ne-subject@relevance’);
ctx_ddladd atr_section('sg_nitf_story _body2', 'CO', 'ne-company@code));
ctx_ddladd_attr_section('sg_nitf_story_body2', TO', 'ne-topic@code));
ctx_ddladd_attr_section('sg_nitf_story_body2', TK', 'ne-orgid@value);

ENd;
/

creating the index

dropindex ix_stories ;
CREATE INDEX ix_stories on T_STORIES1(STORY_BODY)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS (SECTION GROUP sg_nitf_story_body2 STORAGE ixst_story_body);
-- testing the index

--We are looking for the subject PA with relevance = 100

--query that gives us the correct results

SELECT STORY_SEQ_NUM, STORY_BODY FROM T_STORIES1 WHERE CONTAINS(STORY_BODY, 'PA
WITHIN SJ)>0;

--Query that gives us the wrong results

SELECT STORY_SEQ_NUM, STORY_BODY FROM T_STORIES1 WHERE CONTAINS(STORY_BODY, PA
WITHIN SJ AND 100 within SIR)>0;

The data in some of the rows look like this:

Story_seq_num = 561106

<ne-metadata.subjectlist>
<ne-subject code="PA" source="NEWZ" relevance="50" confidence="100"/>
<ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>
<ne-subject code="LENF" source="NEWZ" relevance="100" confidence="100"/>
<ne-subject code="TRAN” source="NEWZ" relevance="100"

confidence="100"/>

</ne-metadata.subjectlist>

Searching XML Data with Oracle Text 7-77

Frequently Asked Questions About Oracle Text

Story_seq_num =561107
<ne-metadata.subjectlist>

<ne-subject code="CONW" source="NEWZ" relevance="100" confidence="100"/>

We are looking for the subject PA with relevance = 100

Only Story_seq_num = 561107 should be returned

The results are wrong because we wanted the subjects PA that have relevance =100.
We get back story_seq_num=561106 that has relevance = 50 <ne-subject code="PA”
source="NEWZ” relevance="50" confidence="100"/>

SQL> connect sosalsosa
Connected.
SQL> select object_name, object_type from user_objects;

OBJECT_NAME

OBJECT TYPE

IX_STORIES

INDEX
SYS_LOB0000025364C00005%$
LOB
SYS_LOB0000025364C00009%$
LOB

OBJECT_NAME

OBJECT TYPE

SYS LOB0000025364C000145%
LOB
SYS_LOB0000025364C00016$%
LOB

T_STORIESL

TABLE

6 rows selected.
SQL> drop index ix_stories force;

Index dropped....

7-78 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Frequently Asked Questions About Oracle Text

Answer. Oracle8i Release 3(8.1.7) is not able to this kind of search. You need the
PATH section group in Oracle9i Release 1 (9.0.1), which has a much more
sophisticated understanding of such relationships. To do this in 8.1.7 you would
have to re-format the documents (possibly through a procedure filter or user
datastore), use zone sections, and nested withins, so that:

<AB="C'D="E"..
became

<A>C<D>E</D>...

and queries are like:

(C within B and E within D) within A in 9.0.1, you should be able to use
PATH_SECTION_GROUs$h the unmodified data, with a query like:

haspath(/ne-subjec{@code = "PA" and @relevance ="100])

Searching XML Data with Oracle Text 7-79

Frequently Asked Questions About Oracle Text

7-80 Oracle9i XML Database Developer's Guide - Oracle XML DB, Release 2 (9.2.0.2)

Part |l

Using XMLType APIs to Manipulate XML
Data

Part 11l of this manual introduces you to ways you can use Oracle XML DB
XMLType PI/SQL and Java APIs to access and manipulate XML data. Part 1ll
contains the following chapters:

Chapter 8, "PL/SQL API for XMLType"
Chapter 9, "Java API for XMLType"

8

PL/SQL API for XMLType

This chapter describes the use of the APIs for XMLType in PL/SQL. It contains the
following sections:

« Introducing PL/SQL APIs for XMLType

« PL/SQL DOM API for XMLType (DBMS_XMLDOM)

« PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

« PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

PL/SQL API for XMLType 8-1

Introducing PL/SQL APIs for XMLType

Introducing PL/SQL APIs for XMLType

This chapter describes the PL/SQL Application Program Interfaces (APIs) for
XMLType. These include the following:

« PL/SQL DOM API for XMLType (package DBMS_XMLDOMor accessing
XMLType objects. You can access both XML schema-based and
non-schema-based documents. Before database startup, you must specify the
read-from and write-to directories in the initialization.ORA file for example:

UTL_FILE DIR=/mypath/insidemypath

The read-from and write-to files must be on the server file system.

« PL/SQL XML Parser API for XMLType (package DBMS_XMLPARSERIJfor
accessing the contents and structure of XML documents.

