Culprits and Islands

4 July 2014 (TADA)

Service Announcement #1

Introduction

Is DM science?DM in action

Tensors

Introduction to tensors
Tensors in DM
Special topics in tensors

Information Theory

- MDL + patterns
- Entropy + correlation
- MaxEnt + iterative DM

Mixed Grill

- Influence Propagation

- Redescription Mining
 - <special request>

Service Announcement #1

Who are the Culprits?

B. Aditya Prakash VT Jilles Vreeken

Christos Faloutsos

4 July 2014 (TADA)

First question of the day

How can we find the number *and* location of starting points for epidemics in graphs?

– *or* –

Who are the culprits?

Virus Propagation

Susceptible-Infected (SI) Model

Diseases over contact networks

CDC data: Visualization of the first 35 tuberculosis (TB) patients and their 1039 contacts

Culprits: Problem definition

Question: Who started it?

	• •			• •																							• •		• •	•				• •					• •		
				• •																											•										
																							-										-								
	• •						• •			• •		• •		• •					• •								• •		• •			• •		• •		•••			• •		• •
	• •	•	•	• •	•	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	• •	•	•	• •	•	• •	•	• •	•	• •	• •	•	• •	•	• •		•	• •	•	• •
	• •	•	۰	• •	•	۰	• •		۰	• •	•	• •	•	• •	۰	• •	•	٠	• •	٠		•		•	•	۰	• •	•	• •	•	•	• •		• •	۰	• •		•	• •		• •
				• •			• •			• •							•	•	• •			• •					• •		• •	•						• •			• •		
				• •			• •									• •								•			• •					• •						•	• •		
	• •	•		• •		•	• •		•	• •		• •		• •			•	•	• •			• •		•	• •	•	• •		• •	•	• •	• •		• •	•	• •		•	• •		• •
	• •	•	۰	• •	•	•	• •	•	۰	• •	•	• •	•	• •		• •	•	•	• •		• •	•	•	•	• •	۰	• •	•	• •	•	•	• •	•	• •	۰	• •		•	• •		• •
	• •	•	•	• •	•	•	• •	•	•	• •	•	• •	•	• •			•	•	• •	•	• •	• •	•	•	• •	•	• •	•	• •	•	•	•	•	• •	•	• •		•	• •		• •
	• •				•		• •		•			• •				• •	•						•	•			• •		• •	•	• •	\bigcirc)•	• •		• •		•	• •		
																														•		86	•								
																								•							h٨	22	ίΩ.								
																														XX	KЖ	XX	KK.		-						
																														X	KΧ	XX									
	• •	•		•		•	• •		•	•	÷	• •	-	•••	÷		•	•	• •					•	• •		• •		• •	22	22	22			÷	• •		•	• •		• •
	• •	•	•	• •	•	•	• •	•	•	• 🔍	\mathbb{Q}	•••		YU	20	• •	•	•	• •	•	• •	•	•	• :	•	•	• •	•	•••	99	20	\bigcirc	200		20.	• •		•	• •	•	• •
	• •	•	•	• •	•	•	• •		•	<u>•</u> 🔘	$) \bigcirc ($	DC	$) \bigcirc ($	DC	$) \bigcirc$	• •	•	•	• •	•	• •	• •		• () <u>•</u>		• •	• (JÜ	$\mathbf{O}($	$\mathbf{)}$	\bigcirc	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$) \bigcirc ($	<u></u>		•	• •		
				• •	•		• ($)\bigcirc$	• ($) \bigcirc ($	90	$) \bigcirc ($		$)\bigcirc$	• •	•	•	• •			• •		• (\bigcirc		$) \bigcirc ($		\bigcirc		•	$) \bigcirc ($		$) \bigcirc ($) • •	•	• •		
	• •			• •				$(\bigcirc$	\bigcirc		\bigcirc	DC	$) \bigcirc ($		$)\bigcirc$	•		•	• •			•		• 1	• 🔘	\bigcirc		\bigcirc		\bigcirc	10		\mathbf{O}	ÕĆ	$) \bigcirc ($) • •		• •		
