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Problem Introduction Segmentation & Labeling Problem

Segmentation and Labeling Problem

Probabilistic nature of the problem.

Dependence on previous, and future labels.

Generalization.

Data Sparsity.

Ambiguity.

Combinatorial explosions.

Figure: Dependence Labeling Problem.
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Problem Introduction Examples of Problems

Problems that are considered more often on this field

1 Named Entity Recognition.

Jim bought 300 shares of ACME Corp. in 2006.
Persons: Jim
Quantities: 300
Companies: ACME Corp.
Dates: 2006.

2 Part Of Speech Tagging.
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Generative vs. Discriminative Models Generative Models

Generative vs. Discriminative Probabilistic Approaches

Probabilistic Generative Models

Model joint distribution
Build models for each label
Minimum variance
Biased parameter estimation
Aim: Find p(y |x)
Maximize Likelihood:

θ̂GEN = arg max
θ∈Θ

n∑
i=1

log pyi fyi (xi ; θ)

Figure: Generative Probabilistic Model
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Generative vs. Discriminative Models Discriminative Models

Generative vs. Discriminative Probabilistic Approaches

Probabilistic Discriminative Models

Model conditional distribution

Best classification performance

Minimize classification loss

Parameters that influence only the conditional distribution

Maximize the logistic regression:

θ̂DISC = arg max
θ∈Θ

n∑
i=1

log
pyi fyi (xi ;θ)∑
k
pk fk (xi ;θ)

Figure: Discriminative Probabilistic Model
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Existing Approaches for Sequence Labeling Hidden Markov Models - HMMs

Hidden Markov Models - HMMs

Generative model

Consider many combinations

Observation, depends directly at a state, in some time.

Evaluate:

p(y , x) =
T∏
t=1

p(yt |yt−1)p(xt |yt)

p(y , x) = 1
Z exp {

K∑
k=1

λk fk(yt , yt−1, xt}

Figure: Hidden Markov Model
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Existing Approaches for Sequence Labeling Maximum Entropy Markov Models - MEMMs

Maximum Entropy Markov Models - MEMMs

Discriminative model

Exponential model for each state-observation transition

p(y ′|y , x) = 1
Z(y ,x) exp {

K∑
k=1

λk fk(y , y ′, x}

Figure: Maximum Entropy Markov Model
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Label Bias Problem

Problems with previous approaches

Label Ambiguity Reasons:

1 Local model construction

2 Competing states against each other

3 Non-Discriminatory state transitions

Proposed Approaches:

1 Delay branching of state transitions

2 Start with a fully connected graph

Disadvantages of these approaches

1 Discretization can lead to combinatorial explosions.

2 Exclude prior knowledge.
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Label Bias Problem

Label Bias Problem

Problems:

1 State transitioning

2 Both paths equally probable

Figure: Label Bias Problem
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Factor Graphs

From Directed Graphs to Undirected Graphs

Generative models represented as directed graphs
1 Outputs precede inputs.
2 Describe how outputs generate inputs.

Discriminative models as factor graphs
1 Define factors, as the dependence of features with observations.
2 Arbitrary number of features i.e. Capital Letters, Noun, ...

Ψk(y , xk) = p(xk |y)

Figure: Factor Graph
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Conditional Random Fields - CRFs CRF Construction

Modeling of CRFs

Definition

Let G = (V, E) be a graph such that Y = (Yv )v∈V so that Y is indexed by
the vertices of G. Then (X, Y) is a conditional random field in case, when
conditioned on X, the random variable Yv obeys the Markov property with
respect to the graph p(Yv ∨ X ,Yw ,w 6= v) = p(Yv ∨ X ,Yw ,w ∼ v),
where w ∼ v means that w and v are neighbors in G.

Figure: Factor Graph
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Conditional Random Fields - CRFs CRF Construction

Modeling of CRFs

Properties of CRFs:

Condition globally on observation X.

Similar to bipartite graphs: Two sets of random variables as vertices,
with factorized edges.

Normalize probabilities, of labels y given observation x, by the
product of potential functions.

Fixed set of features.

Usually more expensive than HMMs (Arbitrary dependencies on
observation sequence).

pθ(y|x) ∝ exp(
∑

e∈E ,k
λk fk(e, y|e , x) +

∑
v∈V ,k

µkgk(v , y|v , x)).
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Conditional Random Fields - CRFs Parameter Estimation

Training - Improved Iterative Scaling - IIS

Algorithm

IIS Algorithm:

Start with an arbitrary value for each of λk , µk
Repeat until convergence:

Solve: Ẽ [fk ], Ẽ [gk ]
Set:
λk ← λk + δλk
µk ← µk + δµk

Properties of IIS:

Global optimum.

