
182 / 582

Join Ordering Generating Permutations

Generating Permutations

The algorithms so far have some drawbacks:

• greedy heuristics only heuristics

• will probably not find the optimal solution

• DP algorithms optimal, but very heavy weight

• especially memory consumption is high

• find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

• low memory consumption

• stop if time runs out

• still find the optimal solution if possible

183 / 582

Join Ordering Generating Permutations

Generating Permutations (2)

We can achieve this when only considering left-deep trees:

• left-deep trees are permutations of the relations to be joined

• permutations can be generated directly

• generating all permutations is too expensive

• but some permutations can be ignored:
Consider the join sequence R1R2R3R4. If we know that R1R3R2 is
cheaper than R1R2R3, we do not have to consider R1R2R3R4.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.

184 / 582

Join Ordering Generating Permutations

Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep join tree
B = ε
P = ε
for each Ri ∈ R {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
} return B

• algorithm considers a prefix P and the rest R

• keeps track of the best tree found so far B

• increases the prefix recursively

185 / 582

Join Ordering Generating Permutations

Recursive Search (2)

ConstructPermutationsRec(P,R,B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if |R| = 0 {

if B = ε ∨ C (B) > C (P) {
B = P
}
} else {

for each Ri ∈ R {
if C (P◦ < Ri >) ≤ C (P[1 : |P| − 1]◦ < Ri ,P[|P|] >) {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
}
}
}

186 / 582

Join Ordering Generating Permutations

Remarks

Good:

• linear memory

• immediately produces plan alternatives

• anytime algorithm

• finds the optimal plan eventually

Bad:

• worst-case runtime if ties occur

• worst-case runtime if no ties occur is an open problem

Often fast, can be stopped anytime, but may perform poorly.

187 / 582

Join Ordering Transformative Approaches

Transformative Approaches

Main idea: [6]

• use equivalences directly (associativity, commutativity)

• would make integrating new equivalences easy

Problems:

• how to navigate the search space

• equivalences have no order

• how to guarantee finding the optimal solution

• how to avoid exhaustive search

188 / 582

Join Ordering Transformative Approaches

Rule Set

R1 R2 R2 R1 Commutativity
(R1 R2) R3 R1 (R2 R3) Right Associativity
R1 (R2 R3) (R1 R2) R3 Left Associativity
(R1 R2) R3 (R1 R3) R2 Left Join Exchange
R1 (R2 R3) R2 (R1 R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:

• swap exchanges two arbitrary relations in a left-deep tree

• 3Cycle performs a cyclic rotation of three arbitrary relations in a
left-deep tree.

To try another join method, another rule called join method exchange is
introduced.

189 / 582

Join Ordering Transformative Approaches

Rule Set RS-0

• commutativity

• left-associativity

• right-associativity

190 / 582

Join Ordering Transformative Approaches

Basic Algorithm

ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅ // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {

T = an arbitrary tree in ToDo
ToDo = ToDo \T ;
Done = Done ∪ {T};
Trees = ApplyTransformations(T);
for each T ∈ Trees {

if T 6∈ ToDo ∪ Done
ToDo = ToDo ∪ {T}

}
}
return arg minT∈Done C (T)

191 / 582

Join Ordering Transformative Approaches

Basic Algorithm (2)

ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅
Subtrees = all subtrees of T rooted at inner nodes
for each S ∈ Subtrees {

if S is of the form S1 S2

Trees = Trees ∪{S2 S1}
if S is of the form (S1 S2) S3

Trees = Trees ∪{S1 (S2 S3)}
if S is of the form S1 (S2 S3)

Trees = Trees ∪{(S1 S2) S3}
}
return Trees;

192 / 582

Join Ordering Transformative Approaches

Remarks

• if no cross products are to be considered, extend if conditions for
associativity rules.

• problem 1: explores the whole search space

• problem 2: generates join trees more than once

• problem 3: sharing of subtrees is non-trivial

193 / 582

Join Ordering Transformative Approaches

Search Space

as

p

c

a

a

c

a

c

c

c

c

c

c

c

c

c

a

a

a

a

a

c

c

c

c

c

c

sa

a

c

c

c

c

c

c

c

c

sa

s

p

p

s

p

s

s

p

s

a

c

c

c as

p

l

l

p

sa

p

as

p

sa

p

s

s

p

s

p

p

s

s a

sa

sa

s

p

s

p

s

s

p

a

s

a

s

s

a a

s

as

as
a

ss

a

c

c

s

l

a

c

p

a

a

a

a

a

p

a

a

a

a

c

p

p

p

p

p

a

a

a

a

p

p

p

p p

p

p

pp

l
l

l
l

l

l
l l

l

l l
l

l

l l l

l

l l l

l

l l l

l

l l l

l

194 / 582

Join Ordering Transformative Approaches

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

• for any subset of relations, dynamic programming remembers the best
join tree.

