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3.1. Motivation

» Efficiency is about “doing things right”, i.e., accomplishing
a task using minimal resources (e.g., CPU, memory, disk)

» Scalability is about to be able to

» accomplish a larger instance of a task e.g. indexing millions/
billions of documents, large number of queries

» using additional resources (e.g., faster/more CPUs, more
memory/disk)
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Indexing & Query Processing

» Our focus will be on two major aspects of every IR system

» indexing: how can we efficiently construct & maintain
an inverted index that consumes little space

» query processing: how can we efficiently identify the top-k
results for a given query without having to read posting lists
completely

» Other aspects which we will not cover include
» caching (e.g., posting lists, query results, snippets)

» modern hardware (e.g., GPU query processing, SIMD
compression)
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Hardware & Software Trends

CPU speed has increased more than that of disk and memory:
faster to read & decompress than to read uncompressed

More memory is available; disks have become larger but not
faster: now common to keep indexes in (distributed) memory

Many (less powerful) instead of few (powerful) machines;
platforms for distributed data processing (e.g., MapReduce,
Spark)

More CPU cores instead of faster CPUs; SSDs (fast reads, slow
writes, wear out) in addition to HDDs; GPUs and FPGAs
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3.2.Index Construction & Maintenance

» Inverted index as widely used index structure in IR consists of
» dictionary mapping terms to term identifiers and statistics (e.g., idf)

» posting lists for every term recording details about its occurrences

Dictionary

........... d125, 2 d125, 2 d22r7, 1

Posting list

» How to construct an inverted index from a document collection?

» How to maintain an inverted index as documents
are inserted, modified, or deleted?




Index Construction

» Observation: Constructing an inverted index (aka. inversion)
can be seen as sorting a large number of (term, did, tf)
tuples

» seen in (did)-order when processing documents

» needed in (term, did)-order for the inverted index

» Typically, the set of all (term, did, tf) tuples does not fit into
the main memory of a single machine, so that we need to
sort using external memory (e.g., hard-disk drives)

gﬁ\ ' l I I I max planck institut

)\ informatik

"l"h ©
MAX-PLANCK-GESELLSCHAFT



Index Construction on a Single Machine

» Lester al. [5] describe the following algorithm by Heinz and Zobel
to construct an inverted index on a single machine

» let B be the number of (term, did, tf) tuples that fit into main
memory

» While not all documents have been processed
» read (up to) B tuples from the input (documents)

» construct in-memory inverted index by grouping &
sorting the tuples

» write in-memory inverted index as sorted run of (term,
did, tf) tuples to disk

» merge on-disk runs to obtain global inverted index
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Index Construction in MapReduce

» MapReduce as a platform for distributed data processing
» was developed at Google
» operates on large clusters of commodity hardware
» handles hard- and software failures transparently
» open-source implementations (e.g., Apache Hadoop) available
» programming model operates on key-value (kv) pairs
» map () reads input data (K1,v1) and emits kv pairs (kK2,V2)
» platform groups and sorts kv pairs (K2,Vv2) automatically

» reduce () sees kv pairs (ko, list<vo>) and emits kv pairs (k3,V3)
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Map/Reduce Example

Intermediate

M Red
Appers Sorting/combining Rt
dl
abaca
aacab
bbbaa {a, <dl, 16>}
cbaaa —>{b’<d|’6>
aaaaa {c, <dl, 3>}
{a, <dl,16>,<d2,1 1>}
{b, <dl, 6>, <d2, 6>}
{c,<dl, 3>}
d, <d2, 3>
P { }
abada
aadab {a,<d2,l 1>}
bbbaa — {b, <d2, 6>}
dbaaa {d, <d2, 3>}
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Index Construction in MapReduce

map (did, list<term>)
map<term, integer> tfs = new map<term, integer>();
// determine term frequencies
for each term in list<term>:
tfs.adjustCount(term, +1);
// emit postings
for each term in tfs.keys():
emit (term, (did, tfs.get(term)));

// platform groups & sorts output of map phase by term

reduce (term, list<(did, t)>)
// emit posting list
emit (term, list<(did, tf)>)

,’lr
7 . .
AT ' l I I I max planck institut
\ informatik
qe
LA CTeEISEAT

13



Index Maintenance

» Document collections are not static, but documents are
inserted, modified, or deleted as time passes; changes to the
document collection should quickly be visible in search results

» Typical approach: Collect changes in main memory

» deletion list of deleted documents

» In-memory delta inverted index of inserted and modified
documents

» process queries over both the on-disk global and in-memory delta
inverted index and filter out result documents from the deletion list

