Paper ID 422

Evaluating Topk Queries over Web-Accessible Databases

Nicolas Bruno Luis Gravano Aaiie Marian
Computer Science Department
Columbia University

{nicolas,gravano,amelie }@cs.columbia.edu

Abstract

A query to a web search engine usually consists of a list of keywords, to which the search engine responds
with the best or “top”k pages for the query. This topquery model is prevalent over multimedia collections
in general, but also over plain relational data for certain applications. For example, consider a relation with
information on available restaurants, including their location, price range for one diner, and overall food rating.
A user who queries such a relation might simply specify the user’s location and target price range, and expect
in return the best 10 restaurants in terms of some combination of proximity to the user, closeness of match to
the target price range, and overall food rating. Processing such tperies efficiently is challenging for a
number of reasons. One critical such reason is that, in many web applications, the relation attributes might not
be available other than through external web-accessible form interfaces. For example, our food ratings of choice
might be provided by a web site that, given a restaurant name, returns the number of “stars” for the restaurant
according to the site’s critics. To identify the top-10 restaurants for a user query, we will then need to repeatedly
query this remote ratings site for a potentially large set of candidate restaurants. In this paper, we study how to
process tope queries efficiently in this setting, where the attributes for which users specify target values might
be handled by external, autonomous sources with a variety of access interfaces. We present several algorithms
for processing such queries, and evaluate them thoroughly using both synthetic and real web-accessible data.

1 Introduction

A query to a web search engine usually consists of a list of keywords, to which the search engine responds with th
best or “top”k pages for the query. Thisp-k query models prevalent over multimedia collections in general, but
also over plain relational data for certain applications where users do not expect exact answers to their queries, bt
instead a rank of the objects that best match a specification of target attribute values. Additionally, some application:s
require accessing data that resides at or is provided by remote, autonomous sources that exhibit a variety of acce
interfaces, which further complicates query processing.

Top-k queries arise naturally in applications where users have relatively flexible preferences or specifications
for certain attributes, and can tolerate (or even expect) fuzzy matches for their queriest 4uepy in this context
is then simply an assignment of target values to the attributes of a relation. To answek guepy, a database

system identifies the objects that best match the user specification, using a given scoring function.

Example 1: Consider a relationR with information about restaurants in the New York City area. Each tuple (or
object) in this relation has a number of attributes, including Address, Rating, and Price, which indicate, respectively,
the restaurant’s location, the overall food rating for the restaurant represented by a grade between 1 and 30, and
the average price for a diner. A user who lives at 2590 Broadway and is interested in spending &2&uiod a
top-quality restaurant might then ask a top-10 quéAddress="2590 Broadway”, Price$25, Rating=3¢. The

result to this query is a list of the 10 restaurants that match the user’s specification the closest, for some definition

of proximity.ll

Processing top- queries efficiently is challenging for a number of reasons. One critical such reason is that,
in many web applications, the relation attributes might not be available other than through external web-accessible
form interfaces. For instance, in our example aboveRka&ng attribute might be available through the Zagat-
Review web sitet, which, given an individual restaurant name, returns its food rating as a number between 1 and
30 (random accegs This site might also return a list of all restaurants ordered by their food ratorte(l accegs
Similarly, thePrice attribute might be available through the New York Times critics at the NYT-Review web. site
Finally, the scoring associated with tieldressattribute might be handled by the MapQuest web jtevhich
returns the distance (in miles) between the restaurant address and the user-specified address.

To process a top-query over web-accessible databases, we have to interact with sources that export different
interfaces and access capabilities. In our restaurant example, a possible query processing strategy is to start with t
Zagat-Review source, which supports sorted access, to identify a set of candidate restaurants to explore further. Th

source returns a rank of restaurants in decreasing order of food rating. To compute the final score for each restaura

http://www.zagat.com
2http:/iwww.nytoday.com
3http://www.mapquest.com

and identify the top-10 matches for our query, we then obtain the proximity between each restaurant and the usel
specified address by querying MapQuest, and check the average dinner price for each restaurant individually at th
NYT-Review source. Hence, we interact with three autonomous sources and repeatedly query them for a potentiall
large set of candidate restaurants.

Recently, Fagin et al. [7] have presented query processing algorithms férdapries for the case where all
intervening sources support sorted access (plus perhaps random access as well). Unfortunately, these algorithr
are not designed for sources that only support random access (e.g., the MapQuest site in our example above), a
such sources abound on the web. In fact, as we will see, simple adaptations of these algorithms do not perform we
over random-access sources. In this paper, we present novel processing strategie fqueops over sources
that support just random access, just sorted access, or both. We also develop non-trivial adaptations of Fagin et al
algorithms for random-access sources, and compare these technigues experimentally using a variety of synthet
and real web-accessible data sets.

The rest of the paper is structured as follows. Section 2 reviews relevant work. Section 3 defines our query anc
data model, and introduces notation and terminology that we use in Section 4 to present our new techniques and ol
adaptations of Fagin et al.'s algorithms. We evaluate the different strategies experimentally in Section 6 using the
data sets and metrics that we outline in Section 5. Finally, Section 7 discusses variations to our query model an

highlights interesting directions for future work.

2 Related Work

Relevant work on tog: query processing can roughly be divided in two groups: evaluation strategies for multiat-
tribute queries over multimedia repositories, and evaluation strategies for queries over relational databases.

To process queries involving multiple multimedia attributes, Fagin proposed the FA algorithm [6], which was
developed as part of IBM Almaden’s Garlic project. This algorithm can evaluaté tpgeries that involve several
independent multimedia “subsystems,” each producing scores that are combined using arbitrary monotonic aggreg
tion functions. Fagin showed that this technique is optimal in a probabilistic sense. Recently, Fagin et al. improved
on this result and introduced instance-optimal algorithms for the case when all sources provide either both sortec
and random access (algorithm TA) or only sorted access (algorithm NRA) [7]. These technigques do not directly
handle sources that provide only a random-access interface, which are the focus of our paper. In Section 4.3, hov
ever, we adapt Fagin et al.’s algorithms to our scenario. We experimentally compare the resulting techniques witt
our new approach in Section 6.

Nepal and Ramakrishna [14] andu@Zer et al. [10] presented variations of Fagin’s original algorithm [6] for
processing queries over multimedia databases. In particulamtz€r et al. [10] reduce the number of random

accesses through the introduction of more stop-condition tests and by exploiting the data distribution. The MARS

system [15] also uses variations of the FA algorithm and views queries as binary trees where the leaves are single
attribute queries and the internal nodes correspond to “fuzzy” query operators. Intermediate results are pipelined u
the tree structure until they reach the root and are returned to the user. The MARS system can produce results in
demand-driven way, where users ask for the “next best element” for their queries.

Chaudhuri and Gravano also built on Fagin’s original FA algorithm and proposed a cost-based approach for
optimizing the execution of top-queries over multimedia repositories [3]. Their strategy translates a given top-
guery into a selection query that returns a (hopefully tight) superset of the actuatupfes. This approach does not
guarantee that the taptuples are retrieved by the selection query into which the originaktgpery was mapped,
and might require repeating the mapping process with a less “selective” predicate. Ultimately, the evaluation strategy
consists of retrieving the top- tuples from as few sources as possible, for sdme> k, and then probing the
remaining sources by invoking existing strategies for processing selections with expensive predicates [11, 12]. Thi
technique is then closely related to algorithm TA-EP from Section 4.3.2, which we evaluate experimentally in
Section 6.

