Classification of Join Ordering Problems

We distinguish four different dimensions:

- 1. query graph class: chain, cycle, star, and clique
- 2. join tree structure: left-deep, zig-zag, or bushy trees
- 3. join construction: with or without cross products
- 4. cost function: with or without ASI property

In total, 48 different join ordering problems.

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n-1), where C(n) is defined as

$$C(n) = \begin{cases} 1 & \text{if } n = 0\\ \sum_{k=0}^{n-1} C(k)C(n-k-1) & \text{if } n > 0 \end{cases}$$

It can be written in a closed form as

$$C(n) = \frac{1}{n+1} \binom{2n}{n}$$

The Catalan Numbers grown in the order of $\Theta(4^n/n^{\frac{3}{2}})$

Number Of Join Trees with Cross Products

```
left deep n! right deep n! zig-zag n!2^{n-2} bushy n!\mathcal{C}(n-1) =\frac{(2n-2)!}{(n-1)!}
```

- rational: number of leaf combinations (n!) × number of unlabeled trees (varies)
- grows exponentially
- increases even more with a flexible tree structure

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query $R_1 - \ldots - R_n$ as f(n)

- obviously f(0) = 1, f(1) = 1
- for n > 1, consider adding R_n to all join trees for $R_1 \ldots R_{n-1}$
- R_n can be added at any position following R_{n-1}
- lets denote the position of R_{n-1} from the bottom with k ([1, n-1])
- there are n k join trees for adding R_n after R_{n-1}
- one additional tree if k = 1, R_n can also be added before R_{n-1}
- for R_{n-1} to be at k, $R_{n-k} \dots R_{n-2}$ must be below it. f(k-1) trees

for n > 1:

$$f(n) = 1 + \sum_{k=1}^{n-1} f(k-1) * (n-k)$$

Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

$$f(n) = \begin{cases} 1 & \text{if } n < 2\\ 1 + \sum_{k=1}^{n-1} f(k-1) * (n-k) & \text{if } n \ge 2 \end{cases}$$

solving the recurrence gives the closed form

$$f(n) = 2^{n-1}$$

• generalization to zig-zag as before

Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

- each subtree must contain a subchain to avoid cross products
- thus do not add single relations but subchains
- whole chain must be $R_1 \ldots R_n$, cut anywhere
- consider commutativity (two possibilities)

This leads to the formula

$$f(n) = \begin{cases} 1 & \text{if } n < 2\\ \sum_{k=1}^{n-1} 2f(k)f(n-k) & \text{if } n \ge 2 \end{cases}$$

solving the recurrence gives the closed form

$$f(n) = 2^{n-1}\mathcal{C}(n-1)$$

Star Queries, no Cross Products

Consider a star query with R_1 at the center and R_2, \ldots, R_n as satellites.

- the first join must involve R₁
- afterwards all other relations can be added arbitrarily

This leads to the following formulas:

- left-deep: 2 * (n-1)!
- zig-zag: $2*(n-1)!*2^{n-2} = (n-1)!*2^{n-1}$
- bushy: no bushy trees possible (R_1 required), same as zig-zag

Clique Queries, no Cross Products

- in a clique query, every relation is connected to each other
- thus no join tree contains cross products
- all join trees are valid join trees, the number is the same as with cross products

Sample Numbers, without Cross Products

		Chain Que	eries	Star Queries	
	Left-Deep	Zig-Zag	Bushy	Left-Deep	Zig-Zag/Bushy
n	2^{n-1}	2^{2n-3}	$2^{n-1}\mathcal{C}(n-1)$	2(n-1)!	$2^{n-1}(n-1)!$
1	1	1	1	1	1
2	2	2	2	2	2
3	4	8	8	4	8
4	8	32	40	12	48
5	16	128	224	48	384
6	32	512	1344	240	3840
7	64	2048	8448	1440	46080
8	128	8192	54912	10080	645120
9	256	32768	366080	80640	10321920
10	512	131072	2489344	725760	18579450

