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ABSTRACT
The enormous growth of the world wide web in recent years
has made it important to perform resource discovery e�-
ciently. Consequently, several new ideas have been pro-
posed in recent years; among them a key technique is focused
crawling which is able to crawl particular topical portions
of the world wide web quickly without having to explore all
web pages. In this paper, we propose the novel concept of
intelligent crawling which actually learns characteristics of
the linkage structure of the world wide web while perform-
ing the crawling. Speci�cally, the intelligent crawler uses
the inlinking web page content, candidate URL structure,
or other behaviors of the inlinking web pages or siblings in
order to estimate the probability that a candidate is use-
ful for a given crawl. This is a much more general frame-
work than the focused crawling technique which is based on
a pre-de�ned understanding of the topical structure of the
web. The techniques discussed in this paper are applicable
for crawling web pages which satisfy arbitrary user-de�ned
predicates such as topical queries, keyword queries or any
combinations of the above. Unlike focused crawling, it is not
necessary to provide representative topical examples, since
the crawler can learn its way into the appropriate topic.
We refer to this technique as intelligent crawling because
of its adaptive nature in adjusting to the web page linkage
structure. The learning crawler is capable of reusing the
knowledge gained in a given crawl in order to provide more
e�cient crawling for closely related predicates.
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1. INTRODUCTION
With the rapid growth of the world wide web, the prob-

lem of resource collection on the world wide web has become
very relevant in the past few years. Users may often wish to
search or index collections of documents based on topical or
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keyword queries. Consequently, a number of search engine
technologies such as Yahoo!, Lycos and AltaV ista [15, 16,
17] have 
ourished in recent years. The standard method for
searching and querying on such engines has been to collect
a large aggregate collection of documents and then provide
methods for querying them. Such a strategy runs into prob-
lems of scale, since there are over a billion documents on the
web and the web continues to grow at a pace of about a mil-
lion documents a day. This results in problems of scalability
both in terms of storage and performance.
Some interesting methods proposed in recent years are

those of Fish Search [3] and focused crawling [6]. The essen-
tial idea in focused crawling is that there is a short range
topical locality on the web. This locality may be used in
order to design e�ective techniques for resource discovery
by starting at a few well chosen points and maintaining the
crawler within the ranges of these known topics. In ad-
dition, the hubs and authorities [13] for the di�erent web
pages may be identi�ed and used for the purpose of crawl-
ing. The idea in this framework is that resources on a given
topic may occur in the form of hub pages (web pages con-
taining links to a large number of pages on the same topic)
or authorities (documents whose content corresponds to a
given topic). Typically, the hubs on a given topic link to the
authorities and vice-versa. The method in [6] uses the hub-
authority model in addition to focusing techniques in order
to perform the crawl e�ectively. Starting with these meth-
ods, there has been some recent work on various crawlers
which use similar concepts [8, 14] in order to improve the
e�ciency of the crawl. Other related work may be found in
[2, 4, 5, 11, 9, 10].
The basic idea of crawling selectively is quite attractive

from a performance perspective; however, the focused crawl-
ing technique [6] relies on a restrictive model based on cer-
tain pre-ordained notions of how the linkage structure of the
world wide web behaves. Speci�cally, the work on focused
crawling [6] assumes two key properties: (1) Linkage Lo-
cality: Web pages on a given topic are more likely to link
to those on the same topic. (2) Sibling Locality: If a web
page points to certain web pages on a given topic, then it
is likely to point to other pages on the same topic. Such a
page may also be referred to as a hub [13], and the highly
topic-speci�c pages that it points to are referred to as au-
thorities. Typically the hubs on a subject are likely to point
to authorities and vice-versa.
In order to achieve the goal of e�ciently �nding resources

of a given topic, the focused crawling technique [6] starts
at a set of representative pages on a given topic and forces
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the crawler to stay focused on this topic while gathering
web pages. A topic is de�ned with the help of a hypertext
classi�er which is pre-trained with a representative data set
and corresponding topical classes. The crawling system is
dependent on a hierarchical scheme in order to e�ectively
keep the crawler focused on web pages which are closely re-
lated to the current topic. Relevance is forced on the crawler
with the use of hierarchy-dependent hard and soft focusing
rules. Both of these rules use classes which are hierarchi-
cally related to the crawl-topic in order to identify which
candidate documents are most suitable for exploration. In
particular, the observation that using a greater level of speci-
�city (hard focus rule) [7] for forcing relevance may cause
the crawler to stagnate shows the sensitivity of the system
to using arbitrary predicates such as a non-hierarchical clas-
si�cation system or a combination of di�erent kinds of con-
straints on the web page. Provision of such trained hier-
archical classi�ers which are well representative of the web
resource structure is not always possible from a practical
perspective. The stagnation results of [7] would indicate
that the crawling technique is also highly sensitive to the
quality of the hierarchy used. Users are often likely to
want to provide arbitrary predicates in order to perform re-
source discovery. These arbitrary predicates could be sim-
ple keywords (as in search engines where pre-crawled data
is stored), topical searches using hypertext classi�ers (which
could be non-hierarchical), document-to-document similar-
ity queries, topical linkage queries, or any combination of the
above. A predicate is implemented as a subroutine which
uses the content and URL string of a web page in order to
determine whether or not it is relevant to the crawl. It is
assumed that a user has the 
exibility of providing a module
which computes this predicate.
Another of the assumptions in the focused crawling model

