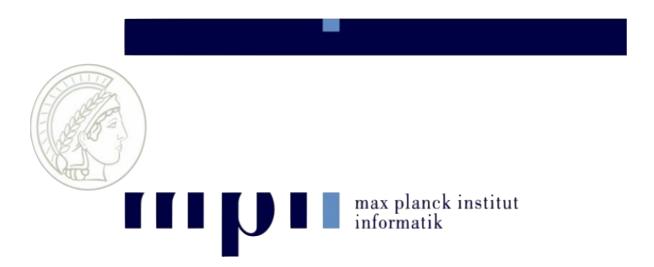
Tensors in Data Analysis

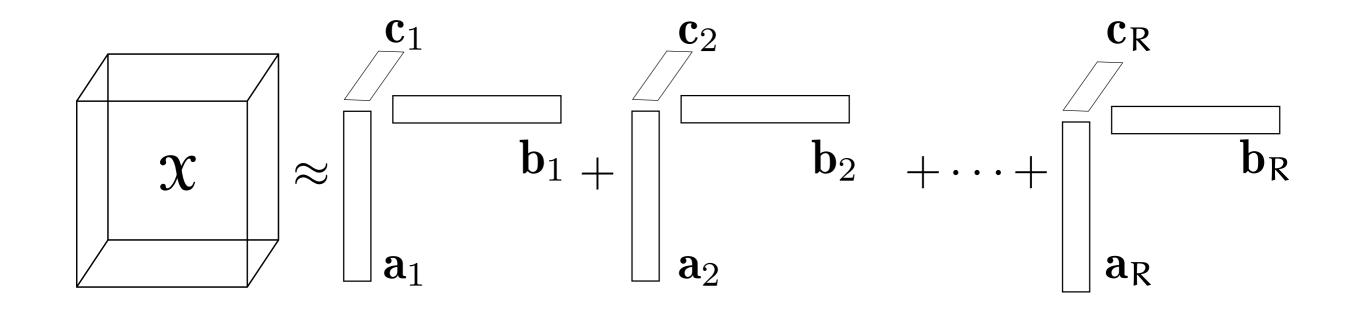
15 May 2014



Tensors in Data Analysis

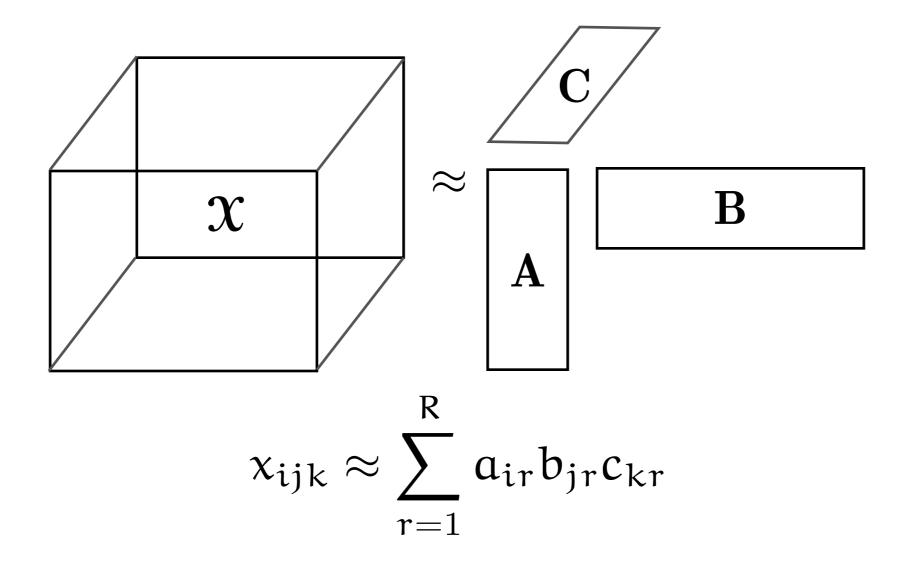
- 1. CP and INDSCAL and some applications
- 2. The Tucker tensor decompositions
- 3. HOSVD, RESCAL, and DEDICOM
- 4. The non-negative variants

CP Recap (Rank-1 View)



