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Organization
‣ Lectures: Thursdays, 14:15 - 15:45, Weekly, room 023, E14, MPI-INF

‣ Except for lectures on 16th and 23rd June, they will be held in room 
0.01 in building E 1.7 (MMCI)

‣ Tutorials: Mondays 14:15 - 15:45, Biweekly, Room 023, E14, MPI-INF

‣ Except for tutorial on13th of June room 0.01in building E 1.7 
(MMCI) 

‣ Lecturers: 

‣ Vinay Setty (vsetty@mpi-inf.mpg.de) Appointments only by email (no 
fixed office hours)

‣ Jannik Strötgen (jtroetge@mpi-inf.mpg.de) Appointments only by 
email (no fixed office hours)

‣ Tutor:  We are the tutors!
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Background Literature

‣ C. D. Manning, P. Raghavan, H. Schütze,  
Introduction to Information Retrieval,  
Cambridge University Press, 2008 
http://www.informationretrieval.org 

‣ S. Büttcher, C. L. A. Clarke, G. V. Cormack,  
Information Retrieval,  
MIT Press, 2010 

‣ R. Baeza-Yates and R. Ribeiro-Neto,  
Modern Information Retrieval,  
Addison-Wesley, 2011
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Required Background Knowledge

‣ Preferably passed IRDM lecture

‣ Basic programming skills (any language of your choice)

‣ Latex basics
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Exercise Sheets
‣ Biweekly (almost) exercise sheets 

‣ six exercise sheets each with up to six problems

‣ handed out during the lecture on Thursday (almost biweekly)

‣ Refer to the course page for exact dates! 

‣ due by Thursday 11:59 PM of the following week

‣ submit electronically as 

‣ PDF to atir16@mpi-inf.mpg.de  
(best: typeset using LaTeX, worst: scans of your handwriting)

‣ If programming questions are given, also include the zip/tar 
of the source code
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Tutorials

‣ Biweekly (almost) tutorials 

‣ on Mondays after due dates

‣ Refer to the course page for exact dates! 

‣ we’ll grade your solutions as (P)resentable, (S)erious, (F)ail

‣ no example solutions
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Requirements for 6 ECTS

‣ Submit serious or better solutions to at least 50% of 
problems

‣ Present solutions in tutorial

‣ at least once during the semester

‣ additional presentations score you bonus points  
(one grade per bonus point, at most three, at most one 
per session)

‣ Pass oral exam at the end of the semester
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Registration & Password
‣ You’ll have to register for this course and the exam in HISPOS

‣ Please register by email to atir16@mpi-inf.mpg.de

‣ Full name

‣ Student number

‣ Preferred e-mail address 

‣ Some materials (e.g. papers and data) will be made available in a 
password-protected area on the course website

‣ Username: atir16 / Password: you should know it from the 
first lecture, if not send an email to atir16@mpi-inf.mpg.de  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Questions/Suggestions?
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What is this Course About?
‣ IR Basics recap (today) 

‣ Different retrieval models

‣ Indexing and Query processing

‣ Link analysis

‣ IR Tools

‣ NLP for IR (April 28) 

‣ Tokenization, stop word removal, lemmatization

‣ Part-of-speech tagging, dependency parsing, named entity recognition 

‣ Information extraction

‣ IR evaluation measures
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What is this Course About?
‣ Efficiency and Scalability issues in IR (May 12) 

‣ Index construction and maintenance

‣ Index pruning

‣ Query Processing

‣ Web archives (versioned documents)

‣ Mining and Organizing (May 19) 

‣ Clustering

‣ Classification

‣ Temporal mining

‣ Event mining and timelines
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What is this Course About?

‣ Diversity and Novelty (Jun 2) 

‣ Diversification techniques: implicit and explicit

‣ Diversification measures

‣ Semantic search (Jun 9) 

‣ Semantic web

‣ Knowledge graphs

‣ Entity linking and disambiguation

‣ Semantic search, geographic IR
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What is this Course About?
‣ Temporal Information Extraction (Jun 16) 

‣ Temporal expressions

‣ Temporal tagging

‣ Temporal scopes, document creation time

‣ Temporal reasoning

‣ Temporal information extraction

‣ Demo: HeidelTime and SUTime

‣ Temporal Information Retrieval 1 (Jun 23) 

‣ Searching with temporal constraints

‣ Temporal question answering

‣ Temporal document and query profiles

‣ Language models for temporal expressions

‣ Historical document retrieval, Language evolution - Cultoronomics 
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What is this Course About?
‣ Temporal Information Retrieval 2 (tentative) (Jun 30) 

‣ ?