» What if the available main memory has been exhausted?
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Rebuild

» Rebuild the on-disk global index from scratch

» in a separate location; switch over to new index once
completed

» attractive for small document collections
» attractive when document deletions are common

» requires re-processing of entire document collection

» easy to implement
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Merge

» Merge the on-disk global index with the in-memory delta index

» in a separate location; switch over to new index once completed

» for each term, read posting lists from on-disk global index and in-

memory delta index, merge them, filter out deleted documents,
and write the merged posting list to disk

» requires reading entire on-disk global index

» Analysis: Let B be capacity of the in-memory delta index
(in terms of postings) and N be the total number of postings

» N/ B merge operations each having cost O(N)

» total cost is in O(N?)
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Geometric Merge

» Lester et al. [5] propose to partition the inverted index into
index partitions of geometrically increasing sizes

» tunable by parameter r
» index partition Pg is in main memory and contains up to B postings
» index partitions P1, Py, ... are on disk with capacity invariants
» partition P; contains at most (r-1) B postings
} ion P is eith . | 1R .
partition Pj is either empty or contains at least r postings

» whenever Py overflows, a merge is triggered

» Query processing has to access all (non-empty) partitions P,
leading to higher cost due to required disk seeks
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Geometric Merge

Partition 3 Partition 2 Partition 1 | Partition O

0 0 0
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Geometric Merge

» Analysis: Let B be the capacity of the in-memory partition Pg
and N be the total number of postings

» there are at most 1 + [ logr(N/B) | partitions

» each posting merged at most once into each partition

» total cost is O(N log N/B)
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Logarithmic Merge

» Logarithmic merge is a simplified variant of geometric
merge

» partition Po is in main memory and contains B postings
» partition P1 is on disk and contains up to 2B postings

» partition P2 is on disk and contains up to 4B postings

» partition Pj is on disk and contains up to 2/B postings

» whenever Po overflows, a cascade of merges is triggered

» Log-structured merge tree (LSM-Tree) prominent in
database systems (e.g., to manage logs) is based on the same
principle
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Index Maintenance for Microblogs

» Wu et al. [9] use the log-structured inverted index to support
high update rates when indexing social media
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Index Management in Elasticsearch

» Indexes are stored as shards

» Each index has a fixed number of shards™

» By default 5 shards per index - primary shards
» Shards are replicated

» Each primary shard is replicated

» Replication factor is a parameter

» Why shards!
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Index Management in Elasticsearch

Elasticsearch
cluster

A

Node | Node 2

W
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Elasticsearch Shards

Shards are immutable
Insert only!

New documents are
added to smaller
segments

When segments grow
they are merged
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Elasticsearch Shards
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Lucene Dynamic Indexing

» Segments in Lucene are immutable

» Cannot be changed

» Can be created, merged and deleted
» When new documents are added

» Small segments are created

» When number of segments grow

» Some merging technique is used such as logarithmic
merging
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Dynamic Indexing

" Main Memory Buffer
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Lucene Segment Merging (Insert only)

1 GB
500 MB
0 sec
4.1 MB
1 segs; _0O

0.0 MB mergin
0.0 MB merge

100 MB

50 MB

10 MB
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Lucene Dynamic Indexing

» How do deletes work!?
» When documents are deleted
» They are marked deleted in the segments

» When are they purged?

Marked deleted
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Lucene Segment Merging with Deletions

5 GB

0 sec
0.0 MB
1 seqgs; _0O

0.0 MB mergling
0.0 MB merged

1 GB

500 MB

100 M8

50 MB

10 MB
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Query Processing in Elasticsearch

Query

Elasticsearch
cluster
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Query Processing
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3.3. Static Index Pruning

» Static index pruning is a form of lossy compression that
» removes postings from the inverted index

» allows for control of index size to make it fit, for instance,
iINto main memory or on low-capacity device (e.g., smartphone)

a ‘d:s, 5‘ d:51,53| dv, 2(|do, 1||d11, 3||d13, &
b ds, 5|[ds, 9| [da; 94]du1, 4][dus, 2
C ds, S||de;,J|d11, 7||d1s,

» Dynamic index pruning, in contrast, refers to query processing
methods (e.g., WAND or NRA) that avoid reading the entire index




Term-Centric Index Pruning

» Carmel et al. [3] propose term-centric static index pruning

» Idea: Remove postings from posting list for term Vv that are
unlikely to contribute to top-k result of query including v

» Algorithm: For each term v

» determine k-th highest score z, of any posting in posting list for v

» remove all postings having a score less than € -z,

» Despite its simplicity the method guarantees for any query q consisting
of |g| < 1/ € terms a“close enough” top-K result
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Document-Centric Index Pruning

