Data Mining and Matrices 03 – Singular Value Decomposition

Rainer Gemulla, Pauli Miettinen

April 25, 2013

The SVD is the Swiss Army knife of matrix decompositions

—Diane O'Leary, 2006

The Definition

- 2 Properties of the SVD
- Interpreting SVD
- 4 SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
- 5 Computing the SVD
- 6 Wrap-Up
- 7 About the assignments

The definition

Theorem. For every $\mathbf{A} \in \mathbb{R}^{m \times n}$ there exists $m \times m$ orthogonal matrix \mathbf{U} and $n \times n$ orthogonal matrix \mathbf{V} such that $\mathbf{U}^T \mathbf{A} \mathbf{V}$ is an $m \times n$ diagonal matrix $\boldsymbol{\Sigma}$ that has values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min\{n,m\}} \geq 0$ in its diagonal.

- I.e. every **A** has decomposition $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$
 - The singular value decomposition (SVD)
- The values σ_i are the singular values of **A**
- Columns of U are the left singular vectors and columns of V the right singular vectors of A

The Definition

2 Properties of the SVD

Interpreting SVD

4 SVD and Data Analysis

- How many factors?
- Using SVD: Data processing and visualization

5 Computing the SVD

6 Wrap-Up

About the assignments

The fundamental theorem of linear algebra

The **fundamental theorem of linear algebra** states that every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ induces four fundamental subspaces:

- The range of dimension $rank(\mathbf{A}) = r$
 - The set of all possible linear combinations of columns of A
- The kernel of dimension n r
 - The set of all vectors $\mathbf{x} \in \mathbb{R}^n$ for which $\mathbf{A}\mathbf{x} = \mathbf{0}$
- The coimage of dimension r
- The **cokernel** of dimension m r

The bases for these subspaces can be obtained from the SVD:

- Range: the first r columns of U
- Kernel: the last (n r) columns of **V**
- Coimage: the first r columns of V
- Cokernel: the last (m r) columns of **U**

Pseudo-inverses

Problem.

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, find $\mathbf{x} \in \mathbb{R}^n$ minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$.

- If **A** is invertible, the solution is $\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \Leftrightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- A pseudo-inverse A^+ captures some properties of the inverse A^{-1}
- The Moose–Penrose pseudo-inverse of A is a matrix A⁺ satisfying the following criteria
 - ► $\mathbf{A}\mathbf{A}^+\mathbf{A}^- = \mathbf{A}$ (but it is possible that $\mathbf{A}\mathbf{A}^+ \neq \mathbf{I}$)

 - $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+} \qquad (cf. above)$ $\mathbf{A}\mathbf{A}^{+})^{T} = \mathbf{A}\mathbf{A}^{T} \qquad (\mathbf{A}\mathbf{A}^{+} is symmetric)$ $\mathbf{A}^{+}\mathbf{A})^{T} = \mathbf{A}^{+}\mathbf{A} \qquad (as is \mathbf{A}^{+}\mathbf{A})$
- If $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{T}$ is the SVD of \mathbf{A} , then $|\mathbf{A}^{+} = \mathbf{V} \Sigma^{-1} \mathbf{U}^{T}|$
 - Σ^{-1} replaces σ_i 's with $1/\sigma_i$ and transposes the result

Theorem.

The optimum solution for the above problem can be obtained using $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$.

Truncated (thin) SVD

• The rank of the matrix is the number of its non-zero singular values

• Easy to see by writing $\mathbf{A} = \sum_{i=1}^{\min\{n,m\}} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

The truncated (or thin) SVD only takes the first k columns of U and V and the main k × k submatrix of Σ

•
$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

• rank(
$$\mathbf{A}_k$$
) = k (if $\sigma_k > 0$)

- ► **U**_k and **V**_k are no more orthogonal, but they are column-orthogonal
- The truncated SVD gives a low-rank approximation of A

SVD and matrix norms

Let $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ be the SVD of \mathbf{A} . Then

- $\|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{\min\{n,m\}} \sigma_{i}^{2}$
- $\|\mathbf{A}\|_2 = \sigma_1$
 - Remember: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{n,m\}} \geq 0$
- Therefore $\|\mathbf{A}\|_2 \le \|\mathbf{A}\|_F \le \sqrt{n} \|\mathbf{A}\|_2$
- The Frobenius of the truncated SVD is $\|\mathbf{A}_k\|_F^2 = \sum_{i=1}^k \sigma_i^2$
 - And the Frobenius of the difference is $\|\mathbf{A} \mathbf{A}_k\|_F^2 = \sum_{i=k+1}^{\min\{n,m\}} \sigma_i^2$

The Eckart–Young theorem

Let A_k be the rank-k truncated SVD of A. Then A_k is the closest rank-k matrix of A in the Frobenius sense. That is

 $\|\mathbf{A} - \mathbf{A}_k\|_F \le \|\mathbf{A} - \mathbf{B}\|_F$ for all rank-k matrices **B**.

