Advanced Topics in Information Retrieval

3. Efficiency & Scalability

Vinay Setty
(vsetty@mpi-inf.mpg.de)

Jannik Strötgen
(jtroetge@mpi-inf.mpg.de)
3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
3.1. Motivation

- **Efficiency** is about “doing things right”, i.e., accomplishing a task using minimal resources (e.g., CPU, memory, disk).

- **Scalability** is about to be able to
 - accomplish a larger instance of a task e.g. indexing millions/billions of documents, large number of queries
 - using additional resources (e.g., faster/more CPUs, more memory/disk)
Our focus will be on two major aspects of every IR system:

- **Indexing:** how can we efficiently construct & maintain an inverted index that consumes little space.

- **Query processing:** how can we efficiently identify the top-k results for a given query without having to read posting lists completely.

Other aspects which we will not cover include:

- **Caching** (e.g., posting lists, query results, snippets)

- **Modern hardware** (e.g., GPU query processing, SIMD compression)
Hardware & Software Trends

- CPU speed has increased more than that of disk and memory: faster to read & decompress than to read uncompressed

- More memory is available; disks have become larger but not faster: now common to keep indexes in (distributed) memory

- Many (less powerful) instead of few (powerful) machines; platforms for distributed data processing (e.g., MapReduce, Spark)

- More CPU cores instead of faster CPUs; SSDs (fast reads, slow writes, wear out) in addition to HDDs; GPUs and FPGAs
Outline

3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
3.2. Index Construction & Maintenance

- **Inverted index** as widely used index structure in IR consists of
 - **dictionary** mapping terms to term identifiers and statistics (e.g., idf)
 - **posting lists** for every term recording details about its occurrences

- How to construct an inverted index from a document collection?
- How to maintain an inverted index as documents are inserted, modified, or deleted?
Observation: Constructing an inverted index (aka. inversion) can be seen as sorting a large number of (term, did, tf) tuples

- seen in (did)-order when processing documents
- needed in (term, did)-order for the inverted index

Typically, the set of all (term, did, tf) tuples does not fit into the main memory of a single machine, so that we need to sort using external memory (e.g., hard-disk drives)
Lester al. [5] describe the following algorithm by Heinz and Zobel to construct an inverted index on a single machine:

- Let B be the number of (term, did, tf) tuples that fit into main memory.
- While not all documents have been processed:
 - Read (up to) B tuples from the input (documents).
 - Construct in-memory inverted index by grouping & sorting the tuples.
 - Write in-memory inverted index as sorted run of (term, did, tf) tuples to disk.
- Merge on-disk runs to obtain global inverted index.
Index Construction in MapReduce

- MapReduce as a platform for distributed data processing
 - was developed at Google
 - operates on large clusters of commodity hardware
 - handles hard- and software failures transparently
 - open-source implementations (e.g., Apache Hadoop) available
 - programming model operates on key-value (kv) pairs
 - `map()` reads input data \((k_1, v_1)\) and emits kv pairs \((k_2, v_2)\)
 - platform groups and sorts kv pairs \((k_2, v_2)\) automatically
 - `reduce()` sees kv pairs \((k_2, \text{list}<v_2>)\) and emits kv pairs \((k_3, v_3)\)
Map/Reduce Example

Mappers

<table>
<thead>
<tr>
<th>d1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b a c a</td>
</tr>
<tr>
<td>a a c a b</td>
</tr>
<tr>
<td>b b b a a</td>
</tr>
<tr>
<td>c b a a a</td>
</tr>
<tr>
<td>a a a a a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b a d a</td>
</tr>
<tr>
<td>a a d a b</td>
</tr>
<tr>
<td>b b b a a</td>
</tr>
<tr>
<td>d b a a a</td>
</tr>
</tbody>
</table>