Over relational databases, Carey and Kossmann [1, 2] present techniques to optintizputafes when the
scoring is done through a traditional SQL order-by clause. If the scoring function involves multiple attributes, then
this technigue generally requires an initial scan of the complete relation during query processing. Donjerkovic and
Ramakrishnan [5] propose a probabilistic approach taktopery optimization. This work focuses on relations that
might be the result of complex queries including joins, for example, and where the ranking condition involves a
single attribute. Finally, Chaudhuri and Gravano [4] exploit multidimensional histograms to procdssjuepies
over an unmodified relational DBMS by mapping tbueries into traditional selection queries.

Additional related work includes the general area of information integration, where autonomous sources usually
allow only a subset of all queries to be issued over their relations. Halevy et al. [13] introdpability records
to model the interface exported by each source, including the limited variable bindings accepted (alsqueajled
templatesn [16]). These capability records are then used to annotate query trees [8] to produce efficient (and valid)
execution plans. Our query model can be regarded as some instantiation of this modelfayuepes, where
each attribute is handled by exactly one source and where sources provide two kinds of query interfaces, namel
sorted and random accesses. Our work in this paper exploits the special characteristids qiedies to produce
efficient processing strategies for producing ranked query results. Finally, the WSQ/DSQ project [9] presents ar
architecture for integrating web-accessible search engines with relational DBMSs. The resulting query plans car
manage asynchronous external calls to reduce the impact of potentially long latencies. The WSQ/DSQ ideas coul
be incorporated to our work to speed up the execution of ouktqperies further and depart from the sequential

guery plans on which we focus in this paper.

3 Query Model

In traditional relational systems, query results consist of a set of tuples. In contrast, the answgr-togaeryis
anorderedset of tuples, where the ordering is based on how close each tuple matches the given query. Furthermore
the answer to a top-query does not include all tuples that “match” the query, but rather only thé: lsesh tuples.
In this section we define our data and query models in detail.

Consider a relatiork with attributesAy, A4, ..., A,, plus perhaps some other attributes not mentioned in our
queries. A topk query over relatiork simply specifies target values for the attributes Therefore, a tog: query
is an assignment of valudsly = qo, 41 = ¢1, ..., A, = ¢, } to the attributes of interest. Note that some attributes
might always have the same “default” target value in every query. For example, it is reasonable to assume that th
Ratingattribute in Example 1 above might always have an associated query value of 30. (It is unclear why a user
would be interested in a lesser-quality restaurant, given that the target price can be specified in the query.) In suc
cases, we simply omit these attributes from the query specification, and assume default values for them.

Consider a topgz queryq = {Ag = qo, A1 = q1,-..,An = ¢, } over arelationR. The score that each tuple
(or objec) t in R receives foly is in turn a function of’s score for each individual attributé; with target valuey;.
Specifically, each attributd; has an associatestoring function Scorg that assigns a proximity score gpandt;,
wheret; denotes the value of objetfor attribute A;. To combine these individual attribute scores into a final score
for each object, each attributé; has an associated weight indicating its relative importance in the query. Then,

the final score for objeatis defined as a weighted sum of the individual scofes:
n
Scordq, t) = ScoreCompsg, s1,...,5,) = Y w; - 5;
i=0

wheres; = Scorey, (¢;, t;). The result of a togs query is then the ranked list of tiieobjects with the highes$core

value.

Example 1: (cont.) Consider again the restaurant example that we introduced above. We can define the scoring
function for the Address attribute of a query and an object as the inverse of the distance (say, in miles) between the
two addresses. Similarly, the scoring function for the Price attribute might be a function of the difference between
the target price and the object’s price, perhaps “penalizing” restaurants that exceed the target price more than
restaurants that are below it. The scoring function for the Rating attribute might simply be the object’s value for
this attribute (again, assuming that users are always interested in high-quality restaurants). If price and quality are
more important to a given user than the location of the restaurant, then the query might assign).2ayeaht to

attribute Address, and @.4 weight to attributes Price and Ratin§.

40ur model and associated algorithms can be adapted to handle other scoring functionsif.gvhich we believe are less prevalent

than weighted sums for the applications that we consider.

Recently, techniques have been presented to evaluate qojeries over traditional relational DBMSs [4, 5].
These strategies assume that all attributes of every object are readily available to the query processor. Howeve
in many applications some attributes might not be available “locally,” but rather will have to be obtained from an
external web-accessible source instead. For instanceélrtbe attribute in our example is provided by the NYT-
Review web site and can only be accessed by querying this site’s web interface. Of course, in some cases we mig
be able to download all this remote information and cache it locally with the query processor. However, this will
not be possible for legal or technical reasons for some other sources, or might lead to highly inaccurate or outdate
information.

This paper focuses on the efficient evaluation of kogueries over a (distributed) “relation” whose attributes are
handled and provided by autonomous sources accessible over the web. Such sources present a variety of interfac

for querying. Specifically, we distinguish between three types of sources based on their access interface:

Definition 1. [Source Types]Consider an attributed; with target valuey; in a top+ queryq. Assume further that

A; is handled by a sourcd. We will say thatS is an S-Source if, giveq, we can obtain front a list of objects
sorted in descending order of Scareby (repeated) invocation ofgetNext ¢(g¢;) interface. Alternatively, assume
that A; is handled by a sourc® that only returns scoring information when prompted about individual objects.
In this case, we will say thak is an R-Source.R provides random access ofy through agetScore gr(qg;,t)
interface, where is a set of attribute values that identify an object in question. (As a small variation, sometimes an
R-Source will return the actual value of an object for attributg rather than its associated score.) Finally, we will

say that a source that provides both sorted and random access is an SR-Source.

Example 1: (cont.) In our running example, attribute Rating is associated with the Zagat-Review web site. This

site provides both a list of restaurants sorted by their rating (sorted access), and the rating of a specific restaurant
given its name (random access). Hence, Zagat-Review is an SR-Source. In contrast, the Price attribute, from thi
NYT-Review site, is returned only for specific restaurants (random access). Hence, NYT-Review is an R-Sourc
Finally, Address is handled by the MapQuest web site, which returns the distance (in miles) between the restauran

address and the user-specified address. Hence, MapQuest is an R-Jource.

To define query processing strategies for kogueries involving the three source types above, we need to

consider the cost that accessing such sources entails:

Definition 2: [Access Cost]Consider an R-Source or SR-Sougand a topk query. We will refer to the average
time that it takesR to return the score for a given object 88(R). (R stands for “random-access time.”) Similarly,
consider an S-Source or SR-SougeWe will refer to the average time that it tak&go return the top object for
the query agS(S). (tS stands for “sorted-access time.”) We will make the simplifying assumption that successive

invocations of thgetNext interface also take timeS(S) on average.

5

As described in Section 2, Fagin et al. [7] presented query processing algorithms for the case where all source
are either of typ&R-Sourcé€TA algorithm) or of typeS-SourcéNRA algorithm). As we will see, simple adaptations
of these algorithms do not perform as well for the common scenario viR¥Seurcesources are also available. In

the remainder of this paper, we address this limitation of existing:tqpery processing techniques.

