
Paper ID 422

Evaluating Top-k Queries over Web-Accessible Databases

Nicolas Bruno Luis Gravano Am´elie Marian

Computer Science Department

Columbia University

fnicolas,gravano,amelie g@cs.columbia.edu

Abstract

A query to a web search engine usually consists of a list of keywords, to which the search engine responds

with the best or “top”k pages for the query. This top-k query model is prevalent over multimedia collections

in general, but also over plain relational data for certain applications. For example, consider a relation with

information on available restaurants, including their location, price range for one diner, and overall food rating.

A user who queries such a relation might simply specify the user’s location and target price range, and expect

in return the best 10 restaurants in terms of some combination of proximity to the user, closeness of match to

the target price range, and overall food rating. Processing such top-k queries efficiently is challenging for a

number of reasons. One critical such reason is that, in many web applications, the relation attributes might not

be available other than through external web-accessible form interfaces. For example, our food ratings of choice

might be provided by a web site that, given a restaurant name, returns the number of “stars” for the restaurant

according to the site’s critics. To identify the top-10 restaurants for a user query, we will then need to repeatedly

query this remote ratings site for a potentially large set of candidate restaurants. In this paper, we study how to

process top-k queries efficiently in this setting, where the attributes for which users specify target values might

be handled by external, autonomous sources with a variety of access interfaces. We present several algorithms

for processing such queries, and evaluate them thoroughly using both synthetic and real web-accessible data.

1 Introduction

A query to a web search engine usually consists of a list of keywords, to which the search engine responds with the

best or “top”k pages for the query. Thistop-k query modelis prevalent over multimedia collections in general, but

also over plain relational data for certain applications where users do not expect exact answers to their queries, but

instead a rank of the objects that best match a specification of target attribute values. Additionally, some applications

require accessing data that resides at or is provided by remote, autonomous sources that exhibit a variety of access

interfaces, which further complicates query processing.

Top-k queries arise naturally in applications where users have relatively flexible preferences or specifications

for certain attributes, and can tolerate (or even expect) fuzzy matches for their queries. A top-k query in this context

is then simply an assignment of target values to the attributes of a relation. To answer a top-k query, a database

system identifies the objects that best match the user specification, using a given scoring function.

Example 1: Consider a relationR with information about restaurants in the New York City area. Each tuple (or

object) in this relation has a number of attributes, including Address, Rating, and Price, which indicate, respectively,

the restaurant’s location, the overall food rating for the restaurant represented by a grade between 1 and 30, and

the average price for a diner. A user who lives at 2590 Broadway and is interested in spending around$25 for a

top-quality restaurant might then ask a top-10 queryfAddress=“2590 Broadway”, Price=$25, Rating=30g. The

result to this query is a list of the 10 restaurants that match the user’s specification the closest, for some definition

of proximity.

Processing top-k queries efficiently is challenging for a number of reasons. One critical such reason is that,

in many web applications, the relation attributes might not be available other than through external web-accessible

form interfaces. For instance, in our example above theRating attribute might be available through the Zagat-

Review web site1, which, given an individual restaurant name, returns its food rating as a number between 1 and

30 (random access). This site might also return a list of all restaurants ordered by their food rating (sorted access).

Similarly, thePriceattribute might be available through the New York Times critics at the NYT-Review web site2.

Finally, the scoring associated with theAddressattribute might be handled by the MapQuest web site3, which

returns the distance (in miles) between the restaurant address and the user-specified address.

To process a top-k query over web-accessible databases, we have to interact with sources that export different

interfaces and access capabilities. In our restaurant example, a possible query processing strategy is to start with the

Zagat-Review source, which supports sorted access, to identify a set of candidate restaurants to explore further. This

source returns a rank of restaurants in decreasing order of food rating. To compute the final score for each restaurant

1http://www.zagat.com
2http://www.nytoday.com
3http://www.mapquest.com

1

and identify the top-10 matches for our query, we then obtain the proximity between each restaurant and the user-

specified address by querying MapQuest, and check the average dinner price for each restaurant individually at the

NYT-Review source. Hence, we interact with three autonomous sources and repeatedly query them for a potentially

large set of candidate restaurants.

Recently, Fagin et al. [7] have presented query processing algorithms for top-k queries for the case where all

intervening sources support sorted access (plus perhaps random access as well). Unfortunately, these algorithms

are not designed for sources that only support random access (e.g., the MapQuest site in our example above), and

such sources abound on the web. In fact, as we will see, simple adaptations of these algorithms do not perform well

over random-access sources. In this paper, we present novel processing strategies for top-k queries over sources

that support just random access, just sorted access, or both. We also develop non-trivial adaptations of Fagin et al.’s

algorithms for random-access sources, and compare these techniques experimentally using a variety of synthetic

and real web-accessible data sets.

