
Energy efficient query optimization in nomadic

computing

Report by: Liviu Teris, Ajaz Shaik

1. Motivation

Mobile devices and wireless networks are available to a large number of users

nowadays; since the storing capacity and the processing power of mobile computers

are close to what is expected from desktop devices, the possibility of hosting a

distributed database on a network of such computers is brought into discussion.

2. Nomadic computing

Nomadic computing describes a paradigm in which we are dealing with a set of mobile

computers interconnected via some wireless network and possibly communicating with

some non-mobile servers. Mobile devices operate as part of a distributed system and

are subjected to special constraints. These constraints are mostly caused by special

hardware in the mobile devices, they set the differences from classical distributed

systems and call for some extra consideration when porting a distributed database on a

nomadic computing environment.

The most important aspects to be taken into account when dealing with such a system

are:

• Wireless networking can constitute a bottleneck. Also, due to the fact that hosts

are mobile and that they may operate in an environment with some amount of

channel pollution, frequent disconnections are highly likely to occur. Although

frequent, these disconnections are foreseeable – a change in the strength of the

signal could announce an imminent disconnection and the computer may choose

to download data in advance in order to process some query or declare itself

“down” if it was participating in some voting protocol.

• Reliability can be an issue even more than in classical distributed system – due

to the mobile nature of the devices (a catastrophic failure can be caused by

dropping the device). To cope with such situations, the mobile device may for

instance choose to transfer its logs to some non-mobile host.

• The issue of limited battery capacity is specific to nomadic computing. The

battery life of a commercially available laptop is roughly 2 hours – this number

has remained more or less constant for the past 20 years. This is because even

if there are constant improvements in battery technologies and in low power

architectures, there is also a constant demand for even more powerful (and

power consuming) CPU’s, as users expect the performances of their mobile

devices to come close to those of desktop machines. Also, whatever power gets

saved is used for other purposes, such as better user interfaces. The approach

that would help cope with power limitations is to change the software rather that

the hardware; in the case of hosting a database, this translates to optimizing

operations such as searches and updates, for power consumption.

3. Database issues in nomadic computing

The problem at hand is to host a distributed database on a nomadic computing system

– two of the specific aspects that need to be accounted for are:

• Communication costs, both in terms of financial expenses, but also in what

battery consumption is concerned. One aspect that can cause problems when

designing an optimization algorithm is the asymmetrical character of wireless

communication (for wireless devices it is cheaper energy wise to receive than to

transmit the same amount of data).

• The overall power consumed during query execution; in order to account for this

constraint, a new approach on query optimization algorithms may be necessary

since, as will be discussed in the following paragraphs, the problem is not as

trivial as adapting throughput oriented optimizers to work with some new energy

metric.

4. Energy efficient query processing

This section discusses the design of a power aware query optimization algorithm to be

used in nomadic computing. We are dealing with a system containing mobile clients and

fixed servers that need to exchange data to complete queries. This mode of operation

generates a conflict between the energy conscious clients and the throughput

maximizing servers (i.e. the client would like to move as much of the computations on

the server side whereas the server would like to only provide the client with the data it

needs and complete its part of the query processing as quickly as possible).

Thus the goal of the optimizer is to find the query plan that satisfies both these

individual goals to a given extent – ideally the client would save as much energy as

possible so that the performance at the server side doesn’t degrade beyond a given

threshold. For the following discussion we will assume that we are dealing with a single

client communicating with a server, relations are fragmented, data can be stored at both

the client and the server and the query is initiated by the client.

Classical query optimizers in distributed databases are usually concerned with

maximizing throughput. Adding energy consumption to the scenario calls for a redesign

of the optimization algorithm, since now we need to optimize along two axes (energy

and time). In order to build the new optimizer the four elements of any query

optimization system need to be defined, namely the execution space, the cost model,

the optimization criteria and the optimization algorithm.

4.1 The execution space defines the search space for the algorithm. In this case it

consists of the set of al query plans for a given query operation. These plans are

described as annotated join trees where each internal node represents a join operation

and the leaves represent base relations (the operations in a query can be rearranged

and they can be performed at both the client and the server so that, for each query, a

set of trees of different shapes describes the possible execution plans). In this case the

annotations represent the cost of having computed the operations in a subtree i.e. the

cost of a node is defined recursively in terms of the left and the right subtree. This way

of defining the cost is convenient because it is easy to define but also because it is

suitable for dynamic programming optimization algorithms.

4.2 The cost function characterizes the performance of the query plan as a

combination of total work (expressed as total time spent in the query) and energy

consumed. In order to be able to compare these two components, energy is described

as a product of the power dissipated by each component (CPU plus memory, disk and

peripherals) and the time spent on these components.

Devices Power consumed

CPU and Memory 2 Watts

Disk 3 Watts

Constant power dissipation 4.6 Watts

Using these values the energy consumed at the client can be expressed as:

timersp

client

send

client

receive

client

disk

client

cpu tttttpenergy _*6.4*5.1*7.0*3*2)(++++=

And the total work as:

The total response time that is part of the expression for energy is known to be non

additive in distributed databases – in order to cope with that and make this metric

suitable for a dynamic programming algorithm, the response time can be replaced by

work in the energy function:

The validity of this change is supported by the following inequalities:

The error introduced by this approximation is acceptable especially when noticing that

the main purpose of query optimization is not necessarily to find the best plan, but

mainly to avoid the worst plan. This metric has a property called additivity, which as

discussed further is desirable in optimization algorithms.

4.3 The third component of the optimization system is the optimization criteria. In this

case the system needs to find the plan that consumes the least energy at the client and

at the same time doesn’t degrade the throughput at the server beyond a given point.