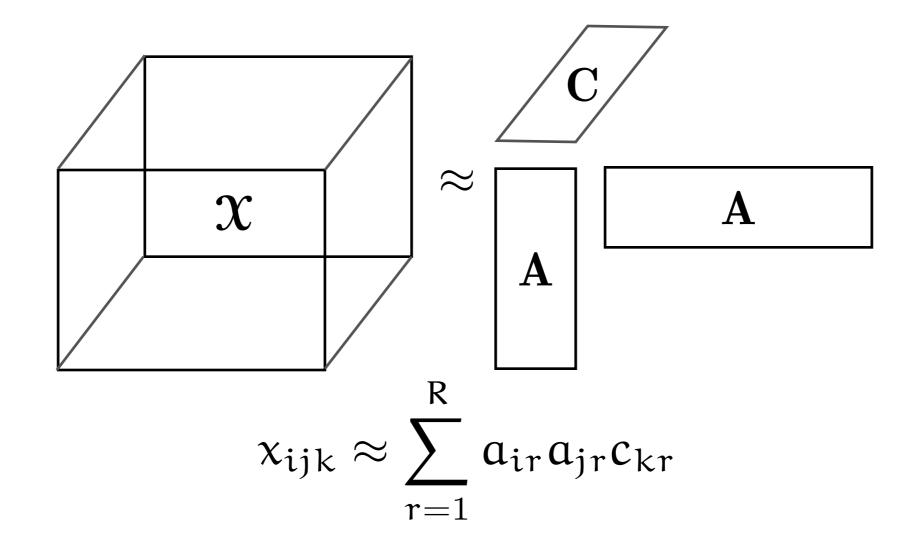
 $x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$

CP Recap (Matrix View)



The INDSCAL Decomposition

 The INDSCAL decomposition decomposes a 3way tensor X into two factor matrices A and C



More on INDSCAL

- First two modes of X are expect to be symmetric
 - Not mandatory, but must have same dimensions
- Commonly computed by solving CP and hoping **A** and **B** merge
 - End by forcing A and B the same and update C

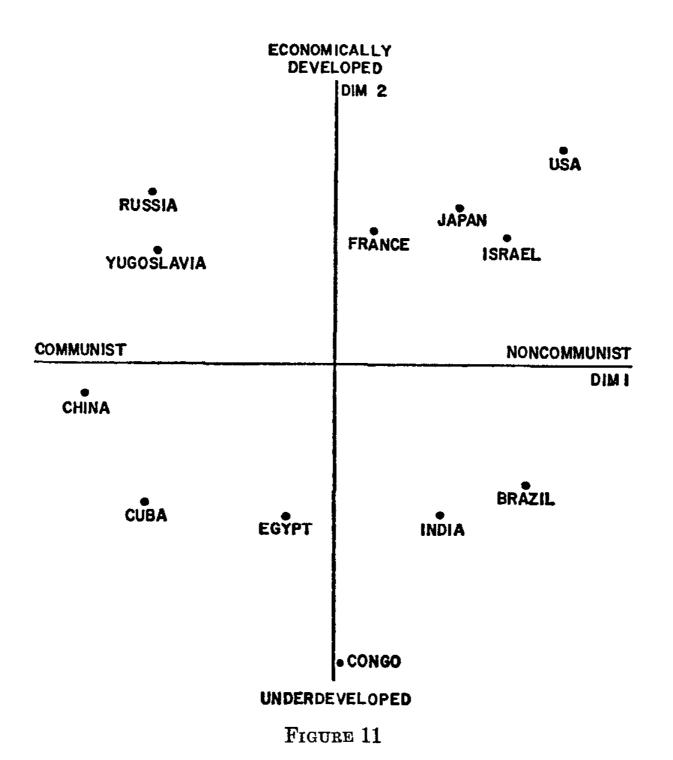
Why INDSCAL

- INDSCAL keeps the symmetry of the modes
- Stands for Individual Differences in Scaling
 - Assume K subjects ranked the similarity of N objects
 - Assume each subject is influenced by the same factors, but with different weights
 - **A** contains the factors, **C** gives the weights

