
382 / 582

Accessing the Data Indices

Indices

We consider B-Trees only

• key attributes: a1, . . . , an

• data attributes: d1, . . . , dm

• Often: one special data attribute holding the TID of a tuple

Some notions:

• simple/complex key

• unique/non-unique index

• index-only relation (no TIDs available!)

• clustered/non-clustered index



383 / 582

Accessing the Data Indices

Clustered vs. Non-Clustered B-Tree

• clustering is not always possible (or even desireable)



384 / 582

Accessing the Data Indices

Single Index Access Path - Point Query

Exact match query:

select name
from Emp
where eno = 1077

Translation:

Πname(χe:∗x .tid ,name:e.name(Empeno [x ; eno = 1077]))

Alternative translation using d-join:

Πname(Empeno [x ; eno = 1077] χe:∗.tid ,name:e.name(�))

(x: holds ptr to index entry; *: dereference TID, � is a singleton scan)



385 / 582

Accessing the Data Indices

Single Index Access Path - Range Query

Range query:

select name
from Emp
where age ≥ 25 and age ≤ 35

Translation:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

(Start and Stop condition)



386 / 582

Accessing the Data Indices

Single Index Access Path - Sequential I/O

Turning random I/O into sequential I/O:

Πname(χe:∗tid ,name:e.name(sortx .tid(Empage [x ; 25 ≤ age; age ≤ 35; tid ])))

Note: explicit projection the TID attribute of the index within the index
scan.



387 / 582

Accessing the Data Indices

Single Index Access Path - Sorted Output

Query demanding ordered output:

select name, age
from Emp
where age ≥ 25 and age ≤ 35
order by age

Translation:

Πname,age(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

Note: output of index scan ordered on its key attributes
This order can be exploited in many ways: e.g.: subsequent merge join



388 / 582

Accessing the Data Indices

Single Index Access Path - Sorted Output (2)

Turning random I/O into sequential I/O requires resort:

Πname,age(sortage(χe:∗tid ,name:e.name(sorttid(Empage [x ; 25 ≤ age; age ≤ 35; tid ]))))

Possible speedup of sort by dense numbering:

Πname,age(
sortrank(
χe:∗tid ,name:e.name(
sorttid(
χrank:counter++(
Empage [x ; 25 ≤ age; age ≤ 35; tid ])))))



389 / 582

Accessing the Data Indices

Single Index Access Path - Other Predicates

Some predicates not index sargable but still useful as residual predicates:

select name
from Emp
where age ≥ 25 and age ≤ 35 and age 6= 30

Translation:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 30]))



390 / 582

Accessing the Data Indices

Single Index Access Path - Other Predicates (2)

Non-inclusive bounds:

select name
from Emp
where age > 25 and age < 35

If supported by index:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 < age; age < 35]))

If unsupported:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 25, age 6= 35]))

Especially for predicates on strings this might be expensive.



391 / 582

Accessing the Data Indices

Single Index Access Path - Ranges

Start and stop conditions are optional:

select name
from Emp
where age ≥ 60

or

select name
from Emp
where age ≤ 20



392 / 582

Accessing the Data Indices

Single Index Access Path - No Range

Full index scan also useful:

select count(*)
from Emp

Also works for sum/avg.
(notion: index only query)



393 / 582

Accessing the Data Indices

Single Index Access Path - No Range (2)

Min/max even more efficient:

select min/max(salary)
from Emp



394 / 582

Accessing the Data Indices

Single Index Access Path - No Range (3)

select name
from Emp
where salary = (select max(salary)

from Emp)

Alternatives: one or two descents into the index.



395 / 582

Accessing the Data Indices

Single Index Access Path - No Range (4)

Full index scan:

select salary
from Emp
order by salary

Translation:
Empsalary



396 / 582

Accessing the Data Indices

Single Index Access Path - String Ranges

Predicate on string attribute:

select name, salary
from Emp
where name ≥ ’Maaa’

Start condition: ′Maaa′ ≤ name

select name, salary
from Emp
where name like ’M%’

Start condition: ′M ′ ≤ name



397 / 582

Accessing the Data Indices

Single Index Access Path

• an access path is a plan fragment with building blocks concerning a
single database items.

