Data Mining and Matrices 11 – Tensor Applications

Rainer Gemulla, Pauli Miettinen

July 11, 2013

Outline

Some Tensor Decompositions

2 Applications of Tensor Decompositions

Tucker's many decompositions

- Recall: Tucker3 decomposition decomposes a 3-way tensor \mathcal{X} into three factor matrices **A**, **B**, and **C**, and to smaller core tensor \mathcal{G}
- Tucker2 decomposition decomposes a 3-way tensor into core and two factor matrices
 - Equivalently, the third factor matrix is an identity matrix
 - ► If the original tensor was N-by-M-by-K, the core is I-by-J-by-K or I-by-M-by-J or N-by-I-by-J

Tucker2 sliced and matricezed

• Tucker2 can be presented slice-wise:

$$\mathbf{X}_k = \mathbf{A}\mathbf{G}_k\mathbf{B}^T$$
 for each k

- \mathbf{X}_k is the *k*th (frontal) slice of \mathcal{X}
- \mathbf{G}_k is the *k*th (frontal) slice of the core \mathcal{G}
- A and B are the factor matrices
- $\bullet\,$ We can also use the normal matricized forms with C replaced with identity matrix I

$$\mathbf{X}_{(1)} = \mathbf{A}\mathbf{G}_{(1)}(\mathbf{I}\otimes\mathbf{B})^{\mathcal{T}}$$
 et cetera

- To compute Tucker2:
 - update A and B using the matricized forms
 - update each frontal slice of \mathcal{G} separately

Why Tucker2?

- Use Tucker2 if you don't want to factorize one of your modes
 - ► Too small dimension (e.g. 500-by-300-by-3)
 - Want to handle this mode separately
 - * For example, if third mode is time, we might first do Tucker2 and then time series analysis on G_k s
- Tucker2 is slightly simpler than Tucker3

The INDSCAL decomposition

- Recall: CP decomposition decomposes a 3-way tensor ${\cal X}$ into three factor matrices ${\bm A},\,{\bm B},$ and ${\bm C}$
 - Element-wise: $x_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$
- The INDSCAL decomposition decomposes a 3-way tensor $\mathcal X$ into two factor matrices **A** and **C**
 - Element-wise: $x_{ijk} = \sum_{r=1}^{R} a_{ir} a_{jr} c_{kr}$
- $\bullet \ \mathcal{X}$ is expected to be symmetric on first two modes
 - Being symmetric is not absolutely necessary, but first and second mode must have the same dimensions
- Common way to compute INDSCAL is to compute normal CP and hope that **A** and **B** merge
 - ► Last step is to force **A** and **B** equal and to update **C** for the final INDSCAL decomposition

Why INDSCAL?

- If we know two modes are symmetric, INDSCAL won't destroy this structure
- INDSCAL stands for Individual Differences in Scaling
 - ► Assume K subjects ranked the similarity of N objects
 - Assume the same latent factors explain the similarity decisions by each subject, but different subjects weight different factors differently
 - INDSCAL tries to recover this kind of situation: A contains the factors explaining the similarities, C gives the individual scaling of the factors by subjects
 - More on this later...

The RESCAL decomposition

- The RESCAL decomposition merges Tucker2 and INDSCAL
- Given an N-by-N-by-K tensor X and rank R, find an N-by-R factor matrix A and R-by-R-by-K core tensor R such that they minimize

$$\sum_{k=1}^{K} \|\mathbf{X}_k - \mathbf{A}\mathbf{R}_k \mathbf{A}^{\mathsf{T}}\|_F^2 \ .$$

- Tensor ${\mathcal X}$ does not have to be symmetric in first two modes
- We can also add regularization

$$\frac{1}{2}\sum_{k=1}^{K} \|\mathbf{X}_{k} - \mathbf{A}\mathbf{R}_{k}\mathbf{A}^{T}\|_{F}^{2} + \frac{\lambda}{2} \left(\|\mathbf{A}\|_{F}^{2} + \sum_{k=1}^{K} \|\mathbf{R}_{k}\|_{F}^{2}\right)$$

RESCAL in picture

Computing RESCAL (1)

