
86 / 575

Join Ordering Search Space

Classification of Join Ordering Problems

We distinguish four different dimensions:

1. query graph class: chain, cycle, star, and clique

2. join tree structure: left-deep, zig-zag, or bushy trees

3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.

87 / 575

Join Ordering Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n − 1), where
C(n) is defined as

C(n) =

{
1 if n = 0∑n−1

k=0 C(k)C(n − k − 1) if n > 0

It can be written in a closed form as

C(n) =
1

n + 1

(
2n

n

)

The Catalan Numbers grown in the order of Θ(4n/n
3
2)

88 / 575

Join Ordering Search Space

Number Of Join Trees with Cross Products

left deep n!
right deep n!
zig-zag n!2n−2

bushy n!C(n − 1)

= (2n−2)!
(n−1)!

• rational: number of leaf combinations (n!) × number of unlabeled
trees (varies)

• grows exponentially

• increases even more with a flexible tree structure

89 / 575

Join Ordering Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query
R1 − . . .− Rn as f (n)

• obviously f (0) = 1, f (1) = 1

• for n > 1, consider adding Rn to all join trees for R1 − . . .− Rn−1

• Rn can be added at any position following Rn−1

• lets denote the position of Rn−1 from the bottom with k ([1, n − 1])

• there are n − k join trees for adding Rn after Rn−1

• one additional tree if k = 1, Rn can also be added before Rn−1

• for Rn−1 to be at k, Rn−k − . . .Rn−2 must be below it. f (k − 1) trees

for n > 1 :

f (n) = 1 +
n−1∑
k=1

f (k − 1) ∗ (n − k)

90 / 575

Join Ordering Search Space

Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

f (n) =

{
1 if n < 2

1 +
∑n−1

k=1 f (k − 1) ∗ (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1

• generalization to zig-zag as before

91 / 575

Join Ordering Search Space

Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

• each subtree must contain a subchain to avoid cross products

• thus do not add single relations but subchains

• whole chain must be R1 − . . .− Rn, cut anywhere

• consider commutativity (two possibilities)

This leads to the formula

f (n) =

{
1 if n < 2∑n−1

k=1 2f (k)f (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1C(n − 1)

92 / 575

Join Ordering Search Space

Star Queries, no Cross Products

Consider a star query with R1 at the center and R2, . . . ,Rn as satellites.

• the first join must involve R1

• afterwards all other relations can be added arbitrarily

This leads to the following formulas:

• left-deep: 2 ∗ (n − 1)!

• zig-zag: 2 ∗ (n − 1)! ∗ 2n−2 = (n − 1)! ∗ 2n−1

• bushy: no bushy trees possible (R1 required), same as zig-zag

93 / 575

Join Ordering Search Space

Clique Queries, no Cross Products

• in a clique query, every relation is connected to each other

• thus no join tree contains cross products

• all join trees are valid join trees, the number is the same as with cross
products

94 / 575

Join Ordering Search Space

Sample Numbers, without Cross Products

Chain Queries Star Queries
Left-Deep Zig-Zag Bushy Left-Deep Zig-Zag/Bushy

n 2n−1 22n−3 2n−1C(n − 1) 2(n − 1)! 2n−1(n − 1)!

1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 18579450

95 / 575

Join Ordering Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy
n n! n!2n−2 n!C(n − 1)

1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 968972800 17643225600

96 / 575

Join Ordering Search Space

Problem Complexity

query graph join tree cross products cost function complexity

general left-deep no ASI NP-hard
tree/star/chain left-deep no ASI, 1 joint. P
star left-deep no NLJ+SMJ NP-hard

general/tree/star left-deep yes ASI NP-hard
chain left-deep yes - open

general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P

general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard

97 / 575

Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm

• search space of joins trees is very large

• greedy heuristics produce suitable join trees very fast

• suitable for large queries

For the first algorithm we consider:

• left-deep trees

• no cross products

• relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely
identifies the left-deep join tree.

98 / 575

Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1, . . . ,Rn},w : R → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri)
R = R \ {m}
S = S◦ < m >
}
return S

• disadvantage: fixed weight functions

• already chosen relations do not affect the weight

• e.g. does not support minimizing the intermediate result

99 / 575

Join Ordering Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri ,S)
R = R \ {m}
S = S◦ < m >
}
return S

• can compute relative weights

• but first relation has a huge effect

• and the fewest information available

100 / 575

Join Ordering Greedy Heuristics

Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ∅
for ∀Ri ∈ R {

R ′ = R \ {Ri}
S ′ =< Ri >
while (|R ′| > 0) {

m = arg minRj∈R′ w(Rj ,S
′)

R ′ = R ′ \ {m}
S ′ = S ′◦ < m >
}
S = S ∪ {S ′}
}
return arg minS ′∈S w(S ′[n],S ′[1 : n − 1])

• commonly used: minimize selectivities (MinSel)

101 / 575

Join Ordering Greedy Heuristics

Greedy Operator Ordering

• the previous greedy algorithms only construct left-deep trees

• Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

• all relations have to be joined somewhere

• but joins can also happen between whole join trees

• we therefore greedily combine join trees (which can be relations)

• combine join trees such that the intermediate result is minimal

102 / 575

Join Ordering Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R = {R1, . . . ,Rn})
Input: a set of relations to be joined
Output:a join tree
T = R
while |T | > 1 {

(Ti ,Tj) = arg min(Ti∈T ,Tj∈T),Ti 6=Tj
|Ti Tj |

T = (T \ {Ti}) \ {Tj}
T = T ∪ {Ti Tj}
}
return T0 ∈ T

• constructs the result bottom up

• join trees are combined into larger join trees

• chooses the pair with the minimal intermediate result in each pass