• this does not quite suffice for the transformation-based approach.

• instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

• however, subtrees can be shared.

• this is done by keeping pointers into the data structure (see next
slide).

195 / 582

Join Ordering Transformative Approaches

Memo Structure Example

{R1,R2,R3} {R1,R2} R3,R3 {R1,R2},
{R1,R3} R2,R2 {R1,R3},
{R2,R3} R1,R1 {R2,R3}

{R2,R3} {R2} {R3}, {R3} {R2}
{R1,R3} {R1} {R3}, {R3} {R1}
{R1,R2} {R1} {R2}, {R2} {R1}
{R3} R3

{R2} R2

{R1} R1

• in Memo Structure: arguments are pointers to classes

• Algorithm: ExploreClass expands a class

• Algorithm: ApplyTransformation2 expands a member of a class

196 / 582

Join Ordering Transformative Approaches

Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return arg minT∈class {R1,...,Rn} C (T)

• stored an arbitrary join tree in the memo structure

• explores alternatives recursively

197 / 582

Join Ordering Transformative Approaches

Memoizing Algorithm (2)

ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure
while not all join trees in C have been explored {

choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

}

• considers all alternatives within one class

• transformations themselves are done in ApplyTransformation2

198 / 582

Join Ordering Transformative Approaches

Memoizing Algorithm (3)

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
for each transformation T and class member of child classes {

for each T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}

• first explores subtrees
• then applies all known transformations to the tree
• stores new trees in the memo structure

199 / 582

Join Ordering Transformative Approaches

Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n − 3n+1 + 2n+2 − n − 2 duplicates

• Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3n − 2n+1 + n + 1

• Solve the problem of duplicate generation by disabling applied rules.

200 / 582

Join Ordering Transformative Approaches

Rule Set RS-1

T1: Commutativity C1 0C2 C2 1C1

Disable all transformations T1, T2, and T3 for 1.

T2: Right Associativity (C1 0C2) 1C3 C1 2(C2 3C3)
Disable transformations T2 and T3 for 2 and enable all
rules for 3.

T3: Left associativity C1 0(C2 1C3) (C1 2C2) 3C3

Disable transformations T2 and T3 for 3 and enable all
rules for 2.

201 / 582

Join Ordering Transformative Approaches

Example for chain R1 − R2 − R3 − R4
Class Initialization Transformation Step

{R1,R2,R3,R4} {R1,R2} 111{R3,R4} {R3,R4} 000{R1,R2} 3
R1 100{R2,R3,R4} 4
{R1,R2,R3} 100R4 5
{R2,R3,R4} 000R1 8
R4 000{R1,R2,R3} 10

{R2,R3,R4} R2 111{R3,R4} 4
{R3,R4} 000R2 6
{R2,R3} 100R4 6
R4 000{R2,R3} 7

{R1,R3,R4}
{R1,R2,R4}
{R1,R2,R3} {R1,R2} 111R3 5

R3 000{R1,R2} 9
R1 100{R2,R3} 9
{R2,R3} 000R1 9

{R3,R4} R3 111R4 R4 000R3 2
{R2,R4}
{R2,R3}
{R1,R4}
{R1,R3}
{R1,R2} R1 111R2 R2 000R1 1

202 / 582

Join Ordering Transformative Approaches

Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:

T1: Commutativity C1 0C2 C2 1C1

Disable all transformations T1, T2, T3, and T4 for 1.

T2: Right Associativity (C1 0C2) 1C3 C1 2(C2 3C3)
Disable transformations T2, T3, and T4 for 2.

T3: Left Associativity C1 0(C2 1C3) (C1 2C2) 3C3

Disable transformations T2, T3 and T4 for 3.

T4: Exchange (C1 0C2) 1(C3 2C4) (C1 3C3) 4(C2 5C4)
Disable all transformations T1, T2, T3, and T4 for 4.

If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules

203 / 582

Join Ordering Transformative Approaches

Rule Set RS-3

Left-deep trees:

T1 Commutativity R1 0R2 R2 1R1

Here, the Ri are restricted to classes with exactly one
relation. T1 is disabled for 1.

T2 Right Join Exchange (C1 0C2) 1C3 (C1 2C3) 3C2

Disable T2 for 3.

204 / 582

Join Ordering Randomized Approaches

Generating Random Join Trees

Generating a random join tree is quite useful:

• allows for cost sampling

• randomized optimization procedures

• basis for Simulated Annealing, Iterative Improvement etc.

• easy with cross products, difficult without

• we consider with cross products first

Main problems:

• generating all join trees (potentially)

• creating all with the same probability

205 / 582

Join Ordering Randomized Approaches

Ranking/Unranking

Let S be a set with n elements.

