Generating Permutations

The algorithms so far have some drawbacks:

- greedy heuristics only heuristics
- will probably not find the optimal solution
- DP algorithms optimal, but very heavy weight
- especially memory consumption is high
- find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

- low memory consumption
- stop if time runs out
- still find the optimal solution if possible
Generating Permutations (2)

We can achieve this when only considering left-deep trees:

- left-deep trees are permutations of the relations to be joined
- permutations can be generated directly
- generating all permutations is too expensive
- but some permutations can be ignored:

 Consider the join sequence $R_1 R_2 R_3 R_4$. If we know that $R_1 R_3 R_2$ is cheaper than $R_1 R_2 R_3$, we do not have to consider $R_1 R_2 R_3 R_4$.

Idea: successively add a relation. An extended sequence is only explored if exchanging the last two relations does not result in a cheaper sequence.
Recursive Search

ConstructPermutations(\(R\))

Input: a set of relations \(R = \{R_1, \ldots, R_n\}\) to be joined

Output: an optimal left-deep join tree

\(B = \epsilon\)

\(P = \epsilon\)

for each \(R_i \in R\) {

ConstructPermutationsRec(\(P \circ < R_i >, R \setminus \{R_i\}, B\))

} **return** \(B\)

- algorithm considers a prefix \(P\) and the rest \(R\)
- keeps track of the best tree found so far \(B\)
- increases the prefix recursively
Recursive Search (2)

ConstructPermutationsRec(P, R, B)

Input: a prefix P, remaining relations R, best plan B

Output: side effects on B

if $|R| = 0$

if $B = \epsilon \lor C(B) > C(P)$

$B = P$

} else {

for each $R_i \in R$

if $C(P \circ < R_i >) \leq C(P[1 : |P| - 1] \circ < R_i, P[|P|] >)$

ConstructPermutationsRec($P \circ < R_i >$, $R \setminus \{R_i\}$, B)

}
Remarks

Good:

- linear memory
- immediately produces plan alternatives
- anytime algorithm
- finds the optimal plan eventually

Bad:

- worst-case runtime if ties occur
- worst-case runtime if no ties occur is an open problem

Often fast, can be stopped anytime, but may perform poorly.
Transformative Approaches

Main idea: [6]
- use equivalences directly (associativity, commutativity)
- would make integrating new equivalences easy

Problems:
- how to navigate the search space
- equivalences have no order
- how to guarantee finding the optimal solution
- how to avoid exhaustive search
Rule Set

\[R_1 \bowtie R_2 \sim \rightarrow R_2 \bowtie R_1 \quad \text{Commutativity} \]
\[(R_1 \bowtie R_2) \bowtie R_3 \sim \rightarrow R_1 \bowtie (R_2 \bowtie R_3) \quad \text{Right Associativity} \]
\[R_1 \bowtie (R_2 \bowtie R_3) \sim \rightarrow (R_1 \bowtie R_2) \bowtie R_3 \quad \text{Left Associativity} \]
\[(R_1 \bowtie R_2) \bowtie R_3 \sim \rightarrow (R_1 \bowtie R_3) \bowtie R_2 \quad \text{Left Join Exchange} \]
\[R_1 \bowtie (R_2 \bowtie R_3) \sim \rightarrow R_2 \bowtie (R_1 \bowtie R_3) \quad \text{Right Join Exchange} \]

Two more rules are often used to transform left-deep trees:

- **swap** exchanges two arbitrary relations in a left-deep tree
- **3Cycle** performs a cyclic rotation of three arbitrary relations in a left-deep tree.

