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Motivation

Today more and more enterprises leverage cloud computing because of its pay-as-you-
go model. One of the most popular applications in the cloud is MapReduce, a framework 
for processing huge datasets. However the clusters used for providing those cloud 
services need a lot of energy; over their lifetime costs for powering and cooling the 
machines are typically as big as the acquisition costs. So making the service as energy 
efficient as possible is a hot topic.

MapReduce in the cloud

In a cloud setting each customer gets his own cluster of virtual machines (VMs) to run 
his MapReduce jobs. A physical machine (PM) of the cloud hosts several VMs. Typically 
different types of VMs are offered by the cloud operator – for example one with two 
CPUs and one with four CPUs.

The paper proposes some algorithms to find an energy efficient placement of VMs on 
PMs with the following assumptions:

• Machines consume energy independent of utilization, so the only effective 
possibility for a machine to save energy is to suspend when there is no utilization. 

• The runtime of all jobs is known it advance; this can for example be achieved by 
profiling the job runtime for a very small input dataset.

The main goal of the algorithms therefore is to minimize the machine uptime (MU – time 
until a PM can be suspended because of no utilization left) cumulated for all machines 
(CMU) in order to minimize the energy used.

Resource Wastage Metrics

The authors created some metrics that measure wastage of resources and its impact on 
the CMU. Resources  are an abstraction of a PMs CPUs, Memory, Disks etc. They are 
wasted when they are not fully utilized – the less the utilization over time the higher the 
wastage. The metrics showed that the wastage mainly depends on spatial inefficiency 
(SI) and temporal imbalance (TI) and proportionally increases the CMU. SI is the amount 
of  resources  which  is  unused  over  the  complete  runtime  of  a  machine,  TI  is  the 
difference between the runtimes of a machines longest and shortest running job.



Algorithms

So they developed two types of algorithms, one for minimizing SI and one for TI, in order 
to minimize CMU. The first type is a binning algorithm that partitions the set of VMs to 
schedule into bins based on runtime. It is intended to optimize temporal efficiency. The 
second is intra-bin placement, that places the VMs per bin on the PMs such that a good 
spatial efficiency is achieved.

Binning can be done duration-based by assigning a distinct time interval and all VMs 
whose runtime fall in this interval to each bin or cardinality-based, where each bin gets 
a fixed number of VMs with similar runtime to avoid skewing. The parameters adjust 
temporal and spatial efficiency. The smaller they are the better the temporal, but the 
worse the spatial efficiency and vice versa. So a good trade-off has to be found.

For intra-bin placement a recipe algorithm is proposed. This precomputes all possible 
placements of VMs of all types on PMs and ranks them by utilization. At placement-time 
it chooses in each iteration the recipe matching a subset of VMs from a bin with the 
highest rank and schedules these VMs to a PM. Another possibility is to use a simple 
first-fit algorithm.

For further improvements in efficiency incremental time balancing (ITB) can be used. It 
exploits the scalability of MapReduce by adding more VMs to jobs, whose runtime is 
notable bigger than that of others scheduled to the same machines, to decrease their 
runtime and thus the temporal imbalance.

Evaluation

The algorithms are evaluated using a simulation framework. This generates a certain 
number of jobs having a deadline on execution time, a number of VMs necessary to 
meet the deadline and an adequate VM type. The way these parameters are assigned is 
configurable. The framework then simulates placement and execution of the jobs for 
combinations of the mentioned algorithms. Furthermore there are two hypothetical ideal 
algorithms to get a good a measurement on how well the real algorithms perform. The 
first is allowed to move VMs between PMs for free while execution of the jobs. This 
means it can reschedule all jobs every time one finishes and can reach nearly optimal 
spatial efficiency without having to trade temporal efficiency. The second just assumes 
power consumption of  PMs to  be perfectly  proportional  to  utilization  giving a  lower 
bound for energy efficiency.

The experiments show that as expected cardinality based binning combined with recipe 
achieves the lowest CMU under the realistic algorithms and is only slightly worse than 
the hypothetical ones. The second is duration based binning + recipe. Recipe (spatial) 
only is already much worse and first-fit is worst. Using additionally ITB decreases CMU 
for all algorithms even more.



Further  experiments  try  to  find  optimal  values  for  duration  and  cardinality  for  the 
binning algorithms. Also the robustness of the algorithms to changes in the environment 
(distribution of runtimes, amount of resources on physical machines and non-uniform 
assignment  of  VM  types)  is  explored.  Here  all  algorithms  behave  similar  as  the 
hypothetical ones.

Conclusion

The results show that spatio-temporal algorithms improve utilization of a MapReduce 
cloud by 20-35% compared to the simple spatial ones and are robust to changes in the 
environment. The incremental time balancing further improves utilization by up to 15%.

Discussion

The presented approach works completely offline assuming that there is a bunch of jobs, 
that need to be scheduled. However in real world jobs arrive continuously and need to 
be executed as soon as possible to not annoy the customers. This means batching jobs 
until there are enough to find a good placement is typically not a good idea. Instead the 
scheduler  could  monitor  remaining  runtime  and  utilization  of  PMs  to  find  a  good 
placement for newly submitted jobs. Similarly a normal MapReduce scheduler for a non-
virtualized  setting,  where  jobs of  different  users  run on the same cluster,  could  be 
implemented.

The approach aggregates the physical components of machines to an abstract resource 
amount.  Because  different  jobs  typically  don't  utilize  all  components  uniformly  this 
should better taken into account to get the best efficiency, but it heavily increases the 
complexity of the recipe algorithm. If the PMs are not homogeneous, the complexity 
increases even more. This could in the end make the scheduling very costly.

Another weakness is, that the job execution was only simulated. The authors did not run 
any real experiments. So it is not clear whether the spatio-temporal placement performs 
that well in reality or if maybe some assumptions were not fully correct – for example 
the fixed power consumption of active machines.
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