is the availability of starting points which are well represen-
tative of the topical area of discovery. Users may not be
aware of the best possible starting points which are repre-
sentatives of the predicate. It is also clear that a crawler
which is intelligent enough to start at a few general pages
and is still able to selectively mine web pages which are
most suitable to a given predicate is more valuable from the
perspective of resource discovery.
Focussed crawling is a �xed model in which it is assumed

that the web has speci�c linkage structure in which pages
on a speci�c topic are likely to link to the same topic. Even
though there is evidence [7, 13] that the documents on the
world wide web show topical locality for many broad topical
areas, there is no clear understanding of how this translates
to arbitrary predicates. In addition, the method does not
use a large amount of information which is readily available
such as the exact content of the inlinking web pages, or the
tokens in a given candidate URL. Such data may provide
valuable information in order to direct a crawl e�ectively;
however, it has not been accounted for in the focused crawl-
ing model. In general, one would expect that for an arbitrary
predicate, one of these factors may turn out to be more im-
portant, and that the ordering of the di�erent factors may
vary with the crawl.
A more interesting and signi�cantly more general alter-

native to focused crawling is intelligent crawling; here no
speci�c model for web linkage structure is assumed; rather
the crawler gradually learns the linkage structure statisti-
cally as it progresses. Since each (candidate) web page can

be characterized by a large number of features such as the
content of the inlinking pages, tokens in a given candidate
URL, the predicate satisfaction of the inlinking web pages,
and sibling predicate satisfaction, it may be useful to learn
how these features for a given candidate are connected to
the probability that it would satisfy the predicate. In gen-
eral, we expect the exact nature of this dependence to be
predicate-speci�c; thus, even though for a given predicate
the documents may show topical locality, this may not be
true for other predicates. For some predicates, the tokens in
the candidate URLs may be more indicative of the exact be-
havior, whereas for others the content of the inlinking pages
may provide more valuable evidence. There is no way of
knowing the importance of the di�erent features for a given
predicate a-priori. It is assumed that an intelligent crawler
would learn this during the crawl and �nd the most relevant
pages.
We propose an intelligent crawling system which starts

at a few general starting points and collects all web pages
which are relevant to the user-speci�ed predicate. Initially,
the crawler behavior is as random as a general crawler, but
it gradually starts auto-focusing as it encounters documents
which satisfy the predicate. In general, a crawler which
is insensitive to the starting point is more stable, since it
can always learn its way into the appropriate topic. Even
when good starting points are available, the stability of a
learning crawler ensures that it remains on topic throughout
the entire process.
One of the aims of this paper is to illustrate that depend-

ing upon the nature of the predicate, the importance of dif-
ferent factors (eg. short range locality, content information,
etc.) can vary quite a bit. Therefore, a learning crawler has
certain advantages over a crawler which has been designed
with �xed notions about the structure of the world wide
web. This also helps in the creation of arbitrary predicates
which so not depend critically on a hierarchical classi�ca-
tion scheme in order to keep the crawler on topic. Since the
world wide web is rapidly evolving over time [12], it may
often be desirable to repeat the same queries at di�erent
time periods. Alternatively, it is often desirable to perform
crawls for very closely related predicates. In such cases, the
learning crawler provides a key advantage, since it is able to
reuse the learning information that it gained from a given
crawl in order to improve the e�ciency of subsequent crawls.
In the empirical section, we will show speci�c examples of
such cases.
This paper is organized as follows. In the next section,

we discuss the general framework for the crawler, and the
factors which may be used for the purpose of self-learning.
In section 3, we will provide an overview of the statistical
model which is used for the purpose of the crawling. The
actual implementation and algorithmic details are discussed
in section 4. Section 5 discusses the empirical results, and
the conclusions and summary are discussed in section 6.

2. GENERAL FRAMEWORK
The crawler is implemented as a graph search algorithm

which works by treating web pages as nodes and links as
edges. Each time a web page is crawled, it is parsed in
order to �nd both its text content and the Universal Re-
source Locators (URLs) that it links to. The crawler keeps
track of the nodes which it has already visited, as well as a
potential list of candidates. A web page is said to be a can-
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Figure 1: Illustration of candidates during a crawl

didate when it has not yet been crawled, but some web page
which links to it has already been crawled. An example of
a set of candidates is illustrated in Figure 1. For each such
candidate, considerable amount of information is available
based on the web pages which link to it, their content, and
the exact tokens in the URL address of the candidate itself.
This information may be used by the crawler to decide the
order in which it visits the web pages. In addition, an aggre-
gate level of self-learning information is collected during the
crawl which models the relationship between the features in
the candidates to the actual predicate satisfaction probabil-
ity. To summarize, the priority of the nodes in the order in
which they are likely to satisfy the predicate is based on two
factors:
� Self-Learning Information which has already been col-
lected during the crawl. We denote this information by K.
� The features of the current sets of candidates and their
relationship to K.
Thus, at each point the crawler maintains candidate nodes

which it is likely to crawl and keeps calculating the priorities
of the nodes using the information about which nodes are
most likely to satisfy the predicate. The pages are crawled
in this order, and the appropriate statistical information is
collected based on the relationship between the features in
the candidate URLs and the predicate satisfaction of the
crawled web page. This statistical information may be used
to create the model which learns the structure of the web as
more and more pages are crawled.