Eigendecompositions

- An **eigenvector** of a square matrix **A** is a vector **v** such that **A** only changes the magnitude of **v**
 - I.e. $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ for some $\lambda \in \mathbb{R}$
 - Such λ is an **eigenvalue** of **A**
- The eigendecomposition of **A** is $\mathbf{A} = \mathbf{Q} \Delta \mathbf{Q}^{-1}$
 - ► The columns of **Q** are the eigenvectors of **A**
 - Matrix $oldsymbol{\Delta}$ is a diagonal matrix with the eigenvalues
- Not every (square) matrix has eigendecomposition
 - ► If **A** is of form **BB**^{*T*}, it always has eigendecomposition
- The SVD of ${\bf A}$ is closely related to the eigendecompositions of ${\bf A}{\bf A}^{\mathcal T}$ and ${\bf A}^{\mathcal T}{\bf A}$
 - The left singular vectors are the eigenvectors of AA^T
 - The right singular vectors are the eigenvectors of A^TA
 - ► The singular values are the square roots of the eigenvalues of both AA^T and A^TA

The Definition

2 Properties of the SVD

Interpreting SVD

SVD and Data Analysis

- How many factors?
- Using SVD: Data processing and visualization

5 Computing the SVD

- 6 Wrap-Up
- About the assignments

Factor interpretation

- The most common way to interpret SVD is to consider the columns of U (or V)
 - Let **A** be objects-by-attributes and $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ its SVD
 - If two columns have similar values in a row of V^T, these attributes are somehow similar (have strong correlation)
 - If two rows have similar values in a column of U, these users are somehow similar

Figure 3.2. The first two factors for a dataset ranking wines.

- Example: people's ratings of different wines
- Scatterplot of first and second column of **U**
 - left: likes wine
 - right: doesn't like
 - up: likes red wine
 - bottom: likes white vine
- Conclusion: winelovers like red and white, others care more

Geometric interpretation

- Let $\mathbf{U}\Sigma\mathbf{V}^T$ be the SVD of \mathbf{M}
- SVD shows that every linear mapping y = Mx can be considered as a series of rotation, stretching, and rotation operations
 - Matrix V^T performs the first rotation y₁ = V^Tx
 - Matrix Σ performs the stretching y₂ = Σy₁
 - Matrix U performs the second rotation y = Uy₂

Dimension of largest variance

- The singular vectors give the dimensions of the variance in the data
 - The first singular vector is the dimension of the largest variance
 - The second singular vector is the orthogonal dimension of the second largest variance
 - ★ First two dimensions span a hyperplane
- From Eckart-Young we know that if we project the data to the spanned hyperplanes, the distance of the projection is minimized

Component interpretation

- Recall that we can write $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^r \mathbf{A}_i$ • $\mathbf{A}_i = \sigma_i \mathbf{v}_i \mathbf{u}_i^T$
- This explains the data as a sums of (rank-1) layers
 - The first layer explains the most
 - The second corrects that by adding and removing smaller values
 - > The third corrects that by adding and removing even smaller values

▶ ...

• The layers don't have to be very intuitive

The Definition

Properties of the SVD

Interpreting SVD

4 SVD and Data Analysis

- How many factors?
- Using SVD: Data processing and visualization

5 Computing the SVD

6 Wrap-Up

About the assignments

The Definition

Properties of the SVD

Interpreting SVD

- SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
- **5** Computing the SVD
- 6 Wrap-Up
 - 7 About the assignments

Problem

- Most data mining applications do not use full SVD, but truncated SVD
 - To concentrate on "the most important parts"
- But how to select the rank k of the truncated SVD?
 - What is important, what is unimportant?
 - What is structure, what is noise?
 - Too small rank: all subtlety is lost
 - Too big rank: all smoothing is lost
- Typical methods rely on singular values in a way or another