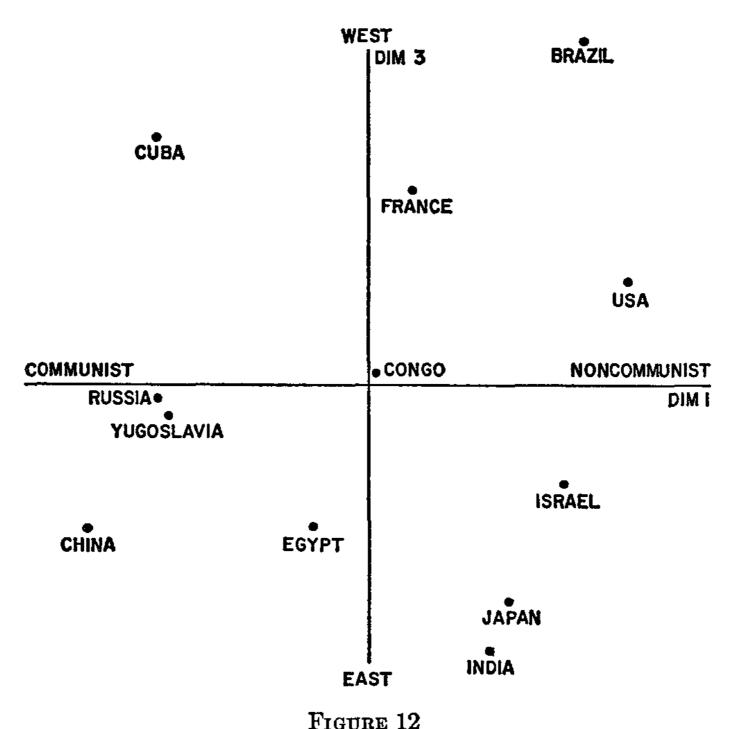
INDSCAL Example

- Carroll and Chang (1970) proposed to use INDSCAL and CANDECOMP (CP) to analyse psychological data
 - PCA has long history in psychology
- Example: 20 subjects rate the similarity of countries
 - Multi-way data

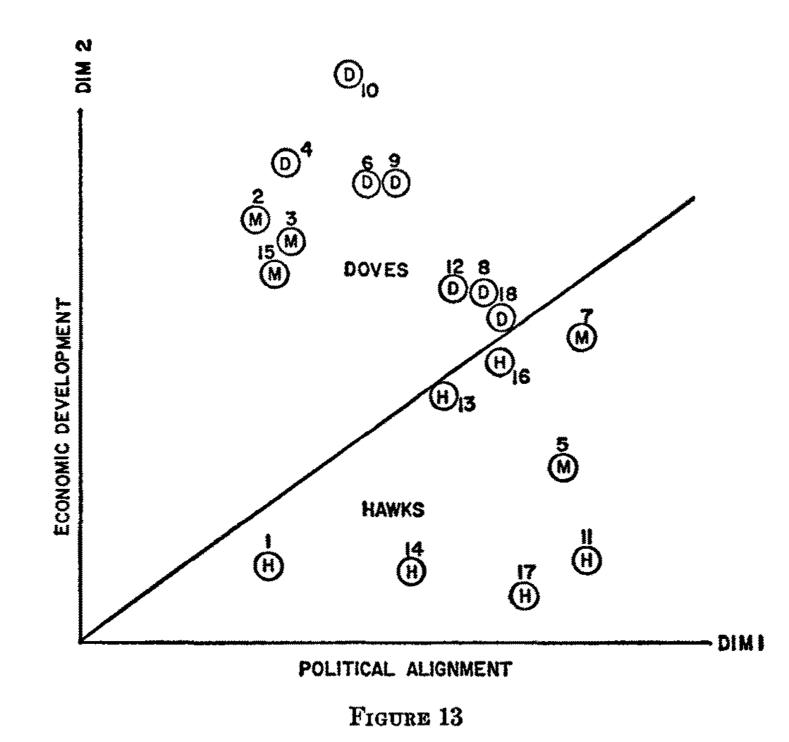
Countries in Carroll & Chan (1970) [1]



Countries in Carroll & Chan (1970) [2]



Countries in Carroll & Chan (1970) [3]

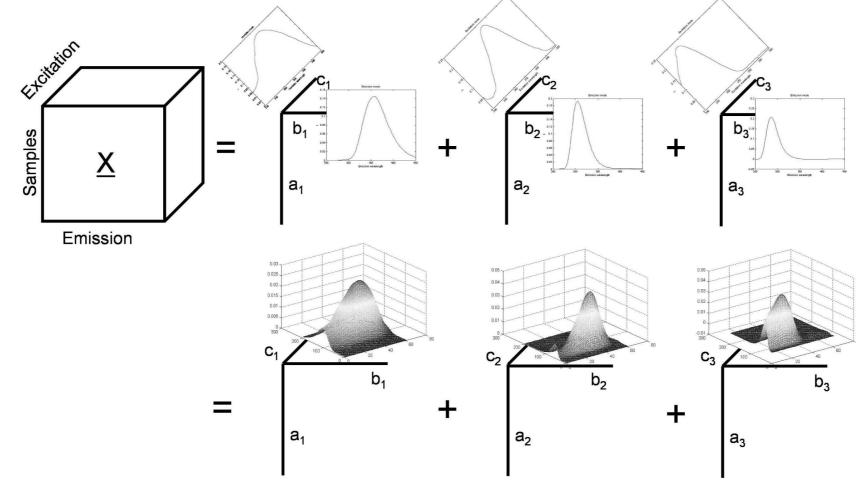


Fluorescence Excitation– Emission Analysis

- Fluorescence spectroscopy analyses (typically) organic compounds
 - A beam of (UV) light excites electrons in molecules
 - The excited electrons release a photon, which is measured
 - A fluorescence landscape of a compound is a rank-1 matrix that maps the exciter's wavelength to the emitted photon's wavelength
 - Lets us to identify the compounds

CP for Fluorescence Analysis

- Samples-by-excitation wavelengths-by-emission wavelengths tensor \boldsymbol{X}
 - Matrix $\boldsymbol{b}_{i}\boldsymbol{c}_{i}^{T}$ is the landscape for the *i*th component
 - Vector *a_i* gives the weights of landscapes in each sample



Acar, Evrim, and B Yener. 2009. "Unsupervised Multiway Data Analysis: a Literature Survey." IEEE Transactions on Knowledge and Data Engineering 21(1). pp. 6–20.