« PL/SQL XSLT Processor for XMLType (package DBMS_XSLPROCESSORpr
transforming XML documents to other formats using XSLT.

Backward Compatibility with XDK for PL/SQL, Oracle9 i Release 1 (9.0.1)
This release maintains support for the XDK for PL/SQL:

« XML Parser for PL/SQL
« XSLT Processor for PL/SQL

to ensure backward compatibility. Therefore, most applications written for Oracle9i
Release 1 (9.0.1) XML Parser for PL/SQL and XSLT Processor for PL/SQL instances
will need no changes. In this release, new applications built with the updated
PL/SQL DOM and the extensions to XMLType API do not need the XDK’s XML
Parser for PL/SQL and XSLT Processor for PL/SQL.

See Also: Oracle9i XML Developer’s Kits Guide - XDK

If Your Application Uses Character-Set Conversions and File Systems
Applications that extensively use character-set conversions and file system
interaction require some changes. The changes needed are due to the UTL_FILE
package limitations, such as read/write to files in the UTL_FILE_DIR specified at
database start-up.

8-2 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

Introducing PL/SQL APIs for XMLType

Note: In this release, the PL/SQL packages DBMS_XMLDOM
DBMS_XMLPARSE&d DBMS_XSLPROCESSORplace the
previous XDK packages XMLDOMXMLPARSERand
XSLPROCESSOR

Differences Between PL/SQL API for XMLType and XDK for PL/SQL

This section explains differences between PL/SQL APIs native to Oracle XML DB
and PL/SQL APIs available in XML Developer’s Kits (XDK).

« PL/SQL APIs for XMLType. Use PL/SQL APIs for XMLType for developing
applications that run on the server. PL/SQL APIs for XMLTYpein Oracle XML
DB provide native XML support within the database.

« Oracle XML XDK for PL/SQL. Use Oracle XDK for PL/SQL for middle-tier and
client-side XML support.

Note: Oracle XML DB APIs are natively integrated in Oracle9i
Release 2 (9.2) and not available separately. Oracle XML DB APIs
cannot be downloaded from Oracle Technology Network (OTN).

However, Oracle XDKs are available separately for download from
OTN: http://otn.oracle.com/tech/xml/content.html.

See Also: "PL/SQL DOM API for XMLType (DBMS_XMLDOM)"
on page 8-5

PL/SQL APIs For XMLType Features
The PL/SQL APIs for XMLType allow you to perform the following tasks:

« Create XMLType tables, columns, and views
« Access XMLType data
« Manipulate XMLType data

PL/SQL API for XMLType 8-3

Introducing PL/SQL APIs for XMLType

See Also:

« "Key Features of Oracle XML DB" on page 8-2 in Chapter 1,
"Introducing Oracle XML DB", for an overview of the Oracle
XML DB architecture and new features.

« Chapter 4, "Using XMLType"
« Oracle9i XML API Reference - XDK and Oracle XML DB

Lazy XML Loading (Lazy Manifestation)

Because XMLType provides an in-memory or virtual Document Object Model
(DOM), it can use a memory conserving process called lazy XML loading, also
sometimes referred to as lazy manifestation. This process optimizes memory usage by
only loading rows of data as they are requested. It throws away
previously-referenced sections of the document if memory usage grows too large.
Lazy XML loading supports highly scalable applications that have many concurrent
users needing to access large XML documents.

XMLType Datatype Now Supports XML Schema

The XMLType datatype has been enhanced in this release to include support for
XML schemas. You can create an XML schema and annotate it with XML to object-
relational mappings. To take advantage of the PL/SQL DOM API, first create an
XML schema and register it. Then when you create XMLType tables and columns,
you can specify that these conform to the XML schema you defined and registered
with Oracle XML DB.

With PL/SQL APIs for XMLType You Can Modify and Store XML Elements

While typical XML parsers give read access to XML data in a standard way, they do
not provide a way to modify and store individual XML elements.

What are Elements? An element is the basic logical unit of an XML document and
acts as a container for other elements such as children, data, attributes, and their
values. Elements are identified by start-tags, as in <name>, and end-tags, as in
</name>, or in the case of empty elements, <name/> .

What is a DOM Parser? An embedded DOM parser accepts an XML-formatted
document and constructs an in-memory DOM tree based on the document’s
structure. It then checks whether or not the document is well-formed and optionally
whether it complies with a specific Document Type Definition (DTD). A DOM
parser also provides methods for traversing the DOM tree and return data from it.

8-4 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

If you use the PL/SQL DOM API, you can use the NamedNodeMapmethods to
retrieve elements from an XML file.

Server-Side Support PL/SQL APIs for XMLType support processing on the server
side only. Support for client-side processing is not provided in this release.