4 Evaluating Top-k Queries

In this section we present different strategies for evaluating thé tpperies that we defined in Section 3. Specif-
ically, in Section 4.1 we present a naive but expensive approach to evaludteqtmries. Then, in Section 4.2

we introduce our novel strategies. Finally, in Section 4.3 we adapt existing techniques designed to solve simila
problems to our framework.

For clarity, we make a number of simplifying assumptions in the remainder of this section. We discuss their
impact and how we can relax some of them in Section 7. Specifically, we assume that the scoring function for
all attributes return values that range between 0 and 1, with 1 denoting a perfect match. Also, we assume tha
exactly oneS-Sourcesource (denoted and associated with attribuié,) and multipleR-Sourcesources (denoted
R4, ..., R, and associated with attributely, . . . , A,,) are available. (Th&-Source5 could in fact be alsR-Source
source. In such a case, we will ignore its random-access capabilities in our discussion.) In addition, we assume the
only one source is accessed at a time, so all probes are sequential during query processing.

Following Fagin [6, 7], we do not allow our algorithms to rely on “wild guesses”: thus a random access cannot
zoom in on a previously unseen object, i.e., on an object that has not been previously retrieved under sorted acce:
from a source. Therefore, an object will have to be retrieved fronStS®urcesource before being probed on any
R-Source Since we have exactly orf&SourceS available, objects iry are then the only candidates to appear in
the answer to a top-query. We refer to this set of candidate object®dmectg.S). Lastly, we assume that all
R-SourcesourcesRy, . . ., R, “know about” all objects irDbjectg.S). In other words, given a queryand an object
t € Objectg.S), we can probe sourcR; and obtain the scorBcorey, (¢;, t) corresponding tg and¢ for attribute
A;, foralli =1,...,n. Of course, this is a simplifying assumption that is likely not to hold in practice, where each
R-Sourcesource might be autonomous and not coordinated in any way with the other sources. For instance, in oul
running example the NYT-Review site might not have reviewed a specific restaurant, and hence it will not be able
to return a score for thBrice attribute for such a restaurant. We discuss how to deal with situations like this one in

Section 7.

4.1 The Naive Strategy

The simplest technique to evaluate a foguery g consists of retrieving all partial scores for each object in
Object4S), calculating the corresponding combined scores, and finally returning tigects with the highest

scores. We can summarize this procedure as follows:

6

Algorithm Naive (Input: top+« queryq)
1. Get the best objec¢tfor attribute Ay, with scoresy, from S-Sources: (¢, sg) < getNextg(qo).

2. Retrieve scors; for attribute A; and objectt via a random probe tR-SourceR;: s; < getScorey, (gi, t)
fori=1,...,n.

3. Calculatée’s final score forg: score = ScoreComsg, s1, ..., Sp)-
4. If score is one of the topk scores seen so far, keep objealong with its score.

5. (a) If we have retrieved all objects @bjectdS), return the current top-objects with their scores.
(b) Otherwise, get the next best objedtom S-SourceS: (¢, sp) < getNext¢(go) and return to step 2.

Using this simple procedure we are guaranteed to return the correct answer to the gikequtay- However, we

need to retrieve all scores for each objedDinjects.S). This can be unnecessarily expensive, especially considering
that many scores are not really needed to produce the final answer for the query, as we will see. Using the cost
from Definition 2, this strategy takes timé]| - (tS(S) + > tR(Ri)>, where|S] is the number of objects in
Objectg.S).

4.2 Our Proposed Strategies

In this section we present novel strategies to evaluate: tgperies over on&-Sourceand multipleR-Source. Our
techniques lead to efficient executions by explicitly modeling the cost of random proReSaarce. Unlike the
naive strategy of Section 4.1, our new algorithms chdusth the best object and the best attribute on which to
probe next at each step of the process. In fact, we will in general not probe all attributes for each object under
consideration, but only those attributes that are needed to identify tHedbjects for a query.

Consider an objectthat has been retrieved froBtSourceS and for which we have already probed some subset
of R-Source R’ C {Ry,...,R,}. Lets;, = Scorey,(¢;,t;) if R; € R'. (Otherwise,s; is undefined.) Then, an
upper bound for the score of objegtdenoted/ (), is the maximum possible score that objecan get, consistent
with the information from the probes that we have already perfornb&d) is then the score thatwould get if¢

had the maximum score of 1 for every attribute in the query that has not yet been processed for

s; If R; € R (i.e., R; has been probed fa)

U(t) = ScoreCombsy, 31, ..., Sy), Wheres; =
1 otherwise

If object ¢ has not been retrieved froi$ yet, then we definé/(t) = ScoreCombsy, 1,...,1), wheres, is the
Scorey, score for the last object retrieved frofh) or 1 if no object has been retrieved yet.cannot have a larger
score forA4, than this object, sinc8-SourceS returns objects in descending orderSuorey,,.)

Similarly, alower bound for the score of an objecalready retrieved fron$, denotedL(t), is the minimum

possible score that objettan get, consistent with the information from the probes that we have already performed.

L(t) is then the score thatwould get ift had the minimum score of 0 for every attribute in the query that has not

yet been processed fér
s; if R; € R (i.e., R; has been probed fay

L(t) = ScoreCombxsy, 81, . . ., 8,), Wheres; =
0 otherwise

If object has not been retrieved frosyet, then we definé.(¢) = 0.
Finally, theexpected score for an objecalready retrieved fron$, denotedE(¢), is obtained by assuming that
the score for each attribute that has not yet been probed is the expected partial score, which in absence of mo

sophisticated statistics we set(t®:

; ifR; € R (i.e.,R; has been probed fa
E(t) = ScoreCombsy, 1, . - ., 8,), Wheres; = g (P)
0.5 otherwise
If object ¢ has not been retrieved frosiyet, then we defind’(t) = ScoreCombp3-,0.5,...,0.5), wheres, is the

Scorey, score for the last object retrieved froff) or 1 if no object has been retrieved yeScbrey,(qo,to) can
range between 0 ang.)

In Section 4.2.1 we define what constitutes an optimal strategy in our framework. In Section 4.2.2 we describe
one new strategyJpper, which can be seen as mimicking the optimal solution when no complete information is
available. Finally, in Section 4.2.3 we derive another techniffiek, which aims at greedily minimizing some

“distance” between the current state and the final state.

4.2.1 The Optimal Strategy

Given a topk query ¢, the Optimal strategy for evaluating is the most efficient sequence gétNext and
getScore calls that produce the top-objects for the query along with their scores. Furthermore, such an op-
timal strategy must also provide enough evidence (in the form of at least partial scores for additional objects) to
demonstrate that the returned objects are indeed the correct answer for theguepy. In this section we show
one such optimal strategy, built assuming complete knowledge of the object scores. Of course, this is not a realisti
query processing technique, but it provides a useful lower bound on the cost of any processing strategy for a quer
without “wild guesses.” Additionally, the definition of the optimal strategy that we present below provides useful
insight that we exploit to define an efficient algorithm in the next section.