2.1 Statistical Model Creation
In order to create an e�ective statistical model which mod-

els linkage structure, what are we really searching for? We
are looking for speci�c features in the web page which makes
it more likely that the page links to a given topic. These fea-
tures may include but are not restricted to:
� The content of the web pages which are known to link to
the candidate URL (the set of words).
� URL tokens from the candidate URL (eg. if we are looking
for skiing web pages, the word \ski" in the URL is highly
suggestive.) For this purpose, we also discuss feature ex-
traction mechanisms from the tokens inside the candidate
URL. In general, URL names of web pages contain highly
relevant information, since web page and server names are
usually not chosen randomly.
� The nature of the inlinking web pages of a given candidate
URL. Thus, if the inlinking web pages satisfy the predicate,

then the candidate is also more likely to satisfy the predicate
itself.
� The number of siblings of a candidate which have already
been crawled that satisfy the predicate. A web page is said
to be a sibling of a candidate URL, when it is linked to by
the same page as the candidate. When a candidate URL
has a large number of siblings which satisfy the predicate,
then this is good evidence that the candidate itself satis�es
the predicate.
In general, the importance of any of the above kinds of

features may be predicate dependent; it is the crawler's job
to learn this. It is expected that as the crawl progresses,
and more and more web pages satisfying the predicate are
encountered the system will be able to show high speci�city
in �nding web pages which satisfy the user-de�ned predicate.

3. OVERVIEW OF STATISTICAL MODEL
The model input consists of the features and linkage struc-

ture of that portion of the world wide web which has already
been crawled so far, and the output is a priority order which
determines how the candidate URLs (linked to by the al-
ready crawled web pages) are to be visited. Our statistical
model maintains a dynamically updated set of statistical in-
formation K which it has learned during the crawl, and a set
of features in the given web page and computes a priority
order for that web page using this information.
The set of features may be any of the types which have

been enumerated above including the content information,
URL tokens, linkage or sibling information. This priority
order dictates which candidate is next picked to be crawled.
As we shall see later, the particular priority order which
we determine calculates the interest factor on the likelihood
that the features for a candidate web page make it more
likely that this page satis�es the predicate.

3.1 Probabilistic Model for Priorities
In this section, we discuss the probabilistic model for cal-

culation of the priorities. In order to calculate the priorities,
we compute the ratio which signi�es whether a given set of
events makes it more likely for a candidate to satisfy the user
de�ned predicate. In order to understand this point a little
better, let us consider the following case. Suppose that we
are searching for web pages on online malls. Let us assume
that only 0:1% of the pages on the web correspond to this
particular predicate. However, it may happen that when the
word \eshop" occurs inside one of the inlinking pages then
the probability that the candidate is a page belonging to an
online mall increases to 5%. In that case, the interest ratio
for the event corresponding to the word \eshop" occurring
in the inlinking page is 5=0:1 = 50.
In order to explain the model more concisely, we will de-

velop some notations and terminology. Let C be the event
that a crawled web page satis�es the user de�ned predicate.
For a candidate page which is about to be crawled, the value
of P (C) is equal to the probability that the web page will
indeed satisfy the user-de�ned predicate if it is crawled. The
value of P (C) can be estimated by the fraction of web pages
already crawled which satisfy the user de�ned predicate.
Let E be a fact that we know about a candidate URL.

This fact could be of several types. For example, it could be
a fact about the content of the inlinking web pages into this
candidate URL, it could be a fact about the set of tokens in
the string representing the URL, or it could be a fact about
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the linkage structure of the URL. We will explore all of these
options slightly later.
Our knowledge of the event E may increase the probabil-

ity that the web page satis�es the predicate. For example,
consider the case when the candidate URL is linked to by
another web page which belongs to the same topic. In such
a case, it is evident from earlier results on focused crawling
[6], that the resulting web page is more likely to satisfy the
predicate. Thus, in this case, we have P (CjE) > P (C). In
order to evaluate P (CjE), we use the following relationship:

P (CjE) = P (C \ E)=P (E) (1)

Therefore, we have:

P (CjE)=P (C) = P (C \E)=(P (C) � P (E)) (2)

The idea is that the values of P (C \ E) and P (E) can be
calculated using the information that has been accumulated
by the crawler. This is the self-learning data K which is
accumulated over time during the crawling process. Corre-
spondingly, we calculate the interest ratio for the event C,
given event E as I(C;E). Therefore, we have:

I(C;E) = P (CjE)=P (C) (3)

Note that when the event E is favorable to the probability
of the candidate satisfying the predicate, then the interest
ratio I(C;E) is larger than 1. Correspondingly, when the
event E is unfavorable, then this interest ratio will be in
the range (0; 1). Such a situation occurs when the event E
makes the candidate less desirable to crawl.
Let E1 : : : Ek be a set of k events. Let the composite

event E be de�ned by the occurrence of all of these events.
In other words, we have E = E1 \ E2 : : : Ek. Then the
composite interest ratio is de�ned as follows:

I(C;E) = �ki=1I(C;Ei) (4)

Again, a composite event E is interesting when the corre-
sponding interest ratio is larger than 1. We will now pro-
ceed to examine the di�erent factors which are used for the
purpose of intelligent crawling.