To try another join method, another rule called *join method exchange* is introduced.
Rule Set RS-0

- commutativity
- left-associativity
- right-associativity
Basic Algorithm

ExhaustiveTransformation(\{R_1, \ldots, R_n\})

Input: a set of relations

Output: an optimal join tree

Let \(T \) be an arbitrary join tree for all relations

\(\text{Done} = \emptyset \) // contains all trees processed

\(\text{ToDo} = \{T\} \) // contains all trees to be processed

while \(|\text{ToDo}| > 0 \) {

\(T = \) an arbitrary tree in ToDo

\(\text{ToDo} = \text{ToDo} \setminus T; \)

\(\text{Done} = \text{Done} \cup \{T\}; \)

\(\text{Trees} = \text{ApplyTransformations}(T); \)

for each \(T \in \text{Trees} \) {

\(\text{if } T \not\in \text{ToDo} \cup \text{Done} \)

\(\text{ToDo} = \text{ToDo} \cup \{T\} \)

}\}

return \(\arg \min_{T \in \text{Done}} C(T) \)
Basic Algorithm (2)

ApplyTransformations(T)

Input: join tree

Output: all trees derivable by associativity and commutativity

Trees = \emptyset

Subtrees = all subtrees of T rooted at inner nodes

for each $S \in$ Subtrees {
 if S is of the form $S_1 \bowtie S_2$
 Trees = Trees \cup $\{S_2 \bowtie S_1\}$
 if S is of the form $(S_1 \bowtie S_2) \bowtie S_3$
 Trees = Trees \cup $\{S_1 \bowtie (S_2 \bowtie S_3)\}$
 if S is of the form $S_1 \bowtie (S_2 \bowtie S_3)$
 Trees = Trees \cup $(S_1 \bowtie S_2) \bowtie S_3$
}

return Trees;
Remarks

• if no cross products are to be considered, extend if conditions for associativity rules.

• problem 1: explores the whole search space

• problem 2: generates join trees more than once

• problem 3: sharing of subtrees is non-trivial
Search Space
Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

- for any subset of relations, dynamic programming remembers the best join tree.
- this does not quite suffice for the transformation-based approach.
- instead, we have to keep all join trees generated so far including those differing in the order of the arguments of a join operator.
- however, subtrees can be shared.
- this is done by keeping pointers into the data structure (see next slide).
Memo Structure Example

| \{R_1, R_2, R_3\} | \{R_1, R_2\} \times R_3, R_3 \times \{R_1, R_2\},
| | \{R_1, R_3\} \times R_2, R_2 \times \{R_1, R_3\},
| | \{R_2, R_3\} \times R_1, R_1 \times \{R_2, R_3\}
| \{R_2, R_3\} | \{R_2\} \times \{R_3\}, \{R_3\} \times \{R_2\}
| \{R_1, R_3\} | \{R_1\} \times \{R_3\}, \{R_3\} \times \{R_1\}
| \{R_1, R_2\} | \{R_1\} \times \{R_2\}, \{R_2\} \times \{R_1\}
| \{R_3\} | R_3
| \{R_2\} | R_2
| \{R_1\} | R_1

- in Memo Structure: arguments are pointers to classes
- Algorithm: ExploreClass expands a class
- Algorithm: ApplyTransformation2 expands a member of a class
Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G)

Input: a query specification for relations $\{R_1, \ldots, R_n\}$.

Output: an optimal join tree

initialize MEMO structure

ExploreClass($\{R_1, \ldots, R_n\}$)

return $\arg \min_{T \in \text{class } \{R_1, \ldots, R_n\}} C(T)$

- stored an arbitrary join tree in the memo structure
- explores alternatives recursively
Memoizing Algorithm (2)

ExploreClass(C)

Input: a class $C \subseteq \{R_1, \ldots, R_n\}$

Output: none, but has side-effect on MEMO-structure

while not all join trees in C have been explored {

choose an unexplored join tree T in C

ApplyTransformation2(T)

mark T as explored

}

- considers all alternatives within one class
- transformations themselves are done in ApplyTransformation2
Memoizing Algorithm (3)

ApplyTransformations2\((T) \)

Input: a join tree of a class \(C \)