As a first step towards our optimal strategy, consider the following property, which holds for any processing

algorithm for a topk query:

Property 1. Consider a topt queryq and suppose that, at some point in time, we have retrieved a set of dbjects
from S-SourceS and probed some of the R-Soutder these objects. Assume further that the upper bdud for
an objectt € Objectg.5) is strictly lower than the lower bound(¢;) for £ different objects,...,t; € T. Thent

is guaranteed not to be one of the thwbjects forg.

Using this property, we can view an optimal processing strategy as (a) computing the final scores for the actua
top-k objects for a given query, which are needed in the answer, while (b) probing the fewest and least expensive
attributes on the remaining objects so that their upper bound is strictly lower than the scores ofittabjegks.

This way, an optimal strategy identifies and scores the top objects, while providing enough evidence that the rest o

the objects have been safely discarded.

Algorithm Optimal (Input: top-% queryq)

1. Letscore;, be the actual score of thé" best object for toge queryq. (Optimalassumes complete knowledge
of all object scores.)

2. Get the best objectfor attribute A, with scoresy, from S-SourceS: (¢, sg) « getNextg(qo).

3. If U(t) < scorey, return the topk objects. (No unretrieved object @bject4.S) can have a higher upper
bound thant.)

4. (a) If objectt is one of the actual top-objects forg, probe allR-Source to computeScordg, t).
(b) Otherwise, probe a subsit C {Ry,..., R,} such that:

e After probing everyR; € R/, it holds thatl/ (t) < scorey,.
e The costy_p. - p tR(R;) is minimal among the subsets PRy, ..., R, } with the property above.

5. Get the next best objetfrom S-Sources: (i, sg) < getNext¢(qp) and return to step 3.

Itis important to note that th®ptimalalgorithm is only of theoretical interest and cannot be implemented, since
it requires complete knowledge about the scores of the objects, which is precisely what we are trying to obtain to
evaluate tope queries. However, this “strategy” gives a lower bound for the time needed to evaluate a given top-

qguery by any algorithm that does not involve “wild guesses,” as discussed above.

4.2.2 The Upper Strategy

We now present a novel tdp-query processing strategy that we ddpper. This strategy mimics th©ptimal
algorithm by choosing probes that would have the best chance to be Dpfimal solution. However, unlike
Optimal, Upper does not assume any “magic” a-priori information on object scores. Instead, at eadipgep
selects an object-source pair to probe next baseekpectedbject scores. This chosen pair is the one that would
most likely have been in theptimal set of probes.

We can observe an interesting property:

Property 2. Consider a topk queryq and suppose that at some point in time we have retrieved some objects from
S-SourceS and probed some of the R-Sowrder these objects. Léte Objectg.S) be an object with the highest
upper bound among all objects dbjectg.S) (i.e.,U(t) = max, -Opjectss) U(t")). Then, at least one probe will

have to be done ohbefore the answer tgis reached:

e If ¢ is one of the actual top-objects, then we will have to probe all of its attributes to return its final score

for q.

e If ¢ is not one of the actual top-objects, its upper bound (¢) is higher than the score of any of the tép-

objects. Hence requires further probes so théf(¢) decreases before a final answer can be established.

This property is illustrated in Figure 1 for a top-3 query. In this figure, each object’'s possible range of scores
is represented by a segment, and objects are sorted by their expected score. From Property 1, objects whose upj
bound is lower than the lower bound kfother objects cannot be in the final answer. (Those objects are marked
with a dashed segment in Figure 1.) Also, the object with the highest upper boundlhiotélae figure, will have
to be probed before a solution is reached: eithiés one of the top-3 objects for the query and its final value needs
to be returned, or its upper bound will have to be lowered through further probes so that we can safely discard it.
Finally, the “current topk” objects in the figure are those objects with the highest expected score, i.e., those objects
whose expected score is no less thahrasholdthat is thek!" highest expected score. This threshold will play the

role of scorey, in algorithmOptimal

Algorithm Upper (Input: top+4 queryq)
1. Get the best objectfor attribute Ay from S-Sources: (¢, sp) < getNextg(qo).

2. Initialize Uypseen = U(t), Candidates = {t}, andreturned = 0.

w

. Pickty from Candidates such thal (tg) = maxy ccandidates U (t')-

4. (a) fU(tg) < Uunseen:
e Get the next best objec¢tfor attribute Ay from S: (¢, so) < getNextg(qo).
e UpdateU,,seenn = U(t) and insert into Candidates.
(b) Else:
i. If tyis completely probed:
e Returnty with its score; removey from Candidates.
o returned = returned + 1. If returned == k, halt.
ii. Else:
e Ri «+ SelectBestSource(ty,Candidates, k — returned).
e Probe sourcé?; on objectty;: s; < getScorep (q;,tw)-
5. Goto stef8.

At any point in time, if the final score of the object with the highest upper bound is known, then this is the best
object in the current set. No other object can have a higher score and we can safely return this object as one of th
top-k objects for the query. As an interesting corolldgppercan then return results as they are produced, rather

than having to wait for all tog results to be known before producing the final answer.

10

A current top-k | X : expected value
score | U T : objects that cannot be
| — B in final answer
| T _
i threshold
| c— - | | — e e— e e—] e —— e —
| _
| X i
[
: X
| | |
| A N
| —_— PR e

Figure 1: Snapshot of the execution of thpperstrategy.

We now discuss how we select the best source to probe for an dbjedtep 4.b.ii of the algorithm. As
in Optimal, we concentrate on (a) computing the final value of thekagbjects, and (b) for all other objects,
decreasing their upper bound so that it is lower than the scores of the dbjects. However, unlik®©ptimal
Upperdoes not know the actual scores a-priori and must rely on expected values to make its choices. For an objec
t, we select the best source to probe as follows. i#f expected to be in the final tap-i.e., its expected value is
one of thek highest ones, we want to compute its final score, and all sources not yet prolieardéoronsidered.
Otherwise, we only consider the fastest subset of sources not probethédris expected to decreaét) under
the value of the:*” largest expected scorth(esholdT’). The best source faris the one that has the highé%fg—?f

ratio, i.e., the one that is expected to have a high impac¢isgrossible score range while being fast:

Function SelectBestSource (Input: object t, set of objects Candidates, integer r)
1. Let# be the object iCandidates with ther'” largest expected score. LEt= E(t).

(@) If E(t) > T

e DefineR' C {Ry,...,R,} as the set of all sources not yet probedfor
(t is expected to be one of the tépebjects, so it needs to be probed on all attributes.)

(b) Else, define?’ C {Ry,..., R,} so that:
e U(t) < T if each source?; € R’ were to return the expected value foand
e The costy_p cp tR(R;) is minimal.
(SinceE(t) < T, we are guaranteed to find at least one such set of attributes.)

2. Return a sourc®&; € R’ such that“gé’—;m is maximum (i.e., we favor fast probes).

11

4.2.3 The Pick Strategy

We now present thBick algorithm, which uses a different approach to evaluatektgperies. WhildJpperchooses

the probe that is most likely to be in the “optimal” set of probBgk chooses the probe that minimizes a certain
function B, which represents the “distance” between the current state and the final state, in whichithedigs-are
easily extracted. At a given point in time in the execution, funciibfocuses ort’, the object with the:*” highest
expected score among the objects retrieved f8a8ourceS. FurthermoreB considers the range of possible scores
that each such object can take ab@ig’). The smaller such ranges are, the closer we are likely to be to finding the
final solution for the query. In effect, when we reach the final stais the object with the actuaf” highest score,

and all objects not in the answer should be knawito have scores above that#%f The definition of functionB

then becomes:

B= Y max{0, U(t) — max{L(t), E(t)} }
teObjectss)

Figure 2 shows a snapshot of a query execution step, highlighting the score ranges that “prevent” the current stat
from being the final state. Note that the value®fs never negative. WheB becomes zero, all top-scores are

known, and all objects not in the final answer have an upper bound for their score that is lowE than

A

X : expected value

current top-k I: range of values in B

|
|

score | - "1 : objects that cannot be
| ! in final answer
|
|

threshold

" He
A
—H
]
[~
|
-
|I

Figure 2: Snapshot of the execution of fiek strategy.