3.2 Content Based Learning
In order to identify the value of the content in determining

the predicate satisfaction of a given candidate page, we �nd
the set of words in the web pages which link to it (inlinking
web pages). These words are then used in order to decide the
importance of the candidate page in terms of determining
whether or not it satis�es the predicate. Let W1;W2 : : :Wn

be the set of the words in the lexicon. Only a small subset
of these words are present in the web pages which point to
the candidate. We de�ne the event Qi to be true when the
word i is present in one of the web pages pointing to the
candidate.
Let M = fi : Event Qi is trueg

Now, let us consider a given word Wi such that i 2 M .
Therefore, the event Qi is true. If C be the event that a
candidate URL is likely to satisfy the predicate, then let us
calculate the value of I(C;Qi):

I(C;Qi) = P (C \Qi)=(P (C) � P (Qi)) (5)

It now remains to estimate the parameters on the right hand
side of the above equation. In order to estimate these pa-
rameters, we can only rely on the experimental evidence of

the web pages which we have crawled so far. The exact de-
tails of these estimations will be discussed in a later section.
It is noted that most words will convey noisy information,

and may not be of much use in calculating the interest ratios.
In fact, since most words are unlikely to have much bearing
on the probability of predicate satisfaction, the �ltering of
such features is important in reduction of the noise e�ects.
Therefore, we use only those words which have high statis-
tical signi�cance. In order to do so, we calculate the level of
signi�cance at which it is more likely for them to satisfy the
predicate. Let n(C) be the number of pages crawled so far
which satisfy the user de�ned predicate. Then, if N is the
total number of pages which have been crawled so far, we
have n(C) = N �P (C). The signi�cance factor for the event
C and condition Qi is denoted by S(C;Qi) and is calculated
as follows:

S(C;Qi) = (P (CjQi)� P (C))=(
p
P (C) � (1� P (C))=n(C))

(6)

Note that we use the absolute value of the above expression
since the value of P (CjQi) may be either larger or smaller
than P (C); correspondingly the interest ratio will be either
smaller or larger than 1. For some pre-de�ned signi�cance
threshold t, we now de�ne the signi�cant composite ratio
to include only those terms which are in M , and for which
S(C;Qi) is above this threshold. Note that the same process
can be applied to all the words which are not inM ; however,
such words are rarely statistically signi�cant. Consequently,
it is of value to use only the subset of the words which results
in a noise free evaluation of the level of signi�cance of the
importance of a web page. The interest ratio for content
based learning is denoted by Ic(C), and is calculated as the
product of the interest ratios of the di�erent words in any
of the inlinking web pages which also happen to satisfy the
statistical signi�cance condition. Correspondingly, we have:

Ic(C) = �i:i2M;S(C;Qi)�tI(C;Qi) (7)

Recall that the value of t denotes the number of standard
deviations by which the presence is greater than the mean
for the word to be useful. Under the assumption of normally
distributed data, a value of t = 2 results in about 95% level
of statistical signi�cance. Therefore, we chose the value of
t = 2 consistently in all results tested.

3.3 URL Token Based Learning
The tokens contained inside a Universal Resource Locator

(URL) may carry valuable information about the predicate-
satisfaction behavior of the web page. The process discussed
above for the content of the URL can also be applied to the
tokens in the URL. For example, a URL which contains the
word \ski" in it is more likely to be a web page about skiing
related information. Therefore we �rst apply the step of
parsing the URL. In order to parse the URL into tokens, we
use the \." and \/" characters in the URL as the separators.
We de�ne the event Ri to be true when token i is present in
the URL pointing to the candidate. As before, we assume
that the event that the candidate satis�es the predicate is
denoted by C. The interest ratio for the event C given Ri

is denoted by I(C;Ri). Let P be the set of all tokens which
are present in the candidate URL. As in the case of content
based learning, we de�ne this interest ratio as follows:

I(C;Ri) = P (C \Ri)=P (C) � P (Ri) (8)
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Table 1: Topic Locality Learning Information

Type of link Expected Actual
Pred- Pred P (C) � P (C) f1

Pred- Non-Pred P (C) � (1� P (C)) f2
Non-Pred- Pred P (C) � (1� P (C)) f3

Non-Pred- Non-Pred (1� P (C)) � (1� P (C)) f4

The estimation of the parameters on the right hand side of
this equation will be discussed in a later section. Note that
not all tokens would have a useful interest ratio; for exam-
ple a token such as \www" does not provide any signi�cant
information. In order to use only those tokens which have
signi�cance to a crawl, we calculate the corresponding sig-
ni�cance factor:

S(C;Ri) = (P (CjRi)� P (C))=(
p
P (C) � (1� P (C))=n(C))

(9)

Correspondingly, we de�ne the composite interest ratio for
the token based scheme as the product of the interest ratios
of all tokens in P which are above the signi�cance threshold
of t. Therefore, we have:

Iu(C) = �i:i2P;S(C;Ri)�tI(C;Ri) (10)

The value of the threshold t was again chosen to be 2 for
the same reasons as discussed in the previous subsection.

3.4 Link Based Learning
The idea in link based learning is somewhat similar to

the focused crawler discussed in [6]. The focused crawler
works on the assumption that there is very high short range
topic locality on the web. In general, this fact may or may
not be true for a given predicate. Therefore, the intelligent
crawler tries to learn the signi�cance of link based infor-
mation during the crawl itself. This signi�cance is learned
by maintaining and updating statistical information about
short-range topic locality during the crawl itself. Thus, if
the predicate shows considerable short-range locality, the
crawler would learn this and use it e�ectively. Consider,
for example, when the crawler has collected about 10000
URLS and a fraction of P (C) = 0:1 of them of them satisfy
a given predicate. If the linkage structure were completely
random, then the expected fraction of links for which both
the source and destination web page satisfy the predicate
is given by 1%. In reality, because of the short range topic
locality discussed in [6], this number may be much higher
and is equal to f1 = 7%. The corresponding interest ratio is
is given by 0:07=0:01 = 7. Since this is greater than 1, it im-
plies a greater degree of short range topic locality than can
be justi�ed by random behavior. In Table 1, we illustrate
the di�erent cases for a link encountered by the crawler for
which both the inlinking and linked-to web page have al-
ready been crawled. The four possible cases for the pages
are illustrated in the �rst column of the Table. The second
column illustrates the expected proportion of web pages be-
longing to each class, if the linkage structure of the web were
completely random. At the same time, we continue to col-
lect information about the actual number of each of the four
kinds of links encountered. The corresponding fractions are
illustrated in Table 1.