Optimizers for total work are commercially available (System R for example); such an

optimizer can be easily modified to optimize for energy alone (by plugging in the energy

metric instead of that for work). Given such an optimizer we denote the work carried out

in the minimal work plan as W0 . With this notation the optimization criterion for the new

energy and work optimizer can be expressed as:

client

receive

client

send

client

disk

client

cpu

client
ttttpwork +++=)(

server

receive

server

send

server

disk

server

cpu

server
ttttpwork +++=)(

)()()(pworkpworkpwork serverclient
+=

)(*6.4*5.1*7.0*3*2)(pworkttttpenergy
client

send

client

receive

client

disk

client

cpu ++++=

)()(2/)(

2/))()(())(),(max()()()(

_

_

pworkptpwork

Thus

ptptptptptptpt

timeresp

client

active

server

active

client

active

server

activetimeresp

client

active

server

active

≤≤

+≥≥≥+





∞

<

=

otherwise

)(*)(if)(
)(cost

QWWkpworkpenergy
p

c

i.e. find the minimal the plan with the minimal energy such that the total work doesn’t

increase by more than k times, where k is provided by the system administrator.

4.4 The fourth component of the optimization system is the optimization algorithm

itself. The cost function mentioned above obeys the so called principle of optimality

which states that: given a metric m, two plans p1, p2 for a given subquery and an

extension e, then

Additive metrics in general satisfy this principle – the work and the energy metrics

described above are additive and thus each of them satisfies the principle of optimality.

Metrics that abide by this principle can be used with dynamic programming algorithms

since they allow for a ranking of the partial solutions at each iteration step.

Since we are dealing with optimizing along two dimensions and we have additive cost

metrics for both dimensions, a dynamic programming algorithm with partial orders can

be designed. That is, the algorithm maintains a set of incomparable but optimal plans

for subqueries; at each step extensions are added to these subqueries until plans for

the entire query are built.

In order to estimate the cost for each available extensions, terms of the following form

are computed:

where the term EWc (S) denotes the energy consumed in the best work plan for

subquery S - for each term, the first letter stands for what is measured, the second

letter marks either the best work or the best energy plan, c stands for “consumed”

and r for “remaining”.

The algorithm iterates through 2 phases. In a first phase it runs the work and the energy

optimizer to compute the above mentioned terms and in the second phase it adds these

extensions to the subqueries in the optimal subset of plans with cardinality I in order to

build the optimal subset for plans of cardinality i+1.

4.5 The problem with this raw search is that the solution space may be huge. In order to

cope with this issue some pruning criteria need to be stated. For the optimization criteria

stated in section 4.3, the following pruning criteria can be formulated:

)()()()(2121 epmepmpmpm oo ≤⇒≤

)()()(

)()()(

)()()(

)()()(

SWEQWESWE

SEWQEWSEW

SEEQEESEE

SWWQWWSWW

ccr

ccr

ccr

ccr

−=

−=

−=

−=

• Partial order: if work(p1) ≤ work(p2) and energy(p1) ≤ energy(p2) then p2 can be

pruned in favor of p1

• Right ceiling: if work(p) > k*WWc (Q)- WWr (S) then there is no sense in further

exploring plan p – even if the best work extension is chosen the total work will go beyond

the given threshold

• Total order on energy: if energy(p1) ≤ energy(p2) and work(p1) ≤ k* WWc (Q) – WEr

(S) then p2 will be pruned in favor of p1 because, even if the best energy

extension is chosen, p1 will still have a total work that remains under the

threshold.

• Upper ceiling: if energy(p2) + EEr (S) ≥ energy(p1) + EWr (S) and p1 is within the right

ceiling, then p2 can be pruned in favor of p1 (even if the best work extension is

chosen, p1 will perform better energy wise than any extension of p2)

With these pruning criteria, the algorithm runs in 2 successive stages until a plan for the

whole query is built:

• Obtain the cost for every extension for each of the plans in the partially ordered

set

• Add extensions to the current plans, using the four pruning criteria to remove non

promising plans.

5. Conclusion

The task of hosting a distributed database on a nomadic computing system comes with

certain challenges – in this report the problem of having to cope with the limited battery

life of the mobile devices in the network was discussed. The algorithm described above

comes as a natural, although nontrivial, extension of the classical one dimensional

query optimizers (optimizing for throughput only) in order to accommodate a second

dimension to the search space, that of energy consumption.

6. Evaluation and extensions

The most valuable feature of the algorithm described above is that it is generic, in the

sense that it can be applied to any multi dimensional optimization problems as long as

additive cost metrics for each dimension are defined.

On the other hand the paper on which this report is based[1] doesn’t provide any

experimental results of this algorithm being run on a real system – the entire approach

may not perform well as there is no guarantee that for instance the pruning criteria can

be applied; in this case the technique would end up performing a brute force search on

the entire solution space.

A point that is not explored by this algorithm is that of low power operation modes on

CPUs. The cost model mentioned above assumes that the power dissipation is

constant, but perhaps better performances can be obtained by switching the processor

into another power mode during query processing. This of course would add even more

solutions to the search space or would impose the need for another approach in

exploring the solutions.

Yet another aspect of this algorithm that is worth looking into is that of establishing the

value of the parameter k – after running the algorithm on several configurations perhaps

some heuristics could be established. This can prove valuable as the parameter can for

instance change dynamically as the number of requests from other clients to the server

reduces, thus allowing the client to work in a more energy efficient mode

7. References.

[1] Rafael Alonso, Sumit Ganguly: Energy efficient query optimization, Technical Report,

1992

[2] Rafael Alonso, Henry F. Korth: Database system issues in nomadic computing,

SIGMOD 1993