• hence, every building block is an access path.

• above plans mostly touch two database items: a relation and an index
on some attribute of that relation.

• if we say that an index concerns the relation that it indexes, such a
fragment is an access path.

• for relational systems, the most general case of an access path uses
several indices to retrieve the tuples of a single relation.

• we will see examples of these more complex access paths in the
following section.

• a query that can be answered solely by accessing indexes is called an
index only query .



398 / 582

Accessing the Data Indices

Single Index Access Path - Complex Predicates

Query with IN:

select name
from Emp
where age in {28, 29, 31, 32}

Take min/max value for start/stop key plus one of the following as the
residual predicate:

• age = 28 ∨ age = 29 ∨ age = 31 ∨ age = 32

• age 6= 30



399 / 582

Accessing the Data Indices

Single Index Access Path - Complex Predicates (2)

A case for the d-join:

select name
from Emp
where salary in {1111, 11111, 111111}

With Sal = {[s : 1111], [s : 11111], [s : 111111]}:

Sal [S ] χe:∗tid ,name:e.name(Empsalary [x ; salary = S .s; tid ])

• gap skipping/zig-zag skipping



400 / 582

Accessing the Data Indices

Single Index Access Path - Compound Keys

In general an index can have a complex key comprising of key attributes
k1, . . . , kn and data attributes d1, . . . , dm.
Besides a full index scan, the index can be descended to directly search for
the desired tuple(s):
If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constants ci and some j <= n, we can generate the start and
stop condition

k1 = c1 ∧ . . . ∧ kj = cj .



401 / 582

Accessing the Data Indices

Single Index Access Path - Compound Keys

With ranges things become more complex and highly dependent on the
implementation of the facilities of the B-Tree:

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3

Obviously, we can generate the start condition k1 = c1 ∧ k2 ≥ c2 and the
stop condition k1 = c1.
Here, we neglected the condition on k3 which becomes a residual predicate.
However, with some care we can extend the start condition to
k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3:
we only have to keep k3 = c3 as a residual predicate since for k2 values
larger than c2 values different from c3 can occur for k3.



402 / 582

Accessing the Data Indices

Single Index Access Path - Compound Keys (2)

If closed ranges are specified for a prefix of the key attributes as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

we can generate the start key k1 = a1 ∧ . . . ∧ kj = aj , the stop key
k1 = b1 ∧ . . . ∧ kj = bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate.
If for some search key attribute kj the lower bound aj is not specified, the
start condition can not contain kj and any kj+i .
If for some search key attribute kj the upper bound bj is not specified, the
stop condition can not contain kj and any kj+i .



403 / 582

Accessing the Data Indices

Single Index Access Path - Improvements

Two further enhancements of the B-Tree functionality possibly allow for
alternative start/stop conditions:

• The B-Tree implemenation allows to specify the order (ascending or
descending) for each key attribute individually.

• The B-Tree implementation implements forward and backward scans



404 / 582

Accessing the Data Indices

Single Index Access Path - Improvements (2)

Consider search predicate:

haircolor = ’blond’ and height between 180 and 190

and index on
sex, haircolor, height

There are only the two values male and female available for sex.
Rewrite:

(sex = ’m’ and haircolor = ’blond’ and height
between 180 and 190) or (sex = ’f’ and haircolor =
’blond’ and height between 180 and 190)

Improvement: determine rewrite at query execution time in conjunction
with gap skipping.



405 / 582

Accessing the Data Indices

Multi Index Access Path - Example

Query:

select *
from Camera
where megapixel > 5 and distortion < 0.05

and noise < 0.01
zoomMin < 35 and zoomMax > 105

Indexes on all attributes



406 / 582

Accessing the Data Indices

Multi Index Access Path - Example (2)

Translation:

((((
Cameramegapixel [c ; megapixel > 5; tid ]
∩

Cameradistortion[c ; distortion < 0.05; tid ])
∩

Cameranoise [c ; noise < 0.01; tid ])
∩

CamerazoomMin[c; zoomMin < 35; tid ])
∩

CamerazoomMax [c ; zoomMax > 105; tid ])

Then dereference

• Notion: index and-ing/and merge (bitmap index)



407 / 582

Accessing the Data Indices

Multi Index Access Path - Combining

Questions:

• In which order do we intersect the TID sets resulting from the index
scans?

