Web Dynamics

Part 2 – Modeling static and evolving graphs

- 2.1 The Web graph and its static properties
- 2.2 Generative models for random graphs
- 2.3 Measures of node importance

Notation: Graphs

• G=(V(G),E(G))

We will drop G when the graph is clear from the context.

- directed graph: E(G)⊆V(G)xV(G)
- undirected graph: E(G) ⊆{{v,w} ⊆V(G)}
- Degrees of nodes in directed graphs:
 - indegree of node n: indeg(n)=|{(v,w)∈E(G):w=n}|
 - outdegree of node n: outdeg(n)=|{(v,w)∈E(G):v=n}|
- Degree of node n in undirected graph:
 - $deg(n)=|\{e \in E(G): n \in e\}|$
- Distributions of degree, indegree, outdegree

$$P_{deg,G}(k) = \frac{|\{n \in V(G) : \deg(n) = k\}|}{|V(G)|}$$

Web Graph W

- Nodes are URLs on the Web
 - No dynamic pages, often only HTML-like pages
- Edges correspond to links
 - directed edges, sparse
- Highly dynamic, impossible to grab snapshot at any fixed time
 - ⇒ large-scale crawls as approximation/samples

Degree distributions

 Assume the average indegree is 3, what would be the shape of P_{in.W}?

Degree distributions

Power Law Distributions

Distribution P(k) follows power law if

$$P(k) = C \cdot k^{-\beta}$$

for real constant C>0 and real coefficient β >0 (needs normalization to become probability distribution)

Moments of order m are finite iff $\beta > m+1$:

$$E[X^m] = \sum_{k=1}^{\infty} k^m \cdot P(k) = \sum_{k=1}^{\infty} C \cdot k^{m-\beta} = C \cdot \zeta(\beta - m)$$

Heavy-tailed distribution: P(k) decays polynomially to 0

Power-Law-Distributions in log-log-scale

Parameter fitting in loglog-scale (fit linear function)

Degree distributions of the Web

Based on an Altavista crawl in May 1999 (203 million urls, 1466 million links)

Examples for Power Laws in the Web

- Web page sizes
- Web page access statistics
- Web browsing behavior
- Web page connectivity
- Web connected components size

More graphs with Power-Law degrees

- Connectivity of Internet routers and hosts
- Call graphs in telephone networks
- Power grid of western United States
- Citation networks
- Collaborators of Paul Erdös
- Collaboration graph of actors (IMDB)

Scale-Freeness

Scaling k by a constant factor yields a proportional change in P(k), independent of the absolute value of k:

$$P(ak) = C \cdot (ak)^{-\beta} = C \cdot a^{-\beta} \cdot k^{-\beta} = a^{-\beta} \cdot P(k)$$

(similar to 80/20 or 90/10 rules)

Additionally: results often independent of graph size (Web or single domain)

Zipfian vs. Power-Law

Zipfian distribution:

Power-law distribution of ranks, not numbers

- Input: map item→value (e.g., terms and their count)
- Sort items by descending value (any tie breaking)
- Plot (k, value of item at position k) pairs and consider their distribution

Important example: Frequency of words in large texts (but: also occurs in completely random texts)

Other related Law:

- Benford's Law: distribution of first digits in numbers
- Heaps' Law: number of distinct words in a text

Summer Term 2009 Web Dynamics 2-12

Example: Term distribution in Wikipedia

Most popular words are "the", "of" and "and" (so-called "stopwords")

Diameters

How many clicks away are two pages?

For two nodes $u, v \in V$:

d(u,v) minimal length of a path from u to v

Scale-free graphs: d has Normal distribution (Albert, 1999)

- Average path length
 - E[d]=O(log n), n number of nodes
 - For the Web: $E[d] \sim 0.35 + 2.06*log_{10}n$ (avg 21 hops distance)
 - Undirected: O(ln ln n) (Cohen&Havlin, 2003)
- Maximal path length ("diameter")

Diameters

From Broder et al, 2000:

- only 24% of nodes are connected through directed path
- average connected directed distance: 16
- average connected undirected distance: 7

⇒ small world only for connected nodes!

Connected components

Fig. 5. Distribution of weakly connected components on the Web. The sizes of these components also follow a power law.

Fig. 6. Distribution of strongly connected components on the Web. The sizes of these components also follow a power law.