At each stepPick greedily chooses the probe that would decredaghe most in the shortest time@ick selects

for each object the best source to probe, i.e., the attribute value that will result in the highest decigadé in

SWe studied several alternative definitions Brthat did not work as well in our experiments as the one that we present here. For space

limitations we do not discuss these alternatives further.

12

the object is expected to be in the final tbpanswer, all unprobed attributes are considered. Otherwise, only
attributes from the best (fastest) set of attributes that will be needed to eliminate the object are considered. This i
completely analogous to how tiselectBestSourdanction works. Then, among all selected objBeSourcepairs,

Pick chooses the one with the high&&gected td}g(c;"sase ol B ratio.

Observe that, unlikéJpper, Pick retrieves all candidate objects to consider during an initialization step, and

does not access tli®Sourcafterwards.

Algorithm Pick (Input: top-k queryq)
1. Retrieve all objects that can be in the togelution fromS-Sources:

(a) Getthek best objectsy, ..., t;, for attribute Ay from S-Sources: (t;, sp) +— getNext¢(qo).
(b) Initialize Candidates = {t1, ..., tx }; initialize t = t.
(c) While L(t;) < U(t), get the next best objecfor attribute Ay from S: (¢, sg) < getNextg(qp); insert
t into Candidates.
2. While B > 0:

(a) Foreach objedte Candidates select the best sourc®; « Select BestSource(t, Candidates, k).
(b) Choose among the selected pditsRk;) the one that has the highest expected gain per unit of time

(empected decrease in B

TR(R)) and probe it.

3. Return the togk objects.

Selecting a probe usinBick is more expensive than witpper since we have to consider probes on all ob-
jects. MoreoverpPick needs to retrieve all the objects that might belong to thektapswer from thes-Sourceat

initialization, which in some cases might result in all objects being retrieved.

4.3 Existing Approaches

While existing algorithms in the literature are designed for different scenarios, e.g., they assume that all sources ar
SR-Source (TA), we can adapt them to our framework and use them for comparison purposes. In Section 4.3.1
we adapt the TA algorithm [7] so that it also works oRiSource, and in Section 4.3.2 we extend the resulting
algorithm so that it also incorporates ideas from the expensive-predicates literature. As an important difference
with our strategies of the previous section, all the techniques presented below choose an object and probe all need
sources before moving to the next object. This coarser strategies can degrade the overall efficiency of the technique
as shown in Section 6.

4.3.1 Fagin’'s Algorithms

Fagin et al. [7] presents the TA algorithm for processing Aajpieries oveSR-Source This strategy is proven to

be instance optimal [7] over all algorithms that do not perform wild guesses:

13

Algorithm TA (Input: top-k queryq)

1. Do sorted access in parallel to each source. As each abigseen under sorted access in one source, do
random accesses to the remaining sources and app§cibrefunction to find the final score of objett If
Scordgq, t) is one of the tope seen so far, keep objecalong with its score.

2. Define a threshold value &oreCombs, s1,. . ., sn), Wheres; is the last score seen in tix¢h source. The
threshold represents the highest possible value of any object that has not been seen so far in any source.

3. If the current topk objects seen so far have scores greater than the threshold, return those values. Otherwise
return to step 1.

Although this algorithm is not designed to deal wiRhSource, we can adapt it in the following way. In step 1,
we access the onl$-Sources using sorted access, and retrieve an objebt step 2, we define the threshold value
asU(t), since the maximum possible score for @&nSources always 1. Then, for each objectetrieved fromS
we probe allR-Source to get the final score fot. For a model with a singl&-SourceS, the modified algorithm

retrieves in order all objects i@bjectgS) one by one and determines whether each object is in the final answer by

probing all the remainingr-Source. The complete procedure is described below.

Algorithm TA-Adapt (Input: top£ queryq)
1. Getthe best objectfor attribute Ay from S-Sources: (t, sp) < getNextg(qo).
2. Update threshold” = U(t).

3. Retrieve score; for attribute A; and objectt via a random probe t&-SourceR;: s; < getScorep, (gi,t)
fori=1,...,n.

4. Calculatet’s final score forg: score = ScoreCombsg, s1, ..., Sp).
5. If score is one of the topt scores seen so far, keep objealong with its score.

6. (a) If thresholdrl’ is lower than the scores of all current tdmbjects, return those objects along with their
scores.

(b) Otherwise, get the next best objedtom S-SourceS: (¢, sp) < getNext¢(go) and return to step 2.

We can improve the algorithm above by interleaving the execution of steps 3 and 4 and adding a shortcut tes
condition. Given an objedt, we calculate the valuE (¢) after each random probe to 8aSourceR;, and we skip
directly to step 5 if the current objetis guaranteed not to be one of the topbjects. That is, it/ (¢) is lower than
the lowest score of the current tépebjects, we can safely ignore objectsee Property 1) and continue with the

next one. We call this algorithA-Opt

4.3.2 Exploiting Techniques for Processing Selections with Expensive Predicates

Work on expensive-predicate query optimization [11, 12] has studied how to process selection queries of the form

p1 A ... A p,, Where each predicafg can be expensive to calculate. The key idea is to order the evaluation of

14

predicates to minimize the expected execution time. The evaluation order is determined by the preditgtes’

defined as:
selectivity(p;)

rank,, =
Pi cost-per-object (p;)

wherecost-per-object(p;) is the average time to evaluate predicatever an arbitrary object.
We can adapt this idea to our framework in the following way. Bgt..., R, be theR-Source, and let
wy,. .., w, be the corresponding weights in tBeorefunction. We sort thér-Source R; in increasing order of

rank, defined as:
w; - E(Scoreg,)
tR(R;)

whereE(Scoreg,) is the expected score of an object from souRg€typically 0.5 unless we have more sophisticated

rankpr, =

statistics). Thus, we favor fast sources that might have a greater impact on the final score of an object, i.e., thos
sources that are likely to significantly change the valuds @§ and L(¢).

We combine this idea with our adaptation of the TA algorithm to define the TA-EP algorithm:

Algorithm TA-EP (Input: top-k queryq)
1. Get the best objectfor attribute Ay from S-Sources: (¢, sp) < getNext¢(qo).
2. Update threshold” = U(t).
3. For eaclR-SourceR; in decreasing order ofankp,;:

(@) Retrieve score; for attributeA; and object via a random probe tB-Sourcelz;: s; < getScorey. (gi,t).
(b) If U(t) is lower than the lower bound of the current tbbject, skip to step 4.