The rest of the paper is structured as follows. Section 2 reviews relevant work. Section 3 defines our query and

data model, and introduces notation and terminology that we use in Section 4 to present our new techniques and our

adaptations of Fagin et al.’s algorithms. We evaluate the different strategies experimentally in Section 6 using the

data sets and metrics that we outline in Section 5. Finally, Section 7 discusses variations to our query model and

highlights interesting directions for future work.

2 Related Work

Relevant work on top-k query processing can roughly be divided in two groups: evaluation strategies for multiat-

tribute queries over multimedia repositories, and evaluation strategies for queries over relational databases.

To process queries involving multiple multimedia attributes, Fagin proposed the FA algorithm [6], which was

developed as part of IBM Almaden’s Garlic project. This algorithm can evaluate top-k queries that involve several

independent multimedia “subsystems,” each producing scores that are combined using arbitrary monotonic aggrega-

tion functions. Fagin showed that this technique is optimal in a probabilistic sense. Recently, Fagin et al. improved

on this result and introduced instance-optimal algorithms for the case when all sources provide either both sorted

and random access (algorithm TA) or only sorted access (algorithm NRA) [7]. These techniques do not directly

handle sources that provide only a random-access interface, which are the focus of our paper. In Section 4.3, how-

ever, we adapt Fagin et al.’s algorithms to our scenario. We experimentally compare the resulting techniques with

our new approach in Section 6.

Nepal and Ramakrishna [14] and G¨untzer et al. [10] presented variations of Fagin’s original algorithm [6] for

processing queries over multimedia databases. In particular, G¨untzer et al. [10] reduce the number of random

accesses through the introduction of more stop-condition tests and by exploiting the data distribution. The MARS

2

system [15] also uses variations of the FA algorithm and views queries as binary trees where the leaves are single-

attribute queries and the internal nodes correspond to “fuzzy” query operators. Intermediate results are pipelined up

the tree structure until they reach the root and are returned to the user. The MARS system can produce results in a

demand-driven way, where users ask for the “next best element” for their queries.

Chaudhuri and Gravano also built on Fagin’s original FA algorithm and proposed a cost-based approach for

optimizing the execution of top-k queries over multimedia repositories [3]. Their strategy translates a given top-k

query into a selection query that returns a (hopefully tight) superset of the actual top-k tuples. This approach does not

guarantee that the top-k tuples are retrieved by the selection query into which the original top-k query was mapped,

and might require repeating the mapping process with a less “selective” predicate. Ultimately, the evaluation strategy

consists of retrieving the top-k0 tuples from as few sources as possible, for somek0 � k, and then probing the

remaining sources by invoking existing strategies for processing selections with expensive predicates [11, 12]. This

technique is then closely related to algorithm TA-EP from Section 4.3.2, which we evaluate experimentally in

Section 6.

Over relational databases, Carey and Kossmann [1, 2] present techniques to optimize top-k queries when the

scoring is done through a traditional SQL order-by clause. If the scoring function involves multiple attributes, then

this technique generally requires an initial scan of the complete relation during query processing. Donjerkovic and

Ramakrishnan [5] propose a probabilistic approach to top-k query optimization. This work focuses on relations that

might be the result of complex queries including joins, for example, and where the ranking condition involves a

single attribute. Finally, Chaudhuri and Gravano [4] exploit multidimensional histograms to process top-k queries

over an unmodified relational DBMS by mapping top-k queries into traditional selection queries.

Additional related work includes the general area of information integration, where autonomous sources usually

allow only a subset of all queries to be issued over their relations. Halevy et al. [13] introducecapability records

to model the interface exported by each source, including the limited variable bindings accepted (also calledquery

templatesin [16]). These capability records are then used to annotate query trees [8] to produce efficient (and valid)

execution plans. Our query model can be regarded as some instantiation of this model for top-k queries, where

each attribute is handled by exactly one source and where sources provide two kinds of query interfaces, namely

sorted and random accesses. Our work in this paper exploits the special characteristics of top-k queries to produce

efficient processing strategies for producing ranked query results. Finally, the WSQ/DSQ project [9] presents an

architecture for integrating web-accessible search engines with relational DBMSs. The resulting query plans can

manage asynchronous external calls to reduce the impact of potentially long latencies. The WSQ/DSQ ideas could

be incorporated to our work to speed up the execution of our top-k queries further and depart from the sequential

query plans on which we focus in this paper.

