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An example data
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An example data
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An example data

The data in a 3D view
Can we find the bumps in the picture automatically (from unpermuted

data)?
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What is a bump?

A =

3 1 3
2 3 1
3 2 3


I = {1, 3}
J = {1, 3}

x =

1
0
1

 y =

1
0
1



A◦xyT =

3 0 3
0 0 0
3 0 3



A submatrix of a matrix A ∈ Rm×n contains
some rows of A and some columns of those
rows

I Let I ⊆ {1, 2, . . . ,m} have the row indices and
J ⊆ {1, 2, . . . , n} have the column indices of
the submatrix

I If x ∈ {0, 1}m has xi = 1 iff i ∈ I and
y ∈ {0, 1}n has yj = 1 iff j ∈ J, then
xyT ∈ {0, 1}m×n has (xyT )ij = 1 iff aij is in
the submatrix

I A ◦ xyT has the values of the submatrix and
zeros elsewhere

F (A ◦ B)ij = aijbij is the Hadamard matrix
product

The submatrix is uniform if all (or most) of its
values are (approximately) the same

I Exactly uniform submatrices with value δ can
be written as δxyT — a bump
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The next bump and negative values

Assume we know how to find the largest bump of a matrix

To find another bump, we can subtract the found bump from the
matrix and find the largest bump of the residual matrix

I But after subtraction we might have negative values in the matrix

We can generalize the uniform submatrices to require uniformity only
in magnitude

I Allow characteristic vectors x and y to take values from {−1, 0, 1}
I If x = (−1, 0,−1)T and y = (1, 0,−1)T , then

δxyT =

−δ 0 δ
0 0 0
δ 0 −δ


This allows us to define bumps in matrices with negative values
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The definition

Semi-Discrete Decomposition

Given a matrix A ∈ Rm×n, the semi-discrete decomposition (SDD) of A
of dimension k is

A ≈ XkDkY T
k ,

where

Xk ∈ {−1, 0, 1}m×k

Yk ∈ {−1, 0, 1}n×k

Dk ∈ Rk×k
+ is a diagonal matrix
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Example

The data The first component σ1u1vT
1 using

SVD
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Example

The data The second component σ2u2vT
2

using SVD
The SVD cannot find the bumps
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Example

The data The first bump d1x1yT
1 using SDD
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Example

The data The second bump d2x2yT
2 using

SDD
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Example

The data The third bump d3x3yT
3 using SDD
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Example

The data The fourth bump d4x4yT
4 using SDD

8 / 30



Example

The data The fifth bump d5x5yT
5 using SDD
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Example

The data The 5-dimensional SDD
approximation X5D5Y T

5
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Properties of SDD

The columns of Xk and Yk do not need to be linearly independent
I The same column can be even repeated multiple times

The dimension k might need to be large for accurate approximation
(compared to SVD)

I k = min{n,m} is not necessarily enough for exact SDD
F k = nm is always enough

I First factors don’t necessarily explain much about the matrix

SDD factors are local
I Only affect a certain submatrix, typically not every element
I SVD factors typically change every value

Storing an k-dimensional SDD takes less space than storing rank-k
truncated SVD

I Xk and Yk are ternary and often sparse

For every rank-1 layer of an SDD, all non-zero values in the layer have
the same magnitude (dii for layer i)
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Interpretation

The factor interpretation is not very useful as the factors are not
independent

I A later factor can change just a subset of values already changed by an
earlier factor

The SDD can be interpret as a form of bi-clustering
I Every layer (bump) defines a group of rows and columns with

homogeneous values in the residual matrix

The component interpretation is natural to SDD
I The SDD is a sum of local bumps
I SDD doesn’t model global phenomena (e.g. noise) well
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The outline of the algorithm

1 Input: Matrix A ∈ Rm×n, non-negative integer k

2 Output: k-dimensional SDD of A, i.e. matrices Xk ∈ {−1, 0, 1}m×k ,
Yk ∈ {−1, 0, 1}n×k , and diagonal Dk ∈ Rk×k

+

3 R1 ← A
4 for i = 1, . . . , k

1 Select yi ∈ {−1, 0, 1}n
2 while not converged

1 Compute xi ∈ {−1, 0, 1}m given yi and Ri

2 Compute yi given x and Ri

3 end while
4 Set di to the average of Ri ◦ xiyT

i over the non-zero locations of xyT

5 Set xi as the ith column of Xi , yi the ith column of Yi , and di the ith
value of Di

6 Ri+1 ← Ri − dixiyT
i

5 end for

6 return Xk , Yk , and Dk
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Finding the bump

Problem: Given R ∈ Rm×n and y ∈ {−1, 0, 1}n, find
x ∈ {−1, 0, 1}m such that ‖R − dxyT‖2F is minimized

I We set d ← xTRy/‖x‖22‖y‖22 (the average of R ◦ xyT over the
non-zero locations of xyT )

I We want to minimize the residual norm

Set s ← Ry
Task: Find x that maximizes F (x , y) = (xT s)2/‖x‖22

I Maximizing F equals minimizing the residual norm after d is set as
above

I Can be solved optimally by trying 2m different binary vectors and
setting the sign appropriately

Solution: Order values si so that |si1 | ≥ |si2 | ≥ · · · ≥ |sim | and set
xij ← sign(sij ) for the first J values si and 0 elsewhere

I J is the number of nonzeros in x
F Because we don’t know J, we have to try every possibility and select

the best

I Values si contain the row sums of R from those columns that are
selected by y and with sign set accordingly
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Selecting the initial vector y
There are many ways to select the initial vector:

MAX: set yj = 1 for the column j that has the largest squared value
of R and rest to zero