				• •		<u>ک</u> ز	37	58	20	57	i M	$\gamma \epsilon$) a	37	58	۵.						•	\mathbf{a}		h٨	2	58	ъĞ	38	6	10	88	iک	37	580	58) • •		• •		
						XX	$\prec \succ$	ĸЖ	X	$\prec \succ$	(A)	$\prec \succ$		$\prec \succ$	KX.	Xa					. (K 🖂 i	×۲	ĸЖ	X	$\prec \succ$	(A)	$\prec \succ$		ĸЖ	XX	(X)	XZ	(XX)	$\prec \Join$					
						XX	$\prec \succ$	KΧ	XX	$\prec \succ$	(\times)	$\prec \succ$	(\mathbf{X})	$\prec \succ$	KΧ	XX	KΧ	XX	$\prec \succ$	KI.		27	(X)	$\prec \succ$	KΧ	X	$\prec \succ$	X	$\prec \succ$	$\langle X \rangle$	KΧ	XX		XX	(X)	KЖ	(\mathbf{X})	ΚŎ	ě.		
						9	$\prec \succ$	K K	R	$\prec \succ$		$\prec \succ$	(\mathbf{X})	$\prec \succ$	38	XX	KΧ	X	$\prec \succ$	KÅ.	à Ì			$\prec \succ$	KΧ	X	$\prec \succ$		$\prec \succ$		KΧ	27		XY		ĸЖ	'XX	KX'			
	• •	•	•	•	· .	-	22	22	25	$\langle \cdot \rangle$	2		2	22	22	22	22	25	22	22	' N		22	\leq	22	25	\sim	22	22	25	22	22	22		225	22	22	22.	÷÷	, • ·	• •
	• •	•	۰	• •	' 📿	29	2C	20	29		29		29	2C	20	Q_{Σ}	20	29	2C	20	•	<u>ا</u> ۲	20	25	20	29	$2 \bigcirc$	\mathbb{Q}	29	29	20	QL	209		299	29	29	20		· · ·	• •
	• •	•	٠	• •	• 🔍	\bigcirc	QC	20	\bigcirc		\odot		\bigcirc	QQ	\mathcal{O}	QQ	\mathcal{O}	\bigcirc	yu	20	• •	• 🔍	200	\bigcirc	20	Q	$\mathcal{Q}\mathcal{Q}$	\bigcirc	JQ	\bigcirc	20	\bigcirc	\mathbb{Q}	QQ	OO	20	\bigcirc	\mathcal{O}	$\bigcirc \bigcirc$		• •
	• •	•	•	• •	• 🔘	\bigcirc	JC	$) \bigcirc$	\bigcirc	JU	\bigcirc	UU	\bigcirc	DC	$) \bigcirc$	\bigcirc	\mathbf{O}	\bigcirc	DC	$) \bigcirc$		2 🔍	$) \bigcirc ($	\bigcirc		\bigcirc	$\mathcal{O}\mathcal{O}$	\bigcirc	JÜ	\bigcirc	\mathbf{O}	\bigcirc	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	OO	$\mathcal{O}\mathcal{O}$	\bigcirc		• •	•	• •
	• •		•	• •		\bigcirc	DC	$)\bigcirc$	\bigcirc	DC	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$) \bigcirc ($	ЭC	$)\bigcirc$	\bigcirc	$) \bigcirc$	\bigcirc	ЭC	$)\bigcirc$	\bigcirc	DC	$) \bigcirc ($	\supset	$) \bigcirc$	\bigcirc	DO	$) \bigcirc ($	DO	\odot	$) \bigcirc$	$\bigcirc \bigcirc$	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$) \bigcirc ($	DO	\odot	\mathbf{O}	• •		• •
				• •	•	\bigcirc		$)\bigcirc$	\bigcirc		$) \bigcirc ($		$) \bigcirc ($		$) \bigcirc$	\bigcirc		\bigcirc		$)\bigcirc$	\bigcirc		$) \bigcirc ($	\square		\bigcirc		$) \bigcirc ($		\bigcirc		\bigcirc	$) \bigcirc ($		$) \bigcirc ($				• 🔘		
				• •		\square	77	58	\square	56	бÒ	77	\square	77	50	\square	50	۵ì	77	50	\square	17	50	50	10	\square	56	\square	ЪČ	\square	10	86) (C) ()	500	58	66	50) • (
							$\prec \succ$	58	2	$\prec \succ$	i Mi	$\prec \succ$	58	37	58	22	18	2	37	58	22	$\leq \sim$	1 A	77	38	2	ĸЖ	58	3X	3	1X	XX	1 A	XZ	582	ĸЖ	32	58	$\prec \succ$	í • •	
						AX.	$\prec \succ$	58	X2	$\prec \succ$	(A)	XX	(A)	XZ	ŚЖ	X۲	KK.	XX	$\prec \succ$	sЖ	~7	$\leq \geq$	K K	32	ĸЖ	22	ĸЖ	(A)	ĸЖ		ĸЖ	XX	(A)	XZ	582	ĸЖ		58	×~	·	
					S	X	$\prec \succ$	KΧ	XX	$\prec \succ$	(X)	$\prec \succ$		$\prec \succ$	KΧ	XX	KΧ	X	$\prec \succ$	KΧ		~~	(X)	$\prec \succ$	KΧ	XX	$\prec \succ$	XX	$\prec \succ$		KΧ	XX		XX		KЖ	$(\succ \succ$	KX)	X:		