4. If t's score is one of the top-scores seen so far, keep objeeiong with its score.

5. (a) Ifthresholdrl" is lower than the scores of all current tépbjects, return those objects along with their
scores.

(b) Otherwise, get the next best objedtom S-SourceS: (¢, sp) < getNext¢(go) and return to step 2.

5 Evaluation Setting

In this section we describe the data sets (Section 5.1) and metrics and other settings (Section 5.2) that we use

evaluate the strategies of Section 4.

5.1 Data Sets

Synthetic Sources: We generate different synthetic data sets. Objects in these data sets have attributes from a
single S-SourceS and fiveR-Source. The data sets vary in their number of objectsChjectg.S) and in the
correlation between attributes and their distribution. Specifically, given a query, we generate individual attribute

scores for each conceptual object in our synthetic database in three different ways:

15

e “Uniform” data set: We assume that attributes are independent of each other and that scores are uniforml
distributed (default setting).

e “Correlation” data set: We assume that attributes exhibit different degrees of correlation, modeled by a
correlation factocfthat ranges between -1 and 1. This parameter defines the correlation betwSedthee
and theR-Sourcescores. Specifically, whesfis zero, attributes are uncorrelated (i.e., they are independent of
each other). Higher values of result in positive correlation between tBeSourceand theR-Sourcescores,
with all scores being equal in the extreme case wtfenl. In contrast, whewrf< 0, the S-Sourcescores are

negatively correlated with thR-Sourcescores.

e “Gaussian” data set. We generate the multiattribute score distribution by producing five overlapping multi-

dimensional Gaussian bells [17].

The random-access cost for ed¥SourceR; (i.e.,tR(R;)) is a randomly generated integer ranging between 1 and
10, while the sorted-access cost 8Sources (i.e., tS(S)) is randomly picked fron{0.1,0.2,...,1.0}.

Real Web-Accessible Sources: The real sources that we use are relevant to (an expanded version of) our running
example of Section 3. Users input a starting address, the type of cuisine in which they are interested (if any), anc
importance weights for the followinB-Sourceattributes: SubwayTimghandled by the SubwayNavigator sfie
DrivingTime (handled by the MapQuest sitd)ppularity (handled by the AltaVista search engifiesee below),

ZFood ZPrice, ZDecor, andZService(handled by the Zagat Review web site), dridatingand TPrice (provided

by the New York Times at the New York Today web site). The Verizon Yellow Pages li8timghich returns
restaurants of the user-specified type sorted by shortest distance from a given address, is3¥#&oomte Table 1
summarizes the real sources in our setting, together with details on their associated interface.

The Popularity attribute requires further explanation. We approximate the “popularity” of a restaurant with the
number of web pages that mention the restaurant, as reported by the AltaVista search engine. (The idea of using we
search engines as a “popularity oracle” has been used before in the WSQ/DSQ system [9].) Consider, for example
restaurant “Tavern on the Green,” which is one of the most popular restaurants in the United States. A query or
AltaVista on “Tavern on the Green” AND “New York” returns 1,972 hits. In contrast, the corresponding query for a
much less popular restaurant on New York City’s Upper West Side, “Caffe Taci” AND “New York,” returns only six
hits. Of course, the reported number of hits might inaccurately capture the actual number of pages that talk abou
the restaurants in question, due to both false positives and false negatives. Also, in rare cases web presence mig
not reflect actual “popularity.” However, anecdotal observations indicate that search engines work well as popularity

oracles in most cases.

®http:/iwww.subwaynavigator.com
"http://www.altavista.com
8http:/iwww.superpages.com

16

Source Type Attribute(s) Input

Verizon Yellow Pagesg S-Source| Distance type of cuisine, user address

SubwayNavigator R-Source| SubwayTime restaurant address, user address

MapQuest R-Source| DrivingTime restaurant address, user address

AltaVista R-Source| Popularity free-text query with restaurant name and address
Zagat Review R-Source| ZFood ZPrice restaurant name

ZDecor, ZService

NYT Review R-Source| TRating TPrice | restaurant name

Table 1: The real web-accessible sources used in the experimental evaluation of the various techniques.

Of course, the real sources above do not fit our model of Section 3 perfectly. For example, some of these
sources return values for multiple attributes simultaneously (e.g., the Zagat Review site). Also, as we mentionec
before, information on a restaurant might be missing in some of these sources (e.g., a restaurant might not have «
entry at the Zagat Review site). In such a case, our system will give a default (expected) value to the score of the

corresponding attribute. We address these issues in Section 7.

5.2 Other Experimental Settings

Our query processing strategies attempt to minimize the total processing time forguogries, both for random
and sorted access to the various sources. To measure the relative performance of the techniqué&s Svercas

andR-Source Ry, ..., R,, we use the following metric:
total = NS * tS(S) + Z N - tR(RZ)
i=1

whereng is the number of objects extracted fro&SourceS, n; is the number of random-access probes for
R-SourceR;, and¢S andtR are as specified in Definition 2t then approximates the total execution time
for a query. Where appropriate, we reptytandi g, the sorted- and random-access components of this time, re-
spectively, together with the actual number of sorteg)) (and random accessesy = Y i, n;) required. Finally,
Ntotal = NS + NR.

For the synthetic data sets and for each setting of the experiment parameters, we generate 100 queries random
with their associated weights, produce costs and attribute values for the sources, and compute thg gyerage
tr, Niotal, NS, aNdng values. We report results for tdpeueries for different values df, | S|, ¢f and for various
assignments of weights and costs to sources. In the default sétimdp (i.e., queries ask for the best 10 objects),

|S| = 5,000, and we use th&lniform data set.

17

Query | k£ | Address Cuisine | wg | wy | we | w3 | wy | ws | wg | wr | wg | wo
1 5 | 112" Street| Any 10| 5| 5| 5] 1]1 1 1 1|1
2 5 | 737 Street | Any 10| 5| 5| 5] 1]1 1 1 1|1
3 5 | 112" Street| Chinese| 10 | 5 | 5 | 5 | 1 | 1| 1 | 1 |1 | 1
4 5 | 112" Street| French [10| 5 | 5 | 5 | 1 | 1 1 1 1)1
5 5 | 737 Street | ltalian 10| 55| 5] 1]1 1 1 1|1
6 |10| 73" Street |Italian |10 5|5 |5 | 1| 1|1 |1]1]1
7 5 | 739Street [French |10| 1 | 2 | 5| 4|0 [02[02] 1| 3

Table 2. The seven queries for the experiments over our real data sets, including the weight for each attribute
(Ap =Distance A; =SubwayTimeA, =DrivingTime A3 =Popularity, A, =ZFood As; =ZPrice, Ag =ZDecor,
A7 =ZService Ag =TRating andAg =TPrice).

For the real data sets, we use seven queries, some specifying an addresg3@nJfreet, and some others
specifying an address on W2 Street. Attribute®istance Subway TimeDrivingTime ZFood ZDecor, ZService
and TRatinghave “default” target values in the queries (e.gDrvingTime of 0 and aZFoodrating of 30). The
target value foPopularityis 1,000 hits, whileZPriceandTPrice are set to the least expensive value in the scale. In
all seven gueries, the weight of teSourceattribute (i.e. Distance is roughly twice the weight of anR-Source
attribute. See Table 2 for further details.