Intermediate Sorting/combining

{a, <d1,16>}
{b, <d1, 6>}
{c, <d1, 3>}

{a, <d1,16>, <d2,11>}
{b, <d1, 6>, <d2, 6>}
{c, <d1, 3>}
{d, <d2, 3>}

Reducers
Index Construction in MapReduce

\textbf{map}(\text{did, list<term>})

\begin{verbatim}
map<term, integer> tfs = new map<term, integer>();
// determine term frequencies
for each term in list<term>:
 tfs.adjustCount(term, +1);
// emit postings
for each term in tfs.keys():
 emit (term, (did, tfs.get(term)));
\end{verbatim}

// platform groups & sorts output of map phase by term

\textbf{reduce}(\text{term, list<(did, tf)>})

\begin{verbatim}
// emit posting list
emit (term, list<(did, tf)>)
\end{verbatim}
Index Maintenance

- Document collections are **not static**, but documents are **inserted, modified, or deleted** as time passes; changes to the document collection should quickly be visible in search results

- **Typical approach**: Collect changes in main memory
 - deletion list of deleted documents
 - in-memory delta inverted index of inserted and modified documents
 - process queries over both the on-disk global and in-memory delta inverted index and filter out result documents from the deletion list

- What if the available main memory has been exhausted?
Rebuild

- Rebuild the on-disk global index from scratch
 - in a separate location; switch over to new index once completed
- attractive for small document collections
- attractive when document deletions are common
- requires re-processing of entire document collection
- easy to implement
Merge

- **Merge** the on-disk global index with the in-memory delta index
 - in a *separate location*; switch over to new index once completed
 - for each term, **read** posting lists from on-disk global index and in-memory delta index, **merge** them, **filter out** deleted documents, and **write** the merged posting list to disk
 - requires **reading entire on-disk global index**

- **Analysis:** Let B be capacity of the in-memory delta index (in terms of postings) and N be the total number of postings
 - N / B merge operations each having cost $O(N)$
 - total cost is in $O(N^2)$
Lester et al. [5] propose to partition the inverted index into index partitions of geometrically increasing sizes:

- tunable by parameter \(r \)
- index partition \(P_0 \) is in **main memory** and contains up to \(B \) postings
- index partitions \(P_1, P_2, \ldots \) are **on disk** with capacity invariants
 - partition \(P_j \) contains at most \((r-1) r^{j-1} B \) postings
 - partition \(P_j \) is either empty or contains at least \(r^{j-1} B \) postings
- whenever \(P_0 \) overflows, a **merge** is triggered

Query processing has to access all (non-empty) partitions \(P_i \), leading to higher cost due to required disk seeks.
Fig. 3. The merging pattern established when $r = 3$. The first index is placed into partition 3 only after nine bufferloads have been generated by the in-memory part of the indexing process. All numbers listed represent multiples of b, the size of each bufferload.

and, as before, the stream of arriving documents is processed in fixed buffer-loads of b documents. The first bufferload of pointers is placed, without change, into partition 1. The second bufferload of pointers can be merged with the first, still in partition 1, to make a partition of $2b$ pointers. But the third bufferload of pointers cannot be merged into partition 1, because doing so would violate the $(r - 1)b = 2b$ limit on partition 1. Instead, the 3 pointers that are the result of this merge are placed in partition 2, and partition 1 is cleared. The fourth bufferload of pointers must be placed in partition 1, because it cannot be merged into partition 2. The fifth joins it, and then the sixth bufferload triggers a three-way merge, to make a partition containing $6b$ pointers in the second partition. Figure 3 continues this example, and shows how the concatenation of three more bufferloads of pointers from the in-memory part of the index leads to a single index of $9b$ pointers in the third partition.

5.2 Analysis

Within each partition the index sizes follow a cyclic pattern that is determined by the radix r. For example, in Figure 3, the “Partition 2” column cycles through sizes 0, 3, 6, and then repeats. In general, the jth partition of an index built with radix r cycles through the sequence $0, rj - 1, 2rj - 1, \ldots, (r - 1)rq - 1$.

