Web Dynamics

Part 2 — Modeling static and evolving graphs

2.1 The Web graph and its static properties
2.2 Generative models for random graphs
2.3 Measures of node importance
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Notation: Graphs

e (5 =(V(G )’ E(G )) We will drop G when the graph is clear from the context.
— directed graph: E(G)cV(G)xV(G)
— undirected graph: E(G) c{{v,w} cV(G)}
e Degrees of nodes in directed graphs:
— indegree of node n: indeg(n)=|{(v,w)€E(G):w=n}|
— outdegree of node n: outdeg(n)=|{(v,w)€E(G):v=n}|
e Degree of node n in undirected graph:
— deg(n)=|{ ecE(G):nece}|
e Distributions of degree, indegree, outdegree

P (k)= [{n eV (G):deg(n) = k}|
V(G)|
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Web Graph W

e Nodes are URLs on the Web
— No dynamic pages, often only HTML-like pages
e Edges correspond to links

— directed edges, sparse

e Highly dynamic, impossible to grab snapshot at
any fixed time
— large-scale crawls as approximation/samples
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Degree distributions

e Assume the average indegree is 3, what would

be the shape of P, \\?
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Degree distributions
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Power Law Distributions

Distribution P(k) follows power law if

P(k)=C -k

for real constant C>0 and real coefficient 3>0
(needs normalization to become probability distribution)

Moments of order m are finite iff S>m+1:
E[X"=> k™ P(k)=> C-k"™” =C-{(S-m)
k=1 k=1
Heavy-tailed distribution: P(k) decays polynomially to O
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Power-Law-Distributions in log-log-scale
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Degree distributions of the Web

Based on an Altavista crawl in May 1999
(203 million urls, 1466 million links)
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Examples for Power Laws in the Web

e \Web page sizes

e \Web page access statistics
e Web browsing behavior

e \Web page connectivity

e Web connected components size
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More graphs with Power-Law degrees

e Connectivity of Internet routers and hosts
e Call graphs in telephone networks

e Power grid of western United States

e Citation networks

e Collaborators of Paul Erdds

e Collaboration graph of actors (IMDB)
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Scale-Freeness

Scaling k by a constant factor yields a proportional

change in P(k), independent of the absolute value
of k:

P(ak)=C-(ak)” =C-a” -k’ =a”-P(k)

(similar to 80/20 or 90/10 rules)

Additionally: results often independent of graph
size (Web or single domain)
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Zipfian vs. Power-Law

Zipfian distribution:
Power-law distribution of ranks, not numbers

e |nput: map item—value (e.g., terms and their count)
e Sort items by descending value (any tie breaking)

e Plot (k, value of item at position k) pairs and consider
their distribution

Important example: Frequency of words in large texts
(but: also occurs in completely random texts)

Other related Law:
e Benford‘s Law: distribution of first digits in numbers
e Heaps’ Law: number of distinct words in a text
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Example: Term distribution in Wikipedia
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Most popular words are “the”, “of” and “and” (so-called “stopwords”)
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Diameters

How many clicks away are two pages?
For two nodes u,v eV:
d(u,v) minimal length of a path from uto v

Scale-free graphs: d has Normal distribution (Albert, 1999)

e Average path length
— E[d]=0O(log n), n number of nodes
— For the Web: E[d] ~ 0.35 + 2.06*log,,n (avg 21 hops distance)
— Undirected: O(In In n) (Cohen&Havlin, 2003)

e Maximal path length (,diameter”)

Summer Term 2009 Web Dynamics 2-14




Diameters

From Broder et al, 2000:

e only 24% of nodes are connected through
directed path

e average connected directed distance: 16

e average connected undirected distance: 7

—> small world only for connected nodes!

Summer Term 2009 Web Dynamics 2-15




Connected components

WCC distribution SCC distribution
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Fig. 5. Distribution of weakly connected components on the Fig. 6. Distribution of strongly connected components on the
Web. The sizes of these components also follow a power law. Web. The sizes of these components also follow a power law.