Buttcher and Clarke [2] propose document-centric index pruning

ldea: Remove postings for document d corresponding to non-
Important terms for which it is unlikely to be in the query result

Importance of term V for document d is measured using its
contribution to the KL divergence from background model D

Plv|68s]
P[”UWD]>

P[U|9d]log<

DCPconst selects constant number K of postings per document

DCPRrel selects a percentage A of postings per document
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Term-Centric vs. Document-Centric

» Buttcher and Clarke [3] compare term-centric (TCP) and
document-centric (DCP) index pruning on TREC Terabyte

» Okapi BM25 as baseline retrieval model
» on-disk inverted index: 12.9 GBytes, |90 ms response time

» pruned in-memory inverted index: | GByte, 18 ms

response time [ TREC 2004 Terabyte queries (topics 701-750) ]

BM25 Baseline | DCPL %% | DOpS=2l | opls=2io00)

Const (n=16000)
P@5 0.5224 0.5020 0.4735 0.4490*
P@10 0.5347 0.4837 0.4755 0.4347*
P@20 0.4959 0.4490 0.4224 0.4163
MAP 0.2575 0.1963 0.1621** 0.1808

[ TREC 2005 Terabyte queries (topics 751-800) |

BA25 Baseline | DOPRL™ | DOPEZT | TOPI=2000

P@b5 0.6840 0.6760 0.6000** 0.5640**
P@10 0.6400 0.5980 0.5300* 0.5380**
P@20 0.5660 0.5310 0.4560** 0.4630**

MAP 0.3346 0.2465 0.1923** 0.2364
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Index Compression

» Sequences of non-decreasing integers (here: document identifiers) in
posting lists are compressed using

» delta encoding representing elements as difference to predecessor
(1,7,11,21,42,606 ) ======-= » (1,6, 4, 10,21, 24)

» Variable-byte encoding: (aka. 7-bit encoding) represents integers
(e.g., deltas of term offsets) as sequences of 1 continuation + 7

data bits
docIDs | 624 629 914
gaps O S 2895

VB Code | OO000100 11110000 | 10000101 | 00000100 10011101

» Gamma encoding: unary code to represent length followed by offset
binary of an integer but with leading 1 removed

» e.g. 13=1101 = 1110101
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3.4 Document Reordering

Document reordering methods seek to improve
compression effectiveness by assigning document
identifiers so as to obtain small gaps

Content based document reordering
K-means clustering

» similar documents get closer document ids
K-Scan

»  Single scan k-means

URL-based document id assignment
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Content-Based Document Reordering

» Silvestri et al. [7] develop methods for the scenario when only

document contents are available but no meta-data (e.g.,
URL)

» Intuition: Similar documents, having many terms in common,
should be assigned humerically close document identifiers

» Documents are modeled as sets (not bags) of terms

» Document similarity is measured using the Jaccard

coefficient d: O d.
J(d;,dj) = ——
d; U d,

4]



Top-Down Bisecting

» Algorithm: TDAssign(document collection D)

/I split D into equal-sized partitions D and DR
pick representatives d. and dr (e.g., randomly)
if IDL|=|D|/2) v (|Dgr| = |D|/ 2)

assign d to smaller partition
else if J(d, d.) > J(d, dr)

assign d to D
else

assign d to DR

return TDAssign(DL) ® TDAssign(DRr)

» TDAssign has time complexity in O(|D| log |D|)
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kScan

» Algorithm: kScan(document collection D)

/I split D into K equal-sized partitions D;

n = |D|

fori=1... kK
di = longest document from D
assign N/k documents with highest similarity J(d, d;) to D;
D=D\D

return < d from D1> ® ... ® <d from Dy>

» kScan has time complexity in O(k |D|)

» kScan outperforms TDAssign In terms of compression

effectiveness (bits per posting) in experiments on
collections of web documents
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URL-Based Document Reordering

» Silvestri [8] examines the effectiveness of URL-based
document reordering when compressing collections of
web documents

» Intuition: Documents with lexicographically close URLs
tend to have similar contents (e.g., www.x.com/a and
www.x.com/b)

» Algorithm:
» sort documents lexicographically according to their URL

» assign consecutive document identifiers (1 ... |D|)
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http://www.x.com/a
http://www.x.com/b

Content-Based vs. URL-Based

» Silvestri [8] reports experiments conducted on a large-

scale crawl of the Brazilian Web (about 6 million
documents)