• a bijective mapping f : S → [0, n[is called ranking

• a bijective mapping f : [0, n[→ S is called unranking

Given an unranking function, we can generate random elements in S by
generating a random number in [0, n[and unranking this number.
Challenge: making unranking fast.

206 / 582

Join Ordering Randomized Approaches

Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross
products.
Standard algorithm to generate random permutations is the starting point
for the algorithm:

for each k ∈ [0, n[descending
swap(π[k], π[random(k)])

Array π initialized with elements [0, n[.
random(k) generates a random number in [0, k].

207 / 582

Join Ordering Randomized Approaches

Random Permutations

• Assume the random elements produced by the algorithm are
rn−1, . . . , r0 where 0 ≤ ri ≤ i .

• Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such sequences and
there is a one to one correspondance between these sequences and
the set of all permutations.

• Unrank r ∈ [0, n![by turning it into a unique sequence of values
rn−1, . . . , r0.
Note that after executing the swap with rn−1 every value in [0, n[is
possible at position π[n − 1].
Further, π[n − 1] is never touched again.

• Hence, we can unrank r as follows. We first set rn−1 = r mod n and
perform the swap. Then, we define r ′ = br/nc and iteratively unrank
r ′ to construct a permutation of n − 1 elements.

208 / 582

Join Ordering Randomized Approaches

Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output:a permutation π
for each 0 ≤ i < n
π[i] = i

for each n ≥ i > 0 descending {
swap(π[i − 1], π[r mod i])
r = br/ic
}
return π;

209 / 582

Join Ordering Randomized Approaches

Generating Random Bushy Trees with Cross Products

Steps of the algorithm:

1. Generate a random number b in [0,C (n)[.

2. Unrank b to obtain a bushy tree with n − 1 inner nodes.

3. Generate a random number p in [0, n![.

4. Unrank p to obtain a permutation.

5. Attach the relations in order p from left to right as leaf nodes to the
binary tree obtained in Step 2.

The only step that we have still to discuss is Step 2.

210 / 582

Join Ordering Randomized Approaches

Tree Encoding

• Preordertraversal:
I Inner node: ’(’
I Leaf Node: ’)’

Skip last leaf node.

• Replace ’(’ by 1 and ’)’ by 0

• Just take positions of 1s.

Example: all trees with four inner nodes:

• The ranks are in [0, 14[

211 / 582

Join Ordering Randomized Approaches

Tree Ranking Example

(((())))

11110000

1, 2, 3, 4

0

(() (()))

11011000

1, 2, 4, 5

43

((())) ()

11100010

1, 2, 3, 7

2

((()) ())

11100100

1, 2, 3, 6

(() () ())

11010100

1, 2, 4, 6

5 6

(() ()) ()

11010010

1, 2, 4, 7

7

(()) (())

11001100

1, 2, 5, 6

8

(()) () ()

11001010

1, 2, 5, 7

() ((()))

10111000

1, 3, 4, 5

9

() (() ())

10110100

1, 3, 4, 6

10 11

() (()) ()

10110010

1, 3, 4, 7

() () (())

10101100

1, 3, 5, 6

12

() () () ()

10101010

1, 3, 5, 7

13

1

11101000

1, 2, 3, 5

((()()))

212 / 582

Join Ordering Randomized Approaches

Unranking Binary Trees
We establish a bijection between Dyck words and paths in a grid:

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Every path from (0, 0) to (2n, 0) uniquely corresponds to a Dyck word.

213 / 582

Join Ordering Randomized Approaches

Counting Paths

The number of different paths from (0, 0) to (i , j) can be computed by

p(i , j) =
j + 1

i + 1

(
i + 1

1
2 (i + j) + 1

)
These numbers are the Ballot numbers.
The number of paths from (i , j) to (2n, 0) can thus be computed as:

q(i , j) = p(2n − i , j)

Note the special case q(0, 0) = p(2n, 0) = C (n).

214 / 582

Join Ordering Randomized Approaches

Unranking Outline

• We open a parenthesis (go from (i , j) to (i + 1, j + 1)) as long as the
number of paths from that point does no longer exceed our rank r .

• If it does, we close a parenthesis (go from (i , j) to (i + 1, j − 1)).

• Assume, that we went upwards to (i , j) and then had to go down to
(i + 1, j − 1).
We subtract the number of paths from (i + 1, j + 1) from our rank r
and proceed iteratively from (i + 1, j − 1) by going up as long as
possible and going down again.

• Remembering the number of parenthesis opened and closed along our
way results in the required encoding.

215 / 582

Join Ordering Randomized Approaches

Generating Bushy Trees

UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0,C (n)[
Output:encoding of the inner leafes of a tree
open = 1, close = 0
pos = 1, encoding = < 1 >
while |encoding| < n {

k = q(open+close,open-close)
if k ≤ r {

r = r − k , close=close+1
} else {

encoding=encoding◦ < pos >, open=open+1
}
pos=pos+1
}
return encoding