Now, consider a web page which is pointed to by k other
web pages, m of which satisfy the predicate, and k �m of
which do not. (We assume that these k pages have already
been crawled; therefore we can use the corresponding in-
formation about their predicate satisfaction; those inlinking
pages to a candidate which have not yet been crawled are ig-
nored in the calculation.) Then, for each of them web pages
which satisfy the predicate, the corresponding interest ratio
is given by p = f1=(P (C) � P (C). Similarly, for each of the
k�m web pages which do not satisfy the predicate, the corre-
sponding interest ratio is given by q = f3=(P (C)�(1�P (C)).
Then, the �nal interest ration Il(C) is given by pm � qk�m.

3.5 Sibling Based Learning
The sibling based interest ratio is based on the idea that

a candidate is more likely to satisfy a predicate if many of
its siblings also satisfy it. (As in [13], a parent that has
many children which satisfy the predicate is likely a hub
and therefore a good place to �nd relevant resources.) For
instance, consider a candidate that has 15 (already) visited
siblings of which 9 satisfy the predicate. If the web were
random, and if P (C) = 0:1, the number of siblings we expect
to satisfy the predicate is 15 � P (C) = 1:5. Since a higher
number of siblings satisfy the predicate (i.e. 9>1.5) , this
is indicative that one or more parents might be a hub, and
this increases the probability of the candidate satisfying the
predicate.
To compute an interest-ratio based on this observation, we

used the following rule: If s is the number of siblings that
satisfy the predicate, and e the expected under the random
assumption, then when s=e > 1 we have positive evidence
that the candidate will satisfy the predicate as well. (Sib-
lings that have not yet been visited are ignored, since we
don't know whether they satisfy the predicate.) In the ex-
ample above, the interest ratio for the candidate is 9/1.5=6,
which suggests that the candidate is likely to satisfy the
predicate. We denote this interest ratio by Is(C).

3.6 Combining the Preferences
The aggregate interest ratio is a (weighted) product of

the interest ratios for each of the individual factors. Equiv-
alently, we can combine the preferences by summing the
weighted logarithms of individual factors.

PriorityV alue = wc � log(Ic(C)) + wu � log(Iu(C)) +

wl � log(Il(C)) + ws � log(Is(C))

Here the values wc, wu, wl and ws are weights which are used
in order to normalize the di�erent factors. By increasing the
weight of a given factor, we can increase the importance of
the corresponding priority. In our particular implementa-
tion, we chose to use weights such that each priority value
was almost equally balanced, when averaged over all the
currently available candidates. We will see that one of the
interesting outcomes of such a strategy is that even though
the di�erent factors performed di�erently depending upon
the nature of the predicate and the starting seed, the over-
all performance of the combination of factors was always
superior to each individual factor. We will provide further
insights on this issue in the empirical section.

4. IMPLEMENTATION ISSUES
The basic crawler algorithm is illustrated in Figure 2. The

algorithm works by crawling web pages in a speci�c prior-
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Subroutine Truncate-List(Priority-List, max-size);
f Discard the last few elements of the priority list,
so that only max-size candidates remain; g

Subroutine Reassign-Priorities(Priority-List, K)
f Calculate the priorities of each candidate using the elements
in K; Re-order Priority-List using the recomputed priorities
so that the highest priority item occurs �rst on the list; g

Algorithm Intelligent-Crawler();
begin
Priority-List= f Starting Seeds g;
while not(termination) do
begin
Reassign-Priorities(Priority-List, K);
Truncate-List(Priority-List, max-size);
Let W be the �rst element on Priority-List;
Fetch the web page W ;
Delete candidate W from Priority-List;
Parse W and add all the outlinks in W to Priority-List;
If W satis�es the user-de�ned predicate, then store W ;
Update K using content and link information for W ;
end

end

Figure 2: The Intelligent Crawler Algorithm

ity order based on the self-learning information K collected
by the algorithm during its crawl. Every time a candidate
URL is crawled, it is parsed and all the unvisited candidates
linked to by the URL are added to the priority list. This list
has a maximum length depending upon the main memory
available to the system. This value is denoted bymax-size in
Figure 2. Therefore, in each iteration, we need to truncate
the list in order to take this into account. This is achieved
by the procedure Truncate-List. (In all our experiments, we
did not experience any limitations because of the truncation
of the candidate list.) In order to keep track of the candi-
dates that have been visited so far, we maintain a hash table
containing the corresponding information. In addition, the
priorities are re-computed and adjusted in each iteration by
the procedure Reassign-Priorities. The algorithm may be
terminated when the Priority-List is empty, or when none
of the elements on Priority-List has an interest ratio high
enough to indicate that any of them are interesting enough
from the perspective of predicate satisfaction. This corre-
sponds to the termination criterion of Figure 2.
The data in K consists of the content based learning infor-

mation, the URL token information, the link based learning
information and the sibling based information. Speci�cally,
we maintain the following in K:
(1) Number Nt of URLs crawled.
(2) Number Nc of URLs crawled which satisfy predicate.
(3) Number ni of web pages crawled in which word i occurs.
(4) Number nCi of web pages crawled in which the word i
occurs, and which satisfy the predicate C.
(5) Number mi of web pages crawled in which the token i
occurs in the URL.
(6) Number mC

i of web pages crawled in which the token i
occurs in the URL and which satis�es the predicate C.
(7) Number Nl of links crawled. (A link is said to have been
crawled, when both the source page A and pointed-to page
B of that link have been crawled. Note that B may not
necessarily have been crawled using pointer from page A.)