				÷۲	KΥ	\mathbf{X}	$\prec \succ$	KΧ	XX	$\prec \succ$	K K K K	$\prec \succ$	(\mathbf{X})	$\prec \succ$	K K	XX	KΧ	\mathbb{R}^{2}	$\prec \succ$	ζŲ	ò	\mathbf{x}	KX)	\prec	KΧ	XX	$\prec \succ$		$\prec \succ$		KΧ	XX	KX)	XX		ĸХ	'XX	KX)	Xě		
•	• •	•	• !	22	29	29	22	22	25		2		22	22	22	22	22	25		<u>۰</u>	Οy		22	\simeq	22	25	22	22	22	25	22	22	22		225	22	22	22			••
	• •	•	• (25	QΟ	U y	22	20	29		29		29	22	20	22	20	29	2:		• (υç	29	29	29	\mathbb{Q}		29	29	22	29		299	29	22	29	•	•	• •
•	• •	•	• (•	• (QC	20	Q		$\mathbb{Q}^{(2)}$		\bigcirc	QC	$2 \odot$	\bigcirc	QO.	\bigcirc	QU	$) \bigcirc$	• •	•	•	•	20	Q	$\mathcal{Q}\mathcal{Q}$	\bigcirc	JQ	\bigcirc	20	\bigcirc	\mathbb{Q}	QQ	$2 \odot 0$	20	\bigcirc	$2 \odot $	• •	•	• •
•	• •	•	٠	• •	•	• (DC	$)\bigcirc$	\bigcirc	$\mathcal{O}\mathcal{O}$	\bigcirc	DC	\bigcirc	DC	$) \bigcirc$	\bigcirc	•	• (• 🔘	•	• •	•		<u>.</u> () <u>•</u>	\bigcirc	$\mathcal{O}\mathcal{O}$	\bigcirc	JÜ	\bigcirc	\mathbf{O}	\bigcirc	$) \bigcirc ($	\bigcirc	$) \bigcirc ($	\mathcal{O}	\bigcirc)•	• •	•	• •
	• •		•	• •	•		• •		\bigcirc	DC	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$)\bigcirc$	\bigcirc	• (• (• (• •	• (\supset	$) \bigcirc$	\bigcirc	DO	$) \bigcirc ($	DO	\odot	$) \bigcirc$	$\bigcirc \bigcirc$	$) \bigcirc ($	$\mathbb{O}\mathbb{C}$	$) \bigcirc ($	$\mathbb{D}\mathbb{O}$		•	• •		
				• •			• 🌘	$)\bigcirc$	\bigcirc		$) \bigcirc ($		$) \bigcirc ($		$)\bigcirc$				• •			•		•		\bigcirc		$) \bigcirc ($		\bigcirc			$) \bigcirc ($		$) \bigcirc ($			•	• •		
	• •			• •			• •		\bigcirc		\bigcirc	DC	$) \bigcirc ($		$)\bigcirc$	• •	•		• •			•		• 1	• •	\bigcirc		$) \bigcirc ($		\bigcirc	10	$\bigcirc $		ÕĆ		•			• •		• •
				• •				•) (• 🗂	\square	•) •	• •	í		•		• •					•		\square	56	\square	ЪČ	\square	١×.	• ک	Ó	õč	50	• •			• •		
				• •					¥.	• •		• •				\square								•		2	5X		3X			· .	M.	•••	· •		¥ .				
											¥.				· ·	Ϋ.												· • `		Δ.			¥.								
			-			-			-																					.					-						
)	• •	•	•	• •	•	•	• •	•	•	• •	•	• •	•	• •		• •	•	•	• •	•		• •	•	•	• •	•	• •	•	• •		• •	• •	•	• •	•	• •	• •	•	• •	•	• •
	• •	•	•	• •	•	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	•	•	• •	•	• •	•	• •	•	• •	• •	•	• •	•	• •	• •	•	• •	•	• •
	• •	•	۰	• •	•		• •	•		• •	•		•	• •		• •	•	•	• •			• •		•		•	• •	•		•	• •	• •	•	• •	۰			•	• •		• •
	• •	•	۰	• •	•	۰	• •	•	۰	• •	•	• •	•	• •	۰	• •	•	•	• •	۰	• •	• •		•	• •	•	• •	•	• •	•	•	• •		• •	٠	• •		•	• •		• •
	• •	•	٠	• •	•		• •		•	• •		• •		• •		• •	•	•	• •		• •	•		•	• •	•	• •	•	• •	•	•	• •		• •		• •			• •		• •
	• •		•	• •		•	• •		•	• •	•	• •		• •		• •	•		• •		• •	•		•		•	• •	•	• •	•	•	• •	•	• •		• •			• •		• •
										• •		• •		• •					• •		•			•			• •		• •			• •		• •		• •			• •		• •
							. •			••																															
	• •	•	•	• •	•	•	• •	•	•	• •	٠	• •	٠	• •	•	• •	•	•	• •	•	• •	•	•	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	• •	•	• •	•	• •