Geometric Merge

- **Analysis**: Let B be the capacity of the in-memory partition P_0 and N be the total number of postings
 - there are at most $1 + \lceil \log_r(N/B) \rceil$ partitions
 - each posting merged at most once into each partition
 - total cost is $O(N \log N/B)$
Logarithmic Merge

- **Logarithmic merge** is a simplified variant of geometric merge
 - partition P_0 is in **main memory** and contains B postings
 - partition P_1 is on disk and contains up to $2B$ postings
 - partition P_2 is on disk and contains up to $4B$ postings
 - partition P_j is on disk and contains up to $2^j B$ postings
 - whenever P_0 overflows, a cascade of merges is triggered

- Log-structured merge tree (LSM-Tree) prominent in database systems (e.g., to manage logs) is based on the same principle
Wu et al. [9] use the log-structured inverted index to support high update rates when indexing social media.
Index Management in Elasticsearch

- Indexes are stored as shards
 - Each index has a fixed number of shards
 - By default 5 shards per index - primary shards
- Shards are replicated
 - Each primary shard is replicated
 - Replication factor is a parameter
- Why shards?
 - Load balance
 - Distribution
 - Fault tolerance

A shard is a fully contained horizontal partition of index
Index Management in Elasticsearch

Node 1

Node 2

Node 3

Elasticsearch cluster

R1

P0

R0

R1

P1

R0

D1

D2
Elasticsearch Shards

- Shards are immutable
- Insert only!
- New documents are added to smaller segments
- When segments grow they are merged
Elasticsearch Shards

Segment

Dictionary

a g z

d_{123}, 2 d_{125}, 2 d_{227}, 1

Posting list
Lucene Dynamic Indexing

- Segments in Lucene are immutable
 - Cannot be changed
 - Can be created, merged and deleted
- When new documents are added
 - Small segments are created
 - When number of segments grow
 - Some merging technique is used such as logarithmic merging
Dynamic Indexing

Main Memory Buffer

D1 D2 D3 D4 D5 D6 D7
Lucene Segment Merging (Insert only)

<table>
<thead>
<tr>
<th>Size</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GB</td>
<td>0 sec</td>
</tr>
<tr>
<td>500 MB</td>
<td>4.1 MB</td>
</tr>
<tr>
<td></td>
<td>1 segs; _0</td>
</tr>
<tr>
<td></td>
<td>0.0 MB merging</td>
</tr>
<tr>
<td></td>
<td>0.0 MB merged</td>
</tr>
<tr>
<td>100 MB</td>
<td></td>
</tr>
<tr>
<td>50 MB</td>
<td></td>
</tr>
<tr>
<td>10 MB</td>
<td></td>
</tr>
</tbody>
</table>
Lucene Dynamic Indexing

- **How do deletes work?**
- **When documents are deleted**
 - They are marked deleted in the segments
- **When are they purged?**
Lucene Segment Merging with Deletions

Query Processing in Elasticsearch

Node 1

Node 2

Node 3

Query
Outline

3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
3.3. Static Index Pruning

- Static index pruning is a form of **lossy compression** that
 - removes postings from the inverted index
 - allows for **control of index size** to make it fit, for instance, into main memory or on low-capacity device (e.g., smartphone)

- **Dynamic index pruning**, in contrast, refers to query processing methods (e.g., WAND or NRA) that avoid reading the entire index
Term-Centric Index Pruning

- Carmel et al. [3] propose **term-centric** static index pruning

Idea: Remove postings from posting list for term v that are unlikely to contribute to top-k result of query including v

Algorithm: For each term v

- determine k-th highest score z_v of any posting in posting list for v
- remove all postings having a score less than $\varepsilon \cdot z_v$

Despite its simplicity the method guarantees for any query q consisting of $|q| < 1 / \varepsilon$ terms a “close enough” top-k result
Document-Centric Index Pruning

- Büttcher and Clarke [2] propose document-centric index pruning

- Idea: Remove postings for document d corresponding to non-important terms for which it is unlikely to be in the query result