Output: none, but has side-effect on MEMO-structure

ExploreClass\((\text{left-child}(T)) \)

ExploreClass\((\text{right-child}(T)) \);

for each transformation \(T \) and class member of child classes {
 for each \(T' \) resulting from applying \(T \) to \(T \) {
 if \(T' \) not in MEMO structure {
 add \(T' \) to class \(C \) of MEMO structure
 }
 }
}

- first explores subtrees
- then applies all known transformations to the tree
- stores new trees in the memo structure
Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of Commutativity and Left and Right Associativity generates $4^n - 3^{n+1} + 2^{n+2} - n - 2$ duplicates

• Contrast this with the number of join trees contained in a completely filled MEMO structure: $3^n - 2^{n+1} + n + 1$

• Solve the problem of duplicate generation by disabling applied rules.
Rule Set RS-1

T_1: Commutativity $C_1 \Join_0 C_2 \rightsquigarrow C_2 \Join_1 C_1$

Disable all transformations T_1, T_2, and T_3 for \Join_1.

T_2: Right Associativity $(C_1 \Join_0 C_2) \Join_1 C_3 \rightsquigarrow C_1 \Join_2 (C_2 \Join_3 C_3)$

Disable transformations T_2 and T_3 for \Join_2 and enable all rules for \Join_3.

T_3: Left associativity $C_1 \Join_0 (C_2 \Join_1 C_3) \rightsquigarrow (C_1 \Join_2 C_2) \Join_3 C_3$

Disable transformations T_2 and T_3 for \Join_3 and enable all rules for \Join_2.
Example for chain $R_1 - R_2 - R_3 - R_4$

<table>
<thead>
<tr>
<th>Class</th>
<th>Initialization</th>
<th>Transformation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>${R_1, R_2, R_3, R_4}$</td>
<td>${R_1, R_2} \bowtie_{111} {R_3, R_4}$</td>
<td>${R_3, R_4} \bowtie_{000} {R_1, R_2}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_1 \bowtie_{100} {R_2, R_3, R_4}$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${R_1, R_2, R_3} \bowtie_{100} R_4$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${R_2, R_3, R_4} \bowtie_{000} R_1$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_4 \bowtie_{000} {R_1, R_2, R_3}$</td>
<td>10</td>
</tr>
<tr>
<td>${R_2, R_3, R_4}$</td>
<td></td>
<td>$R_2 \bowtie_{111} {R_3, R_4}$</td>
<td>4</td>
</tr>
<tr>
<td>${R_1, R_3, R_4}$</td>
<td></td>
<td>${R_3, R_4} \bowtie_{000} R_2$</td>
<td>6</td>
</tr>
<tr>
<td>${R_1, R_2, R_4}$</td>
<td></td>
<td>${R_2, R_3} \bowtie_{100} R_4$</td>
<td>6</td>
</tr>
<tr>
<td>${R_1, R_2, R_3}$</td>
<td></td>
<td>$R_4 \bowtie_{000} {R_2, R_3}$</td>
<td>7</td>
</tr>
<tr>
<td>${R_3, R_4}$</td>
<td></td>
<td>${R_1, R_2} \bowtie_{111} R_3$</td>
<td>5</td>
</tr>
<tr>
<td>${R_2, R_4}$</td>
<td></td>
<td>$R_3 \bowtie_{000} {R_1, R_2}$</td>
<td>9</td>
</tr>
<tr>
<td>${R_2, R_3}$</td>
<td></td>
<td>$R_1 \bowtie_{100} {R_2, R_3}$</td>
<td>9</td>
</tr>
<tr>
<td>${R_1, R_4}$</td>
<td></td>
<td>${R_2, R_3} \bowtie_{000} R_1$</td>
<td>9</td>
</tr>
<tr>
<td>${R_1, R_3}$</td>
<td></td>
<td>$R_4 \bowtie_{000} R_3$</td>
<td>2</td>
</tr>
<tr>
<td>${R_1, R_2}$</td>
<td></td>
<td>$R_1 \bowtie_{111} R_2$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_2 \bowtie_{000} R_1$</td>
<td>1</td>
</tr>
</tbody>
</table>
Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:

\[T_1: \text{Commutativity} \quad C_1 \Join_0 C_2 \leadsto C_2 \Join_1 C_1 \]
Disable all transformations \(T_1, T_2, T_3, \) and \(T_4 \) for \(\Join_1 \).