3

3 Query Model

In traditional relational systems, query results consist of a set of tuples. In contrast, the answer to atop-k query is

anorderedset of tuples, where the ordering is based on how close each tuple matches the given query. Furthermore,

the answer to a top-k query does not include all tuples that “match” the query, but rather only the bestk such tuples.

In this section we define our data and query models in detail.

Consider a relationR with attributesA0; A1; : : : ; An, plus perhaps some other attributes not mentioned in our

queries. A top-k query over relationR simply specifies target values for the attributesAi. Therefore, a top-k query

is an assignment of valuesfA0 = q0; A1 = q1; : : : ; An = qng to the attributes of interest. Note that some attributes

might always have the same “default” target value in every query. For example, it is reasonable to assume that the

Ratingattribute in Example 1 above might always have an associated query value of 30. (It is unclear why a user

would be interested in a lesser-quality restaurant, given that the target price can be specified in the query.) In such

cases, we simply omit these attributes from the query specification, and assume default values for them.

Consider a top-k queryq = fA0 = q0; A1 = q1; : : : ; An = qng over a relationR. The score that each tuple

(or object) t in R receives forq is in turn a function oft’s score for each individual attributeAi with target valueqi.

Specifically, each attributeAi has an associatedscoring function ScoreAi
that assigns a proximity score toqi andti,

whereti denotes the value of objectt for attributeAi. To combine these individual attribute scores into a final score

for each object, each attributeAi has an associated weightwi indicating its relative importance in the query. Then,

the final score for objectt is defined as a weighted sum of the individual scores:4

Score(q; t) = ScoreComb(s0; s1; : : : ; sn) =
nX
i=0

wi � si

wheresi = ScoreAi
(qi; ti). The result of a top-k query is then the ranked list of thek objects with the highestScore

value.

Example 1: (cont.) Consider again the restaurant example that we introduced above. We can define the scoring

function for the Address attribute of a query and an object as the inverse of the distance (say, in miles) between the

two addresses. Similarly, the scoring function for the Price attribute might be a function of the difference between

the target price and the object’s price, perhaps “penalizing” restaurants that exceed the target price more than

restaurants that are below it. The scoring function for the Rating attribute might simply be the object’s value for

this attribute (again, assuming that users are always interested in high-quality restaurants). If price and quality are

more important to a given user than the location of the restaurant, then the query might assign, say, a0:2 weight to

attribute Address, and a0:4 weight to attributes Price and Rating.

4Our model and associated algorithms can be adapted to handle other scoring functions (e.g.,min), which we believe are less prevalent

than weighted sums for the applications that we consider.

4

Recently, techniques have been presented to evaluate top-k queries over traditional relational DBMSs [4, 5].

These strategies assume that all attributes of every object are readily available to the query processor. However,

in many applications some attributes might not be available “locally,” but rather will have to be obtained from an

external web-accessible source instead. For instance, thePrice attribute in our example is provided by the NYT-

Review web site and can only be accessed by querying this site’s web interface. Of course, in some cases we might

be able to download all this remote information and cache it locally with the query processor. However, this will

not be possible for legal or technical reasons for some other sources, or might lead to highly inaccurate or outdated

information.

This paper focuses on the efficient evaluation of top-k queries over a (distributed) “relation” whose attributes are

handled and provided by autonomous sources accessible over the web. Such sources present a variety of interfaces

for querying. Specifically, we distinguish between three types of sources based on their access interface:

Definition 1: [Source Types]Consider an attributeAi with target valueqi in a top-k queryq. Assume further that

Ai is handled by a sourceS. We will say thatS is an S-Source if, givenqi, we can obtain fromS a list of objects

sorted in descending order of ScoreAi
by (repeated) invocation of agetNext S(qi) interface. Alternatively, assume

that Ai is handled by a sourceR that only returns scoring information when prompted about individual objects.

In this case, we will say thatR is an R-Source.R provides random access onAi through agetScore R(qi; t)

interface, wheret is a set of attribute values that identify an object in question. (As a small variation, sometimes an

R-Source will return the actual value of an object for attributeAi, rather than its associated score.) Finally, we will

say that a source that provides both sorted and random access is an SR-Source.

Example 1: (cont.) In our running example, attribute Rating is associated with the Zagat-Review web site. This

site provides both a list of restaurants sorted by their rating (sorted access), and the rating of a specific restaurant

given its name (random access). Hence, Zagat-Review is an SR-Source. In contrast, the Price attribute, from the

NYT-Review site, is returned only for specific restaurants (random access). Hence, NYT-Review is an R-Source.