‣ Social Media (Jul 7) 

‣ Blogosphere mining TREC TSIT

‣ Opinion retrieval

‣ Spam/hoax detection

‣ TDT and Event mining

‣ Feed Distillation

‣ Learning to rank (Jul 14) 

‣ Q&A (Jul 21) 

‣ Oral Exam (Jul 28)
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Documents
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Webpages, news 
articles etc

Social media tweets, forums, 
Facebook status etc.

Books, Journals, 
scholars article etc

Files/data on your 
personal 
computer

Apps/data on your 
smartphones

Knowledge Graphs



What is Information Retrieval?
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What is Information Retrieval?

‣ Information Retrieval (IR) is finding material (usually 
documents) of an unstructured nature (usually text) that 
satisfies an information need (usually a query) from within 
large collections (usually stored on computers).  - Manning et. al.
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Documents & Queries
‣ Pre-processing of documents and queries typically includes

‣ tokenization (e.g., splitting them up at white spaces and hyphens)

‣ stemming or lemmatization (to group variants of the same word)

‣ stopword removal (to get rid of words that bear little information)

‣ This results in a bag (or sequence) of indexable terms
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Retrieval Models
‣ Retrieval model defines for a given document collection D  

and a query q which documents to return and in which 
order

‣ Boolean retrieval 

‣ Probabilistic retrieval models (e.g., binary independence 
model)

‣ Vector space model with tf.idf term weighting

‣ Language models 

‣ Latent topic models (e.g., LSI, pLSI, LDA)
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Boolean Retrieval
‣ Boolean variables indicate presence/absence of query terms

‣ Boolean operators AND, OR, and NOT

‣ Boolean queries are arbitrary compositions of those, e.g.:

‣ Frodo AND Sam AND NOT Gollum

‣ NOT ((Saruman AND Sauron) OR (Smaug AND Shelob))

‣ Extensions of Boolean retrieval (e.g., proximity, wildcards, 
fields) with rudimentary ranking (e.g., weighted matches) 
exist
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Processing Boolean Queries

28

d1 d2 d3 d4 d5 d6

Frodo 1 1 0 1 0 0
Sam 1 1 0 1 1 1

Gollum 0 1 0 0 0 0

Saruman 1 0 0 0 0 0
Gandalf 1 0 1 1 1 1
Sauron 1 0 1 1 1 0

How to Process the query:

Frodo AND Sam AND NOT Gollum



Processing Boolean Queries

‣ Take the term vectors (Frodo, Sam, and Gollum)

‣ Flip the bits for terms with NOT (e.g. Gollum)

‣ bitwise AND the vectors finally the documents which return 
1 are relevant

29
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‣ Take the term vectors (Frodo, Sam, and Gollum)

‣ Flip the bits for terms with NOT (e.g. Gollum)

‣ bitwise AND the vectors finally the documents which return 
1 are relevant
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d1 d2 d3 d4 d5 d6
Frodo 1 1 0 1 0 0
Sam 1 1 0 1 1 1

Gollum 1 0 1 1 1 1

d1 d2 d3 d4 d5 d6
Frodo 1 1 0 1 0 0
Sam 1 1 0 1 1 1

Gollum 1 0 1 1 1 1
1 0 0 1 0 0

d1 and d4 are the relevant documents for
Frodo AND Sam AND NOT Gollum



‣ Vector space model considers queries and documents as 
vectors in a common high-dimensional vector space 

‣ Cosine similarity between two vectors q and d 
is the cosine of the angle between them

Vector Space Model

30

sim(q, d) =
q · d

kqk kdk
q

d

=

P
v qv dvpP

v q
2
v

pP
v d

2
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tf.idf
‣ How to set the components of query and document vectors?

‣ Intuitions behind tf.idf term weighting:

‣ documents should profit if they contain a query term more 
often

‣ terms that are common in the collection should be assigned a 
lower weight

‣ Term frequency tf(v,d) – # occurrences of term v in document d

‣ Document frequency df(v) – # documents containing term v


‣ Components of document vectors set as  

31

dv = tf(v, d) log
|D|
df(v)



Statistical Language Models
‣ Models to describe language generation

‣ Traditional NLP applications: Assigns a probability value to a 
sentence

‣ Machine Translation — P(high snowfall) > P(large snowfall)

‣ Spelling Correction — P(in the vineyard) > P(in the vinyard)

‣ Speech Recognition — P(It's hard to recognize speech) > P(It's 
hard to wreck a nice beach)

‣ Question Answering

‣ Goal: compute the probability of a sentence or sequence of words:

‣ P(S) = P(w1,w2,w3,w4,w5...wn)
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Language Model of a Document

‣ Language model describes the probabilistic generation of 
elements from a formal language (e.g., sequences of words)

‣ Documents and queries can be seen as samples from a 
language model and be used to estimate its parameters 

