Advanced Topics in Information Retrieval
Natural Language Processing for IR & IR Evaluation

Vinay Setty
vsetty@mpi-inf.mpg.de

Jannik Strötgen
jannik.stroetgen@mpi-inf.mpg.de

ATIR – April 28, 2016
Organizational Things

please register – if you haven’t done so
- mail to **atir16 (at) mpi-inf.mpg.de**
- (i) name, (ii) matriculation number, (iii) preferred email address
- even if you do not want to get the ECTS points
- important for announcements about assignments, rooms etc.

assignments
- first assignment today
- **remember: we can only open pdfs**
- 50% of points (not of exercises) with serious, presentable
Outline

1 Simple Linguistic Preprocessing
2 Linguistics
3 Further Linguistic (Pre-)Processing
4 NLP Pipeline Architectures
5 Evaluation Measures
Why NLP Foundations for IR?
Why NLP Foundations for IR?

different types of data
- structured data vs. unstructured data (vs. semi-structured data)

structured data
- typically refers to information in tables

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnny</td>
<td>Frank</td>
<td>50000</td>
</tr>
<tr>
<td>Jack</td>
<td>Johnny</td>
<td>60000</td>
</tr>
<tr>
<td>Jim</td>
<td>Johnny</td>
<td>50000</td>
</tr>
</tbody>
</table>

- numerical range and exact match (for text) queries, e.g., Salary < 60000 AND Manager = Johnny
Why NLP Foundations for IR?

unstructured data
- typically refers to “free text”
- not just string matching queries

typical distinction
- structured data → “databases”
- unstructured data → “information retrieval”

actually: semi-structured data
- almost always some structure: title, bullets
- facilitates semi-structured search

\[\text{title contains NLP and bullet contains data} \]

(not to mention the linguistic structure of text . . .)
Why NLP Foundations for IR?

standard procedure in IR

- starting point: documents and queries
- pre-processing of documents and queries typically includes
 - tokenization (e.g., splitting at white spaces and hyphens)
 - stemming or lemmatization (group variants of same word)
 - stopword removal (get rid of words with little information)
- this results in a bag (or sequence) of indexable terms
Documents & Queries

- Pre-processing of documents and queries typically includes:
 - **tokenization** (e.g., splitting them up at white spaces and hyphens)
 - **stemming** or **lemmatization** (to group variants of the same word)
 - **stopword removal** (to get rid of words that bear little information)
- This results in a **bag** (or sequence) of indexable terms

More in next lecture

Example:

Investigators entered the company's HQ located in Boston MA on Thursday.

investig enter compani hq locat boston ma thursda
Why NLP Foundations for IR?

standard procedure in IR
- starting point: documents and queries
- pre-processing of documents and queries typically includes
 - tokenization (e.g., splitting at white spaces and hyphens)
 - stemming or lemmatization (group variants of same word)
 - stopword removal (get rid of words with little information)
- this results in a bag (or sequence) of indexable terms

many NLP concepts mentioned in previous lecture
today: linguistic / NLP foundations for IR
Why NLP Foundations for IR?

goal of this lecture

NLP concepts are not just buzz words, NLP concepts shall be understood

example:

what’s the difference between lemmatization and stemming?
Contents

1. Simple Linguistic Preprocessing
 - Tokenization
 - Lemmatization & Stemming

2. Linguistics

3. Further Linguistic (Pre-)Processing

4. NLP Pipeline Architectures

5. Evaluation Measures
Tokenization

The Task
- Given a character sequence, split it into pieces called tokens.

Tokens are often loosely referred to as terms/words.
- Last lecture: “splitting at white spaces and hyphens”
- Seems to be trivial.