(8) Number of links of each of the four types in Table 1. The
corresponding numbers are denoted byNpp, Npn, Nnp, and
Nnn respectively.
Let Qi denote the event that the word i occurs in at least

one of the inlinking web pages. Similarly, let Ri denote the
event that the token i occurs in the candidate URL. Let k
be the number of crawled web pages inlinking into the can-
didate URL, andm be the number of them which satisfy the
predicate. Once the above information has been collected,
the values of the key parameters are estimated as follows:

P (C) = Nc=Nt

P (CjRi) = P (C \Ri)=P (Ri) = mC
i =mi

Il(C) =
�

Npp

Nl�P (C)�P (C)

�m
�
�

Nnp

Nl�P (C)�(1�(P (C)))

�(k�m)

The only other quantity we need to calculate is P (CjQi).
This is the probability of predicate satisfaction given that
word i occurs in one of the inlinking web pages. This is
slightly cumbersome to maintain from the perspective of
implementation since each time a web page is crawled, we
need to analyze the content of all of its inlinking web pages.
Therefore, we computed the value of P (CjQi) using the con-
tent of the candidates themselves instead of the inlinking
pages. Note that this is a heuristic �x, but we found it to be
a reasonable one for the purpose of the algorithm. Therefore
we have:

P (CjQi) = P (C \Qi)=P (Qi) = nCi =ni (11)

The information corresponding to K is maintained either in
arrays or in counters. Speci�cally, counters were maintained
for each of the items (1), (2), (7) and (8) of K (as enumerated
above). We also maintained arrays in order to keep track
of each of the items (3), (4), (5), and (6). This is because
these items require either word-speci�c or token-speci�c fre-
quency information. Each time a web page is crawled, the
corresponding counters and elements in the arrays were up-
dated.
We used the algorithm of Figure 2 in order to traverse the

candidates. We used a linked list and hash table to store
the information about web pages. The linked list contains
information on pages yet to be visited (i.e. candidates) such
as the candidate's priority, interest ratios, and page content.
Whenever we crawl a candidate page, we add the candidates
linked to by that web page into a linked list. The links are
added only if the web page has not already been crawled
earlier. This check is made by using a lookup into the hash
table. Nodes from the linked list are removed as soon as a
candidate has been visited. The hash table contains infor-
mation on every candidate URL which has been determined
so far. This helps us in obtaining quick access to the linked
list of candidates. The priorities are also maintained in the
same hash table. Once the page is actually visited we mark
it in the table so that we know not to fetch the page again.

5. EMPIRICAL RESULTS
The primary factor which was used to evaluate the per-

formance of the crawling system was the harvest rate P (C),
which is the percentage of the web pages crawled satisfying
the predicate. We ran experiments using the di�erent learn-
ing factors over di�erent kinds of predicates and starting
points. This section will show that the behavior of the web is
quite heterogeneous in terms of which factors a�ect the per-
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formance of a crawler. For example, for some sets of pred-
icates, the content based information is the most reliable,
whereas for other sets the URL tokens provide the great-
est amount of knowledge. The intelligent crawling model
is then able to use the composite model e�ectively in order
to discover relevant resources by learning the factors which
in
uence the crawl most e�ectively. This results in a robust
composite model which is relatively insensitive to the nature
of the starting point and the predicate. This would tend to
indicate that a model which is based on a �xed understand-
ing of the behavior of the web (such as that discussed in [7])
has certain inherent shortcomings which a learning model
can address more e�ectively. We note also that the method
in [7] critically depends upon a hierarchical classi�er and
well chosen starting points in order to perform topical re-
source discovery. Without providing such information, the
technique cannot �nd meaningful resources. The predicates
used in this paper are arbitrary, and the crawler is started
at very general points such as the Yahoo! homepage. Thus,
our crawling system relies on a far more general and realistic
model; the results are therefore not directly comparable with
those discussed in [7]. However, for the purpose of providing
a good frame of reference to the nature of the speci�city of
the predicates used, we have included the results of a random
crawling technique. In the random crawler, the candidates
are fetched in random order. Our experiments show that
with the set of predicates that we used, the random crawler
obtains an average hit ratio of about 1%. This e�ectively
means that only one out of 100 randomly crawled pages are
relevant to the predicate. With the intelligent crawler, we
ran experiments varying not only the predicates and seeds,
but also repeated each crawl once using all the factors, and
once using only a single factor. This was done to study how
each of the individual factors fare versus the composite.
In order to illustrate our results, we present the lift curve