‣ Maximum Likelihood Estimate (MLE) for each word is the 
most natural estimate
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P [ v | ✓d ] =
tf(v, d)P
w tf(w, d)

a b a c a 
a a c a b 
b b b a a 
c b a a a 
a a a a a 

P [ a | ✓d ] =
16

25

P [ b | ✓d ] =
6

25

P [ c | ✓d ] =
3

25



Unigram Language Models
‣ Unigram Language Model provides a probabilistic model for 

representing text

‣ With unigram we can also assume terms are independent

34
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a 0.1 0.12

Frodo 0.01 0.0002
Sam 0.01 0.0001
said 0.03 0.03
likes 0.02 0.04
that 0.04 0.04

Rosie 0.005 0.01
Gandalf 0.003 0.015
Saruman 0.001 0.002

... ... ...

P(Frodo said that Sam likes Rosie)
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Zero Probability Problem
‣ what if some of the queried terms are absent in the document ?

‣ frequency based estimation results in a zero probability for 
query generation

35
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‣ what if some of the queried terms are absent in the document ?

‣ frequency based estimation results in a zero probability for 
query generation
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Words M1 M2
the 0.2 0.15
a 0.1 0.12

Frodo 0.01 0.0002
Sam 0.01 0.0001
said 0.03 0.03
likes 0.02 0.04
that 0.04 0.04
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P("Frodo" ,"Gollum"|M2) = 0.0002 * 0



Smoothing
‣ Need to smooth the probability estimates for terms to 

avoid zero probabilities

‣ Smoothing introduces a relative term weighting (idf-like 
effect) since more common terms now have higher 
probability for all documents

‣ Parameter estimation from a single document or query  
bears the risk of overfitting to this very limited sample

‣ Smoothing methods estimate parameters considering the 
entire document collection as a background model
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‣ Linear combination of document and corpus statistics to 
estimate term probabilities

Jelinek-Mercer smoothing
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Dirichlet Smoothing

‣ Smoothing with Dirichlet Prior:
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‣ Smoothing with Dirichlet Prior:
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tf(v, d) + µ tf(v,D)P
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‣ Query-likelihood approaches rank documents according 
to the probability that their language model generates the 
query 
 
 

‣ Divergence-based approaches rank according to the 
Kullback-Leibler divergence between the query language 
model and language models estimate from documents

Query Likelihood vs. Divergence

39

P [ q | ✓d ] /
Y

v2q

P [ v | ✓d ]

KL( ✓q k ✓d) =
X

v

P [ v | ✓q ] log
P [ v | ✓q ]
P [ v | ✓d ]
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Link Analysis
‣ Link analysis methods consider the Web’s hyperlink graph 

to determine characteristics of individual web pages  
 
 
 
 
 
 
 
 
 

41
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PageRank
‣ PageRank (by Google) is based on the following random 

walk

‣ jump to a random vertex ( 1 / |V| ) in the graph with 
probability ε

‣ follow a random outgoing edge ( 1 / out(v) ) with 
probability (1-ε)  
 
 
 

‣ PageRank score p(v) of vertex v is a measure of popularity 
and corresponds to its stationary visiting probability

42

p(v) = (1� ✏) ·
X

(u,v)2E

p(u)

out(u)
+

✏

|V |



PageRank

‣ PageRank scores correspond to components of the 
dominant Eigenvector π of the transition probability 
matrix P which can be computed using the power-
iteration method 

43
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matrix P which can be computed using the power-
iteration method 
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HITS

‣ HITS operates on a subgraph of the Web induced by a 
keyword query and considers

‣ hubs as vertices pointing to good authorities

‣ authorities as vertices pointed to by good hubs 

‣ Hub score h(u) and authority score a(v) defined as

‣ Hub vector h and authority vector a are Eigenvectors of 
the co-citation matrix AAT and co-reference matrix 
ATA 
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h = ↵�AAT h a = ↵�ATAa

h(u) /
X

(u,v)2E

a(v) a(v) /
X

(u,v)2E
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‣ Organization

‣ Course overview

‣ What is IR?

