Probabilistic Models for Sequence Labeling

Besnik Fetahu

June 9, 2011

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 1 / 26

- Background & Motivation
 - Problem introduction
 - Generative vs. Discriminative models
 - Existing approaches for sequence labeling
 - Label bias problems
 - Factor graphs
- Conditional Random Fields
 - Parameter estimation
 - Inference
- Semi-Markov CRFs
- Experimental Results

Segmentation and Labeling Problem

- Probabilistic nature of the problem.
- Dependence on previous, and future labels.
- Generalization.
- Data Sparsity.
- Ambiguity.
- Combinatorial explosions.

Figure: Dependence Labeling Problem.

Problems that are considered more often on this field

Named Entity Recognition.

Jim bought 300 shares of ACME Corp. in 2006.

- Persons: Jim
- Quantities: 300
- Companies: ACME Corp.
- Dates: 2006.
- Part Of Speech Tagging.

He reckons the current account deficit will narrow to only #1.8 billion in September.

Generative vs. Discriminative Probabilistic Approaches

Probabilistic Generative Models

- Model joint distribution
- Build models for each label
- Minimum variance
- Biased parameter estimation
- Aim: Find p(y|x)
- Maximize Likelihood:

$$\hat{\theta}_{GEN} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p_{y_i} f_{y_i}(x_i; \theta)$$

Figure: Generative Probabilistic Model

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

Generative vs. Discriminative Probabilistic Approaches

Probabilistic Discriminative Models

- Model conditional distribution
- Best classification performance
- Minimize classification loss
- Parameters that influence only the conditional distribution
- Maximize the logistic regression:

$$\hat{\theta}_{DISC} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log \frac{p_{y_i} f_{y_i}(x_i;\theta)}{\sum\limits_{k} p_k f_k(x_i;\theta)}$$

Figure: Discriminative Probabilistic Model

Besnik Fetahu ()

Hidden Markov Models - HMMs

- Generative model
- Consider many combinations
- Observation, depends directly at a state, in some time.
- Evaluate:

$$p(y,x) = \prod_{t=1}^{T} p(y_t | y_{t-1}) p(x_t | y_t)$$
$$p(y,x) = \frac{1}{Z} \exp \{ \sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t) \}$$

Figure: Hidden Markov Model

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 7 / 26

Maximum Entropy Markov Models - MEMMs

- Discriminative model
- Exponential model for each state-observation transition $p(y'|y,x) = \frac{1}{Z(y,x)} \exp \left\{ \sum_{k=1}^{K} \lambda_k f_k(y,y',x) \right\}$

Figure: Maximum Entropy Markov Model

→ < Ξ > <</p>

Problems with previous approaches

Label Ambiguity Reasons:

- Local model construction
- Ompeting states against each other
- Son-Discriminatory state transitions

Proposed Approaches:

- Delay branching of state transitions
- Start with a fully connected graph

Disadvantages of these approaches

- Oiscretization can lead to combinatorial explosions.
- Exclude prior knowledge.

Label Bias Problem

Problems:

- State transitioning
- 2 Both paths equally probable

Figure: Label Bias Problem

From Directed Graphs to Undirected Graphs

Generative models represented as directed graphs

- Outputs precede inputs.
- Obscribe how outputs generate inputs.

Discriminative models as factor graphs

- **O** Define factors, as the dependence of features with observations.
- Arbitrary number of features i.e. Capital Letters, Noun, ... $\Psi_k(y, x_k) = p(x_k|y)$

CRFs

Figure: Factor Graph

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 11 / 26

Modeling of CRFs

Definition

Let G = (V, E) be a graph such that $Y = (Y_v)_{v \in V}$ so that Y is indexed by the vertices of G. Then (X, Y) is a conditional random field in case, when conditioned on X, the random variable Y_v obeys the Markov property with respect to the graph $p(Y_v \lor X, Y_w, w \neq v) = p(Y_v \lor X, Y_w, w \sim v)$, where $w \sim v$ means that w and v are neighbors in G.