Guttman-Kaiser criterion and captured energy

- Perhaps the oldest method is the Guttman-Kaiser criterion:
 - Select k so that for all i > k, $\sigma_i < 1$
 - Motivation: all components with singular value less than unit are uninteresting
- Another common method is to select enough singular values such that the sum of their squares is 90% of the total sum of the squared singular values
 - ► The exact percentage can be different (80%, 95%)
 - Motivation: The resulting matrix "explains" 90% of the Frobenius norm of the matrix (a.k.a. energy)
- **Problem:** Both of these methods are based on arbitrary thresholds and do not consider the "shape" of the data

Cattell's Scree test

- The scree plot plots the singular values in decreasing order
 - The plot looks like a side of the hill, thence the name
- The scree test is a subjective decision on the rank based on the shape of the scree plot
- The rank should be set to a point where
 - there is a clear drop in the magnitudes of the singular values; or
 - the singular values start to even out
- **Problem:** Scree test is subjective, and many data don't have any clear shapes to use (or have many)
 - Automated methods have been developed to detect the shapes from the scree plot

Entropy-based method

- Consider the relative contribution of each singular value to the overall Frobenius norm
 - Relative contribution of σ_k is $f_k = \sigma_k^2 / \sum_i \sigma_i^2$
- We can consider these as probabilities and define the (normalized) entropy of the singular values as

$$E = -\frac{1}{\log(\min\{n, m\})} \sum_{i=1}^{\min\{n, m\}} f_i \log f_i$$

- The basis of the logarithm doesn't matter
- We assume that $0 \cdot \infty = 0$
- ▶ Low entropy (close to 0): the first singular value has almost all mass
- ▶ High entropy (close to 1): the singular values are almost equal
- The rank is selected to be the smallest k such that $\sum_{i=1}^{k} f_i \ge E$
- Problem: Why entropy?

Random flip of signs

- $\bullet\,$ Multiply every element of the data ${\bf A}$ randomly with either 1 or -1 to get $\tilde{{\bf A}}$
 - The Frobenius norm doesn't change $(\|\mathbf{A}\|_F = \|\tilde{\mathbf{A}}\|_F)$
 - The spectral norm does change $(\|\mathbf{A}\|_2 \neq \|\mathbf{\tilde{A}}\|_2)$
 - $\star\,$ How much this changes depends on how much "structure" A has
- We try to select k such that the residual matrix contains only noise
 - The residual matrix contains the last *m* − *k* columns of **U**, min{*n*, *m*} − *k* singular values, and last *n* − *k* rows of **V**^T
 - ▶ If \mathbf{A}_{-k} is the residual matrix of \mathbf{A} after rank-*k* truncated SVD and $\tilde{\mathbf{A}}_{-k}$ is that for the matrix with randomly flipped signs, we select rank *k* to be such that $(\|\mathbf{A}_{-k}\|_2 \|\tilde{\mathbf{A}}_{-k}\|_2)/\|\mathbf{A}_{-k}\|_F$ is small
- Problem: How small is small?

The Definition

- 2 Properties of the SVD
- Interpreting SVD
- SVD and Data Analysis
 How many factors?
 - Using SVD: Data processing and visualization
- **5** Computing the SVD
- 6 Wrap-Up
 - 7 About the assignments

Normalization

- Data should usually be normalized before SVD is applied
 - If one attribute is height in meters and other weights in grams, weight seems to carry much more importance in data about humans
 - If data is all positive, the first singular vector just explains where in the positive quadrant the data is
- The z-scores are attributes whose values are transformed by
 - centering them to 0
 - $\star\,$ Remove the mean of the attribute's values from each value
 - normalizing the magnitudes
 - \star Divide every value with the standard deviation of the attribute
- Notice that the *z*-scores assume that
 - all attributes are equally important
 - attribute values are approximately normally distributed
- Values that have larger magnitude than importance can also be normalized by first taking logarithms (from positive values) or cubic roots
- The effects of normalization should always be considered

Removing noise

- Very common application of SVD is to remove the noise from the data
- This works simply by taking the truncated SVD from the (normalized) data
 - The big problem is to select the rank of the truncated SVD
- Example:

- Original data
 - Looks like 1-dimensional with some noise
- The right singular vectors show the directions
 - The first looks like the data direction
 - The second looks like the noise direction
- The singular values confirm this

