Data Mining and Matrices 02 – Linear Algebra Refresher

Rainer Gemulla, Pauli Miettinen

April 18, 2013

Vectors

- A vector is
 - a 1D array of numbers
 - a geometric entity with magnitude and direction
 - \blacktriangleright a matrix with exactly one row or column \Rightarrow row and column vectors
- A transpose a^T transposes a row vector into a column vector and vice versa
- The norm of vector defines its magnitude
 - Euclidean or L_2 : $\|\mathbf{a}\| = \|\mathbf{a}\|_2 = \left(\sum_{i=1}^n a_i^2\right)^{1/2}$
 - General L_p $(1 \le p \le \infty)$: $\|\mathbf{a}\|_p = \left(\sum_{i=1}^n a_i^p\right)^{1/p}$
- A dot product of two vectors of same dimension is $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$
 - Also known as scalar product or inner product
 - Alternative notations: (a, b), a^Tb (for column vectors), ab^T (for row vectors)
- In Euclidean space we can define $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$
 - θ is the angle between **a** and **b**
 - $\mathbf{a} \cdot \mathbf{b} = 0$ if $\theta = \frac{1}{2}\pi + k\pi$ (they are orthogonal)

Matrix algebra

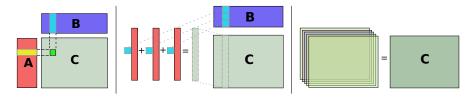
- Matrices in $\mathbb{R}^{n \times n}$ form a ring
 - Addition, subtraction, and multiplication
 - Addition and subtraction are element-wise
 - Multiplication doesn't always have inverse (division)
 - Multiplication isn't commutative ($AB \neq BA$ in general)
 - The identity for the multiplication is the identity matrix I with 1s on the main diagonal and 0s elsewhere

★
$$I_{ij} = 1$$
 iff $i = j$; $I_{ij} = 0$ iff $i \neq j$

- If $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$, then $\mathbf{AB} \in \mathbb{R}^{m \times n}$ with $(\mathbf{AB})_{ij} = \sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}$
 - ▶ The inner dimension (k) of **A** and **B** must agree
 - ► The dimensions of the product are the outer dimensions of A and B

Intuition for Matrix Multiplication

- Element $(AB)_{ij}$ is the inner product of row *i* of A and column *j* of B
- Row *i* of **AB** is the linear combination of rows of **B** with the coefficients coming from row *i* of **A**
 - Similarly, column j is a linear combination of columns of A
- Matrix **AB** is a sum of k matrices a_ℓb_ℓ^T obtained by multiplying ℓ-th column of **A** with ℓ-th row of **B**
 - This is known as vector outer product



Matrices as linear mappings

- A matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ is a linear mapping from \mathbb{R}^n to \mathbb{R}^m
 - If $\mathbf{x} \in \mathbb{R}^n$ then $\mathbf{y} = \mathbf{M}\mathbf{x} \in \mathbb{R}^m$ is the image of \mathbf{x}

•
$$\mathbf{y}_i = \sum_{j=1}^n \mathbf{M}_{ij} \mathbf{x}_j$$

- If $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$, then \mathbf{AB} is a mapping from \mathbb{R}^n to \mathbb{R}^m
 - Combination of A and B
- Square matrix $A \in \mathbb{R}^{n \times n}$ is invertible if there is matrix $B \in \mathbb{R}^{n \times n}$ such that AB = I
 - Matrix B is the inverse of A, denoted A⁻¹
 - If **A** is invertible, then $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$

 $\star \mathbf{A}\mathbf{A}^{-1}\mathbf{x} = \mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{x}$

- Non-square matrices don't have (general) inverses but can have left or right inverses: AR = I or LA = I
- The transpose of $\mathbf{M} \in \mathbb{R}^{m \times n}$ is a linear mapping $\mathbf{M}^T : \mathbb{R}^m \to \mathbb{R}^n$

$$\blacktriangleright (\mathbf{M}^T)_{ij} = \mathbf{M}_{ji}$$

• Generally, transpose is **not** the inverse $(\mathbf{A}\mathbf{A}^T \neq \mathbf{I})$

Matrix rank and linear independence

- A vector u ∈ ℝⁿ is linearly dependent on set of vectors
 V = {v_i} ⊂ ℝⁿ if u can be expressed as a linear combination of vectors in V
 - $\mathbf{u} = \sum_i a_i \mathbf{v}_i$ for some $a_i \in \mathbb{R}$
 - Set V is linearly dependent if some $\mathbf{v}_i \in V$ is linearly dependent on $V \setminus {\mathbf{v}_i}$
 - ▶ If V is not linearly dependent, it is **linearly independent**
- The column rank of matrix **M** is the number of linearly independent columns of **M**
- The row rank of M is the number of linearly independent rows of M
- The Schein rank of M is the least integer k such that M = AB for some $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$
 - Equivalently, the least k such that M is a sum of k vector outer products

• All these ranks are equivalent!