\[T_2: \text{Right Associativity} \quad (C_1 \Join_0 C_2) \Join_1 C_3 \leadsto C_1 \Join_2 (C_2 \Join_3 C_3) \]
Disable transformations \(T_2, T_3, \) and \(T_4 \) for \(\Join_2 \).

\[T_3: \text{Left Associativity} \quad C_1 \Join_0 (C_2 \Join_1 C_3) \leadsto (C_1 \Join_2 C_2) \Join_3 C_3 \]
Disable transformations \(T_2, T_3 \) and \(T_4 \) for \(\Join_3 \).

\[T_4: \text{Exchange} \quad (C_1 \Join_0 C_2) \Join_1 (C_3 \Join_2 C_4) \leadsto (C_1 \Join_3 C_3) \Join_4 (C_2 \Join_5 C_4) \]
Disable all transformations \(T_1, T_2, T_3, \) and \(T_4 \) for \(\Join_4 \).

If we initialize the MEMO structure with left-deep trees, we can strip down the above rule set to Commutativity and Left Associativity. Reason: from a left-deep join tree we can generate all bushy trees with only these two rules.
Rule Set RS-3

Left-deep trees:

T_1 **Commutativity** $R_1 \bowtie_0 R_2 \rightsquigarrow R_2 \bowtie_1 R_1$

Here, the R_i are restricted to classes with exactly one relation. T_1 is disabled for \bowtie_1.

T_2 **Right Join Exchange** $(C_1 \bowtie_0 C_2) \bowtie_1 C_3 \rightsquigarrow (C_1 \bowtie_2 C_3) \bowtie_3 C_2$

Disable T_2 for \bowtie_3.
Generating Random Join Trees

Generating a random join tree is quite useful:

- allows for cost sampling
- randomized optimization procedures
- basis for Simulated Annealing, Iterative Improvement etc.
- easy with cross products, difficult without
- we consider with cross products first

Main problems:

- generating all join trees (potentially)
- creating all with the same probability
Ranking/Unranking

Let S be a set with n elements.

- a bijective mapping $f : S \rightarrow [0, n]$ is called *ranking*
- a bijective mapping $f : [0, n] \rightarrow S$ is called *unranking*

Given an unranking function, we can generate random elements in S by generating a random number in $[0, n]$ and unranking this number. Challenge: making unranking fast.
Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross products.
Standard algorithm to generate random permutations is the starting point for the algorithm:

```java
for each k ∈ [0, n[ descending
    swap(π[k], π[random(k)])
```

Array π initialized with elements $[0, n[$.
`random(k)` generates a random number in $[0, k]$.
Random Permutations

- Assume the random elements produced by the algorithm are
 \(r_{n-1}, \ldots, r_0 \) where \(0 \leq r_i \leq i \).

- Thus, there are exactly \(n(n-1)(n-2)\ldots1 = n! \) such sequences and there is a one to one correspondence between these sequences and the set of all permutations.

- Unrank \(r \in [0, n!] \) by turning it into a unique sequence of values
 \(r_{n-1}, \ldots, r_0 \).
 Note that after executing the swap with \(r_{n-1} \) every value in \([0, n]\) is possible at position \(\pi[n-1] \).
 Further, \(\pi[n-1] \) is never touched again.