- Recall that the mode-1 matricization for Tucker2 is $\mathbf{X}_{(1)} = \mathbf{A}\mathbf{R}_{(1)} (\mathbf{I} \otimes \mathbf{B})^T$
 - ▶ In RESCAL, this turns into $\mathbf{X}_{(1)} = \mathbf{A}\mathbf{R}_{(1)}(\mathbf{I} \otimes \mathbf{A}^{T})$
 - ► This is a hard problem, because **A** appears on left and right-hand side
 - ► To simplify, we place slice pairs (X_k, X_k^T) side-by-side and consider the right-hand side A fixed
 - * The \mathbf{X}_k^T s guide the updated **A** to fit well as the right-hand side
- For RESCAL, the minimization problem becomes
 - $\begin{aligned} \|\mathbf{Y} \mathbf{A}\mathbf{H}(\mathbf{I}_{2K} \otimes \mathbf{A}^{T})\| \\ & \models \mathbf{Y} = [\mathbf{X}_{1} \quad \mathbf{X}_{1}^{T} \quad \cdots \quad \mathbf{X}_{K} \quad \mathbf{X}_{K}^{T}] \\ & \models \mathbf{H} = [\mathbf{R}_{1} \quad \mathbf{R}_{1}^{T} \quad \cdots \quad \mathbf{R}_{K} \quad \mathbf{R}_{K}^{T}] \end{aligned}$
- Taking $\boldsymbol{A}^{\mathcal{T}}$ fixed, the update rule for \boldsymbol{A} is

$$\mathbf{A} \leftarrow \left(\sum_{k=1}^{K} \mathbf{X}_{k} \mathbf{A} \mathbf{R}_{k}^{T} + \mathbf{X}_{k}^{T} \mathbf{A} \mathbf{G}_{k}\right) \left(\sum_{k=1}^{K} \mathbf{B}_{k} + \mathbf{C}_{k}\right)^{-1}$$

•
$$\mathbf{B}_k = \mathbf{R}_k \mathbf{A}^T \mathbf{A} \mathbf{R}_k^T$$
 and $\mathbf{C}_k = \mathbf{R}_k^T \mathbf{A}^T \mathbf{A} \mathbf{R}_k$

Computing RESCAL (2)

- Each slice \mathbf{R}_k can be updated separately when minimizing $\sum_{k=1}^{K} \|\mathbf{X}_k \mathbf{A}\mathbf{R}_k \mathbf{A}^T\|_F^2$
- Writing \mathbf{X}_k and \mathbf{R}_k as vectors, we get

 $\min \| \operatorname{vec}(\mathbf{X}_k) - (\mathbf{A} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{R}_k) \|$

- Just linear regression, we can solve by setting vec(R_k) = (A ⊗ A)[†]vec(X_k)
 ★ But (A ⊗ A) is N²-by-R²
- We can compute the skinny QR decomposition of ${\bf A},\,{\bf A}={\bf Q}{\bf U}$
 - ▶ $\mathbf{Q} \in \mathbb{R}^{N \times R}$ is column-orthogonal and $\mathbf{U} \in \mathbb{R}^{R \times R}$ is upper-triangular
- With QR decomposition, we can re-write the minimization for slice k to

$$\|\mathbf{X}_k - \mathbf{A}\mathbf{R}_k \mathbf{A}^{\mathsf{T}}\|_F^2 = \|\mathbf{X}_k - \mathbf{Q}\mathbf{U}\mathbf{R}_k \mathbf{U}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\|_F^2 = \|\mathbf{Q}^{\mathsf{T}}\mathbf{X}_k \mathbf{Q} - \mathbf{U}\mathbf{R}_k \mathbf{U}^{\mathsf{T}}\|$$

• The update rule now has $(\mathbf{U}\otimes\mathbf{U})$ which is only R^2 -by- R^2

Why RESCAL?

No factorization of third mode:

- Too small dimension
- Unsuitable for decomposition
- We want to handle that mode separately

Only one factor matrix:

- Models cases where the two modes correspond to same entities
 - sender-receiver-topic
 - subject-object-predicate
- "Information flow"
 - > Elements that are similar in one mode are forced similar in the other

Both:

- One global factorization of the first two modes
- Each frontal slice has separate "mixing matrix" for the interactions between the factors

The DEDICOM decomposition

- The **DEDICOM decomposition** is a matrix decomposition for an asymmetric relation between entities
 - What is the value of export from country i to country j?
 - How many emails person i sent to person j?
- $\mathbf{X} = \mathbf{A}\mathbf{R}\mathbf{A}^{\mathcal{T}}$
 - A factors the entities
 - ▶ **R** explains the asymmetric relation between the factors
- The three-way DEDICOM adds weights for each factor's participation in each position in the third mode
 - ► E.g. if the third mode is time, we set how much country factor *r* acts as a seller or buyer at time *k*
 - $\mathbf{X}_k = \mathbf{A}\mathbf{D}_k\mathbf{R}\mathbf{D}_k\mathbf{A}^T$
 - * **A** and **R** as above, and \mathcal{D} is an *R*-by-*R*-by-*K* tensor such that each frontal slice **D**_k is diagonal
 - ★ $(\mathbf{D}_k)_{rr}$ is the weight for factor r

DEDICOM in picture

Fig. 5.2: Three-way DEDICOM model.

