Data Mining and Matrices
03 – Singular Value Decomposition

Rainer Gemulla, Pauli Miettinen

April 25, 2013
The SVD is the Swiss Army knife of matrix decompositions

—Diane O’Leary, 2006
Outline

1 The Definition

2 Properties of the SVD

3 Interpreting SVD

4 SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization

5 Computing the SVD

6 Wrap-Up

7 About the assignments
The definition

Theorem. For every $A \in \mathbb{R}^{m \times n}$ there exists $m \times m$ orthogonal matrix U and $n \times n$ orthogonal matrix V such that U^TAV is an $m \times n$ diagonal matrix Σ that has values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min\{n,m\}} \geq 0$ in its diagonal.

- I.e. every A has decomposition $A = U\Sigma V^T$
 - The **singular value decomposition** (SVD)
- The values σ_i are the **singular values** of A
- Columns of U are the **left singular vectors** and columns of V the **right singular vectors** of A
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
The fundamental theorem of linear algebra

The fundamental theorem of linear algebra states that every matrix $A \in \mathbb{R}^{m \times n}$ induces four fundamental subspaces:

- **The range** of dimension $\text{rank}(A) = r$
 - The set of all possible linear combinations of columns of A

- **The kernel** of dimension $n - r$
 - The set of all vectors $x \in \mathbb{R}^n$ for which $Ax = 0$

- **The coimage** of dimension r

- **The cokernel** of dimension $m - r$

The bases for these subspaces can be obtained from the SVD:

- Range: the first r columns of U
- Kernel: the last $(n - r)$ columns of V
- Coimage: the first r columns of V
- Cokernel: the last $(m - r)$ columns of U
Pseudo-inverses

Problem.
Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ minimizing $\|Ax - b\|_2$.

- If A is invertible, the solution is $A^{-1}Ax = A^{-1}b \iff x = A^{-1}b$
- A **pseudo-inverse** A^+ captures some properties of the inverse A^{-1}
- The **Moose–Penrose pseudo-inverse** of A is a matrix A^+ satisfying the following criteria
 - $AA^+A = A$ (but it is possible that $AA^+ \neq I$)
 - $A^+AA^+ = A^+$ (cf. above)
 - $(AA^+)^T = AA^T$ (AA^+ is symmetric)
 - $(A^+A)^T = A^+A$ (as is A^+A)

- If $A = U\Sigma V^T$ is the SVD of A, then $A^+ = V\Sigma^{-1}U^T$
 - Σ^{-1} replaces σ_i's with $1/\sigma_i$ and transposes the result

Theorem.
The optimum solution for the above problem can be obtained using $x = A^+b$.

Truncated (thin) SVD

- The rank of the matrix is the number of its non-zero singular values
 - Easy to see by writing $A = \sum_{i=1}^{\min\{n,m\}} \sigma_i u_i v_i^T$

- The truncated (or thin) SVD only takes the first k columns of U and V and the main $k \times k$ submatrix of Σ
 - $A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T = U_k \Sigma_k V_k^T$
 - $\text{rank}(A_k) = k$ (if $\sigma_k > 0$)
 - U_k and V_k are no more orthogonal, but they are column-orthogonal

- The truncated SVD gives a low-rank approximation of A

\[A \approx U \Sigma V^T \]
SVD and matrix norms

Let \(A = U \Sigma V^T \) be the SVD of \(A \). Then

- \(\| A \|_F^2 = \sum_{i=1}^{\min\{n,m\}} \sigma_i^2 \)
- \(\| A \|_2 = \sigma_1 \)
 - Remember: \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{n,m\}} \geq 0 \)
- Therefore \(\| A \|_2 \leq \| A \|_F \leq \sqrt{n} \| A \|_2 \)
- The Frobenius of the truncated SVD is \(\| A_k \|_F^2 = \sum_{i=1}^{k} \sigma_i^2 \)
 - And the Frobenius of the difference is \(\| A - A_k \|_F^2 = \sum_{i=k+1}^{\min\{n,m\}} \sigma_i^2 \)