- Importance of term v for document d is measured using its contribution to the KL divergence from background model D

\[P[v \mid \theta_d] \log \left(\frac{P[v \mid \theta_d]}{P[v \mid \theta_D]} \right) \]

- $\text{DCP}_{\text{Const}}$ selects constant number k of postings per document

- DCP_{Rel} selects a percentage λ of postings per document
Term-Centric vs. Document-Centric

- Büttcher and Clarke [3] compare term-centric (TCP) and document-centric (DCP) index pruning on TREC Terabyte
 - Okapi BM25 as baseline retrieval model
 - on-disk inverted index: 12.9 GBytes, 190 ms response time
 - pruned in-memory inverted index: 1 GByte, 18 ms response time

<table>
<thead>
<tr>
<th>[TREC 2004 Terabyte queries (topics 701-750)]</th>
<th>BM25 Baseline</th>
<th>DCP(^{(\lambda=0.062)}_{\text{Rel}})</th>
<th>DCP(^{(k=21)}_{\text{Const}})</th>
<th>TCP(^{(k=24500)}_{(n=16000)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P@5</td>
<td>0.5224</td>
<td>0.5020</td>
<td>0.4735</td>
<td>0.4490*</td>
</tr>
<tr>
<td>P@10</td>
<td>0.5347</td>
<td>0.4837</td>
<td>0.4755</td>
<td>0.4347*</td>
</tr>
<tr>
<td>P@20</td>
<td>0.4959</td>
<td>0.4490</td>
<td>0.4224</td>
<td>0.4163</td>
</tr>
<tr>
<td>MAP</td>
<td>0.2575</td>
<td>0.1963</td>
<td>0.1621**</td>
<td>0.1808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[TREC 2005 Terabyte queries (topics 751-800)]</th>
<th>BM25 Baseline</th>
<th>DCP(^{(\lambda=0.062)}_{\text{Rel}})</th>
<th>DCP(^{(k=21)}_{\text{Const}})</th>
<th>TCP(^{(k=24500)}_{(n=16000)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P@5</td>
<td>0.6840</td>
<td>0.6760</td>
<td>0.6000**</td>
<td>0.5640**</td>
</tr>
<tr>
<td>P@10</td>
<td>0.6400</td>
<td>0.5980</td>
<td>0.5300*</td>
<td>0.5380**</td>
</tr>
<tr>
<td>P@20</td>
<td>0.5660</td>
<td>0.5310</td>
<td>0.4560**</td>
<td>0.4630**</td>
</tr>
<tr>
<td>MAP</td>
<td>0.3346</td>
<td>0.2465</td>
<td>0.1923**</td>
<td>0.2364</td>
</tr>
</tbody>
</table>
Outline

3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
Index Compression

- Sequences of non-decreasing integers (here: document identifiers) in posting lists are compressed using
 - delta encoding representing elements as difference to predecessor

 \[\langle 1, 7, 11, 21, 42, 66 \rangle \rightarrow \langle 1, 6, 4, 10, 21, 24 \rangle \]

- Variable-byte encoding: (aka. 7-bit encoding) represents integers (e.g., deltas of term offsets) as sequences of 1 continuation + 7 data bits

<table>
<thead>
<tr>
<th>docIDs</th>
<th>gaps</th>
<th>VB Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>624</td>
<td>0</td>
<td>00000100 1110000</td>
</tr>
<tr>
<td>629</td>
<td>5</td>
<td>10000101</td>
</tr>
<tr>
<td>914</td>
<td>285</td>
<td>00000100 10011101</td>
</tr>
</tbody>
</table>

- Gamma encoding: unary code to represent length followed by offset binary of an integer but with leading 1 removed
 - e.g. 13 = 1101 = 1110101
3.4 Document Reordering

- Document reordering methods seek to improve compression effectiveness by assigning document identifiers so as to obtain small gaps.