TOPHITS for IR

- Three-way pages-by-pages-by-anchor text tensor ${\mathcal T}$
 - Element t_{ijk} = max{1+log(x_{ijk}), 0} where x_{ijk} is the number of times page i links to page j using term k
- The CP decomposition of \mathcal{T} behaves akin to HITS
 - Each rank-1 component is one topic
 - A and B give the authority and hub scores, C gives the weights for terms

The Tucker Decompositions

- The CP decomposition requires the factors to have the same number of columns
- In Tucker decompositions, different number of columns can be mixed using a core tensor
 - This enables very different looking decompositions

Tensor-Vector Multiplication

- Vectors can be multiplied with tensors along specific modes
 - For *n*-th mode multiplication, the tensor's dimensionality in mode *n* must agree with the vector's dimensions
- The *n*-mode vector product is denoted $\mathcal{X}\bar{x}_n\mathbf{V}$
 - The result is of order N–1
 - $(\mathcal{X}\bar{x}_{n}\mathbf{v})_{i_{1}\cdots i_{n-1}i_{n+1}\cdots i_{N}} = \sum_{i_{n}=1}^{I_{n}} x_{i_{1}i_{2}\cdots i_{N}}v_{i_{n}}$
 - Inner product between mode-*n* fibres and vector *v*

Tensor-Vector Multiplication Example

Given tensor \mathcal{T} and vector \mathbf{v} ,

$$\boldsymbol{T}_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \boldsymbol{T}_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} \qquad \boldsymbol{v} = \begin{pmatrix} 2 & 1 \end{pmatrix}$$

Computing $\mathcal{Y} = \mathcal{T}\bar{\mathbf{x}}_{3}\mathbf{V}$ gives

$$\mathcal{Y} = \begin{pmatrix} 7 & 13\\ 10 & 16 \end{pmatrix}$$

Tensor-Matrix Multiplication

- Let X be an N-way tensor of size I₁×I₂×...×I_N,
 and let U be a matrix of size J×I_n
 - The *n*-mode matrix product of X with U, X×_n U is of size $I_1 \times I_2 \times ... \times I_{n-1} \times J \times I_{n+1} \times ... \times I_N$
 - $(\mathcal{X} \times_n \mathbf{U})_{i_1 \cdots i_{n-1} j i_{n+1} \cdots i_N} = \sum_{i_n=1}^{I_n} x_{i_1 i_2 \cdots i_N} u_{j i_n}$
 - Each mode-*n* fibre is multiplied by the matrix *U*
 - In terms of unfold tensors:

 $\mathcal{Y} = \mathcal{X} \times_n \boldsymbol{U} \iff \boldsymbol{Y}_{(n)} = \boldsymbol{U}\boldsymbol{X}_{(n)}$