Figure: Factor Graph

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 12 / 26

· · · · · · · · ·

Modeling of CRFs

Properties of CRFs:

- Condition globally on observation X.
- Similar to bipartite graphs: Two sets of random variables as vertices, with factorized edges.
- Normalize probabilities, of labels y given observation x, by the product of potential functions.
- Fixed set of features.
- Usually more expensive than HMMs (Arbitrary dependencies on observation sequence).

$$p_{\theta}(\mathbf{y}|\mathbf{x}) \propto exp(\sum_{e \in E,k} \lambda_k f_k(e, \mathbf{y}|_e, x) + \sum_{v \in V,k} \mu_k g_k(v, \mathbf{y}|_v, x)).$$

Training - Improved Iterative Scaling - IIS

Algorithm

IIS Algorithm:

- Start with an arbitrary value for each of λ_k, μ_k
- Repeat until convergence:
 - Solve: $\tilde{E}[f_k], \tilde{E}[g_k]$
 - Set: $\lambda_k \leftarrow \lambda_k + \delta \lambda_k$ $\mu_k \leftarrow \mu_k + \delta \mu_k$

Properties of IIS:

- Global optimum.
- Slow convergence.

Objective for maximization (for edge features, similar for vertex features):

$$\tilde{E}[f_k] = \sum_{x,y} \tilde{p}(x) p(y|x) \sum_{i=1}^{n+1} f_k(e_i, y|_{e_i}, x) e^{\delta \lambda_k T(x,y)}$$

Parameter Estimation

Training - Stochastic Gradient Ascent - SDG

Consider Stochastic Gradient Ascent (difference from descent that is for minimization)

- Increase the log likelihood.
- One example at a time.
- Most features of an example are 0 (skip), complexity O(nfp).
- Change parameters once.
- Works good on sparse environments.

Figure: Stochastic Gradient Ascent

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 15 / 26

Training - State of the Art: Limited-memory BFGS

Properties of L-BFGS:

- Second Order Derivatives.
- Build Approximations to the Hessian Matrix.
- Quick Convergence.
- Great performance for unconstrained problems.

Approximations made in the gradient steps:

•
$$\delta^k = B^k G(\theta^k) B^{(k)} y^{(k) = \delta^{(k)}}$$

Where matrix B, represents the approximated inverse Hessian Matrix.

Figure: Quasi-Newton Line Search.

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011 16 / 26

Inference with CRFs

Here we consider Linear-Chain Structured CRFs:

- Viterbi Decoding by Dynamic Programming.
- Shortest Path.
- Each position in the observation, has the matrix: $[M_i(y', y|x)]_{|\mathcal{Y} \times \mathcal{Y}|} = e(\Lambda_i(y', y|x)) \mathcal{Y} = \{NN, NP, V\}$

Where:

$$\Lambda_i(y', y|x) = \sum_k \lambda_k f_k(e_i, Y|_{e_i} = (y', y), x) + \sum_k \mu_k g_k(v_i, Y|_{v_i} = y, x))$$

Inference with CRFs

Figure: Forward-Backward Inference Calculation.

$$\alpha_{0}(y|x) = \begin{cases} 1 & : \text{ if } y = \text{ start} \\ 0 & : \text{ otherwise} \end{cases} \qquad \alpha_{i}(x) = \alpha_{i-1}(x)M_{i}(x).$$

$$\beta_{n+1}(y|x) = \begin{cases} 1 & : \text{ if } y = \text{ stop} \\ 0 & : \text{ otherwise} \end{cases} \qquad \beta_{i}(x)^{T} = \beta_{i+1}(x)M_{i+1}(x).$$
Besnik Fetalu ()
Probabilistic Models for Sequence Labeling
June 9, 2011
18 / 26

Semi-Markov Conditional Random Fields

Semi-Markov Models:

- Semi-Markov Chains.
- Persist states for time d.
- Segment observations.
- Features built on the segmented observation.
- Faster Inference than order-L CRFs.