Culprits: Problem definition

2d grid

Question: Who started it?

Prior work: [Lappas et al. 2010, Shah et al. 2011]

Culprits: Exoneration

Culprits: Exoneration

Who are the culprits

Two-step solution
1) use MDL for *number* of seeds
2) for a given number:

exoneration =
centrality + penalty

Running time linear! (in edges and nodes)

 $O(k^*(E_I + E_F + V_I))$

Modeling using MDL

Minimum Description Length principle Induction by Compression Related to Bayesian approaches

MDL = Model + Data

Cost of a Model: scoring the seed-set

$$\mathcal{L}(\mathcal{S}) = \mathcal{L}_{\mathbb{N}}(|\mathcal{S}|) + \log \binom{N}{|\mathcal{S}|}$$

Number of *possible* |S|-sized sets

Encoding *integer* |*S*|

Modeling using MDL

Encoding the Data: Propagation Ripples

Total MDL cost

 $\mathcal{L}(G_I, \mathcal{S}, R) = \mathcal{L}(\mathcal{S}) + \mathcal{L}(R \mid \mathcal{S})$

How to optimize the score?

Two-step process

- Given *k* quickly identify high-quality set *S*
- Given set S, optimize the ripple R

Optimizing the score

- High-quality k-seed-set
- exoneration

Best single seed:

- smallest eigenvector of Laplacian sub-matrix
- analyze a *Constrained* SI epidemic

Exonerate neighbors

Repeat

Optimizing the score

Optimizing R

Get the MLE ripple!