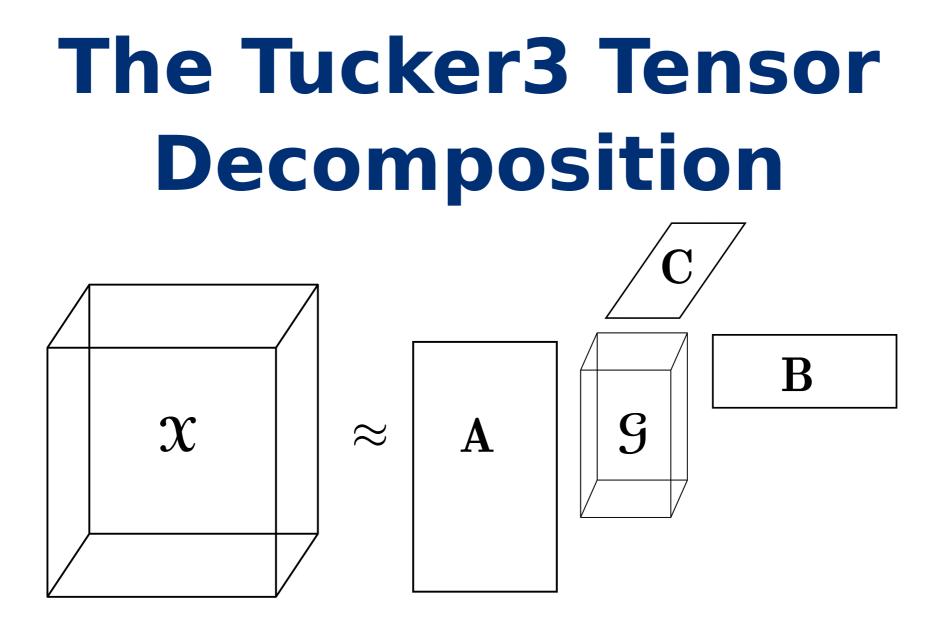
Tensor-Matrix Multiplication Example

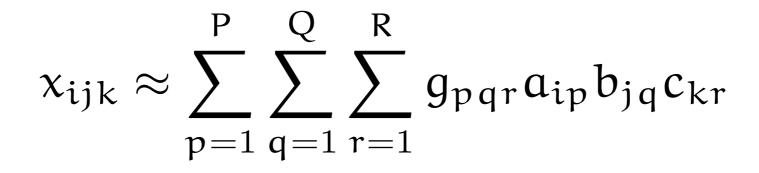
Given tensor \mathcal{T} and matrix \boldsymbol{M} ,

$$\boldsymbol{T}_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \, \boldsymbol{T}_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} \quad \boldsymbol{M} = \begin{pmatrix} 10 & 0 \\ 0 & 100 \\ 1 & 1 \end{pmatrix}$$

Computing $\mathcal{Y} = \mathcal{T} \times_1 \mathbf{M}$ gives

$$\mathbf{Y}_1 = \begin{pmatrix} 10 & 30 \\ 200 & 400 \\ 3 & 7 \end{pmatrix} \qquad \qquad \mathbf{Y}_2 = \begin{pmatrix} 50 & 60 \\ 600 & 800 \\ 11 & 15 \end{pmatrix}$$





Tucker3 Decomposition

- The Tucker3 tensor decomposition decomposes the tensor into three factor matrices A, B, and C, and a core tensor G
 - A has P, B has Q, and C has R columns and G is
 P-by-Q-by-R
- Many degrees of freedom: often A, B, and C are required to be orthogonal
- If P=Q=R and core tensor G is hyper-diagonal, then Tucker3 decomposition reduces to CP decomposition

Solving Tucker3

- ALS-style methods are typically used
 - The matricized forms are

$$\boldsymbol{X}_{(1)} = \boldsymbol{A}\boldsymbol{G}_{(1)}(\boldsymbol{C} \otimes \boldsymbol{B})^{T}$$
$$\boldsymbol{X}_{(2)} = \boldsymbol{B}\boldsymbol{G}_{(2)}(\boldsymbol{C} \otimes \boldsymbol{A})^{T}$$
$$\boldsymbol{X}_{(3)} = \boldsymbol{C}\boldsymbol{G}_{(3)}(\boldsymbol{B} \otimes \boldsymbol{A})^{T}$$

• If factor matrices are orthogonal, we can get $G \text{ as } G = X \times_1 \mathbf{A}^T \times_2 \mathbf{B}^T \times_3 \mathbf{C}^T$

HOSVD, Tucker2, RESCAL, and DEDICOM

- There are many tensor decompositions that are based on or similar to Tucker3
 - Or merge Tucker3 and CP
- Here are few, but the list is by no means exhaustive

Higher-Order SVD (HOSVD)

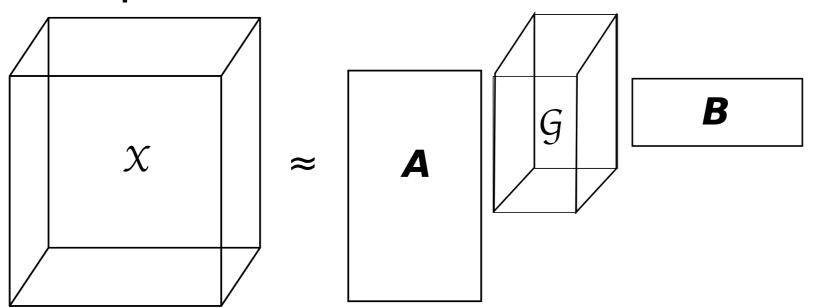
- One method to compute the Tucker3 decomposition
 - Set A as the leading P left singular vectors of X₍₁₎
 - Set **B** as the leading Q left singular vectors of **X**₍₂₎
 - Set C as the leading R left singular vectors of X₍₃₎
 - Set tensor G as $\mathcal{X} \times_1 \mathbf{A}^T \times_2 \mathbf{B}^T \times_3 \mathbf{C}^T$

Why HOSVD?

- Can be used as is for data analysis
 - E.g. TensorFaces
- Can be used to initialize other Tucker3 algorithms
 - Instead of random A, B, and C

Tucker2 Decomposition

- The Tucker2 decomposition decomposes a 3way tensor into a core tensor and two factor matrices
 - Or, third factor matrix is forced to be an identity matrix
 - Core keeps that mode's dimensionality



Tucker2 Sliced and Matricized

- The slice-wise Tucker2: $\mathbf{X}_k = \mathbf{A}\mathbf{G}_k\mathbf{B}^T$ for each k
- Matricized forms replace C with identity matrix $I: X_{(1)} = AG_{(1)}(I \otimes B)^T$ etc.
- To compute Tucker2:
 - Solve A and B using the matricized forms
 - Update each frontal slice of G separately

Why Tucker2?