Sample Numbers, with Cross Products

	Left-Deep	$Zig extsf{-}Zag$	Bushy
n	n!	$n!2^{n-2}$	$n!\mathcal{C}(n-1)$
1	1	1	1
2	2	2	2
3	6	12	12
4	24	96	120
5	120	960	1680
6	720	11520	30240
7	5040	161280	665280
8	40320	2580480	17297280
9	362880	46448640	518918400
10	3628800	968972800	17643225600

Problem Complexity

query graph	join tree	cross products	cost function	complexity
general	left-deep	no	ASI	NP-hard
tree/star/chain	left-deep	no	ASI, 1 joint.	Р
star	left-deep	no	NLJ+SMJ	NP-hard
general/tree/star	left-deep	yes	ASI	NP-hard
chain	left-deep	yes	-	open
general	bushy	no	ASI	NP-hard
tree	bushy	no	_	open
star	bushy	no	ASI	Р
chain	bushy	no	any	Р
general	bushy	yes	ASI	NP-hard
tree/star/chain	bushy	yes	ASI	NP-hard

Greedy Heuristics - First Algorithm

- search space of joins trees is very large
- greedy heuristics produce suitable join trees very fast
- suitable for large queries

For the first algorithm we consider:

- left-deep trees
- no cross products
- relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely identifies the left-deep join tree.

Greedy Heuristics - First Algorithm (2)

```
GreedyJoinOrdering-1(R = \{R_1, \ldots, R_n\}, w : R \to \mathbb{R})
Input: a set of relations to be joined and weight function Output: a join order S = \epsilon
while (|R| > 0) {
m = \arg\min_{R_i \in R} w(R_i)
R = R \setminus \{m\}
S = S \circ < m >
}
return S
```

- disadvantage: fixed weight functions
- · already chosen relations do not affect the weight
- · e.g. does not support minimizing the intermediate result

Greedy Heuristics - Second Algorithm

```
GreedyJoinOrdering-2(R = \{R_1, \ldots, R_n\}, w : R, R^* \to \mathbb{R})

Input: a set of relations to be joined and weight function

Output: a join order

S = \epsilon

while (|R| > 0) {

m = \arg\min_{R_i \in R} w(R_i, S)

R = R \setminus \{m\}

S = S \circ < m >
}

return S
```

- · can compute relative weights
- but first relation has a huge effect
- and the fewest information available

Greedy Heuristics - Third Algorithm

```
GreedyJoinOrdering-3(R = \{R_1, \ldots, R_n\}, w : R, R^* \to \mathbb{R})
Input: a set of relations to be joined and weight function
Output: a join order
S = \emptyset
for \forall R_i \in R {
  R' = R \setminus \{R_i\}
  S' = \langle R_i \rangle
  while (|R'| > 0) {
     m = \operatorname{arg\,min}_{R_i \in R'} w(R_i, S')
     R' = R' \setminus \{m\}
     S' = S' \circ \langle m \rangle
  S = S \cup \{S'\}
return arg min<sub>S' \in S</sub> w(S'[n], S'[1:n-1])
```

• commonly used: minimize selectivities (MinSel)

Greedy Operator Ordering

- the previous greedy algorithms only construct left-deep trees
- Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

- all relations have to be joined somewhere
- but joins can also happen between whole join trees
- we therefore greedily combine join trees (which can be relations)
- combine join trees such that the intermediate result is minimal

Greedy Operator Ordering (2)

```
GOO(R = \{R_1, \dots, R_n\})
Input: a set of relations to be joined
Output: a join tree
T = R
while |T| > 1 {
(T_i, T_j) = \arg\min_{(T_i \in T, T_j \in T), T_i \neq T_j} |T_i \bowtie T_j|
T = (T \setminus \{T_i\}) \setminus \{T_j\}
T = T \cup \{T_i \bowtie T_j\}
}
return T_0 \in T
```

- constructs the result bottom up
- join trees are combined into larger join trees
- chooses the pair with the minimal intermediate result in each pass