(Their sample of the) Web graph contains

e one giant weakly connected component with 91% of nodes

e one giant strongly connected component with 28% of nodes

(even after removing well-connected nodes)
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Bow-Tie Structure of the Web

A. Broder et al. / Computer Networks 33 (2000) 309-320

Tendrils
/'-44 Million \\
nodes

IN

-—— = — .h
44 Million nodes

SCC ouT

____.h

56 Million nodes 44 Million nodes

@,
Qo

D ~——_ Disconnected components

Summer Term 2009 Web Dynamics

2-17

000Z ‘0ZE—60E:EE SHI0MIBN J23ndwo) ‘gap dy3 ul a4n3oniis yedio :°|e 18 Japoug 'y



Connectivity of Power-Law Graphs

(Undirected) connectivity depends on [3:
e [3<1: connected with high probability

e 1<[3<2: one giant component of size O(n),
all others size O(1)

e 2<[3<[3,=3.4785: one giant component of size O(n),
all others size O(log n)

e 3>B0: no giant component with high probability

(Aiello et al, 2001)
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Block structure of Web links

Figure 1: A view of 4 different slices of the web: (a) the IBM domain, (b) all of the hosts in the Stanford and Berkeley domains. (c) the
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Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can
be expected at distance 1,2,3,...7

1 hop: 3 neighbors
2 hops: 3*3=9 neighbors

h hops: 3" neighbors
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Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can
be expected at/up to distance 1,2,3,...7?

1 hop: 3 neighbors
2 hops: 3*3=9 neighbors
h hops: 3" neighbors

Not true in general! (duplicates = over-estimation)
N(h) oc h" (hop exponent) [Faloutsos et al, 1999]
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Neighborhood sizes

Intuition: H ~ ,,fractal dimensionality” of graph

N(h) oc hl
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Web Dynamics

Part 2 — Modeling static and evolving graphs

2.1 The Web graph and its static properties
2.2 Generative models for random graphs
2.3 Measures of node importance
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Requirements for a Web graph model

e Online: number of nodes and edges changes
with time

e Power-Law: degree distribution follows power-
law, with exponent [3>2

e Small-world: average distance much smaller
than O(n)

e Possibly more features of the Web graph...
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Random Graphs: Erdos-Réniji

G(n,p) for undirected random graphs:
e Fix n (number of nodes)

e For each pair of nodes, independently add edge with uniform

probability p

Degree distribution: binomial

1 -1-k
Pieg (K) = [ )p(l p)"

\ N J
Y Y

Pick k out of  Probability to have
n-1 targets exactly k edges

In_ threshold for the connectivity of G(n,p)
N

—> cannot be used to model the Web graph

Summer Term 2009 Web Dynamics

2-25




Example: p=0.01

http://upload.wikimedia.org/wikipedia/commons/1/13/Erdos_generated_network-p0.01.jpg
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Preferential attachment

Idea: Barabasi&Albert, 1999
e mimic creation of links on the Web

e Links to ,important” pages are more likely than links to random
pages

Generation algorithm:
e Start with set of M, nodes

e When new node is added, add m<M, random edges
deg(v)

probability of adding edge to node v: S deg(w)

Result: Power-law degree distribution with =2.9 for M;=m=5
(from simulation)
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Analysis of Preferential Attachment

(Using ,,mean field” analysis and assuming continuous time, see Baldi et al.)
After t steps: M+t nodes, tm edges
Consider node v with k (t) edges after step t

k,(t+1) -k, (t) =m k2V(tt) = kvz(tt) (considering expectations, allowing multiple edges)
m

ok, K

\ \

ot 2t

with initial condition Kk, (t,) =m (t,: time when v was added)

(assuming continous time, considering differential equation)

This can be solved as

kK,(t)=m /l (older nodes grow faster than younger ones)
tV

2m?

k3

Further analysis shows that P(k) =
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Properties and extensions

e Diameter of generated graphs:
— O(log n) for m=1
— O(log n/log logn) for m>2
e Extension to directed edges:
— randomly choose direction of each added edge
— consider indegree and outdegree for edge choice
e Extensions to generate different distributions (where
B#3): mixtures of operations
— Allow addition of edges between existing nodes
— Allow rewiring of edges

e Extensions for node and edge deletion required
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Copying

Idea: Kleinberg et al., 1999
e mimic creation of pages on the Web

e |inks are partially copied from existing pages

Generation algorithm:

e When new node is added, pick random (uniform) existing node u
and add d edges as follows
— Add edge to random (uniform) node with probability p
— Copy random (uniform) existing edge from u with probability 1-p

Prefers nodes with high indegree (similar to preferential attachment)

2 _
Generates Power-law degree distribution with [ = Py pp
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Other Generative Models

e Watts and Strogatz model:
— Fix number of nodes n and degree k
— Start with a regular ring lattice with degree k
— lterate over nodes, rewire edge with probability p
—> Degree distribution similar to random graph (for p>0), infeasible to model
the Web graph
e Growth-Deletion Models:
— Generative model (like PA or Copying)
— Generate new node + m PA-style edges with probability p,
— Generate m PA-style edges with probability p,
— Delete existing node (uniform, random) with probability p,

— Delete m edges (uniform, random) with probability 1-p,-p,-p;
P+ D,
p1+2p2_ pa_ p4

Generates power-law degree distribution with =2+
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Web Dynamics