- Content based document reordering

- K-means clustering
 - similar documents get closer document ids

- K-Scan
 - Single scan k-means

- URL-based document id assignment
Content-Based Document Reordering

- Silvestri et al. [7] develop methods for the scenario when only document contents are available but no meta-data (e.g., URL)

- **Intuition**: Similar documents, having many terms in common, should be assigned numerically close document identifiers

- **Documents** are modeled as **sets** (not bags) of terms

- **Document similarity** is measured using the **Jaccard coefficient**

\[
J(d_i, d_j) = \frac{|d_i \cap d_j|}{|d_i \cup d_j|}
\]
Algorithm: TDAssign(document collection D)

// split D into equal-sized partitions D_L and D_R

pick representatives d_L and d_R (e.g., randomly)

if $(|D_L| \geq |D| / 2) \lor (|D_R| \geq |D| / 2)$

assign d to smaller partition

else if $J(d, d_L) > J(d, d_R)$

assign d to D_L

else

assign d to D_R

return $\text{TDAssign}(D_L) \oplus \text{TDAssign}(D_R)$

TDAssign has time complexity in $O(|D| \log |D|)$
\textbf{kScan}

- **Algorithm**: \texttt{kScan(document collection D)}

 // split D into k equal-sized partitions D\textsubscript{i}

 \begin{algorithm}
 \texttt{n = |D|}
 \texttt{for i = 1 \ldots k}
 \hspace{1em} \texttt{d\textsubscript{i} = longest document from D}
 \hspace{1em} \texttt{assign n/k documents with highest similarity J(d, d\textsubscript{i}) to D\textsubscript{i}}
 \hspace{1em} \texttt{D = D \setminus D\textsubscript{i}}
 \texttt{return < d from D\textsubscript{1}> \oplus \ldots \oplus <d from D\textsubscript{k}>}
 \end{algorithm}

- \texttt{kScan} has \textit{time complexity} in $O(k \cdot |D|)$

- \texttt{kScan} \textbf{outperforms} \texttt{TDAssign} in terms of compression effectiveness (bits per posting) in experiments on collections of web documents
URL-Based Document Reordering

- **Intuition:** Documents with lexicographically close URLs tend to have similar contents (e.g., www.x.com/a and www.x.com/b).

- **Algorithm:**
 - sort documents lexicographically according to their URL
 - assign consecutive document identifiers (1 \(\ldots\) |D|)
Silvestri [8] reports experiments conducted on a large-scale crawl of the Brazilian Web (about 6 million documents)

<table>
<thead>
<tr>
<th></th>
<th>VByte</th>
<th>Gamma</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>11.40</td>
<td>12.72</td>
<td>12.71</td>
</tr>
<tr>
<td>URL</td>
<td>9.72</td>
<td>7.72</td>
<td>7.69</td>
</tr>
<tr>
<td>kScan</td>
<td>9.81</td>
<td>8.82</td>
<td>8.80</td>
</tr>
</tbody>
</table>

URL-based document ordering outperforms content-based document ordering (kScan), requiring fewer bits per posting on average
3.1. Motivation
3.2. Index Construction & Maintenance
3.3. Static Index Pruning
3.4. Document Reordering
3.5. Query Processing
Query Processing

- Query processing methods operate on inverted index
 - holistic query processing methods determine the full query results (e.g., document-at-a-time and term-at-a-time)
 - top-k query processing methods (aka. dynamic index pruning) determine only the top-k query result and avoid reading posting lists completely
 - Fagin’s TA and NRA for score-ordered posting lists
 - WAND and Block-Max WAND for document-ordered posting lists
Broder et al. [1] describe WAND (weak AND) as a top-k query processing method for document-ordered posting lists.