Next, we experimentally compare the algorithms that we discussed in Section 4, figkvktiapt(Section 4.3.1),
TA-Opt (Section 4.3.1), TA-EP (Section 4.3.2), and our novel strategiéipper (Section 4.2.2) andPick (Sec-
tion 4.2.3). We also report results for tptimaltechnique of Section 4.2.1. As discussed, this technique is only
of theoretical interest, and serves as a lower bound for the time that any strategy without “wild guesses” would take

to process a given top-query.

6 Evaluation Results

In this section we present the experimental results for the techniques of Section 4 using the data sets and genel
settings described in Section 5.
6.1 Results for Synthetic Data Sets

The first results that we report are for thefault settingof the experiment parameters (Section 5). Figure 3 shows
the average execution time for each technique and for bottniferm andGaussiarsynthetic data sets. Thépper

strategy consistently outperforms all other techniques, and has total execution time close to that of the lower bounc

18

140 140

120 120

100 100

80 80 te

mis
60 60

(=l

trotal
tiotal

40 40

20 20 |

Optimal Upper Pick TA-EP TA-Opt TA-Adapt Optimal Upper Pick TA-EP TA-Opt TA-Adapt

(a) Uniform data set (b) Gaussian data set
Figure 3: Performance of the different strategies for the default setting of the experiment parameters, and for twc

synthetic data-set distributions.

Optimal ForUniform, Pick andTA-EPexhibit similar overall execution times. Howeveick performs better than
TA-EPfor Gaussian Pick gives better results foGaussianthan for Uniform because th&aussiandistribution
allows Pick to retrieve fewer objects fror8-SourceS at initialization, which in turn results in fewer objects being
subjected to random-access probes. All techniques need the same number of sorted accessBg;kexdgph
does slightly more accessesSeSourceS since it initially needs to retrieve a large number of objects under sorted
access (Section 4.2.3). We can see that our optimizations Té\&dapt namely TA-Optand TA-EP, result in
dramatic improvements in performance oVé&-Adapt We then remova@A-Adaptfrom further consideration in the

remaining discussion.

Effect of the Number of Objects Requested:: We study the effect of varying the value kfin Figure 4. We
report results for the default setting, as a functiork @ind for both thdJniform and Gaussiansynthetic data sets.
As k increases, the time needed by each algorithm to return the tdijects increases as well, since all techniques
need to retrieve and process more objects. The general drop in performance is substantiai=frono £ = 10

but is less pronounced for higher valueskofThe relative performance of the different techniques remains similar
for a wide range of values df. Whenk increasesPick performs better thamA-EP, especially forGaussian For

k > 10, UpperandPick show similar results. Observe that the difference between the execution tidppefand

Optimalis almost constant (and small) across differenalues.

Effect of the Number of Objects in S-SourceS: Figure 5 studies the impact of the size®fSourceS. For each
size, we report the average execution time for 50 randomly generated queries. As the number of objects increase

the performance of each algorithm drops since more objects have to be evaluated before a solution is returned. Tt

19

100 100

90 90 /(/X/M

70 70

o M/X/x/’x/x/x —e— Optimal o / —e— Optimal
/ —— Upper —=— Upper

50 —a— Pick 50 {4 e Pick

© % —x—TA-Opt M TA-Opt
W —x—TAEP 40 M - % TA-EP

e "

tiotal
tiotal

20 20
W v
10 / 10
0 T T T T T 0 T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
k k
(a) Uniform data set (b) Gaussian data set

Figure 4: Performance of the different strategies for the default setting of the experiment parameters, as a functiol

of the number of objects requestkdand for two synthetic data-set distributions.

100

90

80

70

60 —e— Optimal

—m— Upper
50

; e | e
N P —
20 W
=

V

trotal

0 2000 4000 6000 8000 10000 12000

Number of objects in S-Source S

Figure 5: Performance of the different strategies for the default setting of the experiment parameters, as a functiol

of the number of objects i8-Sources.

20

time needed by each algorithm is approximately linear in the number of obje§tdlppergives better results and

scales better than other techniques.

Effect of Attribute Weights and Source Costs: We now report on the impact of attribute weights and source
access costs on the execution times. In particular, Figure 6(a) shows results for various assignments of weights t
the query attributes. (All other parameters of the experiments follow the default setting.) Also, Figure 6(b) shows
results for various combinations of costs for the various sources. The results in Figure 6(b) are presented in &
logarithmic scale.TA-Optperforms poorly when access to one of the sources is significantly more expensive than
to the other sources (see Figure 6(b)dpr= 100). In contrast,TA-EP, which orders accessesRSource taking

access costs into account, performs dramatically better.

80
1000
70 e
60 m P
@ Ws=5, w;=1 foriin [1;5] @ coml o1 foriin[15]
50 Ll 100 L
- m Ws=L wi=Lforiin [1,5] w B Cs=1, ¢;=10,c;=1 fori
g L 3 in [2:
=2 40 ws=1, w;=1 for i in [1,4], *g in [2:5] .
We=5 O ¢s=1, ¢;=100,c;=1 for i
30 1 H ® in [2:5]
10 m L
20 1 -
10 1 -
0 L 14 L
Optimal Upper Pick TA-EP TA-Opt Optimal Upper Pick TA-EP TA-Opt
(a) Effect of attribute weights (b) Effect of source access costs (logarithmic scale)

Figure 6: Performance of the different strategies for various attribute-weight and source access-cost combinations

Effect of Attribute Correlation: We now turn to theCorrelation data set (Section 5) and evaluate the effect that
attribute correlation has on the performance of the query processing techniques. Figure 7(a) is for the case when ¢
R-Source are negatively correlated witB-Sourcgi.e., when correlation factaf< 0; see Section 5). In contrast,
Figure 7(b) is for the positive-correlation case (id> 0). As seen in Figure 7(b), whetfis high the performance

of all techniques, with the exception Bfck, improves dramatically: All techniques other thRitk accesss-Source

S on demand and when needed. In contr®stk extracts a batch of objects during initialization, which results

in a substantial number of candidate objects in need of random probes. ThiPiaskagloes not benefit from all
attribute scores being positively correlated as the other techniques do. Interestingly, a negative correlation betwee

the R-Source and theS-Sourcattribute scores does not affect the performance of the algorithms significantly.

21

70 70

50 50 I —
e Optimal \‘\’\ —e—Optimal
40

40 —m— Upper —m— Upper
/ \‘\\:E’%;__‘g —a— Pick —a— Pick

——— ~——= 30 —»—TA-Opt 30 = —x— TA-Opt
/—' v_/ TA-EP F\'\—\M %— TA-EP
10 10

tiotal
tiotal

cf cf

(a) Negative attribute correlation (b) Positive attribute correlation

Figure 7: Performance of the different strategies forG@oerelation synthetic data set and the default setting of the

experiment parameters, as a function of the correlation fator

6.2 Results for Real Web-Accessible Data Sets

Our final set of results are for the real data sets that we described in Section 5 and summarized in Table 1. Ther
are six web-accessible sources, handling 10 attributes. To model the access cost for each source, we measured
response time for a number of queries and computed their average. We then issued the seven queries in Table
to these sources and timed their execution. Figure 8(a) shows the execution time for each of the queries, and fc
the Upper, TA-EP, andTA-Optstrategies. Sincbpper gives consistently better results thRitk in the synthetic

data experiments, we choose to focus on it in the real data experiments. We complpeutechnique per-
formance withTA-EPand TA-Optresults, and ignore@A-Adapt whose results in the synthetic data experiments
were significantly worse than those for other techniques. Figure 8(b) shows the number of random-access probe
that each technique requires for each query. In contrast with the synthetic-data festi8does not outperform
TA-Opt We conjecture that this discrepancy is due to our rough estimates for the source access costs, to which th
TA-EPstrategy would be particularly sensitive. In general, just as we observed for the synthetic data &gipeour

strategy performs significantly better than the two versions ofthalgorithm that we tried.