(Their sample of the) Web graph contains

- one giant weakly connected component with 91% of nodes
- one giant strongly connected component with 28% of nodes (even after removing well-connected nodes)

Bow-Tie Structure of the Web

A. Broder et al. / Computer Networks 33 (2000) 309-320

Connectivity of Power-Law Graphs

(Undirected) connectivity depends on β :

- β <1: connected with high probability
- $1<\beta<2$: one giant component of size O(n), all others size O(1)
- $2<\beta<\beta_0=3.4785$: one giant component of size O(n), all others size O(log n)
- β > β 0: no giant component with high probability

(Aiello et al, 2001)

Block structure of Web links

Figure 1: A view of 4 different slices of the web: (a) the IBM domain, (b) all of the hosts in the Stanford and Berkeley domains, (c) the first 50 Stanford domains, alphabetically, and (d) the host-graph of the Stanford and Berkeley domains.

Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can be expected at distance 1,2,3,...?

1 hop: 3 neighbors

2 hops: 3*3=9 neighbors

h hops: 3^h neighbors

Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can be expected at/up to distance 1,2,3,...?

1 hop: 3 neighbors

2 hops: 3*3=9 neighbors

h hops: 3^h neighbors

Not true in general! (duplicates \Rightarrow over-estimation) N(h) \propto h^H (hop exponent) [Faloutsos et al, 1999]

Neighborhood sizes

Intuition: H ~ "fractal dimensionality" of graph

$$N(h) \propto h^1$$

$$N(h) \propto h^2$$

Web Dynamics

Part 2 – Modeling static and evolving graphs

- 2.1 The Web graph and its static properties
- 2.2 Generative models for random graphs
- 2.3 Measures of node importance

Requirements for a Web graph model

- Online: number of nodes and edges changes with time
- **Power-Law**: degree distribution follows power-law, with exponent $\beta>2$
- Small-world: average distance much smaller than O(n)
- Possibly more features of the Web graph...

Random Graphs: Erdös-Rénji

G(n,p) for undirected random graphs:

- Fix n (number of nodes)
- For each pair of nodes, independently add edge with uniform probability p

Degree distribution: binomial

$$P_{\text{deg}}(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Pick k out of Probability to have n-1 targets exactly k edges

 $\frac{\ln n}{n}$ threshold for the connectivity of G(n,p)

⇒ cannot be used to model the Web graph

Example: p=0.01

http://upload.wikimedia.org/wikipedia/commons/1/13/Erdos_generated_network-p0.01.jpg

Preferential attachment

Idea:

Barabasi&Albert, 1999

- mimic creation of links on the Web
- Links to "important" pages are more likely than links to random pages

Generation algorithm:

- Start with set of M₀ nodes
- When new node is added, add m \leq M $_0$ random edges probability of adding edge to node v: $\frac{\deg(v)}{\sum \deg(w)}$

Result: Power-law degree distribution with β =2.9 for M₀=m=5 (from simulation)

Analysis of Preferential Attachment

(Using "mean field" analysis and assuming continuous time, see Baldi et al.)

After t steps: M_0+t nodes, tm edges

Consider node v with $k_v(t)$ edges after step t

$$k_v(t+1) - k_v(t) = m \frac{k_v(t)}{2mt} = \frac{k_v(t)}{2t}$$
 (considering expectations, allowing multiple edges)

$$\frac{\partial k_{v}}{\partial t} = \frac{k_{v}}{2t}$$

(assuming continous time, considering differential equation)

with initial condition $k_v(t_v) = m$ (t_v : time when v was added)

This can be solved as

$$k_v(t) = m \sqrt{\frac{t}{t_v}}$$
 (older nodes grow faster than younger ones)

Further analysis shows that $P(k) = \frac{2m^2}{k^3}$

Properties and extensions

- Diameter of generated graphs:
 - O(log n) for m=1
 - O($\log n/\log \log n$) for m≥2
- Extension to directed edges:
 - randomly choose direction of each added edge
 - consider indegree and outdegree for edge choice
- Extensions to generate different distributions (where $\beta \neq 3$): mixtures of operations
 - Allow addition of edges between existing nodes
 - Allow rewiring of edges
- Extensions for node and edge deletion required

Copying

Idea:

Kleinberg et al., 1999

- mimic creation of pages on the Web
- links are partially copied from existing pages

Generation algorithm:

- When new node is added, pick random (uniform) existing node u
 and add d edges as follows
 - Add edge to random (uniform) node with probability p
 - Copy random (uniform) existing edge from u with probability 1-p

Prefers nodes with high indegree (similar to preferential attachment)

Generates Power-law degree distribution with $\beta = \frac{2-p}{1-p}$

Other Generative Models

Watts and Strogatz model:

- Fix number of nodes n and degree k
- Start with a regular ring lattice with degree k
- Iterate over nodes, rewire edge with probability p
- ⇒ Degree distribution similar to random graph (for p>0), infeasible to model the Web graph

Growth-Deletion Models:

- Generative model (like PA or Copying)
- Generate new node + m PA-style edges with probability p₁
- Generate m PA-style edges with probability p₂
- Delete existing node (uniform, random) with probability p₃
- Delete m edges (uniform, random) with probability 1-p₁-p₂-p₃ Generates power-law degree distribution with $\beta = 2 + \frac{p_1 + p_2}{p_1 + 2p_2 - p_3 - p_4}$

Web Dynamics

Part 2 – Modeling static and evolving graphs

- 2.1 The Web graph and its static properties
- 2.2 Generative models for random graphs
- 2.3 Measures of node importance

More networks than just the Web

- Citation networks (authors, co-authorship)
- Social networks (people, friendship)
- Actor networks (actors, co-starring)
- Computer networks (computers, network links)
- Road networks (junctions, roads)

Characteristics are similar to the Web:

- Degree distribution
- (strongly, weakly) connected components
- Diameters
- Centrality of nodes: how important is a node

Assume undirected graphs for the moment

Summer Term 2009 Web Dynamics 2-33

Clustering: Edge density in neighborhood

For each node *v* having at least two neighbors:

$$C^{v} = \frac{\left| \{ \{j, k\} \in E : \{v, j\} \in E \land \{v, k\} \in E \} \right|}{\frac{\deg(v)(\deg(v) - 1)}{2}}$$

For each node v having less than two neighbors:

$$C^{v}=0$$

Clustering index of the network: $C = \frac{1}{|V|} \sum_{v \in V} C^v$

Degree centrality

General principle:

Nodes with many connections are important.

$$C_D(v) = \frac{\deg(v)}{|V| - 1}$$

But: too simple in practice, link targets/sources matter!

Closeness centrality

Total distance for a node *v*:

$$\sum_{w \in V} d(v, w)$$

Closeness is defined as:

$$C_C(v) = \frac{1}{\sum_{w \in V} d(v, w)}$$

Helps to find central nodes w.r.t. distance (e.g., useful to find good location for service stations)

But: what happens with nodes that are (almost) isolated?

Assumes connected graph

Betweenness centrality

Centrality of a node *v*:

- which fraction of shortest paths through v
- Probability that an arbitrary shortest path passes through v

Number of shortest paths between s and t: σ_{st}

Number of shortest paths between s and t through v: $\sigma_{st}(v)$

Betweenness of node
$$v$$
: $C_B(v) = \sum_{s \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$

Can be computed in $O(|V| \cdot |E|)$ using per-node BFS plus clever tricks (to account for overlapping paths) [Brandes,2001]

Example: Betweenness

red=0, blue=max

Betweenness: Properties & Extensions

- Node with high betweenness may be crucial in communication networks:
 - May intercept and/or modify many messages
 - Danger of congestion
 - Danger of breaking connectivity if it fails
- But: No information how messages really flow!
- Extension: take network flow into account ("flow betweenness")

Authority Measures for the Web

Goal:

Determine **authority** (prestige, importance) of a page with respect to

- volume
- significance
- freshness
- authenticity

of its information content

Approximate authority by (modified) centrality measures in the (directed) Web graph

PageRank

Idea: incoming links are endorsements & increase page authority, authority is higher if links come from high-authority pages

Random walk: uniformly random choice of links + random jumps

PageRank

Input: directed Web graph G=(V,E) with |V|=n and adjacency matrix $E: E_{ii} = 1$ if $(i,j) \in E$, 0 otherwise

Random surfer page-visiting probability after i +1 steps:

$$p^{(i+1)}(y) = r_y + \sum_{x=1..n} C_{yx} \ p^{(i)}(x) \quad \text{with conductance matrix C:} \\ C_{yx} = (1-\varepsilon) E_{xy} \ / \ \text{outdeg(x)} \\ p^{(i+1)} = r + C \ p^{(i)} \quad \text{and random jump vector r:} \\ r_y = \varepsilon / n$$

Finding solution of fixpoint equation suggests power iteration: initialization: $p^{(0)}(y) = 1/n$ for all y repeat until convergence (L_1 or L_∞ of diff of $p^{(i)}$ and $p^{(i+1)} <$ threshold) $p^{(i+1)} := r + Cp^{(i)}$

(typically ~50 iterations until convergence of top authorities)