Finally use MDL score to tell us the best set

NETSLEUTH: Linear running time in nodes and edges

$$O(k^*(E_I + E_F + V_I))$$

Evaluation functions:MDL based

$$Q_{\text{MDL}} = \frac{\mathcal{L}(G_I, \mathcal{S}, R)}{\mathcal{L}(G_I, \mathcal{S}^*, R^*)}$$

Overlap based

$$Q_{\rm JD} = \frac{\mathbb{E}[JD_{\mathcal{S}}(\mathcal{V}_I)]}{\mathbb{E}[JD_{\mathcal{S}^*}(\mathcal{V}_I)]}$$

(JD = Jaccard distance)

Closer to 1 the better

Experiments: # of Seeds

Experiments: Quality (MDL and JD)

Prakash, Vreeken, Faloutsos 2012

Experiments: Quality (Jaccard Scores)

Experiments: Scalability

Conclusion

Given: Graph and Infections **Find**: Best 'Culprits'

Two-step solution

- use MDL for number of seeds
- for a given number:

exoneration = centrality + penalty

NetSleuth:

Linear running time in nodes and edges $O(k^*(E_I+E_F+V_I))$

Connection Pathways

Leman Akoglu

Jilles Vreeken

Polo Chau

Nikolaj Tatti

Christos Faloutsos

(Akoglu et al. SDM'13)

Question at hand

How can we use a graph to **explain** a few **selected nodes**?

Given a 'list' of authors...

What can we say?

let's use relational information

Given a 'list' of authors...

What can we say?

let's use relational information

Using the co-authorship graph...

Any structure?

too cluttered Bonnie E. John Scott E. Hudson Shumin Zhai Christos Faloutsos Brad_A._Myers Abigail_Sellen H._V._Jagadish William_Buxton Steve_Benford David J. DeWitt James A. Landay Rakesh Agrawal Ravin Balakrishnan Jeffrey_F._Naughton Hiroshi Ishii Surajit Chaudhuri Michael_J._Carey Hector Garcia-Molina Raghu_Ramakrishnan Gerhard Weikum

The Problem

Given

- a large graph G
- a handful of nodes S

marked by an external process

What can we say about **S**?

- are they **close by**?
- are they **segregated**?
- do they form groups?

Can we connect them?

- with simple paths?
- maybe using a few connectors?

Our approach

Use the network structure to explain S

Partition S into groups of nodes, such that

- "simple" paths in G connect the nodes in each group,
- nodes in different groups are "not easily reachable"

Use MDL to decide 'simple' and 'best' partitioning

Example

Simple connection pathways

- good connectors
- better sensemaking

1. Graph anomaly description/summarization

Summarize top-k node anomalies by groups
 Find connections/connectors among groups

Summarize top-k query pages by groups
 Find connections/connectors among groups

3. Understanding dynamic events in graphs

Event spread within groups explained by the network
 Event spread between groups due to external influence

4. Understanding semantic coherence

Summarize words by semantically coherent groups
 Find connectors (other relevant words) per group

5. Understanding segregation (social science)

e.g. school-children friendship network

Summarize students by their social "circles"
 Study groups (and groups within groups)

Problem: Formally

Problem Definition

Given a graph G=(V,E) and a set of marked nodes M subseteq V

Problem 1. Optimal partitioning Find a **coherent** partitioning *P* of *M*. Find the optimal **number of partitions** |*P*|.

Problem 2. Optimal connection subgraphs Efficiently find the minimum cost set of subgraphs connecting the nodes in each part $p_i \in P$

Objective: Informally

Our key idea is to use information theory

Imagine a sender and a receiver.

- both sender and receiver know graph structure G,
- only the sender knows the set of marked nodes M
- goal: transmit *M* using as few bits as possible.

Why would this work?