Part 2 — Modeling static and evolving graphs

2.1 The Web graph and its static properties
2.2 Generative models for random graphs
2.3 Measures of node importance
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More networks than just the Web

e Citation networks (authors, co-authorship)

e Social networks (people, friendship)

e Actor networks (actors, co-starring)

e Computer networks (computers, network links)
e Road networks (junctions, roads)

Characteristics are similar to the Web:

e Degree distribution

e (strongly, weakly) connected components

e Diameters

e Centrality of nodes: how important is a node

Assume undirected graphs for the moment
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Clustering: Edge density in neighborhood

For each node v having at least two neighbors:
Y = ‘{{j,k}e E:{v, J}e EA{v,k}e E}{
B deg(v)(deg(v) —1)
2

For each node v having less than two neighbors:
C'=0
Clustering index of the network: C= —ZCV

o
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Degree centrality

General principle:
Nodes with many connections are important.

_ deg(v)
Co) =10

But: too simple in practice, link targets/sources matter!
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Closeness centrality

Total distance for a node v:

2ney AVW)

Closeness is defined as:

CC (V) — ZWV](-j(V’W)

Helps to find central nodes w.r.t. distance

(e.g., useful to find good location for service stations)

But: what happens with nodes that are (almost) isolated?

Assumes connected graph
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Betweenness centrality

Centrality of a node v:
— which fraction of shortest paths through v
— Probability that an arbitrary shortest path passes through v

Number of shortest paths betweensandt: Oy
Number of shortest paths between s and t through v: o (V)

Betweenness of node v: C,(v) = Z o4 (V)

S#t Gst

Can be computed in O(|V]|-|E|) using per-node BFS plus
clever tricks (to account for overlapping paths) [Brandes,2001]
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Example: Betweenness

red=0, blue=max
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Betweenness: Properties & Extensions

e Node with high betweenness may be crucial in
communication networks:

— May intercept and/or modify many messages
— Danger of congestion
— Danger of breaking connectivity if it fails

e But: No information how messages really flow!

e Extension: take network flow
into account (,,flow betweenness®)

PO
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Authority Measures for the Web

Goal:
Determine authority (prestige, importance) of a page

with respect to
— volume
— significance
— freshness

— authenticity
of its information content

Approximate authority by (modified) centrality measures

in the (directed) Web graph

Summer Term 2009 Web Dynamics 2-40




PageRank

|ldea: incoming links are endorsements & increase page authority,
authority is higher if links come from high-authority pages

PR(q):|\‘j—|+(l—g)- Y PR(P)

(v-mee outdeg(p) ]
-\ N

Authority (page q) = \

stationary prob. of visiting g

Random walk: uniformly random choice of links + random jumps
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PageRank

Input: directed Web graph G=(V,E) with |V|=n and
adjacency matrix E: E; = 1if (i,j)€E, O otherwise

Random surfer page-visiting probability after i +1 steps:

» |

p"(y) = r, + szl__ncyx p®(X) with conductance matrix C:
C,, = (1-€)E,, / outdeg(x)

p(i+1) —r+C p(i) and random jump vector r:
r, = g/n

Finding solution of fixpoint equation suggests power iteration:

initialization: p© (y) =1/n for all y

repeat until convergence (L, or L, of diff of p{) and p(*V) < threshold)
plitl) .= r + Cpll)

(typically ~50 iterations until convergence of top authorities)
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PageRank: Foundations

Random walk can be cast into ergodic Markov chain:

— hyperlinks
— additional edges to model

random jumps between
unconnected urls

E i) |

+(1 .
n outdeg (1)

random jump i—j move along link
Probability m(®*1) for being in state i in step t+1:

(t+1) _ Ay L :
Ty = Z Pji 77 = Fixpoint equation: t=P7 (2n=1)
n
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PageRank: Extensions

Principle: Adapt random jump probabilities

e Personal PageRank: Favour pages with ,good”
content (personal bookmarks, visited pages)

e Topic-specific PageRank:
— Fix set of topics

— For each topic, fix (small) set of authoritative pages

— For each topic, compute PR, with random jumps only
to authoritative pages of that topic

— Compute query-specific topic probability P[t|q] and
query-specific pagerank PR(d,q)=2P[t|q]-PR,(d)
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HITS (Hyperlink Induced Topic Search)

Idea: determine
— Pages with good content (authorities): many inlinks

— Pages with good links (hubs): many outlinks

= I =i

Mutual reinforcement:
— good authorities have good hubs as predecessors
— good hubs have good authorities as successors

Define for nodes x, y €V in Web graph W = (V, E)

authority score ay,~ > hy
(X,y)eE

hub score hy ~ D.ay
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HITS as Eigenvector Computation