Finally, Address is handled by the MapQuest web site, which returns the distance (in miles) between the restaurant

address and the user-specified address. Hence, MapQuest is an R-Source.

To define query processing strategies for top-k queries involving the three source types above, we need to

consider the cost that accessing such sources entails:

Definition 2: [Access Cost]Consider an R-Source or SR-SourceR and a top-k query. We will refer to the average

time that it takesR to return the score for a given object astR(R). (tR stands for “random-access time.”) Similarly,

consider an S-Source or SR-SourceS. We will refer to the average time that it takesS to return the top object for

the query astS(S). (tS stands for “sorted-access time.”) We will make the simplifying assumption that successive

invocations of thegetNext interface also take timetS(S) on average.

5

As described in Section 2, Fagin et al. [7] presented query processing algorithms for the case where all sources

are either of typeSR-Source(TA algorithm) or of typeS-Source(NRA algorithm). As we will see, simple adaptations

of these algorithms do not perform as well for the common scenario whereR-Sourcesources are also available. In

the remainder of this paper, we address this limitation of existing top-k query processing techniques.

4 Evaluating Top-k Queries

In this section we present different strategies for evaluating the top-k queries that we defined in Section 3. Specif-

ically, in Section 4.1 we present a naive but expensive approach to evaluate top-k queries. Then, in Section 4.2

we introduce our novel strategies. Finally, in Section 4.3 we adapt existing techniques designed to solve similar

problems to our framework.

For clarity, we make a number of simplifying assumptions in the remainder of this section. We discuss their

impact and how we can relax some of them in Section 7. Specifically, we assume that the scoring function for

all attributes return values that range between 0 and 1, with 1 denoting a perfect match. Also, we assume that

exactly oneS-Sourcesource (denotedS and associated with attributeA0) and multipleR-Sourcesources (denoted

R1; : : : ; Rn and associated with attributesA1; : : : ; An) are available. (TheS-SourceS could in fact be anSR-Source

source. In such a case, we will ignore its random-access capabilities in our discussion.) In addition, we assume that

only one source is accessed at a time, so all probes are sequential during query processing.

Following Fagin [6, 7], we do not allow our algorithms to rely on “wild guesses”: thus a random access cannot

zoom in on a previously unseen object, i.e., on an object that has not been previously retrieved under sorted access

from a source. Therefore, an object will have to be retrieved from theS-Sourcesource before being probed on any

R-Source. Since we have exactly oneS-SourceS available, objects inS are then the only candidates to appear in

the answer to a top-k query. We refer to this set of candidate objects asObjects(S). Lastly, we assume that all

R-SourcesourcesR1; : : : ; Rn “know about” all objects inObjects(S). In other words, given a queryq and an object

t 2 Objects(S), we can probe sourceRi and obtain the scoreScoreAi
(qi; t) corresponding toq andt for attribute

Ai, for all i = 1; : : : ; n. Of course, this is a simplifying assumption that is likely not to hold in practice, where each

R-Sourcesource might be autonomous and not coordinated in any way with the other sources. For instance, in our

running example the NYT-Review site might not have reviewed a specific restaurant, and hence it will not be able

to return a score for thePrice attribute for such a restaurant. We discuss how to deal with situations like this one in

Section 7.

4.1 The Naive Strategy

The simplest technique to evaluate a top-k query q consists of retrieving all partial scores for each object in

Objects(S), calculating the corresponding combined scores, and finally returning thek objects with the highest

scores. We can summarize this procedure as follows:

6

Algorithm Naive (Input: top-k queryq)

1. Get the best objectt for attributeA0, with scores0, from S-SourceS: (t; s0) getNextS(q0).

2. Retrieve scoresi for attributeAi and objectt via a random probe toR-SourceRi: si getScoreRi
(qi; t)

for i = 1; : : : ; n.

3. Calculatet’s final score forq: score = ScoreComb(s0; s1; : : : ; sn).

4. If score is one of the top-k scores seen so far, keep objectt along with its score.

5. (a) If we have retrieved all objects inObjects(S), return the current top-k objects with their scores.

(b) Otherwise, get the next best objectt from S-SourceS: (t; s0) getNextS(q0) and return to step 2.

Using this simple procedure we are guaranteed to return the correct answer to the given top-k query. However, we

need to retrieve all scores for each object inObjects(S). This can be unnecessarily expensive, especially considering

that many scores are not really needed to produce the final answer for the query, as we will see. Using the costs

from Definition 2, this strategy takes timejSj �
�
tS(S) +

Pn
i=1 tR(Ri)

�
, wherejSj is the number of objects in

Objects(S).