- **DAAT-style traversal of posting lists in parallel**
- Assumes that the maximum score \(\max(i) \) per posting list is known.
- **Pivoted cursor movement** based on current top-k result.
 - Let \(\min_k \) denote the worst score in the current top-k result (1).
 - Sort cursors for posting lists based on their current document identifier \(\text{cdid}(i) \) (2).
 - Pivot document identifier \(p \) is the smallest \(\text{cdid}(j) \) such that (3)

 \[
 \min_k < \sum_{i \leq j} \max(i)
 \]

 - Move all cursors \(i \) with \(\text{cdid}(i) < p \) up to pivot \(p \)
Example: Pivoted cursor movement based on top-1 result

- **Top-1**
 - \(d_1: 8\)
 - \(a\) \(d_1, 2\) \(\ldots\) \(d_3, 1\) \(\ldots\) \(\max(a) = 3\)
 - \(b\) \(d_1, 3\) \(\ldots\) \(d_2, 3\) \(\ldots\) \(\max(b) = 3\)
 - \(c\) \(d_1, 3\) \(\ldots\) \(d_9, 3\) \(\ldots\) \(\max(c) = 3\)

- It is safe to move the cursor for posting lists \(a\) and \(b\) forward to \(d_9\)

\[
\begin{align*}
\text{cdid} & \quad \Sigma \\
\hline
d_2, 3 & 3 \\
d_3, 1 & 6 \\
d_9, 3 & 9 \\
\end{align*}
\]

- \(\min_k = 8\)
- \(p = d_9\)

(1) (2) (3)
Ding and Suel [4] propose the block-max inverted index:

- Store posting list as a sequence of compressed posting blocks.
- Each block contains a fixed number of postings (e.g., 64).
- Keep the minimum document identifier and maximum score per block.

\[
\begin{array}{ccc}
(1, 5) & (7, 2) & (11, 3) \\
\text{a} & d_1, 2 & d_3, 5 & d_7, 2 & d_9, 1 & d_{11}, 3 & d_{13}, 2 \\
\end{array}
\]

\[\max(a) = 5\]

These are available without having to decompress the block.
Block-Max WAND

- Pivoted cursor movement considering per-block maximum scores
 - determine **pivot** p according to WAND
 - perform shallow cursor movement for all cursors i with $\text{cdid}(i) < p$
 (i.e., do not decompress if a new posting block is reached)
 - if any document from current blocks can make it into top-k, i.e.:
 \[
 \min_k < \sum_{i: \text{cdid}(i) \leq p} \text{block}_\text{max}(i)
 \]
 perform deep cursor movement (i.e., decompress posting blocks) and continue as in WAND
 - **else** move cursor with minimal $\text{cdid}(i)$ to
 \[
 \min \left(\min_{i: \text{cdid}(i) \leq p} \text{next}_\text{block}_\text{mdid}(i), \text{cdid}(p + 1) \right)
 \]
Example: Pivoted cursor movement based on top-1 result

Top-1
\[d_1 : 8 \]

a d\(_1\), 2 ... d\(_3\), 1 ... (2, 1) (5, 1) (11, 3) \[\text{shallow} \]

b d\(_1\), 3 ... d\(_2\), 3 ... (2, 3) (4, 1) (10, 2) \[\text{shallow} \]

c d\(_1\), 3 ... d\(_9\), 3 ... (7, 3) (14, 1) (17, 2)

d d\(_2\), 3 ... d\(_{11}\), 3 ... \[\text{shallow} \]
Summary

- **Inverted indexes** can be efficiently constructed offline by using external memory sort or MapReduce.
- **Inverted indexes** can be efficiently maintained by using logarithmic/geometric partitioning.
- Index maintenance and query processing in Elasticsearch.
- **Static index pruning methods** reduce index size by systematically removing postings.
- **Document reordering methods** reduce index size by assigning document identifiers so as to yield smaller gaps.
- **Query processing** on document-ordered inverted indexes can be greatly sped up by pivoted cursor movement as part of WAND and Block-Max WAND.
References

Additionally you can also refer to Chapter 5 in Introduction to Information retrieval by Christopher D. Manning et.al.
Some slides were borrowed from Prof. Klaus Berberich