Authority and hub scores in matrix notation:

— —_

é: ET h h p— E a
Iteration with adjacency matrix A:

a=E'h=E'E3 h=Ed=EE'h
a and h are Eigenvectors of ETE and E ET, respectively

Intuitive interpretation:

pvauth) _ gTe s the cocitation matrix: M{uth), is the
number of nodes that point to both i and j

M) _ EET s the bibliographic-coupling matrix: M(hub),
is the number of nodes to which both i and j point
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HITS Algorithm

Compute fixpoint solution by iteration with length

normalization:
initialization: a® = (1, 1, ..., 1)7, h©® =(1, 1, ..., 1)7
repeat until sufficient convergence

h(+1) .= E a0)
h(i+1) ‘= h(i+1) / ||h(i+1)||1
5(i+1) .= ET h i)

a(i+1) ‘= a(i+1) / ||a(i+1) ”1

convergence guaranteed under fairly general conditions
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HITS for Ranking Query Results

1) Determine sufficient number (e.g. 50-200) of ,,root pages”
via relevance ranking (using any content-based ranking scheme)
2) Add all successors of root pages
3) For each root page add up to d predecessors
4) Compute iteratively
authority and hub scores of this ,,expansion set” (e.g. 1000-5000 pages)
— converges to principal Eigenvector
5) Return pages in descending order of authority scores
(e.g. the 10 largest elements of vector a)

Potential problem of HITS algorithm:
Relevance ranking within root set is not considered
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Example: HITS Construction of Graph

query result

6
4
] . -
5 I
8

expansion set
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Improved HITS Algorithm

Potential weakness of the HITS algorithm:
e irritating links (automatically generated links, spam, etc.)
e topic drift (e.g. from ,Jaguar car” to ,,car” in general)
Improvement:
e Introduce edge weights:
O for links within the same host,
1/k with k links from k URLs of the same host to 1 URL (aweight)
1/m with m links from 1 URL to m URLs on the same host (hweight)
e Consider relevance weights w.r.t. query (score)

— Iterative computation of

authority score 4= Z h, -score(p)-aweight(p, q)
(p.q)eE

hub score . :
h, = ) a,-score(q)-hweight(p,q)
(p.g)eE
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Efficiently Computing PageRank

(Selected) Solutions:

e Compute Page-Rank-style authority measure
online without storing the complete link graph

e Exploit block structure of the Web
e Decentralized, synchronous algorithm
e Decentralized, asynchronous algorithm
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Online Link Analysis

Key ideas:

e Compute small fraction of authority as crawler
proceeds without storing the Web graph

e Each page holds some ,,cash” that reflects its
iImportance

e When a page is visited, it distributes its cash
among its successors

e When a page is not visited, it can still
accumulate cash

e This random process has a stationary limit that
captures importance of pages
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OPIC (Online Page Importance Computation)

Maintain for each page i (out of n pages):

e ([i] — cash that page i currently has and distributes

e HI[i] — history of how much cash page has ever had in total
plus global counter

e G -—total amount of cash that has ever been distributed

for eachido { C[i] :=1/n; H[i] :=0}; G :=0;
do forever {
choose page i (e.g., randomly);
H[i] := H[i] + C[i];
for each successor j of i do CJ[j] := C|[j] + CJ[i] / outdegree(i);
G:=G+Cli];
Cli] :=0; };

Note: 1) every page needs to be visited infinitely often (fairness)
2) the link graph is assumed to be strongly connected
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OPIC Importance Measure

At each step t an estimate of the importance of page i is:
(H/[i] + C[i]) / (G, + 1) (or alternatively: H.[i]/G,)

Theorem:

Let X, = H,/ G, denote the vector of cash fractions
accumulated by pages until step t.

The limit X = lim ,_, X, exists with ||X]||, = 2. X[i] = 1.

with crawl strategies such as:
e random
e greedy: read page i with highest cash C[i]
(fair because non-visited pages accumulate cash until eventually read)
e cyclic (round-robin)
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Exploiting Web structure

Exploit locality in Web link graph: construct block structure
(disjoint graph partitioning) based on sites or domains

I G ;;‘.:g;g-g.--

J
¥
h?ﬂh

|

nnnnnnn

1) Compute local per-block pageranks

2) Construct block graph B with aggregated link weights proportional
to sum of local pageranks of source nodes

3) Compute pagerank of B

4) Rescale local pageranks of pages by global pagerank of their block

5) Use these values as seeds for global pagerank computation
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Decentralized synchronous computation

PageRank computation highly local:
needs only previous ranks of adjacent nodes

= Apply distributed computing framework like
MapReduce
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