Classification of Join Ordering Problems

We distinguish four different dimensions:

1. query graph class: *chain*, *cycle*, *star*, and *clique*
2. join tree structure: *left-deep*, *zig-zag*, or *bushy* trees
3. join construction: *with* or *without* cross products
4. cost function: *with* or *without* ASI property

In total, 48 different join ordering problems.
Reminder: Catalan Numbers

The number of binary trees with \(n \) leave nodes is given by \(C(n - 1) \), where \(C(n) \) is defined as

\[
C(n) = \begin{cases}
1 & \text{if } n = 0 \\
\sum_{k=0}^{n-1} C(k)C(n - k - 1) & \text{if } n > 0
\end{cases}
\]

It can be written in a closed form as

\[
C(n) = \frac{1}{n + 1} \binom{2n}{n}
\]

The Catalan Numbers grown in the order of \(\Theta(4^n/n^{3/2}) \)
Number Of Join Trees with Cross Products

- left deep: $n!$
- right deep: $n!$
- zig-zag: $n!2^{n-2}$
- bushy: $n!C(n-1) = \frac{(2n-2)!}{(n-1)!}$

- rational: number of leaf combinations ($n!$) \times number of unlabeled trees (varies)
- grows exponentially
- increases even more with a flexible tree structure
Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query $R_1 - \ldots - R_n$ as $f(n)$

- obviously $f(0) = 1, f(1) = 1$
- for $n > 1$, consider adding R_n to all join trees for $R_1 - \ldots - R_{n-1}$
- R_n can be added at any position following R_{n-1}
- let's denote the position of R_{n-1} from the bottom with k ([1, $n - 1$])
- there are $n - k$ join trees for adding R_n after R_{n-1}
- one additional tree if $k = 1$, R_n can also be added before R_{n-1}
- for R_{n-1} to be at k, $R_{n-k} - \ldots R_{n-2}$ must be below it. $f(k - 1)$ trees

for $n > 1$:

$$f(n) = 1 + \sum_{k=1}^{n-1} f(k - 1) \times (n - k)$$
Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size \(n \) is

\[
f(n) = \begin{cases}
1 & \text{if } n < 2 \\
1 + \sum_{k=1}^{n-1} f(k - 1) \times (n - k) & \text{if } n \geq 2
\end{cases}
\]

solving the recurrence gives the closed form

\[
f(n) = 2^{n-1}
\]

- generalization to zig-zag as before
Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

- each subtree must contain a subchain to avoid cross products
- thus do not add single relations but subchains
- whole chain must be $R_1 - \ldots - R_n$, cut anywhere
- consider commutativity (two possibilities)

This leads to the formula

$$f(n) = \begin{cases}
1 & \text{if } n < 2 \\
\sum_{k=1}^{n-1} 2f(k)f(n-k) & \text{if } n \geq 2
\end{cases}$$

solving the recurrence gives the closed form

$$f(n) = 2^{n-1}C(n-1)$$
Star Queries, no Cross Products

Consider a star query with \(R_1 \) at the center and \(R_2, \ldots, R_n \) as satellites.

- the first join must involve \(R_1 \)
- afterwards all other relations can be added arbitrarily

This leads to the following formulas:

- left-deep: \(2 \times (n - 1)! \)
- zig-zag: \(2 \times (n - 1)! \times 2^{n-2} = (n - 1)! \times 2^{n-1} \)
- bushy: no bushy trees possible (\(R_1 \) required), same as zig-zag
Clique Queries, no Cross Products

- in a clique query, every relation is connected to each other
- thus no join tree contains cross products
- all join trees are valid join trees, the number is the same as with cross products
Sample Numbers, without Cross Products

<table>
<thead>
<tr>
<th>n</th>
<th>Chain Queries</th>
<th>Star Queries</th>
</tr>
</thead>
</table>
| | Left-Deep 2^{n-1} | Zig-Zag 2^{2n-3} | Bushy $2^{n-1}C(n-1)$ | Left-Deep $2(n-1)!$ | Zig-Zag/Bushy $2^{n-1}(n-1)!$
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 4 | 8 | 8 | 4 | 8 |
| 4 | 8 | 32 | 40 | 12 | 48 |
| 5 | 16 | 128 | 224 | 48 | 384 |
| 6 | 32 | 512 | 1344 | 240 | 3840 |
| 7 | 64 | 2048 | 8448 | 1440 | 46080 |
| 8 | 128 | 8192 | 54912 | 10080 | 645120 |
| 9 | 256 | 32768 | 366080 | 80640 | 10321920 |
| 10| 512 | 131072 | 2489344 | 725760 | 18579450 |
Sample Numbers, with Cross Products

