2. Textbook Query Optimization

Algebra Revisited

Canonical Query Translation

Logical Query Optimization

Physical Query Optimization



Allia Revsisd
Algebra Revisited

The algebra needs some more thought:

e correctness is critical for query optimization
e can only be guaranteed by a formal model
e the algebra description in the introduction was too cursory

What we ultimately want to do with an algebraic model:

e decide if two algebraic expressions are equivalent (produce the same
result)

This is too difficult in practice (not computable in general), so we at least
want to:

e guarantee that two algebraic expressions are equivalent (for some
classes of expressions)

This still requires a strong formal model. We accept false negatives, but
not false positives.



Textbook Query Optimization Algebra Revisited

Tuples

Tuple:

¢ a (unordered) mapping from attribute names to values of a domain
e sample: [name: "Sokrates”, age: 69]

Schema:
e a set of attributes with domain, written A(t)

e sample: {(name,string),(age, number)}

Note:
e simplified notation on the slides, but has to be kept in mind
e domain usually omitted when not relevant

e attribute names omitted when schema known



Textbook Query Optimization Algebra Revisited

Tuple Concatenation

e notation: t; oty

e sample: [name: "Sokrates”, age: 69]o [country: " Greece"|
= [name: "Sokrates”, age: 69, country: " Greece”]

e note: tj o tp = tp o ty, tuples are unordered

Requirements/Effects:
o A(t)) NA(t2) =10
° .A(tl o t2) = .A(tl) U .A(tz)



Textbook Query Optimization Algebra Revisited

Tuple Projection
Consider t = [name: "Sokrates”, age: 69, country: " Greece"|

Single Attribute:

e notation t.a

e sample: t.name = "Sokrates”
Multiple Attributes:

* notation t|4

o sample: t|{pameage} = [Name: "Sokrates”, age: 69]

Requirements/Effects:
e ac A(t), AC A(t)
L4 A(t‘A) =A

* notice: t.a produces a value, tj4 produces a tuple



Textbook Query Optimization Algebra Revisited

Relations

Relation:

e a set of tuples with the same schema

e sample: {[name: "Sokrates”, age: 69], [name: "Platon”, age: 45]}
Schema:

e schema of the contained tuples, written A(R)

e sample: {(name,string),(age, number)}



Allia Revsisd
Sets vs. Bags

e relations are sets of tuples

e real data is usually a multi set (bag)

Example: select age age
from student 23

24

24

e we concentrate on sets first for simplicity

e many (but not all) set equivalences valid for bags

The optimizer must consider three different semantics:
e logical algebra operates on bags
e physical algebra operates on streams (order matters)

e explicit duplicate elimination = sets



Allia Revsisd
Set Operations

Set operations are part of the algebra:
e union (LU R), intersection (L N R), difference (L \ R)
e normal set semantic
e but: schema constraints

e for bags defined via frequencies (union — -+, intersection — min,
difference — —)

Requirements/Effects:
o A(L) = A(R)
e A(LUR)=A(L) = A(R), A(LNR) = A(L) = A(R),
A(L\ R) = A(L) = A(R)



Textbook Query Optimization Algebra Revisited

Free Variables

Consider the predicate age = 62
e can only be evaluated when age has a meaning
e age behaves a free variable
e must be bound before the predicate can be evaluated

e notation: F(e) are the free variables of e

Note:
o free variables are essential for predicates

o free variables are also important for algebra expressions
e dependent join etc.



Textbook Query Optimization Algebra Revisited

Selection

Selection:
e notation: o,(R)
e sample: o>o({[a:1],[a:2],[a:3]}) ={[a:2],[a:3]}
e predicates can be arbitrarily complex

e optimizer especially interested in predicates of the form
attrib = attrib or attrib = const

Requirements/Effects:
e F(p) C A(R)
o A(op(R)) = A(R)



Textbook Query Optimization Algebra Revisited

Projection

Projection:
e notation: Ma(R)
e sample: My ({[a:1,b:1],[a:2,b:1]}) ={[a:1],[a: 2]}
e eliminates duplicates for set semantic, keeps them for bag semantic

e note: usually written as I, instead of the correct Iy, 1}

Requirements/Effects:
e AC A(R)
e A(Ma(R))=A



Textbook Query Optimization Algebra Revisited

Rename

Rename:
e notation: p,_p(R)
e sample:
pamc({la:1,b:1],[a:2,b:1]}) ={[c:1,b:1],[c:2,b:2]}?
e often a pure logical operator, no code generation

e important for the data flow

Requirements/Effects:
e ac A(R),b¢ A(R)
o A(pa—b(R)) = A(R) \ {a} U {b}



Allia Revsisd
Join
Consider L = {[a: 1],[a:2]},R = {[b:1],[b: 3]}

Cross Product:

e notation: L X R

e sample: Lx R={[a:1,b:1],[a:1,b:3],[a:2,b:1],[a:2,b:3]}
Join:

e notation: [X,R

e sample: [X,_pR={[a:1,b:1]}

e defined as o,(L x R)

Requirements/Effects:
o A(L)NA(R) = 0, F(p) € (A(L) UA(R))
e A(Lx R)=A(L)UR



Textbook Query Optimization

Equivalences

Algebra Revisited

Equivalences for selection and projection:

UPl/\P2(e)
opi(0p:(€))
Ma,(Ma,(e))

ap(Ma(e))

op(erUe
op(er1 Ne
op(er\ e
Ma(er U e

)
)
)
)

op1(0py(€))
ACAD)
Ma,(e)

if Ay C A,
Ma(op(e))

if 7(p) C A
op(er) Uop(e)
op(er) Nop(e2)
op(e1) \ op(e2)
Ma(er) UMa(e)



Equivalences

Equivalences for joins:

e X e

ertXpen

(e1 X &) X €3
(e1Xp, €2)Xp, €3
op(er X &)
op(er x &)

Opy (eleeQ)

Ma(er x e2)

Textbook Query Optimization Algebra Revisited

€ X e

eMper

e1 X (e2 X €3)
e1¥p, (€2, €3)
eXpe

opler) X e

if 7(p) € A(er)
opr(€1)Xp, €2

if F(p1) € A(er)
Ma,(e1) x Ma,(e2)

ifA=Aj UA, A C .A(el), Ar C .A(ez)