Type vs. Token (vs. Term)
- **Token**: Instance of a sequence of characters in some particular document that are grouped together as a useful semantic unit.
- **Type**: Class of all tokens containing the same character sequence.
- **Term**: (Normalized) type included in IR system’s dictionary.
Tokenization – Example

type vs. token – example
- a rose is a rose is a rose
- how many tokens? 8
- how many types? 3 ({a, is, rose})

set-theoretical view
tokens → multiset
(multiset: *bag of words*)
types → set

type vs. token – example
- A rose is a rose is a rose
- knowing about normalization is important
Tokenization – Example

tokenization – example
fal Mr. O’Neill thinks rumors about Chile’s capital aren’t amusing.

simple strategies
- split at white spaces and hyphens
- split on all non-alphanumeric characters
- mr | o | neill | thinks | rumors | about | chile | s | captial | aren | t | amusing

is that good? there are many alternatives
→ o | neill – oneill – neill – o’neill – o’ | neill
→ aren | t – aren – are | n’t – aren’t
Tokenization

queries and documents have to be preprocessed identically

- tokenization choices determine which (Boolean) queries match
- guarantees that sequence of characters in query matches the same sequence in text

further issues

- what about hyphens? co-education vs. drag-and-drop
- what about names? San Francisco, Los Angeles
- tokenization is language-specific
 - “this is a sequence of several words”
 - 这是几个单词序列
 - noun compounds are not separated in German: “Lebensversicherungsgesellschaftsangestellter” vs. “life insurance company employee”
 - compound splitter may improve IR
Lemmatization & Stemming

tokenization is just one step during preprocessing

- lemmatization
- stemming
- stopword removal

lemmatization and stemming

- two tasks, same goal
- to group variants of the same word

what’s the difference?

stemming vs. lemmatization
stem vs. lemma
Lemma & Lemmatization

idea
- reduce inflectional forms (all variants of a “word”) to base form

examples
- am, are, be, is → be
- car, cars, car’s, cars’ → car

lemmatization
- proper reduction to dictionary headword form

lemma
- dictionary form of a set of words
Stem & Stemming

idea
- reduce terms to their “roots”

examples
- are \rightarrow ar
- automate, automates, automatic, automation \rightarrow automat

stemming
- suggests crude affix chopping

stem
- root form of a set of words (not necessarily a word itself)
Stemming and Lemmatization – Examples

- **the boy’s cars are different colors**

 - **lemmatized**
 - the | boy | car | be | different | color
 - **stemmed**
 - the | boy | car | ar | differ | color
Stemming and Lemmatization – Examples

for example compressed and compression are both accepted as equivalent to compress.

lemmatized
for | example | compress |
and | compression | be | both |
| accept | as | equivalent |
| to | compress

stemmed
for | exampl | compress |
and | compress | ar | both |
| accept | as | equivalent |
| to | compress
Stemming

popular stemmers
- porter’s algorithm
 (http://tartarus.org/martin/PorterStemmer/)
- snowball (http://snowballstem.org/demo.html)

what’s better for IR? stemming or lemmatization?
try it yourself!
Stop Words

stop words
- have little semantic content
- are extremely frequent: about 30% of postings top 30 words
- occur in almost each document, i.e., are not discriminative

→ high document frequency

example of a stop word list
- a, an, and, are, as, at, be, by, for, from, has, he, in
- is, it, its, of, on, that, the, to, was, were, will, with

what types of words are these?
Stop Word Removal

idea
- based on stop list, remove all stop words, i.e., stop words are not part of IR system’s dictionary
- saves a lot of memory
- makes query processing much faster

trend (in particular in web search):
- no stop word removal
- there are good compression techniques
- there are good query optimization techniques

stop words are needed – examples
- King of Norway
- let it be
- to be or not to be
Contents

1 Simple Linguistic Preprocessing

2 Linguistics
 - Parts-of-Speech
 - Ambiguities
 - Semantic Relations
 - Named Entities

3 Further Linguistic (Pre-)Processing

4 NLP Pipeline Architectures

5 Evaluation Measures
Parts-of-Speech

alternative distinction between stop words and others
- function words: used to make sentences grammatically correct
- content words: carry the meaning of a sentence

function words
- auxiliary verbs
- prepositions
- conjunctions
- determiners
- pronouns

content words
- nouns
- verbs
- adjectives
- adverbs

how many parts-of-speech are there?
- between 8 and hundreds of different parts-of-speech
- what’s useful depends on the application and language
Ambiguities

one word, one part-of-speech?