I Intuition: the very largest squared value is probably in the best bump

CYC: set yj = 1 for j = (k mod n) + 1
I Cycle thru the columns

THR: select a unit vector y that satisfies ‖Ry‖2F ≥ ‖R‖2F/n
I The selected column must have a squared sum that’s above the

average squared sum
I The selection can be random or columns can be tried one-by-one

F The CYC and THR can be mixed
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Example result

The data 5-dimensional SDD
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Example result

The data The matrix X5D5Y T
5 − A
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Normalization

Normalization can have a profound effect on SDD

Zero centering the columns will change the type of bumps found
I The bumps in the original data have the largest-magnitude values
I The bumps in the zero-centered data have the most extreme values

Normalizing the variance will make the matrix to have more uniform
values and thus changes the bumps

Squaring the values will promote smaller bumps of exceptionally high
values

Square-rooting the values will promote larger bumps of smaller
magnitude
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Normalization example: zero-centered data

Zero-centered data The first bump
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Normalization example: zero-centered data

Zero-centered data The second bump
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Normalization example: zero-centered data

Zero-centered data The third bump
Note that here red means 0
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Normalization example: zero-centered data

Zero-centered data 5-dimensional SDD
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Normalization example: square-root of data

Data after taking element-wise
square-root

The first bump
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Normalization example: square-root of data

Data after taking element-wise
square-root

The second bump
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Normalization example: square-root of data

Data after taking element-wise
square-root

The third bump
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Normalization example: square-root of data

Data after taking element-wise
square-root

5-dimensional SDD
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Normalization example: squared data

Squared data The first bump
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Normalization example: squared data

Squared data The second bump
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Normalization example: squared data

Squared data The third bump
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Normalization example: squared data

Squared data 5-dimensional SDD
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Clustering

SDD performs a type of bi-clustering of the matrix
I Every bump dxyT gives a cluster of rows xi 6= 0 and a cluster of

columns yj 6= 0, together with ‘centroid’ d
I This is not a partition clustering: the clusters can overlap and not

every row or column has to belong to some cluster

We can impose an ordering of the bumps based on the values of di
I The algorithm usually returns the bumps in that order

This ordering can be used to obtain a hierarchical clustering
I First column of X clusters the rows of A into three sets (−1, 0, 1), and

same for the first column of Y and columns of A
I The second column of X splits the previous clusters again into three

sets
F Some of these sets can be empty

I And so on and so forth

Distance between two objects in the hierarchical clustering is not the
usual dendrogram depth, but depends on whether we use the 0 or ±1
branches
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Other applications

Image compression (O’Leary & Peleg, 1983)
I A grayscale image is compressed using its SDD
I The original application, modern image compression techniques are

better

Latent topic models (Kolda & O’Leary, 1998)
I Used similarly as SVD is used to compute LSA
I Compute the SDD of the term-document matrix

SDD to correlation matrices
I A bump in the correlation matrix AAT corresponds to rows of A with

similar values
I A bump in ATA corresponds to columns with similar values

23 / 30O’Leary & Peleg, 1983; Kolda & O’Leary, 1998

http://www.cs.umd.edu/~oleary/reprints/j16.pdf
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General approaches

Most common way to combine SVD and SDD is to first use SVD to
denoise the data and then to compute the SDD on the clean data

I clean data = truncated SVD (Ak)
I SVD is good at finding global structure, SDD at finding local structure

Another option is to first compute the Ak with SVD and then apply
SDD to AkAT

k (or AT
k Ak)

I SDD finds the objects with similar values

The results can be visualized using the first 2–3 columns of U from
SVD and the first layers of the hierarchical clustering from SDD
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Classifying galaxies

 

Figure 7.

 

Plot of an SVD of galaxy data.

 

Figure 8.

 

Plot of the SVD of galaxy data, overlaid with the SDD classification.

 

Figure 9.

 

pH by sample; darker color means lower pH, greater acidity.
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Finding minerals

 

Figure 10.

 

Calcium concentration by digestion (AA5, AA7, AQR, GDX).

 

Figure 11.

 

Plot with position from the SVD, and color and shape labelling from the SDD.

140 160 180 200 220 240 260 280 300

140 160 180 200 220 240 260 280 300

140 160 180 200 220 240 260 280 300

140 160 180 200 220 240 260 280 300

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

0

0.2

U2
U1

U3

 

C8326_ColorInsrt.fm  Page 4  Thursday, March 15, 2007  3:09 PM

© 2007 by Taylor and Francis Group, LLC

Clustering information from SDD added, first bump defines the colour,
second the marker. Colour corresponds to the depth of the sample.
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Lessons learned

SDD finds the local areas of values with uniform magnitude
→ easier interpretation, ‘orthogonal’ view to SVD

Finding SDD is hard and requires a heuristic

Together SVD and SDD provide a strong analysis toolset
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Suggested reading

Skillicorn, Chapters 5 & 6

Tamara G. Kolda & Diane P. O’Leary, 1998. A Semidiscrete Matrix
Decomposition for Latent Semantic Indexing in Information Retrieval.
ACM Trans. Inf. Syst. 16(4), pp. 322–346
DOI: 10.1145/291128.291131

Tamara G. Kolda & Diane P. O’Leary, 2000. Algorithm 805:
Computation and Uses of the Semidiscrete Matrix Decomposition.
ACM Trans. Math. Software 26(3), pp. 415–435
DOI: 10.1145/358407.358424

30 / 30

http://dx.doi.org/10.1145/291128.291131
http://dx.doi.org/10.1145/358407.358424

	Hunting the Bump
	Semi-Discrete Decomposition
	The Algorithm
	Applications
	SDD alone
	SVD + SDD

	Wrap-Up