PageRank: Foundations

Random walk can be cast into ergodic Markov chain:

Transition probability (from state i to state j):

$$p_{i,j} = \frac{\varepsilon}{n^2} + (1 - \varepsilon) \frac{E_{i,j}}{outdeg(i)}$$

random jump i→j move along link

Probability $\pi_i^{(t+1)}$ for being in state i in step t+1:

$$\pi_i^{(t+1)} = \sum_n p_{ji} \cdot \pi_j^{(t)}$$
 \Rightarrow Fixpoint equation: $\pi = P\pi$ ($\sum \pi_i = 1$)

PageRank: Extensions

Principle: Adapt random jump probabilities

- Personal PageRank: Favour pages with "good" content (personal bookmarks, visited pages)
- Topic-specific PageRank:
 - Fix set of topics
 - For each topic, fix (small) set of authoritative pages
 - For each topic, compute PR_t with random jumps only to authoritative pages of that topic
 - Compute query-specific topic probability P[t|q] and query-specific pagerank $PR(d,q)=\sum P[t|q]\cdot PR_t(d)$

HITS (Hyperlink Induced Topic Search)

Idea: determine

- Pages with good content (authorities): many inlinks
- Pages with good links (hubs): many outlinks

Mutual reinforcement:

- good authorities have good hubs as predecessors
- good hubs have good authorities as successors

Define for nodes $x, y \in V$ in Web graph W = (V, E)

authority score
$$a_y \sim \sum_{(x,y) \in E} h_x$$

hub score

$$h_x \sim \sum_{(x,y) \in E} a_y$$
Web Dynamics

HITS as Eigenvector Computation

Authority and hub scores in matrix notation:

$$\vec{a} = E^T \vec{h}$$

$$\vec{h} = E \vec{a}$$

Iteration with adjacency matrix A:

$$\vec{a} = E^T \vec{h} = E^T E \vec{a}$$

$$\vec{h} = E \vec{a} = E E^T \vec{h}$$

a and h are **Eigenvectors** of E^T E and E E^T, respectively

Intuitive interpretation:

$$M^{(auth)} = E^{T}E$$

is the cocitation matrix: $M^{(auth)}_{ij}$ is the number of nodes that point to both i and j

$$M^{(hub)} = EE^{T}$$

is the bibliographic-coupling matrix: M^(hub)_{ij} is the number of nodes to which both i and j point

HITS Algorithm

Compute fixpoint solution by iteration with length normalization:

```
initialization: a^{(0)} = (1, 1, ..., 1)^T, h^{(0)} = (1, 1, ..., 1)^T
repeat until sufficient convergence
h^{(i+1)} := E a^{(i)}
h^{(i+1)} := h^{(i+1)} / ||h^{(i+1)}||_1
a^{(i+1)} := E^T h^{(i)}
a^{(i+1)} := a^{(i+1)} / ||a^{(i+1)}||_1
```

convergence guaranteed under fairly general conditions

HITS for Ranking Query Results

- 1) Determine sufficient number (e.g. 50-200) of "root pages" via relevance ranking (using any content-based ranking scheme)
- 2) Add all successors of root pages
- 3) For each root page add up to d predecessors
- 4) Compute iteratively
 authority and hub scores of this "expansion set" (e.g. 1000-5000 pages)
 → converges to principal Eigenvector
- 5) Return pages in descending order of authority scores (e.g. the 10 largest elements of vector a)

Potential problem of HITS algorithm: Relevance ranking within root set is not considered

Example: HITS Construction of Graph

Improved HITS Algorithm

Potential weakness of the HITS algorithm:

- irritating links (automatically generated links, spam, etc.)
- topic drift (e.g. from "Jaguar car" to "car" in general)

Improvement:

- Introduce edge weights:
 - O for links within the same host,
 - 1/k with k links from k URLs of the same host to 1 URL (aweight)
 - 1/m with m links from 1 URL to m URLs on the same host (hweight)
- Consider relevance weights w.r.t. query (score)
- → Iterative computation of

authority score
$$a_q := \sum_{(p,q) \in E} h_p \cdot score(p) \cdot aweight(p,q)$$

hub score

$$h_p := \sum_{(p,q) \in E} a_q \cdot score(q) \cdot hweight(p,q)$$

Efficiently Computing PageRank

(Selected) Solutions:

- Compute Page-Rank-style authority measure online without storing the complete link graph
- Exploit block structure of the Web
- Decentralized, synchronous algorithm
- Decentralized, asynchronous algorithm