- can we can fish in a can?
- can: auxiliary, verb, noun
Information Need

![Google Search for "how to kill python" with ambiguous results.](image_url)
Levels of Ambiguities

speech recognition
- it’s hard to recognize speech
- it’s hard to wreck a nice beach

prepositional attachment
- the boy saw the man with the telescope

syntax / morphology
- time flies (noun / verb) like (verb / preposition) an arrow

word level ambiguities
- “can”: auxiliary, verb, noun

disambiguation
resolution of ambiguities

word level ambiguities
most crucial for IR
Semantic Relations between Words

synonyms → query for one, find documents with either one
- different words, same meaning
- car vs. automotive

homographs → disambiguate or diversify results
- same spelling, different meaning
- bank vs. bank

homophons → problem with spoken queries
- same pronunciation, different meaning
- there vs. their vs. they’re

homonyms

same spelling, same pronunciation, different meaning
Named Entities

- entity
 - anything you can refer to with a name
 - location, person, organization
 - facilities, vehicles, songs, movies, products
 (and domain-dependent ones: genes & proteins, ...)
 - sometimes: numbers, dates

relevant in IR

- entities are popular and extremely frequent in queries

names are highly ambiguous

- Washington → place(s), person(s), (government)
- Springfield
Contents

1 Simple Linguistic Preprocessing

2 Linguistics

3 Further Linguistic (Pre-)Processing
 • Normalizations
 • Part-of-Speech Tagging
 • Chunking
 • Parsing – Syntactic Analysis

4 NLP Pipeline Architectures

5 Evaluation Measures
Normalizations

indexed terms have to be normalized
- lemmatization
- stemming

some things need to be done before that:
- U.S.A. vs. USA
- anti-discriminatory vs. antidiscriminatory
- usa vs. USA

terms
- normalization results in terms
- a term is a normalized word type, an entry in an IR system’s dictionary
Part-of-Speech Tagging

idea

- number of words in a language unlimited
 - few frequent words, many infrequent words

- number of parts-of-speech limited
 - Dionysios Thrax von Alexandria (100 BC): 8 parts-of-speech
 - in NLP: up to hundreds of part-of-speech tags
 (application- and language-dependent)

- many words are ambiguous

example

- The/DET newspaper/NN published/VD ten/CD articles/NNS ./.
- Can/AUX we/PRP can/VB fish/NN in/IN a/DET can/NN ./.
Part-of-Speech Tagging

part-of-speech tags

- allow for higher degree of abstraction to estimate likelihoods

what’s the likelihood of:

- “an amazing” – is followed by “goalkeeper”
- “an amazing” – is followed by “scored”
- “determiner adjective” – is followed by “noun”
- “determiner adjective” – is followed by “verb”

automatic assignment of part-of-speech tags

- e.g., Penn Treebank tagset: 36 tags (+ 9 punctuation tags)
- ambiguities can be resolved via contexts
Part-of-Speech Tagging

way to go:
- input: sequence of (tokenized) words
- output: chain of tokens with their part-of-speech tags
- goal: most likely part-of-speech tags for the sequence
 → ambiguities shall be resolved
- a typical classification problem

is it tough?
- most words in English are not ambiguous
- most occurring words in English are ambiguous
- disambiguation is required

today’s taggers
- about 97% accuracy (but highly domain-dependent)
Part-of-Speech Tagging

approaches
- rule-based taggers
- probabilistic taggers
- transformation-based taggers

probabilistic taggers
- given: manually annotated training data ("gold standard")
- learn probabilities based on training data
- estimate probabilities of pos tags given a word in a context
 → Hidden Markov Models
Part-of-Speech Tagging

Hidden Markov Models
- based on Bayesian inference
- goal: given sequence of tokens, assign sequence of pos tags
 given all possible tag sequences, which one is most likely?
\[\hat{t}_1^n = \arg\max P(t_1^n | w_1^n) \]

using Bayes, we get
\[\hat{t}_1^n = \arg\max \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)} \rightarrow \hat{t}_1^n = \arg\max P(w_1^n | t_1^n) P(t_1^n) \]

assumptions:
- probability of a word depends on own tag only
 \[P(w_1^n | t_1^n) \approx \prod_{i=1}^n P(w_i | t_i) \]
- probability of a tag depends on previous tag only
 \[P(t_1^n) \approx \prod_{i=1}^n P(t_i | t_{i-1}) \]
Part-of-Speech Tagging