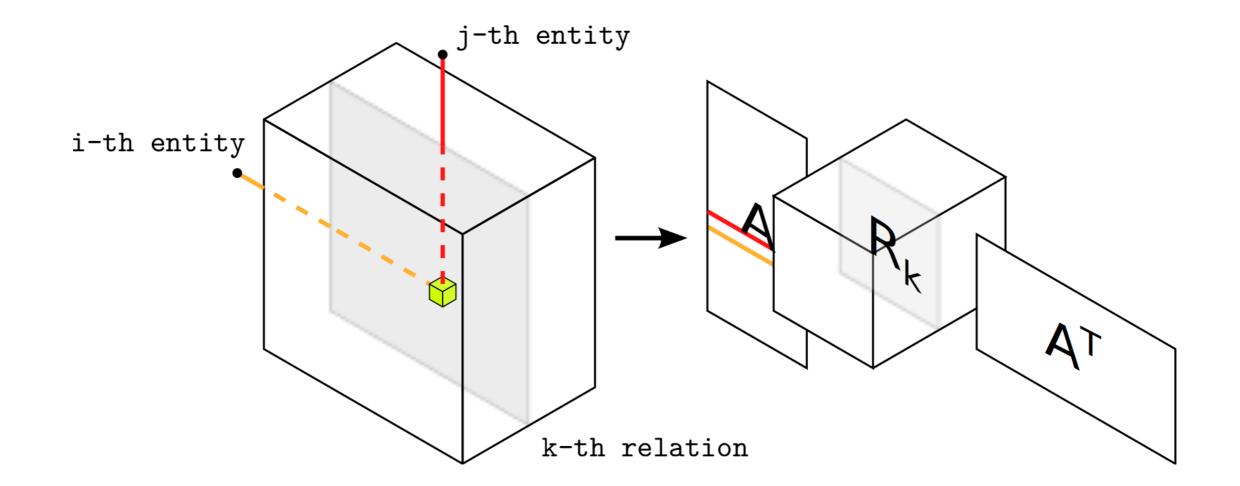
- Use Tucker2 if you don't want to factorize one mode
 - Too small dimension (e.g. 500-by-300-by-3)
 - This mode requires separate handling
 - E.g. if third mode is time, first Tucker2 and then time-series analysis on third mode
- Tucker2 is slightly simpler than Tucker3

The RESCAL Decomposition

- The RESCAL decomposition merges Tucker2 and INDSCAL
- Tensor X is factored into one factor matrix A and one core tensor R
 - $\boldsymbol{X}_k = \boldsymbol{A} \boldsymbol{R}_k \boldsymbol{A}^T$
- Tensor $\boldsymbol{\chi}$ might not be symmetric on first two modes

RESCAL in Picture

WWW 2012 – Session: Creating and Using Links between Data Objects



Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data (pp. 809–816). Presented at the 28th International Conference on Machine Learning.

Computing RESCAL (1)

- Mode-1 matricization of RESCAL is $X_{(1)} = AR_{(1)}(I \otimes A)^{T}$
 - This is hard as A is both left and right
 - Simplify: place pairs (X_k X_k^T) side-by-side and consider the right A fixed
 - The \mathbf{X}_k^T guide \mathbf{A} to fit well also in RHS

Computing RESCAL (2)

- To minimize the error, we minimize $||\mathbf{Y} \mathbf{A}\mathbf{H}(\mathbf{I}_{2K} \otimes \mathbf{A}^{T})||_{F}$
 - $\mathbf{Y} = [\mathbf{X}_1 \ \mathbf{X}_1^T \ \mathbf{X}_2 \ \mathbf{X}_2^T \ \dots \ \mathbf{X}_K \ \mathbf{X}_K^T]$
 - $\boldsymbol{H} = [\boldsymbol{R}_1 \ \boldsymbol{R}_1^T \ \boldsymbol{R}_2 \ \boldsymbol{R}_2^T \ \dots \ \boldsymbol{R}_K \ \boldsymbol{R}_K^T]$
- For fixed \mathbf{A}^T and \mathcal{R} , the update rule for \mathbf{A} is

$$\boldsymbol{A} = \left(\sum_{k=1}^{K} (\boldsymbol{X}_{k} \boldsymbol{R}_{k}^{T} + \boldsymbol{X}_{k}^{T} \boldsymbol{A} \boldsymbol{R}_{k})\right) \left(\sum_{k=1}^{K} (\boldsymbol{B}_{k} + \boldsymbol{C}_{k})\right)^{-1}$$