Online Link Analysis

Key ideas:

- Compute small fraction of authority as crawler proceeds without storing the Web graph
- Each page holds some "cash" that reflects its importance
- When a page is visited, it distributes its cash among its successors
- When a page is not visited, it can still accumulate cash
- This random process has a stationary limit that captures importance of pages

OPIC (Online Page Importance Computation)

Maintain for each page i (out of n pages):

- **C[i]** cash that page i currently has and distributes
- **H[i]** history of how much cash page has ever had in total plus global counter
 - G total amount of cash that has ever been distributed

```
for each i do { C[i] := 1/n; H[i] := 0 }; G := 0;
do forever {
   choose page i (e.g., randomly);
   H[i] := H[i] + C[i];
   for each successor j of i do C[j] := C[j] + C[i] / outdegree(i);
   G := G + C[i];
   C[i] := 0; };
```

Note: 1) every page needs to be visited infinitely often (fairness)
2) the link graph is assumed to be strongly connected

Summer Term 2009 Web Dynamics 2-53

OPIC Importance Measure

At each step t an estimate of the importance of page i is: $(H_t[i] + C_t[i]) / (G_t + 1)$ (or alternatively: $H_t[i] / G_t$)

Theorem:

Let $X_t = H_t / G_t$ denote the vector of cash fractions accumulated by pages until step t.

The limit $X = \lim_{t \to \infty} X_t$ exists with $//X//_1 = \sum_i X[i] = 1$.

with crawl strategies such as:

- random
- greedy: read page i with highest cash C[i]
 (fair because non-visited pages accumulate cash until eventually read)
- cyclic (round-robin)

Exploiting Web structure

Exploit locality in Web link graph: construct block structure (disjoint graph partitioning) based on sites or domains

- 1) Compute local per-block pageranks
- Construct block graph B with aggregated link weights proportional to sum of local pageranks of source nodes
- 3) Compute pagerank of B
- 4) Rescale local pageranks of pages by global pagerank of their block
- 5) Use these values as seeds for global pagerank computation

Decentralized synchronous computation

PageRank computation highly local: needs only previous ranks of adjacent nodes

⇒ Apply distributed computing framework like MapReduce

References

Main references:

- A. Z. Broder et al.: **Graph structure in the Web**, Computer Networks 33, 309—320, 2000
- A. Bonato: A survey of models of the Web graph, Combinatorial and Algorithmic Aspects of Networking, 2005
- P. Baldi, P. Frasconi, P. Smyth: Modeling the Internet and the Web, chapters 1.7, 3, A

Additional references:

- A.-L. Barabasi, R. Albert: **Emergence of scaling in random networks**, Science 286, 509—512, 1999
- W. Aiello et al.: A random graph model for massive graphs, ACM STC, 2000
- W. Aiello et al.: A random graph model for power-law graphs, Experimental Math 10, 53—66, 2001
- R. Albert et al.: Diameter of the World Wide Web, Nature 401, 130—131, 1999
- M. Mitzenbacher: A brief history of generative models for power law and lognormal distributions, Internet Mathematics 1(2), 226—251, 2004
- R. Kumar et al.: Stochastic model for the Web graph, FOCS, 2000
- R. Cohen, S. Havlin: **Scale-free networks are ultrasmall**, Phys. Rev. Lett. 90, 058701, 2003
- A. Bonato, J. Janssen: Limits and power laws of models for the Web graph and other networked information spaces. Combinatorial and Algorithmic Aspects of Networking, 2005
- S.D. Kamvar et al.: **Exploiting the block structure of the Web for computing Pagerank**, WWW conference, 2003
- M. Faloutsos et al.: On Power-Law relationships of the Internet topology, SIGCOMM conference, 1999
- J. Kleinberg et al.: **The Web as a graph: Measurements, models, and methods**. Conference on Combinatorics and Computing, 1999
- D.J. Watts, S.H. Strogatz: Collective dynamics of small-world networks, Nature 393(6684), 409–410, 1998
- U. Brandes: A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology 25, 163—177, 2001
- S Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine, WWW 1998
- T.H. Haveliwala: **Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search,** IEEE Trans. Knowl. Data Eng. 15(4), 784–796, 2003
- G. Jeh, J. Widom: Scaling personalized web search. WWW Conference, 2003
- J. Kleinberg: **Authoritative sources in a hyperlinked environment**, Journal of the ACM 36(5), 604–632, 1999
- S. Abiteboul, M. Preda, G. Cobena: Adaptive on-line page importance computation, WWW Conference 2003