Hidden Markov Models

- based on Bayesian inference
- goal: given sequence of tokens, assign sequence of pos tags
given all possible tag sequences, which one is most likely?

\[\hat{t}_n^* = \arg\max P(w_1^n | t_1^n) P(t_1^n) \approx \arg\max \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) \]

maximum likelihood estimation based on a corpus

\[P(t_i | t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})} \quad P(w_i | t_i) = \frac{C(t_i, w_i)}{C(t_i)} \]
Part-of-Speech Tagging

in information retrieval

- determine content words in a query based on pos tags
- helpful for named entity recognition \rightarrow semantic search
Chunking

(simple) grouping of token’s that belong together

- most popular: noun phrase (NP) chunking
- but also: verb phrases

example

- \([\text{Paris}]_{NP} [\text{has been}]_{VP} [\text{a wonderful stop}]_{NP} \text{ during } [\text{my travel}]_{NP} \) – just as \([\text{New York City}]_{NP} \).

why chunking for IR?

- simpler than full syntactic analysis
- already provides some structure
Parsing

goal: syntactic structure of a sentence

two views of linguistic structure

- constituency (phrase) structure

example (man has the telescope)

- The boy saw the man with the telescope
- \[(\text{The boy})_{NP} \]
 \[(\text{saw})_{VP} [(\text{the man})_{NP} [(\text{with})_{PP} [(\text{the telescope})_{NP}]_{NP}]_{VP}]_{S} \]
Parsing

goal: syntactic structure of a sentence

two views of linguistic structure

- constituency (phrase) structure
- dependency structure

dependent for IR?

for knowledge harvesting

example (man has the telescope)

- The boy saw the man with the telescope
Named Entity Recognition

tasks
- extraction \rightarrow determine the boundaries
- classification \rightarrow assign class (PER, LOC, ORG, ...)

systems
- rule-based \rightarrow with gazetteers, context-based rules (Mr.), ...
- machine learning \rightarrow features: mixed case (eBay), ends in digit (A9), all caps (BMW), ...
- several tools available (e.g., Stanford NER)

extraction is good, but normalization is better
Named Entity Normalization

same task, many names

- normalization
- linking
- resolution
- grounding

example: Washington

- /wiki/Washington,_D.C.
- /wiki/Washington_%28state%29
- /wiki/Washington_Irving
- /wiki/Washington_Redskins
- /wiki/George_Washington

tools

- several tools available (AIDA, ...)

© Jannik Strötgen – ATIR-02
Contents

1. Simple Linguistic Preprocessing
2. Linguistics
3. Further Linguistic (Pre-)Processing
4. NLP Pipeline Architectures
5. Evaluation Measures
NLP Pipeline Architectures

NLP tasks can often be split into multiple sub-tasks

- e.g., dependency parsing:
 - sentence splitting
 - tokenization
 - part-of-speech tagging
 - parsing

- pre-processing of corpora, e.g., for semantic search
- UIMA https://uima.apache.org/
- GATE https://gate.ac.uk/
- NLTK http://www.nltk.org/
- Stanford CoreNLP http://stanfordnlp.github.io/CoreNLP/
The Pipeline Principle – Why a (UIMA) Pipeline

... postponed to the information extraction lecture
Contents

1. Simple Linguistic Preprocessing
2. Linguistics
3. Further Linguistic (Pre-)Processing
4. NLP Pipeline Architectures
5. Evaluation Measures
 - Evaluating NLP Systems
 - Evaluating IR Systems
Evaluation Measures

what is “good” / “correct” in information retrieval?
Evaluation Measures in NLP

let’s start with a simple NLP task

detailed example
- given a sequence of tokens, nouns

| can | a | red | rose | be | a | tree | or | a | fly | or | just | a | rose |

| gold annotations
| can | a | red | rose | be | a | tree | or | a | fly | or | just | a | rose |

| example system output
| can | a | red | rose | be | a | tree | or | a | fly | or | just | a | rose |