• Here, $\boldsymbol{B}_k = \boldsymbol{R}_k \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{R}_k^T$ and $\boldsymbol{C}_k = \boldsymbol{R}_k^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{R}_k$

Computing RESCAL (3)

- Each slice \mathbf{R}_k can be updated separately
 - Minimize $||vec(\mathbf{X}_k) (\mathbf{A} \otimes \mathbf{A})vec(\mathbf{R}_k)||$
 - Linear regression, set $vec(\mathbf{R}_k) = (\mathbf{A} \otimes \mathbf{A})^+ vec(\mathbf{X}_k)$
 - To avoid computing the pseudo-inverse of big $\mathbf{A} \otimes \mathbf{A}$, compute the skinny QR decomposition of \mathbf{A}
 - A = QU, Q column-orthogonal, U uppertriangular
 - Now: $||\mathbf{X}_k \mathbf{A}\mathbf{R}_k \mathbf{A}^T|| = ||\mathbf{X}_k \mathbf{Q}\mathbf{U}\mathbf{R}_k \mathbf{U}^T \mathbf{Q}^T||$ = $||\mathbf{Q}^T \mathbf{X}_k \mathbf{Q} - \mathbf{U}\mathbf{R}_k \mathbf{U}^T||$ and update rule as $(\mathbf{U} \otimes \mathbf{U})$ which is only R^2 -by- R^2

Why RESCAL

- No factorization of the third mode
 - Same as in Tucker2
- Only one factor matrix
 - We assume some kind of symmetry (INDSCAL)
 - E.g. subjects and objects
 - Provides "information flow" between the modes
- Each frontal slice has a separate "mixing matrix" for the interactions between factors

The DEDICOM Decomposition: Matrix Version

- The DEDICOM decomposition is a matrix decomposition for an asymmetric relation between entities
 - What is the value of export from country *i* to country *j*?
 - How many emails person *i* sent to person *j*?
- $\boldsymbol{X} = \boldsymbol{A} \boldsymbol{R} \boldsymbol{A}^{\mathsf{T}}$
 - **A** factors the entities
 - R explains the asymmetric relation

The DEDICOM Decomposition: Tensor Version

- The three-way DEDICOM adds weights for each factor's participation in each position in the third mode
 - E.g. how much country factor r acts as a seller or buyer at time k?
- $X_k = A D_k R D_k A^T$
 - **A** and **R** as before, \mathcal{D} is *R*-by-*R*-by-*K* tensor such that each frontal slice **D**_k is diagonal
 - $(\mathbf{D}_k)_{rr}$ is the weight for factor r at time k

DEDICOM in **Picture**

Preprint of article to appear in SIAM Review (June 10, 2008).

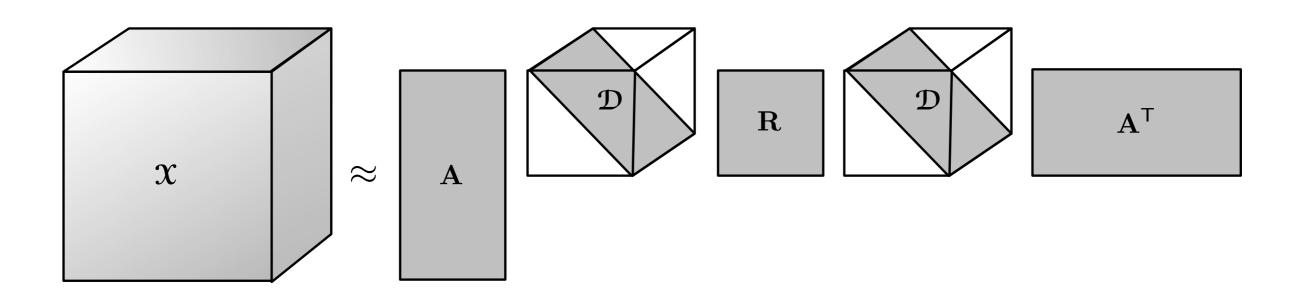


Fig. 5.2: Three-way DEDICOM model.