4.2 Our Proposed Strategies

In this section we present novel strategies to evaluate top-k queries over oneS-Sourceand multipleR-Sources. Our

techniques lead to efficient executions by explicitly modeling the cost of random probes toR-Sources. Unlike the

naive strategy of Section 4.1, our new algorithms chooseboth the best object and the best attribute on which to

probe next at each step of the process. In fact, we will in general not probe all attributes for each object under

consideration, but only those attributes that are needed to identify the top-k objects for a query.

Consider an objectt that has been retrieved fromS-SourceS and for which we have already probed some subset

of R-Sources R0 � fR1; : : : ; Rng. Let si = ScoreAi
(qi; ti) if Ri 2 R0. (Otherwise,si is undefined.) Then, an

upper bound for the score of objectt, denotedU(t), is the maximum possible score that objectt can get, consistent

with the information from the probes that we have already performed.U(t) is then the score thatt would get if t

had the maximum score of 1 for every attribute in the query that has not yet been processed fort:

U(t) = ScoreComb(s0; ŝ1; : : : ; ŝn), whereŝi =

8<
:

si if Ri 2 R0 (i.e.,Ri has been probed fort)

1 otherwise

If object t has not been retrieved fromS yet, then we defineU(t) = ScoreComb(s`; 1; : : : ; 1), wheres` is the

ScoreA0
score for the last object retrieved fromS, or 1 if no object has been retrieved yet. (t cannot have a larger

score forA0 than this object, sinceS-SourceS returns objects in descending order ofScoreA0
.)

Similarly, a lower bound for the score of an objectt already retrieved fromS, denotedL(t), is the minimum

possible score that objectt can get, consistent with the information from the probes that we have already performed.

7

L(t) is then the score thatt would get ift had the minimum score of 0 for every attribute in the query that has not

yet been processed fort:

L(t) = ScoreComb(s0; ŝ1; : : : ; ŝn), whereŝi =

8<
:

si if Ri 2 R0 (i.e.,Ri has been probed fort)

0 otherwise

If object t has not been retrieved fromS yet, then we defineL(t) = 0.

Finally, theexpected score for an objectt already retrieved fromS, denotedE(t), is obtained by assuming that

the score for each attribute that has not yet been probed is the expected partial score, which in absence of more

sophisticated statistics we set to0:5:

E(t) = ScoreComb(s0; ŝ1; : : : ; ŝn), whereŝi =

8<
:

si if Ri 2 R0 (i.e.,Ri has been probed fort)

0:5 otherwise

If object t has not been retrieved fromS yet, then we defineE(t) = ScoreComb(s`2 ; 0:5; : : : ; 0:5), wheres` is the

ScoreA0
score for the last object retrieved fromS, or 1 if no object has been retrieved yet. (ScoreA0

(q0; t0) can

range between 0 ands`.)

In Section 4.2.1 we define what constitutes an optimal strategy in our framework. In Section 4.2.2 we describe

one new strategy,Upper, which can be seen as mimicking the optimal solution when no complete information is

available. Finally, in Section 4.2.3 we derive another technique,Pick, which aims at greedily minimizing some

“distance” between the current state and the final state.

4.2.1 The Optimal Strategy

Given a top-k query q, the Optimal strategy for evaluatingq is the most efficient sequence ofgetNext and

getScore calls that produce the top-k objects for the query along with their scores. Furthermore, such an op-

timal strategy must also provide enough evidence (in the form of at least partial scores for additional objects) to

demonstrate that the returned objects are indeed the correct answer for the top-k query. In this section we show

one such optimal strategy, built assuming complete knowledge of the object scores. Of course, this is not a realistic

query processing technique, but it provides a useful lower bound on the cost of any processing strategy for a query

without “wild guesses.” Additionally, the definition of the optimal strategy that we present below provides useful

insight that we exploit to define an efficient algorithm in the next section.

As a first step towards our optimal strategy, consider the following property, which holds for any processing

algorithm for a top-k query:

Property 1: Consider a top-k queryq and suppose that, at some point in time, we have retrieved a set of objectsT

from S-SourceS and probed some of the R-Sources for these objects. Assume further that the upper boundU(t) for

an objectt 2 Objects(S) is strictly lower than the lower boundL(ti) for k different objectst1; : : : ; tk 2 T . Thent

is guaranteed not to be one of the top-k objects forq.