how good is the system’s output?
Evaluation Measures in NLP

frequently used measures

- precision, recall, f-score
- based on evaluating all system’s decisions

<table>
<thead>
<tr>
<th>can</th>
<th>a</th>
<th>red</th>
<th>rose</th>
<th>be</th>
<th>a</th>
<th>tree</th>
<th>or</th>
<th>a</th>
<th>fly</th>
<th>or</th>
<th>just</th>
<th>a</th>
<th>rose</th>
</tr>
</thead>
<tbody>
<tr>
<td>can</td>
<td>a</td>
<td>red</td>
<td>rose</td>
<td>be</td>
<td>a</td>
<td>tree</td>
<td>or</td>
<td>a</td>
<td>fly</td>
<td>or</td>
<td>just</td>
<td>a</td>
<td>rose</td>
</tr>
</tbody>
</table>

gold annotations

| can | a | red | rose | be | a | tree | or | a | fly | or | just | a | rose |

example system output

| can | a | red | rose | be | a | tree | or | a | fly | or | just | a | rose |

correct decisions: $3 + 8 = 11$?
Evaluation Measures in NLP

frequently used measures

- precision, recall, f-score
- based on evaluating all system’s decisions

<table>
<thead>
<tr>
<th>can</th>
<th>a</th>
<th>red</th>
<th>rose</th>
<th>be</th>
<th>a</th>
<th>tree</th>
<th>or</th>
<th>a</th>
<th>fly</th>
<th>or</th>
<th>just</th>
<th>a</th>
<th>rose</th>
</tr>
</thead>
</table>

gold annotations

<table>
<thead>
<tr>
<th>can</th>
<th>a</th>
<th>red</th>
<th>rose</th>
<th>be</th>
<th>a</th>
<th>tree</th>
<th>or</th>
<th>a</th>
<th>fly</th>
<th>or</th>
<th>just</th>
<th>a</th>
<th>rose</th>
</tr>
</thead>
</table>

example system output

<table>
<thead>
<tr>
<th>can</th>
<th>a</th>
<th>red</th>
<th>rose</th>
<th>be</th>
<th>a</th>
<th>tree</th>
<th>or</th>
<th>a</th>
<th>fly</th>
<th>or</th>
<th>just</th>
<th>a</th>
<th>rose</th>
</tr>
</thead>
</table>

we should count them separately

- true positives: 3
- true negatives: 8
- false positives: 2
- false negatives: 1
Evaluation Measures in NLP

confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>pos</th>
<th>neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground truth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>neg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>neg</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

precision = \(\frac{TP}{TP + FP} \)

recall = \(\frac{TP}{TP + FN} \)

f1-score = \(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \)

or in words

- **precision**: ratio of instances correctly marked as positive by the system to all instances marked as positive by the system
- **recall**: ratio of instances correctly marked as positive by the system to all instances marked as positive in the gold standard
- **f1-score**: balanced harmonic mean
Evaluation Measures in NLP

| true positives: 3 | false positives: 2 |
| true negatives: 8 | false negatives: 1 |

- precision = 3 / (3+2) = 0.6
- recall = 3 / (3+1) = 0.75
- f1-score = (2 × 0.6 × 0.75) / (0.6 + 0.75) = 2/3
Evaluation Measures in NLP

is precision then the accuracy?

$$\text{accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

in our example

- precision = 0.6
- accuracy = 0.78

difference

- precision is about system’s decisions about instances marked as positive in the gold standard
- accuracy is about correctness of all decisions
Evaluation Measures in IR

which of the measures make sense to evaluate IR: precision, recall, f1-score, accuracy?

what’s the goal of IR systems?
- is the information need satisfied?
- is the user happy?
- happiness is elusive to measure

what’s an alternative?
- relevance of search results
- now: how to measure relevance?
Evaluation Measures in IR

measuring relevance with a benchmark

- a set of queries
- a document collection
- relevance judgments

TREC data sets are popular benchmarks

there are several issue, which we ignore (for now)

confusion matrix for IR

<table>
<thead>
<tr>
<th></th>
<th>manual judgments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relevant</td>
<td>not relevant</td>
</tr>
<tr>
<td>system</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>relevant</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>
Evaluation Measures in IR

we can calculate

- precision
- recall
- f1-score
- accuracy

but are we done?