Computing DEDICOM: ASALSAN (1)

- To compute DEDICOM, we want to minimize $\sum_{k=1}^{K} \|\mathbf{X}_k \mathbf{A}\mathbf{D}_k\mathbf{R}\mathbf{D}_k\mathbf{A}^{\mathsf{T}}\|$
 - ▶ This is hard because **A** and **D**_k are in left and right-hand side
- The ASALSAN (Alternating Simultaneous Approximation, Least Squares, and Newton) is one way to solve DEDICOM
 - To update **A**, ASALSAN stacks pairs $(\mathbf{X}_k, \mathbf{X}_k^T)$ next to each other to obtain $\mathbf{Y} = [\mathbf{X}_1 \mathbf{X}_1^T \mathbf{X}_2 \mathbf{X}_2^T \cdots \mathbf{X}_k \mathbf{X}_k^T]$

► This gives
$$\|\mathbf{Y} - \mathbf{AH}(\mathbf{I}_{2K} \otimes \mathbf{A}^T)\|_F^2$$
 with
 $\mathbf{H} = [\mathbf{D}_1 \mathbf{R} \mathbf{D}_1 \mathbf{D}_1 \mathbf{R}^T \mathbf{D}_1 \cdots \mathbf{D}_K \mathbf{R} \mathbf{D}_K \mathbf{D}_K \mathbf{R}^T \mathbf{D}_K]$

• To compute **A**, ASALSAN considers left and right **A** different, fixes the right and updates the left

•
$$\mathbf{A} \leftarrow \left(\sum_{k=1}^{K} (\mathbf{X}_k \mathbf{A} \mathbf{D}_k \mathbf{R}^T \mathbf{D}_k + \mathbf{X}_k^T \mathbf{A} \mathbf{D}_k \mathbf{R} \mathbf{D}_k)\right) \left(\sum_{k=1}^{K} (\mathbf{B}_k + \mathbf{C}_k)\right)^{-1}$$

• Here
$$\mathbf{B}_k = \mathbf{D}_k \mathbf{R} \mathbf{D}_k (\mathbf{A}^T \mathbf{A}) \mathbf{D}_k \mathbf{R}^T \mathbf{D}_k$$
 and $\mathbf{C}_k = \mathbf{D}_k \mathbf{R}^T \mathbf{D}_k (\mathbf{A}^T \mathbf{A}) \mathbf{D}_k \mathbf{R} \mathbf{D}_k$

Computing DEDICOM: ASALSAN (2)

• To update **R**, we can cast the problem into vector setting

$$\min_{\mathbf{R}} \left\| \begin{pmatrix} \mathsf{Vec}(\mathbf{X}_1) \\ \vdots \\ \mathsf{Vec}(\mathbf{X}_K) \end{pmatrix} - \begin{pmatrix} \mathbf{A}\mathbf{D}_1 \otimes \mathbf{A}\mathbf{D}_1 \\ \vdots \\ \mathbf{A}\mathbf{D}_K \otimes \mathbf{A}\mathbf{D}_K \end{pmatrix} \mathsf{Vec}(\mathbf{R}) \right\|$$

This is standard regression

• To update \mathcal{D} , ASALSAN uses Newton's method for each slice \mathbf{D}_k

DEDICOM vs. RESCAL vs. INDSCAL vs. Tucker2

- RESCAL is a relaxed version of DEDICOM
 - ► The mixing matrix **R** is different for every slice
 - It is easier to compute as it doesn't have the tensor D
 - \star The algorithm is similar to ASALSAN, just simpler
- RESCAL is the Tucker2 version of INDSCAL
 - Shares INDSCAL's equal factor
 - Uses Tucker2's core

Non-negative decompositions

• Simplest way to obtain non-negative CP is to replace the least-squares solver in the matricized equations with a non-negative least-squares solver

► min_{A∈ℝ^{N×R}}
$$\|\mathbf{X}_{(1)} - \mathbf{A}(\mathbf{C} \odot \mathbf{B})^T\|$$

• We can also use multiplicative updates as in NMF

►
$$a_{ir} \leftarrow a_{ir} \frac{(\mathbf{X}_{(1)}\mathbf{Z})_{ir}}{(\mathbf{A}\mathbf{Z}^T\mathbf{Z})_{ir}}$$
 with $\mathbf{Z} = (\mathbf{C} \odot \mathbf{B})$

- Other method for non-negative CP exist
- Non-negative Tucker can be done using multiplicative update rules as well
- Non-negative variation of ASALSAN yields non-negative DEDICOM

Outline

1 Some Tensor Decompositions

2 Applications of Tensor Decompositions

Psychology

- Carroll and Chang (1970) proposed the use of tensor decompositions to analyse psychological data
 - Using PCA to find the principal components of person-by-measurement data has long history in psychology
 - But PCA cannot model a matrix of stimuli
 - Example: tones are played to 20 people who rate their similarity, giving tone-by-tone-by-person tensor
 - Another example: country-by-country-by-person
 - Carroll and Chang presented the INDSCAL decomposition for this kind of data
 - ★ In the same paper, they also proposed CANDECOMP
- Before Carroll and Chang, the proposed methods were rather more involved