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

Introducing W3C Document Object Model (DOM) Recommendation

Skip this section if you are already familiar with the generic DOM specifications
recommended by the World Wide Web Consortium (W3C).

The Document Object Model (DOM) recommended by the W3C is a universal API
to the structure of XML documents. It was originally developed to formalize
Dynamic HTML, which allows animation, interaction and dynamic updating of
Web pages. DOM provides a language and platform-neutral object model for Web
pages and XML document structures in general. The DOM describes language and
platform-independent interfaces to access and to operate on XML components and
elements. It expresses the structure of an XML document in a universal,
content-neutral way. Applications can be written to dynamically delete, add, and
edit the content, attributes, and style of XML documents. Additionally, the DOM
makes it possible to write applications that work properly on all browsers and
servers and on all platforms.

A brief summary of the state of the DOM Recommendations is provided in this
section for your convenience.

W3C DOM Extensions Not Supported in This Release

The only extensions to the W3C DOM API not supported in this release are those
relating to client-side file system input and output, and character set conversions.
This type of procedural processing is available through the SAX interface.

Supported W3C DOM Recommendations

All Oracle XML DB APIs for accessing and manipulating XML comply with
standard XML processing requirements as approved by the W3C. PL/SQL DOM
supports Levels 1 and 2 from the W3C DOM specifications.

« InOracle9i Release 1 (9.0.1), the XDK for PL/SQL implemented DOM Level 1.0
and parts of DOM Level 2.0.

PL/SQL API for XMLType 8-5

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

« In Oracle9i Release 2 (9.2), the PL/SQL API for XMLType implements DOM
Levels 1.0 and Level 2.0 Core, and is fully integrated in Oracle9i database
through extensions to the XMLType API.

The following briefly describe each level:

« DOM Level 1.0. The first formal Level of the DOM specifications, completed in
October 1998. Level 1.0 defines support for XML 1.0 and HTML.

« DOM Level 2.0. Completed in November 2000, Level 2.0 extends Level 1.0 with
support for XML 1.0 with namespaces and adds support for Cascading Style
Sheets (CSS) and events (user-interface events and tree manipulation events),
and enhances tree manipulations (tree ranges and traversal mechanisms).

« DOM Level 3.0. Currently under development, Level 3.0 will extend Level 2.0
by finishing support for XML 1.0 with namespaces (alignment with the XML
Infoset and support for XML Base) and will extend the user interface events
(keyboard). It will also add support for abstract schemas (for DTDs and XML
schema), and the ability to load and save a document or an abstract schema. It
is exploring further mixed markup vocabularies and the implications on the
DOM API (Embedded DOM), and it will support XPath.

Difference Between DOM and SAX
The generic APIs for XML can be classified in two main categories:

« Tree-based. The DOM is the primary generic tree-based API for XML.

« Event-based. SAX (Simple API for XML) is the primary generic event-based
programming interface between an XML parser and an XML application.

The DOM works by creating objects. These objects have child objects and
properties, and the child objects have child objects and properties, and so on.
Objects are referenced either by moving down the object hierarchy or by explicitly
giving an HTML element an ID attribute. For example:

Examples of structural manipulations are:
« Reordering elements

« Adding or deleting elements

« Adding or deleting attributes

« Renaming elements

8-6 Oracle9i XML Database Developer’s Guide - Oracle XML DB, Release 2 (9.2.0.2)

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features

The default behavior for the PL/SQL DOM API for XMLType (DBMS_XMLDOM) is
as follows:

« Produces a parse tree that can be accessed by DOM APIs.
« The parser is validating if a DTD is found; otherwise, it is non-validating.
« An application error is raised if parsing fails.

« The types and methods described in this document are made available by the
PL/SQL package DBMS_XMLPARSER

DTD validation follows the same rules that are exposed for the XML Parser
available through the XDK in Oracle9i Release 1(9.0.1) with the only difference
being that the validation occurs when the object document is manifested. For
example, if lazy manifestation is used, the document will be validated when it is
used.

Oracle XML DB extends the Oracle XML development platform beyond SQL
support for XML text and storage and retrieval of XML data. In this release, you can
operate on XMLType instances using the DOM in PL/SQL and Java. Thus, you can
directly manipulate individual XML elements and data using the language best
suited for your application or plug-in.

This release has updated the PL/SQL DOM API to exploit a C-based representation
of XML in the server and to operate on XML schema-based XML instances. Oracle
XML DB PL/SQL DOM API for XMLType and Java DOM API for XMLType comply
with the W3C DOM Recommendations to define and implement structured storage
of XML in relational or object-relational columns and as in-memory instances of
XMLType. See "Using PL/SQL DOM API for XMLType: Preparing XML Data" on
page 8-9, for a description of W3C DOM Recommendations.

XML Schema Support

PL/SQL DOM API for XMLType introduces XML schema support. Oracle XML DB
uses annotations within an