Observation Segmentation

• I went skiing with Fernando Pereira in British Colombia

•
$$s = \langle (1,1,0), (2,2,0), (3,3,0), (4,4,0), (5,6,I), (7,7,0), (8,9,I) \rangle$$

• $y = \langle 0, 0, 0, 0, I, I, 0, I, I \rangle$

Semi-Markov Conditional Random Fields

Modeling of Semi-Markov CRFs:

- Segment: $s_j = \langle t_j, u_j, y_j \rangle$
- Segment Feature Functions: $g^{k}(j, x, s) = g^{\prime k}(y_{j}, y_{j-1}, x, t_{j}, u_{j})$
- Inference: $P(s|x, W) = \frac{1}{Z(x)}e^{W \cdot G(x,s)}$

Figure: Semi-Markov Chains

Besnik Fetahu ()

Probabilistic Models for Sequence Labeling

June 9, 2011

20 / 26

Experimental Results

Experimental setup:

- Label bias verification.
- Synthetic data, generated by randomly chosen HMMs.
 - Transition probabilities are:

$$p_{\alpha}(y_i|y_{i-1}, y_{i-2}) = \alpha p_2(y_i|y_{i-1}, y_{i-2}) + (1 - \alpha)p_1(y_i|y_{i-1})$$

- Emission probabilities: $p_{\alpha}(x_i|y_i, x_{i-1}) = \alpha p_2(x_i|y_i, x_{i-1}) + (1 - \alpha)p_1(x_i|y_i)$
- Mixture of first-order and second-order models.
- Five labels, a-e ($|\mathcal{Y}| = 5$), and 26 observation values, A-Z ($|\mathcal{X}| = 26$).
- POS tagging experiments on Penn treebank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Experimental Results

Experimental Results

	baseline	+internal dict		+external dict		+both dictionaries		
	F1	F1	Δ base	F1	$\Delta base$	F1	$\Delta base$	Δ extern
CRF/1								
state	20.8	44.5	113.9	69.2	232.7	55.2	165.4	-67.3
title	28.5	3.8	-86.7	38.6	35.4	19.9	-30.2	-65.6
person	67.6	48.0	-29.0	81.4	20.4	64.7	-4.3	-24.7
city	70.3	60.0	-14.7	80.4	14.4	69.8	-0.7	-15.1
company	51.4	16.5	-67.9	55.3	7.6	15.6	-69.6	-77.2
CRF/4								
state	15.0	25.4	69.3	46.8	212.0	43.1	187.3	-24.7
title	23.7	7.9	-66.7	36.4	53.6	14.6	-38.4	-92.0
person	70.9	64.5	-9.0	82.5	16.4	74.8	5.5	-10.9
city	73.2	70.6	-3.6	80.8	10.4	76.3	4.2	-6.1
company	54.8	20.6	-62.4	61.2	11.7	25.1	-54.2	-65.9
semi-CRF								
state	25.6	35.5	38.7	62.7	144.9	65.2	154.7	9.8
title	33.8	37.5	10.9	41.1	21.5	40.2	18.9	-2.5
person	72.2	74.8	3.6	82.8	14.7	83.7	15.9	1.2
city	75.9	75.3	-0.8	84.0	10.7	83.6	10.1	-0.5
company	60.2	59.7	-0.8	60.9	1.2	60.9	1.2	0.0

model	error	$oov\ error$
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

+Using spelling features

Besnik Fetahu ()

イロト イヨト イヨト イヨト

Conclusion

- Generative vs. Discriminative models.
- Arbitrary number of features.
- Global Modeling vs. Local modeling.
- Convex optimization problem.
- Different solutions to parameter estimation.
- Factor Graphs vs. Directed graphs.
- Semi-Markov CRFs.

Bibliography

- Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (Lafferty et al.)
- Semi-Markov Conditional Random Fields for Information Extraction (Sarawagi S. and Cohen W).
- The Trade-Off Between Generative and Discriminative Classifiers (Bouchard G. and Triggs B.)
- Log Linear Models and Conditional Random Fields Tutorial (Elkan Ch.)
- Sonditional Random Fields: An Introduction (Wallach H.)

- 4 同 6 4 日 6 4 日 6

Thank you! Questions?

イロト イヨト イヨト イヨト