VByte Gamma  Delta
Random | 11.40 12.72 12.71

kScan 9.81 38.82 8.80

» URL-based document ordering outperforms content-based
document ordering (kScan), requiring fewer bits per
posting on average

@zﬁ\ ' l I l I max planck institut

)N informatik

SN informati
MAX-PLANCK-GESELLSCHAFT

45



Qutline

3.1. Motivation

3.2. Index Construction & Maintenance
3.3. Static Index Pruning

3.4. Document Reordering

3.5. Query Processing

46



Query Processing

» Query processing methods operate on inverted index

» holistic query processing methods determine the full

query results
(e.g., document-at-a-time and term-at-a-time)

» top-k query processing methods (aka. dynamic index
pruning) determine only the top-k query result and
avoid reading posting lists completely

» Fagin’s TA and NRA for score-ordered posting lists

» WAND and Block-Max WAND for document-
ordered posting lists
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WAND

» Broder et al.[|] describe WAND (weak AND) as a top-k query processing
method for document-ordered posting lists

» DAAT-style traversal of posting lists in parallel
» assumes that the maximum score max(i) per posting list is known
» pivoted cursor movement based on current top-K result

» let mMink denote the worst score in the current top-K result (1)

» sort cursors for posting lists based on their current document identifier

cdid(i) (2)
» pivot document identifier p is the smallest cdid(j) such that (3)
ming < Z max (%)
1<J
» move all cursors i with cdid(i) < p up to pivot p
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WAND

» Example: Pivoted cursor movement based on top-1 result

Top-1 al |di, 2| .. |[dz 1| .. max@)=3

d;:8 A
b| [di, 8] .. |dg, & ... max(b)=3
f
c| |di, 8| e. |do, S ... Mmax(c)=38
?
cdid
da, 3

» It is safe to move the cursor

(o2 I IO T I BN B |

1 1 i = d , 1 =d
for posting lists a and b mine=8 |G p=do
forward to dog do, 3

(1) () 3)
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Block-Max WAND

» Ding and Suel [4] propose the block-max inverted index

» store posting list as sequence of compressed posting
blocks

» each block contains a fixed number of postings (e.g., 64)

» keep minimum document identifier and maximum
score per block

(1, 8) (7, 2) (11, 3)
d dl, 2 dg, 5 df?, P2 dg, 1 d11, 3 d15, P2
max(a)=95

these are available without having to decompress the block
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Block-Max WAND

» Pivoted cursor movement considering per-block maximum scores
» determine pivot p according to WAND

» perform shallow cursor movement for all cursors | with
cdid(i) < p
(i.e., do not decompress if a new posting block is reached)

» If any document from current blocks can make it into top-K, i.e.:

miny < Z block_max(7)
i:cdid (i) <p

perform deep cursor movement (i.e., decompress posting
blocks) and continue as in WAND

» else move cursor with minimal cdid(i) to

7 ax planck institut edrd (1 <l)
] ' l I p l I :llll‘f{(\)lll:}d:]l(l\k " IL Z (’I/)
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Block-Max WAND

» Example: Pivoted cursor movement based on top-1 result

(R, 1) (8,1) (11,3)
Top-1 al [di,8] .. |ds 1| ... 1) 4 max(a) =3
d.:8 n shallow
(@, 3) 4,1) (10,%)
bl |di, 3| ... |ds, 3] .. 1) 1) max(b) = 3
4 shallow
(7, 3) (14, 1) (17, 2)
c| |di1, 8| e. |do, 3 max(c)=3
?
d dg, 3| «.. |d11, 3 coe IIla,X(d)=5
?
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Summary

» Inverted indexes can be efficiently constructed offline
by using external memory sort or MapReduce

» Inverted indexes can be efficiently maintained
by using logarithmic/geometric partitioning

» Index maintenance and query processing in elasticsearch

» Static index pruning methods reduce index size
by systematically removing postings

» Document reordering methods reduce index size
by assigning document identifiers
so as to yield smaller gaps

» Query processing on document-ordered inverted indexes
can be greatly sped up by pivoted cursor movement
as part of WAND and Block-Max WAND
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For more on index compression refer to the slides from IRDM 2015 http://resources.mpi-
inf.mpg.de/departments/d5/teaching/ws 15 16/irdm/slides/irdm2015-ch | | -handout.pdf

For query processing like top-k NRA and TA algorithms refer to http://resources.mpi-

inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch|2-
queryprocessing.pdf

Additionally you can also refer to Chapter 5 in Introduction to Information retrieval by
Christopher D. Manning et.al.
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http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch11-handout.pdf
http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch12-queryprocessing.pdf

» Some slides were borrowed from Prof. Klaus Berberich
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