The Eckart–Young theorem

Let \(A_k \) be the rank-\(k \) truncated SVD of \(A \). Then \(A_k \) is the closest rank-\(k \) matrix of \(A \) in the Frobenius sense. That is

\[
\| A - A_k \|_F \leq \| A - B \|_F \quad \text{for all rank-}k \text{ matrices } B.
\]
Eigendecompositions

- An **eigenvector** of a square matrix \(A \) is a vector \(v \) such that \(A \) only changes the magnitude of \(v \)
 - I.e. \(Av = \lambda v \) for some \(\lambda \in \mathbb{R} \)
 - Such \(\lambda \) is an **eigenvalue** of \(A \)

- The **eigendecomposition** of \(A \) is \(A = Q \Delta Q^{-1} \)
 - The columns of \(Q \) are the eigenvectors of \(A \)
 - Matrix \(\Delta \) is a diagonal matrix with the eigenvalues

- Not every (square) matrix has eigendecomposition
 - If \(A \) is of form \(BB^T \), it always has eigendecomposition

- The SVD of \(A \) is closely related to the eigendecompositions of \(AA^T \) and \(A^T A \)
 - The left singular vectors are the eigenvectors of \(AA^T \)
 - The right singular vectors are the eigenvectors of \(A^T A \)
 - The singular values are the square roots of the eigenvalues of both \(AA^T \) and \(A^T A \)
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
Factor interpretation

- The most common way to interpret SVD is to consider the columns of U (or V)
 - Let A be objects-by-attributes and $U\Sigma V^T$ its SVD
 - If two columns have similar values in a row of V^T, these attributes are somehow similar (have strong correlation)
 - If two rows have similar values in a column of U, these users are somehow similar

![Figure 3.2. The first two factors for a dataset ranking wines.](image)

- Example: people’s ratings of different wines
- Scatterplot of first and second column of U
 - left: likes wine
 - right: doesn’t like
 - up: likes red wine
 - bottom: likes white vine

Conclusion: winelovers like red and white, others care more
Geometric interpretation

- Let $U \Sigma V^T$ be the SVD of M
- SVD shows that every linear mapping $y = Mx$ can be considered as a series of rotation, stretching, and rotation operations
 - Matrix V^T performs the first rotation $y_1 = V^T x$
 - Matrix Σ performs the stretching $y_2 = \Sigma y_1$
 - Matrix U performs the second rotation $y = Uy_2$

$M = U \cdot \Sigma \cdot V^*$
Dimension of largest variance

- The singular vectors give the dimensions of the variance in the data
 - The first singular vector is the dimension of the largest variance
 - The second singular vector is the orthogonal dimension of the second largest variance
 - First two dimensions span a hyperplane

- From Eckart–Young we know that if we project the data to the spanned hyperplanes, the distance of the projection is minimized
Component interpretation

- Recall that we can write $A = U\Sigma V^T = \sum_{i=1}^{r'} \sigma_i u_i v_i^T = \sum_{i=1}^{r'} A_i$
 - $A_i = \sigma_i v_i u_i^T$

- This explains the data as a sums of (rank-1) layers
 - The first layer explains the most
 - The second corrects that by adding and removing smaller values
 - The third corrects that by adding and removing even smaller values
 - ...