In summary, our experimental results consistently showlthmgter outperforms all other methods, with perfor-
mance close to that of theptimaltechnique, for both synthetic and real data sets. Furthermore, our modifications

to theTA algorithm, TA-EPin particular, resulted in significant improvements in performance.

22

Liotal

6000

5000

4000

3000

2000 +

1000 -

o
I

@ Upper
mTA-EP
OTA-Opt

nr

6000

5000

4000

@ Upper

3000

2000

H | mTAEP
OTA-Opt

1000 -

o
I

F ose6 os@6 Q@ cf@é a@ Q&é Q@ a@ o?“6 cf@é o@ Q@ a@
(a-) ttotal (b) nR

Figure 8: Experimental results for the real web-accessible data sets relevant to our New York City restaurant sce

nario.
7 Variations to our Model and Future Work

In this section we present some simple variations to our data and query models of Section 3, and some interestin

directions we plan to investigate in the future.

Boolean (Filter) Conditions: Top-k queries can naturally incorporate Boolean (or filter) conditions over some
attributes. Our algorithms can adapt to such conditions in a straightforward way if the conditions are over an
S-Sourcewe can discard tuples, if appropriate, as soon as they are retrieved (or even in some ca8sgsutee

might process the filter directly, as does the Yellow Pages source of Section 6). However, our algorithms need ftc
be slightly modified to handle conditions oMgfSource. Specifically, we should probe the-Source for a filter
predicatebeforeprobing the otheR-Source, to avoid “wasting” probes on objects that might be later discarded by

the filter. If there are several filter predicates, we can probe theaninorder [11, 12].

Dealing with Real Web R-Source: As mentioned above, some web sources might not fit our model perfectly.
For instance, aR-SourceR might not have information about some object returned bysH8ourceln such cases,

we approximate the missing score with an expected value, which can be determined in a number of ways, including
for example as an average of past scores observed from that source. A similar approach can be followed to hand

sources that are down at query-processing time.

23

S-Source that Return Several Objects ata Time: Some sources (e.g., web search engines) returnl matches

at a time for a given query. Throughout our discussion, we assume&-iBatirce returned one object at a time.

For our experiments with real web sources, we approximated the cost to retrieve each object by dividing the cos
to retrieve a batch of. objects byn. However, there might be opportunities to refine the current algorithms by

exploiting the fact that we can “look ahead” in tBeSourceanking at no extra cost.

Relaxing the Source Model: In Section 4 we focused on the case where exactly $/&ourceand multiple
R-Source were available. In the general case, with more than ®8ourcewe can divide the evaluation in two
(pipelined) phases. First, we consider &Source at a time and use the NRA algorithm [7] (which is instance
optimal) to produce a stream of tuples sorted by the partial score @-®eurce. Then, we treat this output as a

new singleS-Sourceand use th&Jpperalgorithm of Section 4 to produce the final answer. Another direction is to
combine these two phases into a single, more efficient algorithm. We are currently evaluating different alternatives

for the latter approach.

Other Issues: Our model assumes that only one source can be accessed at a time, which is is too restrictive in the
context of web sources. As explained in Section 2, we can incorporate the ideas in [9] to include parallelism and
speed up the process. Another interesting problem is how to adapt our algorithms so that they take into consideratio

S-Source that return just the rank of objects without the actual associated scores.

8 Conclusion

We studied techniques to efficiently evaluate togueries over web-accessible autonomous databases with a variety
of access interfaces. In particular, we focused on web sources that can only be accessed via random accesses.
proposed extensions to existing algorithms for togueries so that they can handle random-access sources, and
also introduced two novel strategiddpper and Pick, which are designed specifically for our query model. We
conducted a thorough experimental evaluation of these techniques using both synthetic and real web-accessible de
sets. Our evaluation showed thapperproduces the best processing plans in terms of execution time for a variety

of data and query parameters, and for both synthetic and real data sets.

References

[1] M. J. Carey and D. Kossmann. On saying “Enough Already!” in SQLPtoaceedings of the 1997 ACM International
Conference on Management of Data (SIGMOD;%ay 1997.

[2] M. J. Carey and D. Kossmann. Reducing the braking distance of an SQL query engiPecéedings of the Twenty-
fourth International Conference on Very Large Databases (VLDB'88). 1998.

24

[3] S. Chaudhuri and L. Gravano. Optimizing queries over multimedia repositorie®roceedings of the 1996 ACM
International Conference on Management of Data (SIGMOD '#épes 91-102, 1996.

[4] S. Chaudhuri and L. Gravano. Evaluating toigelection queries. IfProceedings of the Twenty-fifth International
Conference on Very Large Databases (VLDB;9999.

[5] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization oftogueries. InProceedings of the Twenty-fifth
International Conference on Very Large Databases (VLDB'#8pes 411-422, 1999.

[6] R. Fagin. Combining fuzzy information from multiple systems. Hroceedings of the Fifteenth ACM Symposium on
Principles of Database Systenmages 216-226, 1996.

[7] R. Fagin, A. Lotem, and M. Laor. Optimal aggregation algorithms for middlewarBrdneedings of the Twentieth ACM
Symposium on Principles of Database Syst&161.

[8] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of limited access patterns. In
Proceedings of the 1999 ACM International Conference on Management of Data (SIGMQT®99)

[9] R. Goldman and J. Widom. WSQ/DSQ: A practical approach for combined querying of databases and the web. In
Proceedings of the 2000 ACM International Conference on Management of Data (SIGMQ®RH06}% 285—-296, 2000.

[10] U. Giintzer, W.-T. Balke, and W. Kiel3ling. Optimizing multi-feature queries for image databasesdeedings of the
Twenty-sixth International Conference on Very Large Databases (VLDB2@)es 419—-428, 2000.

[11] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with expensive predidatese&dings
of the 1993 ACM International Conference on Management of Data (SIGMOD88es 267-276, 1993.

[12] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunctive queries with expensive predicates. In
Proceedings of the 1994 ACM International Conference on Management of Data (SIGMQOx§4}% 336—347, 1994.

[13] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information sources using source descriptions. In
Proceedings of the Twenty-second International Conference on Very Large Databases (V1. D8%6)

[14] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) datab&eseédings of the 15th
International Conference on Data Engineerimages 22—-29, 1999.

[15] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T. S. Huang. Supporting ranked boolean similarity
queries in MARS.TKDE, 10(6):905-925, 1998.

[16] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates with binding pattePngceedings of
the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25, 1995, Sa
Jose, California1995.

[17] S. A. Williams, H. Press, B. P. Flannery, and W. T. VetterlihNumerical Recipes in C: The art of scientific computing
Cambridge University Press, 1993.

25