8

Using this property, we can view an optimal processing strategy as (a) computing the final scores for the actual

top-k objects for a given query, which are needed in the answer, while (b) probing the fewest and least expensive

attributes on the remaining objects so that their upper bound is strictly lower than the scores of the top-k objects.

This way, an optimal strategy identifies and scores the top objects, while providing enough evidence that the rest of

the objects have been safely discarded.

Algorithm Optimal (Input: top-k queryq)

1. Letscorek be the actual score of thekth best object for top-k queryq. (Optimalassumes complete knowledge
of all object scores.)

2. Get the best objectt for attributeA0, with scores0, from S-SourceS: (t; s0) getNextS(q0).

3. If U(t) < scorek, return the top-k objects. (No unretrieved object inObjects(S) can have a higher upper
bound thant.)

4. (a) If objectt is one of the actual top-k objects forq, probe allR-Sources to computeScore(q; t).

(b) Otherwise, probe a subsetR0 � fR1; : : : ; Rng such that:

� After probing everyRi 2 R0, it holds thatU(t) < scorek.

� The cost
P

Ri2R0 tR(Ri) is minimal among the subsets offR1; : : : ; Rng with the property above.

5. Get the next best objectt from S-SourceS: (t; s0) getNextS(q0) and return to step 3.

It is important to note that theOptimalalgorithm is only of theoretical interest and cannot be implemented, since

it requires complete knowledge about the scores of the objects, which is precisely what we are trying to obtain to

evaluate top-k queries. However, this “strategy” gives a lower bound for the time needed to evaluate a given top-k

query by any algorithm that does not involve “wild guesses,” as discussed above.

4.2.2 The Upper Strategy

We now present a novel top-k query processing strategy that we callUpper. This strategy mimics theOptimal

algorithm by choosing probes that would have the best chance to be in theOptimal solution. However, unlike

Optimal, Upper does not assume any “magic” a-priori information on object scores. Instead, at each stepUpper

selects an object-source pair to probe next based onexpectedobject scores. This chosen pair is the one that would

most likely have been in theoptimalset of probes.

We can observe an interesting property:

Property 2: Consider a top-k queryq and suppose that at some point in time we have retrieved some objects from

S-SourceS and probed some of the R-Sources for these objects. Lett 2 Objects(S) be an object with the highest

upper bound among all objects inObjects(S) (i.e.,U(t) = max
t02Objects(S) U(t

0)). Then, at least one probe will

have to be done ont before the answer toq is reached:

9

� If t is one of the actual top-k objects, then we will have to probe all of its attributes to return its final score

for q.

� If t is not one of the actual top-k objects, its upper boundU(t) is higher than the score of any of the top-k

objects. Hencet requires further probes so thatU(t) decreases before a final answer can be established.

This property is illustrated in Figure 1 for a top-3 query. In this figure, each object’s possible range of scores

is represented by a segment, and objects are sorted by their expected score. From Property 1, objects whose upper

bound is lower than the lower bound ofk other objects cannot be in the final answer. (Those objects are marked

with a dashed segment in Figure 1.) Also, the object with the highest upper bound, notedU in the figure, will have

to be probed before a solution is reached: eitherU is one of the top-3 objects for the query and its final value needs

to be returned, or its upper bound will have to be lowered through further probes so that we can safely discard it.

Finally, the “current top-k” objects in the figure are those objects with the highest expected score, i.e., those objects

whose expected score is no less than athresholdthat is thekth highest expected score. This threshold will play the

role of scorek in algorithmOptimal.

Algorithm Upper (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS: (t; s0) getNextS(q0).

2. InitializeUunseen = U(t), Candidates = ftg, andreturned = 0.

3. PicktH from Candidates such thatU(tH) = maxt02Candidates U(t
0).

4. (a) IfU(tH) < Uunseen:

� Get the next best objectt for attributeA0 from S: (t; s0) getNextS(q0).

� UpdateUunseen = U(t) and insertt intoCandidates.

(b) Else:

i. If tH is completely probed:

� ReturntH with its score; removetH fromCandidates.

� returned = returned+ 1. If returned == k, halt.

ii. Else:

� Ri SelectBestSource(tH ; Candidates; k � returned).

� Probe sourceRi on objecttH : si getScoreRi
(qi; tH).

5. Go to step3.

At any point in time, if the final score of the object with the highest upper bound is known, then this is the best

object in the current set. No other object can have a higher score and we can safely return this object as one of the

top-k objects for the query. As an interesting corollary,Uppercan then return results as they are produced, rather

than having to wait for all top-k results to be known before producing the final answer.