short-comings

- only for binary judgments (relevant / not relevant)
- only for unranked results
- how do we get manual judgments for all documents?
Measures for Ranked Retrieval

precision at k

- set rank threshold k (e.g., 1, 3, 5, 10, 20, 50)
- compute percentage of relevant documents in k
- $\text{precision} = \frac{\text{"TP in } k\text{"}}{k}$
- ignores all documents ranked lower than k

example

<table>
<thead>
<tr>
<th>rank</th>
<th>precision @</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Measures for Ranked Retrieval

recall at k

- as precision at k

Measures for Ranked Retrieval

average precision

- precision at all ranks r with relevant document
- compute precision at k for each r
- (typically with cut-off, i.e., lower ranks not judged / considered)

example

<table>
<thead>
<tr>
<th>rank</th>
<th>average precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>r</td>
</tr>
<tr>
<td>3</td>
<td>r</td>
</tr>
<tr>
<td>4</td>
<td>r</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
</tr>
<tr>
<td>7</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
</tr>
<tr>
<td>9</td>
<td>n</td>
</tr>
<tr>
<td>10</td>
<td>r</td>
</tr>
<tr>
<td>11</td>
<td>n</td>
</tr>
</tbody>
</table>

compute: $p@2$, $p@3$, $p@4$, $p9$, $p11$

number of relevant documents: 5

$$\frac{1/2 + 2/3 + 3/4 + 4/9 + 5/11}{5} = 0.56$$
Measures for Ranked Retrieval

so far
- measures for single queries only

mean average precision
- sum of average precision divided by number of queries
- \(MAP = \frac{\sum_{i=1}^{u} AP_i}{u} \)

example
- for query-1, \(AP_1 = 0.62 \)
- for query-2, \(AP_2 = 0.44 \)
- \(MAP = \frac{AP_1 + AP_2}{2} = 0.53 \)

MAP is frequently reported in research papers

attention:
- each query is worth the same!

assumption:
- the more relevant documents, the better
Beyond Binary Relevance

not realistic
- documents either relevant or not relevant (0 / 1)

much better
- highly relevant documents more useful
- lower ranks are less useful (likely to be ignored)
Beyond Binary Relevance

discounted cumulative gain

- graded relevance as measure of usefulness (gain)
- gain is accumulated, starting at the top, reduced (discounted) at lower ranks

discount rate

- typically used: $1/\log (rank)$ (with base 2)

relevance judgments

- scale of $[0,r]$, with $r > 2$
Beyond Binary Relevance

cumulative gain
- ratings of top n ranked documents $r_1, r_2, ..., r_n$
- $CG = r_1 + r_2 + ... + r_n$

dischonoted cumulative gain
- at rank n
- $DCG = r_1 + \frac{r_2}{\log_2(2)} + \frac{r_3}{\log_2(3)} + ... + \frac{r_n}{\log_2(n)}$

normalized discounted cumulative gain
- normalize DCG at rank n by DCG at n of ideal ranking
- ideal ranking of relevance scores: 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, ...
Beyond Binary Relevance

popular to evaluate Web search

- nDCG
- reciprocal rank: $rr = \frac{1}{K}$, with K rank of first relevant document
- mean reciprocal rank: mean rr over multiple queries
- exploiting click data (you need the data to do that . . .)
Summary

NLP 4 IR
- as text is not fully structured, plain keyword search not enough
- pre-processing documents and queries is important
- tokenization, stemming, lemmatization, stop word removal are frequently used

Ambiguities
- language is often ambiguous
- there are several levels of ambiguities

NLP tasks
- part-of-speech tagging helps to generalize
- named entities are important in IR
Summary

Evaluation Measures
- precision, recall, f1-score (in NLP)
- IR evaluation is different from NLP evaluation

Assignment 1
- the slides will help you a lot!

Thank you for your attention!
Thanks

some slides / examples are taken from / similar to those of:

- Klaus Berberich, Saarland University, previous ATIR lecture
- Manning, Raghavan, Schütze: Introduction to Information Retrieval (including slides to the book)
- Yannick Versley, Heidelberg University, Introduction to Computational Linguistics.