- naïve: encode ID of each marked node with bits
- better: exploit "close-by" nodes, restart for fertiver nodes

 $\log |V| + \log d(u)$ vs. $2 \log |V|$

Objective: Intuition

We think of encoding as

- hopping from node to node to encode close-by nodes
- and flying to a new node to encode farther nodes
- until all marked nodes are identified

Simplicity of connection tree *T* is determined by:

- the amount of flights we make across the graph;
- ease of identifying the edges to follow next;
- ease of identifying the marked nodes in our tour;

Objective: Formally
minimize

$$P, T_i$$

 $L(P, M | G) = L(|P|) + \sum_i L(p_i)$

- encode #partitions $L(|P|) = \log |V|$
- encode each part

#

$$L(p_i) = \log |V| + L(t) + \log |T| + \log {\binom{|T|}{||T||}}$$
root node spanning tree number of identities of t of p_i marked nodes in p_i marked nodes

encoding of tree per part

$$L(t) = L_{\mathbb{N}}(|t|+1) + \log \binom{d(v_t)}{|t|} + \sum_{j=1}^{|t|} L(b(t,j))$$

branches of node t
identities of branch nodes

$$recursively$$

encode all
tree nodes

|+|

Solution: Intuition

It's **NP**-hard.

Nikolaj

The problem is Marchard

Related steiner treeppoblem

Hence, we resort to heuristics...

The general idea:

- transform G into a directed weighted graph G'
- chop G' into sub-graphs
- find low-cost minimal spanning trees per sub-graph (we give 4 efficient algorithms)

Solution: Preliminaries

Graph transformation

- given undirected unweighted G(V, E)
- we transform it into directed weighted G'(V, E, W)where $w(u, v) = \log d(u)$ and $w(v, u) = \log d(v)$

Given *G*', the problem becomes: find *the set of trees* with minimum total cost on the marked nodes.

Finding bounded-length paths

- (multiple) short paths of length up to $\log |V|$ between marked nodes in G'
- employ BFS-like expansion

Algorithms

1) Connected components (CC)

- find induced subgraph(s) on marked nodes in G'
- find minimum cost directed tree(s)

2) Minimum arborescence (ARB)

- construct transitive closure graph CG (with bounded paths)
- add universal node *u* with out-edges
- find minimum cost directed tree(s), remove u, re-expand paths

Algorithms

3) Level-1 trees (L1)

- find minimum cost depth-1 trees in CG
- expand paths

4) Level-k trees (Lk)

- refine level-(*k*-1) trees by finding intermediate node *v*'s
- minimizing total cost, i.e. sum of cost to each v and subtrees

Synthetic examples

Case studies on DBLP

DBLP: RECOMB vs. KDD

DBLP: NIPS vs. PODS

NicheWorks-interactive_visualization_...

Visual_Analysis_of_Large_Graphs

Topological_fisheye_views_for_visuali...

Multiscale_visualization_of_small_wor... 62

A_System_for_Interactive_Visual_Analy...

Visualization_of_large_graphs

A_space_efficient_clustered_visualiza...

ALVIN:_a_system_for_visualizing_large...

Interactive_visualization_of_large_gr... 80

Visualizing_very_large_graphs_using_c...

GScholar: 'large graphs' vs. 'visual'

Intermediate Conclusions

Dot2Dot

- principled approach to describe sets of marked nodes using structure of the graph
- automatically finds good connectors
- automatically determines number of groups

New problem, but many **applications** in the wild

Conclusions

Graphs problems are often difficult

solutions are typically very ad hoc, very heuristic

Information theory

offers a clean and principled way to define solutions

Identifying Infection Sources

first to identify multiple sources – extensions currently underway

Explaining Node Sets

first to define the problem – many applications in the wild

Thank you!

Graphs problems are often difficult

solutions are typically very ad hoc, very heuristic

Information theory

offers a clean and principled way to define solutions

Identifying Infection Sources

first to identify multiple sources – extensions currently underway

Explaining Node Sets

first to define the problem – many applications in the wild