Countries in Carroll & Chan

Countries in Carroll & Chan

Countries in Carroll & Chan

Fluorescence excitation-emission analysis

- Fluorescence spectroscopy is a method to analyse (typically) organic compounds
 - A beam of (typically UV) light excites electrons in certain compounds' molecules
 - Later the exited electrons release a photon (light), which can be measured
 - A fluorescence landscape of a compound is a rank-1 matrix that maps the exciter's wavelength to the emitted photon's wavelength
 - The compounds can be identified by the shape of their fluorescence landscape
- We can build a tensor of samples-by-excitation wavelengths-by-emission wavelengths and compute the CP decomposition
 - Matrix $\mathbf{b}_i \mathbf{c}_i^T$ gives the fluorescence landscape for the *i*th component
 - ▶ Vector **a**_i explains how much this landscape appears in each sample

Example fluorescence spectoscopy data

RESCAL and subject-object-predicate data

- RESCAL decomposition can be applied to subject-object-predicate data that doesn't have too many predicates
 - The YAGO knowledge base has < 100 relations but millions of entities
 - Also DEDICOM could be applied, but it does not scale as well and the global **R**'s interpretation is not necessarily obvious
- RESCAL's factor matrix can be used to find similar entities
 - ► To find entities similar to *e* in all relations, just order the rows of A based on their similarity to row *e* of A
- RESCAL does not help to find similar relations; that would require different tensor decomposition

Mining the 'net: TOPHITS

- We can build a three-way tensor of web pages-by-web pages-by-anchor text to study the link structure and link topics of web pages
 - Build three-way tensor C such that c_{ijk} is the number of times page i links to page j using term k
 - The non-zero values in C are scaled to $1 + \log(c_{ijk})$
- The CP decomposition of this tensor behaves akin to HITS
 - In rank-1 CP, a gives the hub scores and b the authority scores for web pages, while c gives the weights for the terms
 - Rank-r CP divides the data in multiple topics, each with its own hubs, authorities, and terms
- Per-topic hubs and authorities can be used for more fine-grained answers

Detecting faces

- NMF and PCA (eigenfaces) are commonly used to decompose (and reconstruct) matrices that correspond to pictures of human faces
 - The PCA of the matrix can be used to classify new pictures as face/non-face by projecting it to the space spanned by the eigenvectors and computing the difference between the projected image and original image
- But matrix-based methods are not good at capturing more than one variation
 - ▶ But often we get variable lightning, expressions, poses, etc.
- If we have a complete set of pictures of people under different conditions, we can instead form a tensor and decompose it
 - TensorFaces does HOSVD on tensor that contains pictures of people under different conditions
 - The HOSVD decomposition captures the variation in the conditions better

- Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3 illumination setups performing 3 different expressions
 - $28 \times 5 \times 3 \times 3 \times 7943$ tensor (10M elements)

All images of one subject

- Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3 illumination setups performing 3 different expressions
 - $28 \times 5 \times 3 \times 3 \times 7943$ tensor (10M elements)

U₅ contains the normal eigenfaces (as it is just the SVD of picture-by-pixels matrix)

- Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3 illumination setups performing 3 different expressions
 - $28 \times 5 \times 3 \times 3 \times 7943$ tensor (10M elements)

Some visualizations of $\mathcal{G}\times_5 \textbf{U}_5$ showing the variability across the modes

- Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3 illumination setups performing 3 different expressions
 - $28 \times 5 \times 3 \times 3 \times 7943$ tensor (10M elements)

Some visualizations of $\mathcal{G} \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3 \times_4 \mathbf{U}_4 \times_5 \mathbf{U}_5$. The rows are for different people and the columns are for different viewpoints, illuminations, and expressions (with other two modes fixed as indicated).

Outline

1 Some Tensor Decompositions

2 Applications of Tensor Decompositions

Lessons learned

• There are many, many tensor decompositions related to CP and Tucker

 \rightarrow it's the user's responsibility to select the one that's best suited for the task at hand

 \rightarrow consider also the complexity of computing the decomposition

- Tensor decompositions are used in many different fields of science \rightarrow sometimes the wheel gets re-invented multiple times
- Most tensor problems are dense

 \rightarrow much less algorithms for finding sparse decompositions of sparse tensors

Suggested reading

- Kolda & Bader *Tensor Decompositions and Applications*, SIAM Rew. 51(3), 2009
 - A great survey on tensor decompositions, includes many variations and applications
- Acar & Yener Unsupervised Multiway Data Analysis: A Literature Survey, IEEE Trans. Knowl. Data Eng. 21(1), 2009
 - Another survey, shorter and more focused on applications
- All the papers linked at the bottom parts of the slides