10

score
current top-k

x

x
x

x

x
x

x
x

x

x
x

x : expected value

U

threshold

: objects that cannot be
in final answer

Figure 1: Snapshot of the execution of theUpperstrategy.

We now discuss how we select the best source to probe for an objectt in step 4.b.ii of the algorithm. As

in Optimal, we concentrate on (a) computing the final value of the top-k objects, and (b) for all other objects,

decreasing their upper bound so that it is lower than the scores of the top-k objects. However, unlikeOptimal,

Upperdoes not know the actual scores a-priori and must rely on expected values to make its choices. For an object

t, we select the best source to probe as follows. Ift is expected to be in the final top-k, i.e., its expected value is

one of thek highest ones, we want to compute its final score, and all sources not yet probed fort are considered.

Otherwise, we only consider the fastest subset of sources not probed fort that is expected to decreaseU(t) under

the value of thekth largest expected score (thresholdT). The best source fort is the one that has the highestweight
cost

ratio, i.e., the one that is expected to have a high impact ont’s possible score range while being fast:

Function SelectBestSource (Input: object t, set of objects Candidates, integer r)

1. Lett0 be the object inCandidates with therth largest expected score. LetT = E(t0).

(a) If E(t) � T :

� DefineR0 � fR1; : : : ; Rng as the set of all sources not yet probed fort.
(t is expected to be one of the top-k objects, so it needs to be probed on all attributes.)

(b) Else, defineR0 � fR1; : : : ; Rng so that:

� U(t) < T if each sourceRi 2 R0 were to return the expected value fort, and

� The cost
P

Ri2R0 tR(Ri) is minimal.

(SinceE(t) < T , we are guaranteed to find at least one such set of attributes.)

2. Return a sourceRi 2 R0 such that wi

tR(Ri)
is maximum (i.e., we favor fast probes).

11

4.2.3 The Pick Strategy

We now present thePickalgorithm, which uses a different approach to evaluate top-k queries. WhileUpperchooses

the probe that is most likely to be in the “optimal” set of probes,Pick chooses the probe that minimizes a certain

functionB, which represents the “distance” between the current state and the final state, in which the top-k tuples are

easily extracted. At a given point in time in the execution, functionB focuses ont0, the object with thekth highest

expected score among the objects retrieved fromS-SourceS. Furthermore,B considers the range of possible scores

that each such object can take aboveE(t0). The smaller such ranges are, the closer we are likely to be to finding the

final solution for the query. In effect, when we reach the final state,t0 is the object with the actualkth highest score,

and all objects not in the answer should be knownnot to have scores above that oft0. The definition of functionB

then becomes:5

B =
X

t2Objects(S)
maxf0; U(t)�maxfL(t); E(t0)g g

Figure 2 shows a snapshot of a query execution step, highlighting the score ranges that “prevent” the current state

from being the final state. Note that the value ofB is never negative. WhenB becomes zero, all top-k scores are

known, and all objects not in the final answer have an upper bound for their score that is lower thanE(t0).

score

x

x
x

x
x

x
x

x
x

x
x

x : expected value

current top-k

threshold

: range of values in B

: objects that cannot be
in final answer

Figure 2: Snapshot of the execution of thePickstrategy.

At each step,Pick greedily chooses the probe that would decreaseB the most in the shortest time.Pick selects

for each object the best source to probe, i.e., the attribute value that will result in the highest decrease inB. If

5We studied several alternative definitions forB that did not work as well in our experiments as the one that we present here. For space

limitations we do not discuss these alternatives further.

12

the object is expected to be in the final top-k answer, all unprobed attributes are considered. Otherwise, only

attributes from the best (fastest) set of attributes that will be needed to eliminate the object are considered. This is

completely analogous to how theSelectBestSourcefunction works. Then, among all selected object-R-Sourcepairs,

Pickchooses the one with the highestexpected decrease of B
tR(R) ratio.

Observe that, unlikeUpper, Pick retrieves all candidate objects to consider during an initialization step, and

does not access theS-Sourceafterwards.

Algorithm Pick (Input: top-k queryq)

1. Retrieve all objects that can be in the top-k solution fromS-SourceS:

(a) Get thek best objectst1; :::; tk for attributeA0 from S-SourceS: (ti; s0) getNextS(q0).

(b) InitializeCandidates = ft1; :::; tkg; initialize t = tk.

(c) WhileL(tk) < U(t), get the next best objectt for attributeA0 from S: (t; s0) getNextS(q0); insert
t intoCandidates.

2. WhileB > 0:

(a) For each objectt 2 Candidates select the best source:Ri SelectBestSource(t; Candidates; k).