• Do we really apply all indexes before dereferencing the TIDs?

The answer to the latter question is clearly “no”, if the next index scan is
more expensive than accessing the records in the current TID list.
It can be shown that the indexes in the cascade of intersections are
ordered on increasing (fi − 1)/ci terms where fi is the selectivity of the
index and ci its access cost.
Further, we can stop as soon as accessing the original tuples in the base
relation becomes cheaper than intersecting with another index and
subsequently accessing the base relation.



408 / 582

Accessing the Data Indices

Multi Index Access Path - Combining (2)

Index-oring (or merge):

select *
from Emp
where yearsOfEmployment ≥ 30

or age ≥ 65

Translation:

EmpyearsOfEmployment [c ; yearsOfEmployment ≥ 30; tid ]∪Empage [c ; age ≥ 65; tid ]

Attention: duplicates
Optimal translation of complex boolean expressions? Factorization?



409 / 582

Accessing the Data Indices

Multi Index Access Path - Combining (3)

Index differencing:

select *
from Emp
where yearsOfEmployment 6= 10

and age ≥ 65

Translation:

Empage [c ; age ≥ 65; tid ]\EmpyearsOfEmployment [c ; yearsOfEmployment = 10; tid ]



410 / 582

Accessing the Data Indices

Multi Index Access Path - Combining (3)

Non-restrictive index sargable predicates (more than half of the index has
to be read):

select *
from Emp
where yearsOfEmployment ≤ 5

and age ≤ 60

Then

EmpyearsOfEmployment [c ; yearsOfEmployment ≤ 5; tid ]\Empage [c ; age > 60; tid ]

could be more efficient than

EmpyearsOfEmployment [c ; yearsOfEmployment ≤ 5; tid ]∩Empage [c; age ≤ 60; tid ]



411 / 582

Accessing the Data Indices

Indices and Join

1. speed up joins by index exploitation

2. make join a general index processing operation

(intersection is similar to join (for sets))



412 / 582

Accessing the Data Indices

Indices and Join (2)

Turn map

χe:∗tid ,name:e.name(Empsalary [x ; 25 ≤ age ≤ 35; tid ])

into d-join

Empsalary [x ; 25 ≤ age ≤ 35; tid ] χe:∗tid ,name:e.name(�)

or even join

Empsalary [x ; 25 ≤ age ≤ 35] x .tid=e.tidEmp[e]

Variants: sorting at different places (by plan generator)

• pro: flexibility

• contra: large search space



413 / 582

Accessing the Data Indices

Indices and Join (3)

Query:

select name,age
from Person
where name like ’R%’ and age between 40 and 50

Translation:

Πname,age(
Empage [a; 40 ≤ age ≤ 50; TIDa, age]

TIDa=TIDn

Empname [n; name ≥′ R ′; name <′ S ′; TIDn, name])



414 / 582

Accessing the Data Indices

Indices and Join (4)

The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=′′Maier ′′(Emp[e]) e.dno=d .dnoDept[d ]



415 / 582

Accessing the Data Indices

Indices and Join (5)

If there are indexes on Emp.name and Dept.dno, we can replace
σe.name=′′Maier ′′(Emp[e]) by an index scan as we have seen previously:

χe:∗x .tid(Empname [x ; name =′′ Maier ′′])



416 / 582

Accessing the Data Indices

Indices and Join (6)

With a d-join:

Empname [x ; name =′′ Maier ′′] χe:∗x .tid(�)

Abbreviate Empname [x ; name =′′ Maier ′′] by Ei

Abbreviate χe:∗x .tid(�) by Ea.