• Matrix has rank 1 iff it is an outer product of two vectors

Matrix norms

- Matrix norms measure the magnitude of the matrix
 - Magnitude of the values
 - Magnitude of the image

• Operator norms measure how big the image of an unit vector can be

• For $p \ge 1$, $\|\mathbf{M}\|_p = \max\{\|\mathbf{M}\mathbf{x}\|_p : \|\mathbf{x}\|_p = 1\}$

• The Frobenius norm is the vector-L₂ norm applied to matrices

•
$$\|\mathbf{M}\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{M}_{ij}^{2}\right)^{1/2}$$

▶ N.B. $\|\mathbf{M}\|_{F} \neq \|\mathbf{M}\|_{2}$ (but sometimes Frobenius norm is referred to as L_{2} norm)

Matrices as systems of linear equations

- A matrix can hold the coefficients of a system of linear equations
 - The original use of matrices (Chinese The Nine Chapters on the Mathematical Art)

$$\begin{array}{c} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m = b_n \end{array} \stackrel{a_{1,1}}{\Leftrightarrow} \begin{array}{c} a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{array} \stackrel{x_1}{\begin{pmatrix}} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

- If the coefficient matrix ${\bm A}$ is invertible, the system has exact solution ${\bm x} = {\bm A}^{-1} {\bm b}$
- If *m* < *n* the system is **underdetermined** and can have infinite number of solutions
- If m > n the system is **overdetermined** and (usually) does not have an exact solution
- The least-squares solution is the vector **x** that minimizes $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
 - Linear regression

Special types of matrices

- The diagonals of matrix M go from top-left to bottom-right
 - The main diagonal contains the elements M_{i,i}
 - The k-th upper diagonal contains the elements $\mathbf{M}_{i,(i+k)}$
 - The k-th lower diagonal contains the elements $\mathbf{M}_{(i+k),i}$
 - The anti-diagonals go rom top-right to bottom-left
- Matrix is **diagonal** if all its non-zero values are in a diagonal (typically main diagonal)
 - Bi-diagonal matrices have values in two diagonals, etc.
- Matrix **M** is **upper (right) triangular** if all of its non-zeros are in or above the main diagonal
 - Lower (left) triangular matrices have all non-zeros in or below main diagonal
 - Upper left and lower right triangular matrices replace diagonal with anti-diagonal
- A square matrix **P** is **permutation matrix** if each row and each column of **P** has exactly one 1 and rest are 0s
 - If P is a permutation matrix, PM is like M but with permuted order of rows

Orthogonal matrices

- A set $V = {\mathbf{v}_i} \subset \mathbb{R}^n$ is orthogonal if all vectors in V are mutually orthogonal
 - $\mathbf{v} \cdot \mathbf{u} = 0$ for all $\mathbf{v}, \mathbf{u} \in V$
 - If all vectors in V also have unit norm ($\|\mathbf{v}\|_2 = 1$), V is orthonormal
- A square matrix M is orthogonal if its columns are a set of orthonormal vector
 - Then also rows are orthonormal
 - ▶ If $\mathbf{M} \in \mathbb{R}^{n \times m}$ and n > m, \mathbf{M} can be column-orthogonal, but its rows cannot be orthogonal
- If **M** is orthogonal, $\mathbf{M}^T = \mathbf{M}^{-1}$ (i.e. $\mathbf{M}\mathbf{M}^T = \mathbf{M}^T\mathbf{M} = \mathbf{I}_n$)
 - If M is only column-orthogonal (n > m), M^T is the left inverse (M^TM = I_m)
 - If **M** is row-orthogonal (n < m), **M**^T is the right inverse $(\mathbf{MM}^T = \mathbf{I}_n)$

Suggested reading

- Any (elementary) linear algebra text book
 - For example: Carl Meyer Matrix Analysis and Applied Linear Algebra Society for Industrial and Applied Mathematics, 2000 http://www.matrixanalysis.com
- Wolfram MathWorld articles
- Wikipedia articles