which illustrates the gradual improvement1 of the harvest
rate P (C) with the number of URLs crawled. As expected,
the lift curve illustrates that the crawling system is initially
slow to �nd relevant web pages, but gradually improves in
its harvest rate, as it learns the nature of the relationship
between the predicate and the the di�erent features of the
inlinking/sibling web pages. An example of the lift curve
is illustrated in Figure 3, in which we have averaged the
performance of the crawler on the predicate sports for �ve
di�erent starting points. The particular predicate which we
used for this case was a (
at) classi�er2 which provided a
numerical value for the relevance of a given category. We
assumed that the predicate was satis�ed when this numerical
relevance was higher than a certain threshold. In the same
�gure, we have also shown the performance of a random
crawler. It is clear that the amount of lift is signi�cant
enough to result in a crawling system which �nds a set of
web pages such that the majority of them are relevant to
the predicate.
Since the graph in Figure 3 is averaged over multiple runs,

we have only shown the average performance for the com-
posite case when a combination of all the factors was used.
In later charts, we will also illustrate how well the di�erent
factors performed individually using individual predicates
and starting points.

1We have named the curve in this way because of its natural
improvement in terms of the harvest rate.
2A description of this classi�er may be found in [1].

An example of an individual lift curve in which the pred-
icate is the category \`SPORTS" and the seed is the arts
subsection of yahoo.com is illustrated in Figure 4. We used
a subdirectory of Yahoo! to show that the crawler is able to
learn its way out of the arts related section and then �nd its
way into the sports related directory within Yahoo!. Note
that the link based interest ratio (which depends critically
upon topical locality) has a slower learning curve than the
content based and the token based interest ratios. An in-
teresting aspect of this curve is that even though there is
a very wide variation between the harvest rate of the dif-
ferent interest ratios, the composite curve outperforms any
of these individual graphs. Note the behavior of the sibling
based interest ratio. At the point where it improves, the
crawler hits the site www.majorleaguebaseball.com. This is
an example of a sports related site which has very high con-
nectivity to other sports sites. Hence, it is only at this point
that the curve tends to show a somewhat improved perfor-
mance. The sibling based interest ratio performs lower than
the other factors on average, but it still outperforms the ran-
dom crawler. In many cases, the tokens in the URL tended
to show a similar behavior when a token which has high rel-
evance to the predicate was encountered. For instance, in
one experiment with starting point www.salon.com and cat-
egory \SPORTS" as the predicate, our crawler eventually
hits sites with tokens such as \sports" in the URL. When
that happens, the crawler is likely to quickly learn the close
relationship between the token and the actual predicate. At
this point the crawler is able to e�ciently leverage this in-
formation in order to quickly �nd pages that are very likely
to satisfy the predicate based on their URLs. Of course,
a crawler may not always �nd tokens in the URL which
are very representative of its predicate-satisfaction. In such
cases, the noise-thresholding technique is likely to indicate
that such is the case, and it is the other factors (in the com-
posite ratio) which will be given greater importance.

5.1 Robustness across choice of predicates
We were able to obtain consistent results across a variety

of predicates. Our predicates comprised a combination of
keywords, categories, and speci�c tokens in the URL. An
example of a predicate consisting of a combination of a cat-
egorical speci�cation and a keyword is illustrated in Figure
5. These are the results of a crawl with the initial seed
www.yahoo.com and predicate corresponding to travel re-
lated sites which contain the keyword \Paris". In this case,
the token based interest-ratio performed quite poorly unlike
the previous case. The link based ratio performed slightly
better, but did not perform as well as the composite ratio
for most of the crawl. Thus, the trends were quite di�erent
from those observed in the Figure 4 in terms of the ordering
of the factors which were the most important. In Figure
6, we have illustrated a crawl with the seed www.ebay.com
and the predicate for automotive related sites which con-
tain the keywords \Toyota" and \SUV". One of the strik-
ing aspects of this particular predicate was that the linkage
based predicate showed very low harvest rates because of
poor topical locality. Thus, this is an example of a predi-
cate in which there is no short-range topical locality. The
other factors seemed to show good harvest rates, as did the
composite crawling technique. Thus, the results discussed
in Figures 4, 5, and 6 reinforce the fact that di�erent factors
contribute di�erently depending upon the nature of the un-
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Figure 3: An Averaged Lift Curve
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Figure 4: Seed is www.yahoo.com/ARTS and pred-
icate is category \SPORTS"

derlying predicate. At the same time, the use of all factors
in creating a composite learning ratio shows considerable
robustness across the di�erent crawls.

5.2 Robustness across choice of seeds
One of the interesting observations was that the relevance

of the di�erent factors was sometimes even sensitive to the
choice of the seed from which a crawl was started. An exam-
ple of such a case is illustrated in Figures 7 and 8, in which
the predicate corresponds to the \SPORTS" related cate-
gory, whereas the initial starting seeds are www.amazon.com
amd www.ucla.edu respectively. In this case, it is clear from
the two �gures that the ordering of the harvest rates for the
linkage based and content based ratios is reversed.
In spite of this, the composite crawling system is quite

robust to the use of di�erent seeds. In Figure 9 we show a
comparison of several crawls with the predicate \SPORTS"
but using di�erent seeds. As is seen in Figure 9, four of the
�ve starting points lead to similar behavior when all factors
were used. Even the one seed (www.amazon.com) which
does not perform quite as well as the others yields a harvest
rate of around 40% which is quite e�ective in terms of the
overall harvest rate.
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Figure 5: Seed is www.yahoo.com and predicate
\TRAVEL related sites containing keyword Paris"
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Figure 6: Seed is www.ebay.com and predicate \AU-
TOMOTIVE related sites that contain keywords
Toyota SUV"
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Figure 7: Seed is www.amazon.com and predicate is
category \SPORTS"
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Table 2: Performance of Di�erent Kinds of crawls