- Hence, we can unrank \(r \) as follows. We first set \(r_{n-1} = r \mod n \) and perform the swap. Then, we define \(r' = \lfloor r/n \rfloor \) and iteratively unrank \(r' \) to construct a permutation of \(n - 1 \) elements.
Generating Random Permutations

Unrank\((n, r)\)

Input: the number \(n\) of elements to be permuted and the rank \(r\) of the permutation to be constructed

Output: a permutation \(\pi\)

```plaintext
for each \(0 \leq i < n\)

\(\pi[i] = i\)

for each \(n \geq i > 0\) descending

\{ swap(\(\pi[i - 1], \pi[r \mod i]\))

\(r = \lfloor r/i \rfloor\)

\}

return \(\pi\);```
Generating Random Bushy Trees with Cross Products

Steps of the algorithm:

1. Generate a random number $b$ in $[0, C(n)]$.
2. Unrank $b$ to obtain a bushy tree with $n - 1$ inner nodes.
3. Generate a random number $p$ in $[0, n!]$.
4. Unrank $p$ to obtain a permutation.
5. Attach the relations in order $p$ from left to right as leaf nodes to the binary tree obtained in Step 2.

The only step that we have still to discuss is Step 2.
Tree Encoding

- Preorder traversal:
  - Inner node: '('
  - Leaf Node: ')'  
  
  Skip last leaf node.

- Replace '(' by 1 and ')' by 0

- Just take positions of 1s.

Example: all trees with four inner nodes:

- The ranks are in $[0, 14[$
Tree Ranking Example

1. 2, 3, 4
0

2. 1, 2, 3, 5
1

3. 1, 2, 3, 6
2

4. 1, 2, 3, 7
3

5. 1, 2, 4, 5
4

6. 1, 2, 4, 6
5

7. 1, 2, 4, 7
6

8. 1, 2, 5, 6
7

9. 1, 2, 5, 7
8

10. 1, 3, 4, 5
9

11. 1, 3, 4, 6
10

12. 1, 3, 4, 7
11

13. 1, 3, 5, 6
12

14. 1, 3, 5, 7
13
Unranking Binary Trees

We establish a bijection between Dyck words and paths in a grid:

Every path from \((0, 0)\) to \((2n, 0)\) uniquely corresponds to a Dyck word.
Counting Paths

The number of different paths from \((0, 0)\) to \((i, j)\) can be computed by

\[
p(i, j) = \frac{j + 1}{i + 1} \left( \frac{i + 1}{\frac{1}{2}(i + j) + 1} \right)
\]

These numbers are the *Ballot numbers*. The number of paths from \((i, j)\) to \((2n, 0)\) can thus be computed as:

\[
q(i, j) = p(2n - i, j)
\]

Note the special case \(q(0, 0) = p(2n, 0) = C(n)\).
Unranking Outline

- We open a parenthesis (go from \((i, j)\) to \((i + 1, j + 1)\)) as long as the number of paths from that point does no longer exceed our rank \(r\).
- If it does, we close a parenthesis (go from \((i, j)\) to \((i + 1, j - 1)\)).
- Assume, that we went upwards to \((i, j)\) and then had to go down to \((i + 1, j - 1)\).
  We subtract the number of paths from \((i + 1, j + 1)\) from our rank \(r\) and proceed iteratively from \((i + 1, j - 1)\) by going up as long as possible and going down again.
- Remembering the number of parenthesis opened and closed along our way results in the required encoding.
Generating Bushy Trees

UnrankTree($n, r$)

**Input:** a number of inner nodes $n$ and a rank $r \in [0, C(n)]$  
**Output:** encoding of the inner leafes of a tree

open = 1, close = 0  
pos = 1, encoding = $< 1 >$

while $|\text{encoding}| < n$ {
    $k = q(\text{open} + \text{close}, \text{open} - \text{close})$
    if $k \leq r$ {
        $r = r - k$, close = close + 1
    } else {
        encoding = encoding $\circ$ $\langle pos \rangle$, open = open + 1
    }
    pos = pos + 1
}

return encoding