‣ Retrieval Models 

‣ Link Analysis

‣ Indexing and Query Processing 

‣ Tools for IR - Elasticsearch
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Indexing & Query Processing
‣ Retrieval models define which documents to return for a 

query but not how they can be identified efficiently

‣ Index structures are an essential building block for IR 
systems; variants of the inverted index are by far most 
common

‣ Query processing methods operate on these index 
structures

‣ holistic query processing methods determine all query 
results 
(e.g., term-at-a-time, document-at-a-time)
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Inverted Index
‣ Inverted index as widely used index structure in IR consists of

‣ dictionary mapping terms to term identifiers and statistics (e.g., df)

‣ posting list for every term recording details about its occurrences

‣ Posting lists can be document- or score-ordered and be equipped with 
additional structure (e.g., to support skipping)

‣ Postings contain a document identifier plus additional payloads 
(e.g., term frequency, tf.idf score contribution, term offsets)
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Term-at-a-Time
‣ Processes posting lists for query terms ⟨ q1,…,qm ⟩ one at 

a time

‣ Maintains an accumulator for each document seen; after 
processing the first k query terms this corresponds to

‣ Main memory proportional to number of accumulators

‣ Top-k result determined at the end by sorting accumulators

48
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Document-at-a-Time
‣ Processes posting lists for query terms ⟨ q1,…,qm ⟩ all at 

once 

‣ Sees the same document in all posting lists at the 
same time, determines score, and decides whether it 
belongs into top-k 
 
 
 

‣ Main memory proportional to k or number of results

‣ Skipping aids conjunctive queries (all query terms 
required)  

49
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Elasticsearch
‣ Flexible and powerful open source, distributed real-time 

search and analytics engine 

‣ Features: 

‣ real time data, real time analytics, 

‣ distributed, high availability, 

‣ full text search, document oriented, 

‣ conflict management, schema free (json)

‣ restful api, per-operation persistence, 

‣ apache 2 open source license, build on top of apache 
lucene.
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Elasticsearch Installation

‣ curl -L -O https://download.elastic.co/elasticsearch/release/
org/elasticsearch/distribution/tar/elasticsearch/2.3.1/
elasticsearch-2.3.1.tar.gz

‣ tar -xvf elasticsearch-2.3.1.tar.gz

‣ cd elasticsearch-2.3.1/bin

‣ ./elasticsearch
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Elasticsearch - Indexing

‣ Create Index

‣ Add records to index
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$ curl -XPUT 'http://localhost:9200/atirtest/doc/1' -d '{
    "title" : "Ecuador earthquake: Aid agencies step up efforts",
    "pub_date" : 1461230434627,
    "content" : "Aid agencies are stepping up help following Saturdays devastating 
earthquake in Ecuador, amid concerns over the conditions faced by survivors."
}'

$ curl -XPUT 'http://localhost:9200/atirtest'

$ curl -XPUT 'http://localhost:9200/atirtest/doc/2' -d '{
    "title" : "Syria conflict: Air strikes on Idlib markets kill dozens",
    "pub_date" : 1461230434457,
    "content" : "At least 44 people have been killed and dozens hurt in Syrian 
government air strikes on markets in two rebel-held towns in Idlib province, activists 
say."
}'



Elasticsearch - Boolean Queries
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curl -XGET 'localhost:9200/atirtest/_search?pretty' -d ' {
 "query":{
    "query_string" : {
           "default_field" : "content",
            "query": "earthquake AND Ecuador AND NOT Syrian"
    }
    }
  }'



Language Analyzers

‣ Elasticsearch has builtin language tools for

‣ tokenization

‣ stop word removal

‣ stemming

‣ For arabic, armenian, basque, brazilian, bulgarian, catalan, 
cjk, czech, danish, dutch, english, finnish, french, galician, 
german, greek, hindi, hungarian, indonesian, irish, italian, 
latvian, lithuanian, norwegian, persian, portuguese, 
romanian, russian, sorani, spanish, swedish, turkish, thai.
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English Analyzer Example
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"settings": {
    "analysis": {
      "filter": {
      "stop_filter": {
            "type": "stop",
            "stopwords": ["_english_"]
        },
        "custom_english_stemmer": {
          "type": "stemmer",
          "name": "minimal_english"
        }
      },
      "analyzer": {
        "custom_lowercase_stemmed": {
          "tokenizer": "standard",
          "filter": [
          "stop_filter",
           "custom_english_stemmer",

"lowercase"         ]
        }
      }
    }
  }



Elasticsearch - TF-IDF

‣ Query with TF-IDF score
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curl -XGET 'localhost:9200/atirtest/_search?pretty' -d '
  {

    "query": {
        "match": {
            "content": "Earthquake in Ecuador"
        }
    }
  }'



Okapi BM25 in Elasticsearch

58

curl -XPUT 'localhost:9200/atirtest/' -d'
{
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":       "string",
          "similarity": "BM25" 
      },

 "pub_date": {
          "type":       "date"
        },

        "content": {
          "type":       "string",
          "similarity": "BM25" 
        },
      }
  }
}'



Caveats

‣ For debugging: Most errors can be because of a comma 
missing or a bracket not closed

‣ Use Marvel sense UI to compose your elasticsearch code

‣ https://www.elastic.co/guide/en/marvel/current/
introduction.html

‣ It compiles the code and points the error for you
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