Computing DEDICOM: ASALSAN (1)

- We want to minimize $\sum_{k} ||\mathbf{X}_{k} \mathbf{A}\mathbf{D}_{k}\mathbf{R}\mathbf{D}_{k}\mathbf{A}^{T}||$
- ASALSAN (Alternating Simultaneous Approximation, Least Squares, and Newton) is one way
 - Stack pairs $(\mathbf{X}_k \mathbf{X}_k^T)$: $\mathbf{Y} = [\mathbf{X}_1 \mathbf{X}_1^T \dots \mathbf{X}_K \mathbf{X}_K^T]$
 - We get $||\mathbf{Y} \mathbf{A}\mathbf{H}(\mathbf{I}_{2K} \otimes \mathbf{A}^T)||$ with $\mathbf{H} = [\mathbf{D}_1 \mathbf{R} \mathbf{D}_1 \mathbf{D}_1 \mathbf{R}^T \mathbf{D}_1 \dots \mathbf{D}_K \mathbf{R} \mathbf{D}_K \mathbf{D}_K \mathbf{R}^T \mathbf{D}_K]$

Computing DEDICOM: ASALSAN (2)

- To update \boldsymbol{A} , fix right \boldsymbol{A} and update the left $\boldsymbol{A} = \left(\sum_{k=1}^{K} (\boldsymbol{X}_{k} \boldsymbol{A} \boldsymbol{D}_{k} \boldsymbol{R}^{T} \boldsymbol{D}_{k} + \boldsymbol{X}_{k}^{T} \boldsymbol{A} \boldsymbol{D}_{k} \boldsymbol{R} \boldsymbol{D}_{k})\right) \left(\sum_{k=1}^{K} (\boldsymbol{B}_{k} + \boldsymbol{C}_{k})\right)^{-1}$
 - $\boldsymbol{B}_{k} = \boldsymbol{D}_{k}\boldsymbol{R}\boldsymbol{D}_{k}(\boldsymbol{A}^{T}\boldsymbol{A})\boldsymbol{D}_{k}\boldsymbol{R}^{T}\boldsymbol{D}_{k}$ and $\boldsymbol{C}_{k} = \boldsymbol{D}_{k}\boldsymbol{R}^{T}\boldsymbol{D}_{k}(\boldsymbol{A}^{T}\boldsymbol{A})\boldsymbol{D}_{k}\boldsymbol{R}\boldsymbol{D}_{k}$
- To update R, we use vectors: $\min_{\boldsymbol{R}} \left\| \begin{pmatrix} \operatorname{vec}(\boldsymbol{X}_{1}) \\ \vdots \\ \operatorname{vec}(\boldsymbol{X}_{K}) \end{pmatrix} - \begin{pmatrix} \boldsymbol{A}\boldsymbol{D}_{1} \otimes \boldsymbol{A}\boldsymbol{D}_{1} \\ \vdots \\ \boldsymbol{A}\boldsymbol{D}_{K} \otimes \boldsymbol{A}\boldsymbol{D}_{K} \end{pmatrix} \operatorname{vec}(\boldsymbol{R}) \right\|$
- To update \mathcal{D} , use Newton's method for each slice \boldsymbol{D}_k

DEDICOM vs. RESCAL vs. INDSCAL vs. Tucker2

- RESCAL is a relaxed version of DEDICOM
 - Mixing matrix **R** is different for each slice
 - Easier to compute as there's no tensor $\ensuremath{\mathcal{D}}$
 - Algorithm similar to ASALSAN, but simpler
- RESCAL is to Tucker2 what INDSCAL is to CP
 - Share's INDSCAL's equal factor matrix
 - Uses Tucker2's core

The Non-Negative Variants

- Sometimes having non-negative factors is beneficial for data analysis
 - Improved interpretability
 - E.g. physical measurements
 - Sparsity
- All of the discussed methods can be cast into non-negative variants

Non-Negative CP

 The simplest way to compute non-negative CP is to use non-negative least-squares solver with the matricized equations

•
$$\min_{\boldsymbol{A} \in \mathbb{R}^{N \times R}_{+}} \| \boldsymbol{X}_{(1)} - \boldsymbol{A} (\boldsymbol{C} \odot \boldsymbol{B})^{T} \|$$

Also multiplicative updates are possible

•
$$a_{ir} = a_{ir} \frac{(\boldsymbol{X}_{(1)}\boldsymbol{Z})_{ir}}{(\boldsymbol{A}\boldsymbol{Z}^T\boldsymbol{Z})_{ir}}$$
 with $\boldsymbol{Z} = (\boldsymbol{C} \odot \boldsymbol{B})$

Also other methods exist

Non-Negative Others

- Also non-negative Tucker[2|3] can be solved using multiplicative update rules
- Non-negative ASALSAN yields non-negative DEDICOM
 - Similar algorithm will work for RESCAL

Summary

- Many, many different tensor decomposition
 - User's responsibility to choose the correct one
 - How do the results look like?
 - What's the time complexity?
- Most algorithms are geared towards dense data
 - But many data analysis data are sparse

Suggested Reading

- In addition to those from last time:
- Acar, E., & Yener, B. (2009). Unsupervised Multiway Data Analysis: A Literature Survey. *IEEE Transactions on Knowledge and Data Engineering*, 21(1), 6–20. doi:10.1109/TKDE. 2008.112
 - Shorter and more focused on applications than Kolda & Bader (2009)