417 / 582

Accessing the Data Indices

Indices and Join (7)

Use index on Dept.dno:

Ei Ea Deptdno [y ; y .dno = dno]

Dereference TIDs (index nested loop join):

Ei Ea Deptdno [y ; y .dno = dno; dtid : y .tid ] χu:∗dtid(�)

Abbreviate Deptdno [y ; y .dno = dno; dtid : y .tid ] by Di

Abbreviate χu:∗dtid(�) by Da

Fully abbreviated, the expression then becomes

Ei Ea Di Da



418 / 582

Accessing the Data Indices

Indices and Join - Performance Improvements

Optimizations: sorting the outer of a d-join is useful under several
circumstances since it may

• turn random I/O into sequential I/O and/or

• avoid reading the same page twice.

In our example expression:



419 / 582

Accessing the Data Indices

Indices and Join - Performance Improvements (2)

• We can sort the result of expression Ei on TID in order to turn random
I/O into sequential I/O, if there are many employees named ”Maier”.

• We can sort the result of the expression Ei Ea on dno for two
reasons:

I If there are duplicates for dno, i.e. there are many employees named
”Maier” in each department, then this guarantees that no index page
(of the index Dept.dno) has to be read more than once.

I If additionally Dept.dno is a clustered index or Dept is an index-only
table contained in Dept.dno then large parts of the random I/O can
be turned into sequential I/O.

I If the result of the inner is materialized (see below), then only one
result needs to be stored. Note that sorting is not necessary but
grouping would suffice to avoid duplicate work.

• We can sort the result of the expression Ei Ea Di on dtid for the
same reasons as mentioned above for sorting the result of Ei on TID.



420 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner

Typically, many employees will work in a single department and possibly
several of them are called ”Maier”.
For everyone of them, we can be sure that there exists at most one
department.
Let us assume that referential intregrity has been specified.
Then there exists exactly one department for every employee.
We have to find a way to rewrite the expression

Ei Ea Deptdno [y ; y .dno = dno; dtid : y .rid ]

such that the mapping dno −→ dtid is explicitly materialized (or, as one
could also say, cached).



421 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (2)

Use χmat :

Ei Ea χmat
tid :(Deptdno [y ;y .dno=dno]).tid(�)



422 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (3)

If we further assume that the outer (Ei Ea) is sorted on dno, then it
suffices to remember only the TID for the latest dno.
We define the map operator χmat,1 to do exactly this.
A more efficient plan could thus be

sortdno(Ei Ea) χmat,1
dtid :(Deptdno [y ;y .dno=dno]).tid(�)

where, strictly speaking, sorting is not necessary: grouping would suffice.



423 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (4)

Consider: e1 e2

The free variables used in e2 must be a subset of the variables (attributes)
produced by e1, i.e. F(e2) ⊆ A(e1).
Even if e1 does not contain duplicates, the projection of e1 on F(e2) may
contain duplicates.
If so, materialization could pay off.
However, in general, for every binding of the variables F(e2), the
expression e2 may produce several tuples.
This means that using χmat is not sufficient.



424 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (5)

The query

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

has the usual suspects as plans.
Assume we have only wines from a few years.
Then, it might make sense to consider the following alternative:

Wine[w ] σe.yearOfBirth=w .year (Emp[e])

Problem: scan Emp once for each Wine tuple
Duplicates in Wine.year: scan Emp only once per Wine.year value



425 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (6)

The memox operator performs caching:

Wine[w ] memox(σe.yearOfBirth=w .year (Emp[e]))

Sorting still beneficial:

sortw .year (Wine[w ]) memox1(σe.yearOfBirth=w .year (Emp[e]))



426 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (7)

Things can become even more efficient if there is an index on
Emp.yearOfBirth:

sortw .year (Wine[w ])
memox1(EmpyearOfBirth[x ; x .yearOfBirth = w .year ] χe:∗(x .tid)(�))



427 / 582

Accessing the Data Indices

Indices and Join - Temping the Inner (8)

Indexes on Emp.yearOfBirth and Wine.year.
Join result of index scans.
Since the index scan produces its output ordered on the key attributes, a
simple merge join suffices (and we are back at the latter):

EmpyearOfBirth[x ] merge
x .yearOfBirth=y .year Wineyear [y ]



428 / 582

Accessing the Data Indices

Remarks on Access Path Generation

Side-ways information passing
Consider R R.a=S.bS

• min/max for restriction on other join argument

• full projection on join attributes (leads to semi-join)

• bitmap representation of the projection