Slow convergence.

Objective for maximization (for edge features, similar for vertex features):

Ẽ [fk ] =
∑
x ,y

p̃(x)p(y |x)
n+1∑
i=1

fk(ei , y |ei , x)eδλkT (x ,y)
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Conditional Random Fields - CRFs Parameter Estimation

Training - Stochastic Gradient Ascent - SDG

Consider Stochastic Gradient Ascent (difference from descent that is for
minimization)

Increase the log likelihood.

One example at a time.

Most features of an example are 0 (skip), complexity O(nfp).

Change parameters once.

Works good on sparse environments.

Figure: Stochastic Gradient Ascent
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Conditional Random Fields - CRFs Parameter Estimation

Training - State of the Art: Limited-memory BFGS

Properties of L-BFGS:

Second Order Derivatives.

Build Approximations to the Hessian Matrix.

Quick Convergence.

Great performance for unconstrained problems.

Approximations made in the gradient steps:

δk = BkG (θk) B(k)y (k)=δ(k−1)

Where matrix B, represents the approximated inverse Hessian Matrix.

Figure: Quasi-Newton Line Search.
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Conditional Random Fields - CRFs Inference

Inference with CRFs

Here we consider Linear-Chain Structured CRFs:

Viterbi Decoding by Dynamic Programming.

Shortest Path.

Each position in the observation, has the
matrix:[Mi (y ′, y |x)]|YxY| = e(Λi (y ′, y |x)) Y = {NN,NP,V }


NN NP V

NN e(Λi (NN,NN|x)) e(Λi (NN,NP|x)) e(Λi (NN,V |x))

NP e(Λi (NP,NN|x)) e(Λi (NP,NP|x)) e(Λi (NP,V |x))

V e(Λi (V ,NN|x)) e(Λi (V ,NP|x)) e(Λi (V ,V |x))


Where:
Λi (y ′, y |x) =

∑
k λk fk(ei ,Y |ei = (y ′, y), x) +

∑
k µkgk(vi ,Y |vi = y , x))
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Conditional Random Fields - CRFs Inference

Inference with CRFs

Figure: Forward-Backward Inference Calculation.

α0(y |x) =

{
1 : if y = start
0 : otherwise

βn+1(y |x) =

{
1 : if y = stop
0 : otherwise

αi (x) = αi−1(x)Mi (x).

βi (x)T = βi+1(x)Mi+1(x).
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Conditional Random Fields - CRFs Semi-Markov CRF

Semi-Markov Conditional Random Fields

Semi-Markov Models:

Semi-Markov Chains.

Persist states for time d.

Segment observations.

Features built on the segmented observation.

Faster Inference than order-L CRFs.

Observation Segmentation

I went skiing with Fernando Pereira in British Colombia

s = 〈(1, 1,O), (2, 2,O), (3, 3,O), (4, 4,O), (5, 6, I ), (7, 7,O), (8, 9, I )〉
y = 〈O,O,O,O, I , I ,O, I , I 〉
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Conditional Random Fields - CRFs Semi-Markov CRF

Semi-Markov Conditional Random Fields

Modeling of Semi-Markov CRFs:

Segment: sj = 〈tj , uj , yj〉
Segment Feature Functions: gk(j , x , s) = g

′k(yj , yj−1, x , tj , uj〉
Inference: P(s|x ,W ) = 1

Z(x) eW ·G(x ,s)

Figure: Semi-Markov Chains
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Conditional Random Fields - CRFs Experimental Results

Experimental Results

Experimental setup:

Label bias verification.

Synthetic data, generated by randomly chosen HMMs.

Transition probabilities are:
pα(yi |yi−1, yi−2) = αp2(yi |yi−1, yi−2) + (1− α)p1(yi |yi−1)
Emission probabilities:
pα(xi |yi , xi−1) = αp2(xi |yi , xi−1) + (1− α)p1(xi |yi )

Mixture of first-order and second-order models.

Five labels, a-e (|Y| = 5), and 26 observation values, A-Z (|X | = 26).

POS tagging experiments on Penn treebank.
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Conditional Random Fields - CRFs Experimental Results

Experimental Results
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Conditional Random Fields - CRFs Experimental Results

Experimental Results
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Conditional Random Fields - CRFs Experimental Results

Conclusion

Generative vs. Discriminative models.

Arbitrary number of features.

Global Modeling vs. Local modeling.

Convex optimization problem.

Different solutions to parameter estimation.

Factor Graphs vs. Directed graphs.

Semi-Markov CRFs.
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Conditional Random Fields - CRFs Experimental Results
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Conditional Random Fields - CRFs Experimental Results

Thank you!
Questions?
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