Predicate Harvest Rate Random Starting Seed

Keyword=\shopping", URL Keyword=\.uk" 36% 0:4% uk.yahoo.com
Category=Automobiles, URL Keyword=\.uk" 41% 0:2% uk.yahoo.com

Category = Sports, Keyword=\baseball", URL Keyword=\.com" 33% 0:07% www.yahoo.com
Category=Automobiles, Keyword=\Dealer" 39% 0:09% www.yahoo.com
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Figure 8: Seed is www.ucla.edu and predicate is cat-
egory \SPORTS"
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Figure 9: Comparison of several crawls with the
predicate \SPORTS" but using di�erent seeds

In addition we tested the crawling system with a wide
variety of predicates and starting points and ran the sys-
tem for about 10000 page crawls in each case. We present
the summary results in Table 2. Note that the predicates
(�rst column of table) consist of widely varying structures
depending upon di�erent kinds of constraints such as to-
kens in the URL (denoted by URL Keyword), keywords in
the web page, the use of a classi�er or any combination of
the above. The resulting harvest rate for the crawl is illus-
trated in the second column. In each case, it is much higher
than the performance of a random crawler and is usually
between 0:25% and 0:5%. Such a harvest rate illustrated
that the intelligent crawler is an e�cient option for �nding
highly speci�c resources.

5.3 Behavior of the composite factor
An observation from the previous charts is the behavior

of the composite factor as related to the individual charts -
in each case, the composite factor performs almost as well
as or better than the best of the four factors. This is a very
desirable property, though it is also somewhat intriguing-
after all, if the composite factor is a weighted average of the
four priorities, then why should the crawling behavior also
not be averaged? This is because at di�erent times in the
crawl, di�erent factors may show high evidence of predicate
satisfaction, whereas the other factors may show little or
no evidence. However, the composite factor will typically
be most highly in
uenced by the factor which shows an in-
terest factor signi�cantly larger than 1, whereas the other
factors will not in
uence the priority value as much. This
is especially the case for the content and URL token based
learning methods which have noise-thresholding techniques
built in. Thus, at di�erent points in the crawl, the composite
is being created by a domination of some individual factor
which is the best for that moment in time. This results in
an overall cumulative advantage over any single factor when
evaluated throughout a period of crawling.

5.4 Reuse of Learning Information
Since the world wide web is a dynamic entity, it may of-

ten be the case that the same queries are executed repeat-
edly over a period of time. In focused crawling [7], every
new crawl must start from scratch with the same amount
of information. Since a learning crawler collects informa-
tion which relates the features of the inlinking/sibling pages
of a candidate to its predicate satisfaction probability, we
expected that if we were to reuse data collected from pre-
vious crawls, the crawler's initial learning e�ort could be
reduced. An example of such a case is illustrated in Figure
10. Here the predicate is the SPORTS category and the
starting seed corresponds to www.usatoday.com. It is clear
that the curve which reuses the information from the previ-
ous crawl starts o� with a very high predicate satisfaction
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Figure 10: Example of information reuse where the
seed is www.usatoday.com

probability. This high predicate satisfaction in the begin-
ning saves a considerable amount of initial e�ort in a slow
learning phase which has a low harvest rate. The ability
to reuse such information has many other potential appli-
cations, such as the use of the knowledge learned from one
starting seed to a crawl with a di�erent seed and closely re-
lated predicate. For example, we did one query on shopping
related sites which contained the keyword \books". We per-
formed a crawl starting from the seed www.yahoo.com and
stored the learning information. Then we performed a sec-
ond crawl, except that in this case we modi�ed the predicate
a little. In this case, the predicate was constrained to have
the extension \.uk" in its URL and the crawl was started
from the UK (uk.yahoo.com) homepage of Yahoo!. Thus,
our second predicate is interested only in shopping books
in the United Kingdom. The crawl from the UK section of
Yahoo! was started in two ways: (1) Using the information
learned from the crawl starting at www.yahoo.com and (2)
Without using this information. Upon collecting the data
from the �rst 5000 web pages which were crawled, we found
that the crawler which used the learning information showed
a harvest rate of 42%, whereas, the crawler which did not use
the information showed a harvest rate of only 28%. Thus,
there is a clear advantage in the use of a learning crawler,
in which the memory from each crawl can be e�ectively un-
leashed for other crawls. Clearly, such leverage cannot be
used in crawling techniques such as those discussed in [6, 7]
because of their inherently non-learning and static nature.

6. CONCLUSIONS AND SUMMARY
In this paper, we proposed an intelligent crawling tech-

nique which uses a self-learning mechanism that can dy-
namically adapt to the particular structure of the relevant
predicate. A crawler which is intelligent enough to learn the
predicate-dependent features is inherently more 
exible in

retaining e�ectiveness. Several factors are used during
the crawl in order to evaluate its e�ectiveness, including the
content of the web page, the URL tokens, the linkage struc-
ture, and the URL behavior. We show that di�erent factors
are more relevant for di�erent predicates. Based on these
di�erent factors, we were able to create a composite crawler
which is able to perform robustly across di�erent predicates.
We also illustrated some advantages of the learning crawler
in terms of its ability to reuse the learning information from
a given crawl in order to improve subsequent crawls.
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