- The layers don’t have to be very intuitive
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
Problem

- Most data mining applications do not use full SVD, but truncated SVD
 - To concentrate on “the most important parts”
- But how to select the rank k of the truncated SVD?
 - What is important, what is unimportant?
 - What is structure, what is noise?
 - Too small rank: all subtlety is lost
 - Too big rank: all smoothing is lost
- Typical methods rely on singular values in a way or another
Perhaps the oldest method is the Guttman–Kaiser criterion:
 ▶ Select k so that for all $i > k$, $\sigma_i < 1$
 ▶ Motivation: all components with singular value less than unit are uninteresting

Another common method is to select enough singular values such that the sum of their squares is 90% of the total sum of the squared singular values
 ▶ The exact percentage can be different (80%, 95%)
 ▶ Motivation: The resulting matrix “explains” 90% of the Frobenius norm of the matrix (a.k.a. energy)

Problem: Both of these methods are based on arbitrary thresholds and do not consider the “shape” of the data
Cattell’s Scree test

- The **scree plot** plots the singular values in decreasing order
 - The plot looks like a side of the hill, thence the name
- The scree test is a subjective decision on the rank based on the shape of the scree plot
- The rank should be set to a point where
 - there is a clear drop in the magnitudes of the singular values; or
 - the singular values start to even out
- **Problem:** Scree test is subjective, and many data don’t have any clear shapes to use (or have many)
 - Automated methods have been developed to detect the shapes from the scree plot
Entropy-based method

- Consider the relative contribution of each singular value to the overall Frobenius norm
 - Relative contribution of σ_k is $f_k = \sigma_k^2 / \sum_i \sigma_i^2$
- We can consider these as probabilities and define the (normalized) entropy of the singular values as

$$E = -\frac{1}{\log(\min\{n, m\})} \sum_{i=1}^{\min\{n, m\}} f_i \log f_i$$

- The basis of the logarithm doesn’t matter
- We assume that $0 \cdot \infty = 0$
- Low entropy (close to 0): the first singular value has almost all mass
- High entropy (close to 1): the singular values are almost equal

- The rank is selected to be the smallest k such that $\sum_{i=1}^k f_i \geq E$
- **Problem:** Why entropy?
Random flip of signs

- Multiply every element of the data \mathbf{A} randomly with either 1 or -1 to get $\tilde{\mathbf{A}}$
 - The Frobenius norm doesn’t change ($\|\mathbf{A}\|_F = \|\tilde{\mathbf{A}}\|_F$)
 - The spectral norm does change ($\|\mathbf{A}\|_2 \neq \|\tilde{\mathbf{A}}\|_2$)
 - How much this changes depends on how much “structure” \mathbf{A} has
- We try to select k such that the residual matrix contains only noise
 - The residual matrix contains the last $m - k$ columns of \mathbf{U}, $\min\{n, m\} - k$ singular values, and last $n - k$ rows of \mathbf{V}^T
 - If \mathbf{A}_{-k} is the residual matrix of \mathbf{A} after rank-k truncated SVD and $\tilde{\mathbf{A}}_{-k}$ is that for the matrix with randomly flipped signs, we select rank k to be such that $\frac{\|\mathbf{A}_{-k}\|_2 - \|\tilde{\mathbf{A}}_{-k}\|_2}{\|\mathbf{A}_{-k}\|_F}$ is small
- **Problem:** How small is small?
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
Normalization

- Data should usually be normalized before SVD is applied
 - If one attribute is height in meters and other weights in grams, weight seems to carry much more importance in data about humans
 - If data is all positive, the first singular vector just explains where in the positive quadrant the data is
- The z-scores are attributes whose values are transformed by
 - centering them to 0
 - Remove the mean of the attribute’s values from each value
 - normalizing the magnitudes
 - Divide every value with the standard deviation of the attribute
- Notice that the z-scores assume that
 - all attributes are equally important
 - attribute values are approximately normally distributed
- Values that have larger magnitude than importance can also be normalized by first taking logarithms (from positive values) or cubic roots
- The effects of normalization should always be considered
Removing noise

- Very common application of SVD is to remove the noise from the data
- This works simply by taking the truncated SVD from the (normalized) data
 - The big problem is to select the rank of the truncated SVD
- Example:

 ![Original data](image1)
 - Original data
 - Looks like 1-dimensional with some noise
 - The right singular vectors show the directions
 - The first looks like the data direction
 - The second looks like the noise direction
 - The singular values confirm this

 \[
 \sigma_1 = 11.73 \\
 \sigma_2 = 1.71
 \]
Removing dimensions

- Truncated SVD can also be used to battle the curse of dimensionality
 - All points are close to each other in very high dimensional spaces
 - High dimensionality slows down the algorithms
- Typical approach is to work in a space spanned by the columns of V^T
 - If $U \Sigma V^T$ is the SVD of $A \in \mathbb{R}^{m \times n}$, project A to $AV_k \in \mathbb{R}^{m \times k}$ where V_k has the first k columns of V
 - This is known as the Karhunen–Loève transform (KLT) of the rows of A
 - Matrix A must be normalized to z-scores in KLT
Visualization

- Truncated SVD with \(k = 2, 3 \) allows us to visualize the data
 - We can plot the projected data points after 2D or 3D Karhunen–Loève transform
 - Or we can plot the scatter plot of two or three (first, left/right) singular vectors

Figure 3.2. The first two factors for a dataset ranking wines.
Latent semantic analysis

- The **latent semantic analysis** (LSA) is an information retrieval method that uses SVD.
- The data: a term–document matrix A
 - the values are (weighted) term frequencies
 - typically tf/idf values (the frequency of the term in the document divided by the global frequency of the term)
- The truncated SVD $A_k = U_k \Sigma_k V_k^T$ of A is computed
 - Matrix U_k associates documents to topics
 - Matrix V_k associates topics to terms
 - If two rows of U_k are similar, the corresponding documents “talk about same things”
- A query q can be answered by considering its term vector q
 - q is projected to $q_k = qV\Sigma^{-1}$
 - q_k is compared to rows of U and most similar rows are returned
Outline

1. The Definition
2. Properties of the SVD
3. Interpreting SVD
4. SVD and Data Analysis
 - How many factors?
 - Using SVD: Data processing and visualization
5. Computing the SVD
6. Wrap-Up
7. About the assignments
Algorithms for SVD

- In principle, the SVD of \mathbf{A} can be computed by computing the eigendecomposition of \mathbf{AA}^T
 - This gives us left singular vectors and squares of singular values
 - Right singular vectors can be solved: $\mathbf{V}^T = \mathbf{\Sigma}^{-1}\mathbf{U}^T\mathbf{A}$
 - **Bad for numerical stability!**
- Full SVD can be computed in time $O(nm \min\{n, m\})$
 - Matrix \mathbf{A} is first reduced to a bidiagonal matrix
 - The SVD of the bidiagonal matrix is computed using iterative methods (similar to eigendecompositions)
- Methods that are faster in practice exist
 - Especially for truncated SVD
- Efficient implementation of an SVD algorithm requires considerable work and knowledge
 - Luckily (almost) all numerical computation packages and programs implement SVD
Lessons learned

- SVD is the Swiss Army knife of (numerical) linear algebra
 - ranks, kernels, norms, . . .

- SVD is also very useful in data analysis
 - noise removal, visualization, dimensionality reduction, . . .

- Selecting the correct rank for truncated SVD is still a problem
Suggested reading

- Skillicorn, Ch. 3
 - Excellent source for the algorithms and theory, but very dense
Basic information

- Assignment sheet will be made available later today/early tomorrow
 - We’ll announce it in the mailing list
- DL in two weeks, delivery by e-mail
 - Details in the assignment sheet
- Hands-on assignment: data analysis using SVD
- Recommended software: R
 - Good alternatives: Matlab (commercial), GNU Octave (open source), and Python with NumPy, SciPy, and matplotlib (open source)
 - Excel is not a good alternative (too complicated)
- What you have to return?
 - Single document that answers to all questions (all figures, all analysis of the results, the main commands you used for the analysis if asked)
 - Supplementary material containing the transcript of all commands you issued/all source code
 - Both files in PDF format