Removing dimensions

- Truncated SVD can also be used to battle the **curse of dimensionality**
 - > All points are close to each other in very high dimensional spaces
 - High dimensionality slows down the algorithms
- Typical approach is to work in a space spanned by the columns of \mathbf{V}^T
 - If $\mathbf{U}\Sigma\mathbf{V}^{T}$ is the SVD of $\mathbf{A} \in \mathbb{R}^{m \times n}$, project \mathbf{A} to $\mathbf{A}\mathbf{V}_{k} \in \mathbb{R}^{m \times k}$ where \mathbf{V}_{k} has the first k columns of \mathbf{V}
 - This is known as the Karhunen–Loève transform (KLT) of the rows of A
 - * Matrix A must be normalized to z-scores in KLT

Visualization

- Truncated SVD with k = 2, 3 allows us to visualize the data
 - We can plot the projected data points after 2D or 3D Karhunen–Loève transform
 - Or we can plot the scatter plot of two or three (first, left/right) singular vectors

Figure 3.2. The first two factors for a dataset ranking wines.

Latent semantic analysis

- The latent semantic analysis (LSA) is an information retrieval method that uses SVD
- The data: a term-document matrix A
 - the values are (weighted) term frequencies
 - typically tf/idf values (the frequency of the term in the document divided by the global frequency of the term)
- The truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$ of \mathbf{A} is computed
 - Matrix U_k associates documents to topics
 - Matrix V_k associates topics to terms
 - If two rows of U_k are similar, the corresponding documents "talk about same things"
- A query q can be answered by considering its term vector q
 - **q** is projected to $\mathbf{q}_k = \mathbf{q} \mathbf{V} \mathbf{\Sigma}^{-1}$
 - \mathbf{q}_k is compared to rows of \mathbf{U} and most similar rows are returned

The Definition

- 2 Properties of the SVD
- Interpreting SVD
- 4 SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
- 5 Computing the SVD
- 6 Wrap-Up
- 7 About the assignments

Algorithms for SVD

- In principle, the SVD of **A** can be computed by computing the eigendecomposition of $\mathbf{A}\mathbf{A}^{\mathcal{T}}$
 - This gives us left singular vectors and squares of singular values
 - Right singular vectors can be solved: $\mathbf{V}^{\dagger} = \Sigma^{-1} \mathbf{U}^{T} \mathbf{A}$
 - Bad for numerical stability!
- Full SVD can be computed in time $O(nm\min\{n, m\})$
 - Matrix A is first reduced to a bidiagonal matrix
 - The SVD of the bidiagonal matrix is computed using iterative methods (similar to eigendecompositions)
- Methods that are faster in practice exist
 - Especially for truncated SVD
- Efficient implementation of an SVD algorithm requires considerable work and knowledge
 - Luckily (almost) all numerical computation packages and programs implement SVD

The Definition

- 2 Properties of the SVD
- Interpreting SVD
- 4 SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
- 5 Computing the SVD
- 6 Wrap-Up
 - About the assignments

Lessons learned

- SVD is the Swiss Army knife of (numerical) linear algebra
 → ranks, kernels, norms, ...
- SVD is also very useful in data analysis \rightarrow noise removal, visualization, dimensionality reduction, ...
- Selecting the correct rank for truncated SVD is still a problem

Suggested reading

- Skillicorn, Ch. 3
- Gene H. Golub & Charles F. Van Loan: *Matrix Computations*, 3rd ed. Johns Hopkins University Press, 1996
 - Excellent source for the algorithms and theory, but very dense

The Definition

- Properties of the SVD
- Interpreting SVD
- 4 SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
- 5 Computing the SVD
- 6 Wrap-Up
- 7 About the assignments

Basic information

- Assignment sheet will be made available later today/early tomorrow
 - We'll announce it in the mailing list
- DL in two weeks, delivery by e-mail
 - Details in the assignment sheet
- Hands-on assignment: data analysis using SVD
- Recommended software: R
 - Good alternatives: Matlab (commercial), GNU Octave (open source), and Python with NumPy, SciPy, and matplotlib (open source)
 - Excel is not a good alternative (too complicated)
- What you have to return?
 - Single document that answers to all questions (all figures, all analysis of the results, the main commands you used for the analysis if asked)
 - Supplementary material containing the transcript of all commands you issued/all source code
 - Both files in PDF format