<table>
<thead>
<tr>
<th>n</th>
<th>Left-Deep $n!$</th>
<th>Zig-Zag $n!2^{n-2}$</th>
<th>Bushy $n!C(n-1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>960</td>
<td>1680</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>11520</td>
<td>30240</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>161280</td>
<td>665280</td>
</tr>
<tr>
<td>8</td>
<td>40320</td>
<td>2580480</td>
<td>17297280</td>
</tr>
<tr>
<td>9</td>
<td>362880</td>
<td>46448640</td>
<td>518918400</td>
</tr>
<tr>
<td>10</td>
<td>3628800</td>
<td>968972800</td>
<td>17643225600</td>
</tr>
</tbody>
</table>
Problem Complexity

<table>
<thead>
<tr>
<th>query graph</th>
<th>join tree</th>
<th>cross products</th>
<th>cost function</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>left-deep</td>
<td>no</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>tree/star/chain</td>
<td>left-deep</td>
<td>no</td>
<td>ASI, 1 joint. NLJ+SMJ</td>
<td>P</td>
</tr>
<tr>
<td>star</td>
<td>left-deep</td>
<td>no</td>
<td>NLJ+SMJ</td>
<td>NP-hard</td>
</tr>
<tr>
<td>general/tree/star chain</td>
<td>left-deep</td>
<td>yes</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>general</td>
<td>left-deep</td>
<td>yes</td>
<td>-</td>
<td>open</td>
</tr>
<tr>
<td>tree</td>
<td>bushy</td>
<td>no</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>star</td>
<td>bushy</td>
<td>no</td>
<td>-</td>
<td>open</td>
</tr>
<tr>
<td>chain</td>
<td>bushy</td>
<td>no</td>
<td>ASI</td>
<td>P</td>
</tr>
<tr>
<td>chain</td>
<td>bushy</td>
<td>no</td>
<td>any</td>
<td>P</td>
</tr>
<tr>
<td>general</td>
<td>bushy</td>
<td>yes</td>
<td>ASI</td>
<td>NP-hard</td>
</tr>
<tr>
<td>tree/star/chain</td>
<td>bushy</td>
<td>yes</td>
<td>ASI, 1 joint. NLJ+SMJ</td>
<td>NP-hard</td>
</tr>
</tbody>
</table>
Greedy Heuristics - First Algorithm

- search space of joins trees is very large
- greedy heuristics produce suitable join trees very fast
- suitable for large queries

For the first algorithm we consider:

- left-deep trees
- no cross products
- relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely identifies the left-deep join tree.
Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(\(R = \{R_1, \ldots, R_n\}, w: R \rightarrow \mathbb{R}\))

Input: a set of relations to be joined and weight function

Output: a join order

\(S = \epsilon\)

while (\(|R| > 0\)) {

\(m = \arg \min_{R_i \in R} w(R_i)\)

\(R = R \setminus \{m\}\)

\(S = S \circ <m>\)

}

return \(S\)

- disadvantage: fixed weight functions
- already chosen relations do not affect the weight
- e.g. does not support minimizing the intermediate result
Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2\((R = \{ R_1, \ldots, R_n \}, w : R, R^* \to \mathbb{R}) \)

Input: a set of relations to be joined and weight function

Output: a join order

\(S = \emptyset \)

while \(|R| > 0 \) {
 \(m = \arg \min_{R_i \in R} w(R_i, S) \)
 \(R = R \setminus \{m\} \)
 \(S = S \circ <m> \)
}

return \(S \)

- can compute relative weights
- but first relation has a huge effect
- and the fewest information available
Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3\((R = \{ R_1, \ldots, R_n \}, w : R, R^* \rightarrow \mathbb{R}) \)

Input: a set of relations to be joined and weight function

Output: a join order

\(S = \emptyset \)

for \(\forall R_i \in R \) {

\(R' = R \setminus \{ R_i \} \)

\(S' = < R_i > \)

while \((|R'| > 0) \) {

\(m = \arg \min_{R_j \in R'} \ w(R_j, S') \)

\(R' = R' \setminus \{ m \} \)

\(S' = S' \circ < m > \)

}\n
\(S = S \cup \{ S' \} \)

return \(\arg \min_{S' \in S} \ w(S'[n], S'[1 : n - 1]) \)

- commonly used: minimize selectivities \((\text{MinSel})\)
Greedy Operator Ordering

- the previous greedy algorithms only construct left-deep trees
- Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

- all relations have to be joined somewhere
- but joins can also happen between whole join trees
- we therefore greedily combine join trees (which can be relations)
- combine join trees such that the intermediate result is minimal
Greedy Operator Ordering (2)

GOO(\(R = \{R_1, \ldots, R_n\}\))

\textbf{Input:} a set of relations to be joined

\textbf{Output:} a join tree

\(T = R\)

\textbf{while} \(|T| > 1\) \{

\((T_i, T_j) = \arg \min_{(T_i \in T, T_j \in T), T_i \neq T_j} |T_i \Join T_j|\)

\(T = (T \setminus \{T_i\}) \setminus \{T_j\}\)

\(T = T \cup \{T_i \Join T_j\}\)

\}

\textbf{return} \(T_0 \in T\)

- constructs the result bottom up
- join trees are combined into larger join trees
- chooses the pair with the minimal intermediate result in each pass