Seadh SpzEe
Classification of Join Ordering Problems

We distinguish four different dimensions:
1. query graph class: chain, cycle, star, and clique
2. join tree structure: left-deep, zig-zag, or bushy trees
3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.

RNOIC i 9l Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n — 1), where
C(n) is defined as

1 ifn=20
Cln) = { Srlek)e(n—k—1) ifn>0

It can be written in a closed form as
1 2n
C =
(n) n+1 < n >

The Catalan Numbers grown in the order of @(4”/n%)

Seadh SpzEe
Number Of Join Trees with Cross Products

left deep n!

right deep n!

zig-zag n2n—2

bushy n!C(n—1)
(2n—2)!
(n—1)!

e rational: number of leaf combinations (n!) x number of unlabeled
trees (varies)

e grows exponentially

e increases even more with a flexible tree structure

RNOIC i 9l Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query
Ri—...—Rpas f(n)

e obviously f(0) =1,f(1) =1

e for n > 1, consider adding R, to all join trees for Ry — ... — R,_1

e R, can be added at any position following R,_1
lets denote the position of R,_1 from the bottom with k ([1, n — 1])

e there are n — k join trees for adding R, after R,_1

one additional tree if k =1, R, can also be added before R,_1
e for R,_1 to be at k, R,_x — ... R,—2 must be below it. f(k— 1) trees

forn>1:
n—1

f(n) =1+ f(k—1)x(n—k)

k=1

Seadh SpzEe
Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

1 if n <2
f(”):{ 1+ 30 f(k—1)x(n—k) ifn>2

solving the recurrence gives the closed form

f(n) =271

e generalization to zig-zag as before

Seadh SpzEe
Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

each subtree must contain a subchain to avoid cross products

thus do not add single relations but subchains

whole chain must be Ry — ... — R,, cut anywhere
e consider commutativity (two possibilities)

This leads to the formula

=1 if n <2
VEU S of (K F(n— k) ifn>2

solving the recurrence gives the closed form

f(n) =2""1C(n—1)

RNOIC i 9l Search Space

Star Queries, no Cross Products

Consider a star query with Ry at the center and R», ..., R, as satellites.
e the first join must involve Ry

o afterwards all other relations can be added arbitrarily

This leads to the following formulas:
o left-deep: 2% (n—1)!
o zig-zag: 2% (n— 1)1 %272 = (n— 1)1 x 271

e bushy: no bushy trees possible (Ry required), same as zig-zag

RNOIC i 9l Search Space

Clique Queries, no Cross Products

e in a clique query, every relation is connected to each other
e thus no join tree contains cross products
e all join trees are valid join trees, the number is the same as with cross

products

RNOIC i 9l Search Space

Sample Numbers, without Cross Products

Chain Queries

Star Queries

Left-Deep Zig-Zag Bushy | Left-Deep Zig-Zag/Bushy

n on=1 22n=3 on=lc(n—1) | 2(n—1)! 2n=1(p —1)!
1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920
10 512 131072 2489344 725760 18579450

RNOIC i 9l Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy

n n! nl2n=2 nlC(n—1)
1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400
10 | 3628800 968972800 17643225600

Problem Complexity

RNOIC i 9l Search Space

query graph join tree | cross products | cost function | complexity
general left-deep | no ASI NP-hard
tree/star/chain left-deep | no ASI, 1 joint. | P

star left-deep | no NLJ+SMJ NP-hard
general /tree/star | left-deep | yes ASI NP-hard
chain left-deep | yes - open
general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain | bushy yes ASI NP-hard

Gzl (Hauisi
Greedy Heuristics - First Algorithm

e search space of joins trees is very large
o greedy heuristics produce suitable join trees very fast

e suitable for large queries
For the first algorithm we consider:

o |eft-deep trees
e no cross products
e relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely
identifies the left-deep join tree.

NETNOIE A Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1,...,R.}.w: R — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=¢
while (|R| > 0) {

m = arg ming,cg w(R;)

R=R\ {m}
S=So<m>
}
return S

e disadvantage: fixed weight functions
e already chosen relations do not affect the weight

e e.g. does not support minimizing the intermediate result

NETNOIE A Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {Ry,...,R,},w: R,R* — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=e¢
while (|R| > 0) {

m = arg ming,cgr W(R;, S)

R =R\ {m}

S=So<m>

}

return S

e can compute relative weights
e but first relation has a huge effect

e and the fewest information available

NETNOIE A Greedy Heuristics

Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3(R = {Ry,..., R}, w: R,R* — R)
Input: a set of relations to be joined and weight function
Output:a join order
S=0
for VR € R {

R'= R\ {Ri}

S =< R; >

while (|R'| > 0) {

m = argming.cp w(R;, S')

R' = R'\ {m}
S =So<m>
}
S=Su{s)

}

return arg mingics w(S'[n], S’[1 : n —1])

e commonly used: minimize selectivities (MinSel)

Gzl (Hauisi
Greedy Operator Ordering

e the previous greedy algorithms only construct left-deep trees
o Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

o all relations have to be joined somewhere
e but joins can also happen between whole join trees
o we therefore greedily combine join trees (which can be relations)

e combine join trees such that the intermediate result is minimal

NETNOIE A Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R =A{R1,...,Rn})
Input: a set of relations to be joined
Output:a join tree
T=R
while |T| > 1{
(Ti, Tj) = argmin(r.e 7 1.7, 7,227, | TN T}
T=(T\{TiH)\{T}}
T =TU{TiXT;}
}

return Top e T

e constructs the result bottom up
e join trees are combined into larger join trees

e chooses the pair with the minimal intermediate result in each pass