(b) Choose among the selected pairs(t; Ri) the one that has the highest expected gain per unit of time
(expected decrease in B

tR(R)) and probe it.

3. Return the top-k objects.

Selecting a probe usingPick is more expensive than withUpper since we have to consider probes on all ob-

jects. Moreover,Pick needs to retrieve all the objects that might belong to the top-k answer from theS-Sourceat

initialization, which in some cases might result in all objects being retrieved.

4.3 Existing Approaches

While existing algorithms in the literature are designed for different scenarios, e.g., they assume that all sources are

SR-Sources (TA), we can adapt them to our framework and use them for comparison purposes. In Section 4.3.1

we adapt the TA algorithm [7] so that it also works overR-Sources, and in Section 4.3.2 we extend the resulting

algorithm so that it also incorporates ideas from the expensive-predicates literature. As an important difference

with our strategies of the previous section, all the techniques presented below choose an object and probe all needed

sources before moving to the next object. This coarser strategies can degrade the overall efficiency of the techniques,

as shown in Section 6.

4.3.1 Fagin’s Algorithms

Fagin et al. [7] presents the TA algorithm for processing top-k queries overSR-Sources. This strategy is proven to

be instance optimal [7] over all algorithms that do not perform wild guesses:

13

Algorithm TA (Input: top-k queryq)

1. Do sorted access in parallel to each source. As each objectt is seen under sorted access in one source, do
random accesses to the remaining sources and apply theScorefunction to find the final score of objectt. If
Score(q; t) is one of the top-k seen so far, keep objectt along with its score.

2. Define a threshold value asScoreComb(s0; s1; : : : ; sn), wheresi is the last score seen in thei-th source. The
threshold represents the highest possible value of any object that has not been seen so far in any source.

3. If the current top-k objects seen so far have scores greater than the threshold, return those values. Otherwise,
return to step 1.

Although this algorithm is not designed to deal withR-Sources, we can adapt it in the following way. In step 1,

we access the onlyS-SourceS using sorted access, and retrieve an objectt. In step 2, we define the threshold value

asU(t), since the maximum possible score for anyR-Sourceis always 1. Then, for each objectt retrieved fromS

we probe allR-Sources to get the final score fort. For a model with a singleS-SourceS, the modified algorithm

retrieves in order all objects inObjects(S) one by one and determines whether each object is in the final answer by

probing all the remainingR-Sources. The complete procedure is described below.

Algorithm TA-Adapt (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS: (t; s0) getNextS(q0).

2. Update thresholdT = U(t).

3. Retrieve scoresi for attributeAi and objectt via a random probe toR-SourceRi: si getScoreRi
(qi; t)

for i = 1; : : : ; n.

4. Calculatet’s final score forq: score = ScoreComb(s0; s1; : : : ; sn).

5. If score is one of the top-k scores seen so far, keep objectt along with its score.

6. (a) If thresholdT is lower than the scores of all current top-k objects, return those objects along with their
scores.

(b) Otherwise, get the next best objectt from S-SourceS: (t; s0) getNextS(q0) and return to step 2.

We can improve the algorithm above by interleaving the execution of steps 3 and 4 and adding a shortcut test

condition. Given an objectt, we calculate the valueU(t) after each random probe to anR-SourceRi, and we skip

directly to step 5 if the current objectt is guaranteed not to be one of the top-k objects. That is, ifU(t) is lower than

the lowest score of the current top-k objects, we can safely ignore objectt (see Property 1) and continue with the

next one. We call this algorithmTA-Opt.

4.3.2 Exploiting Techniques for Processing Selections with Expensive Predicates

Work on expensive-predicate query optimization [11, 12] has studied how to process selection queries of the form

p1 ^ : : : ^ pn, where each predicatepi can be expensive to calculate. The key idea is to order the evaluation of

14

predicates to minimize the expected execution time. The evaluation order is determined by the predicates’rank,

defined as:

rankpi =
selectivity(pi)

cost-per-object(pi)

wherecost-per-object(pi) is the average time to evaluate predicatepi over an arbitrary object.

We can adapt this idea to our framework in the following way. LetR1; : : : ; Rn be theR-Sources, and let

w1; : : : ; wn be the corresponding weights in theScorefunction. We sort theR-Sources Ri in increasing order of

rank, defined as:

rankRi
=

wi � E(ScoreRi
)

tR(Ri)

whereE(ScoreRi
) is the expected score of an object from sourceRi (typically 0.5 unless we have more sophisticated

statistics). Thus, we favor fast sources that might have a greater impact on the final score of an object, i.e., those

sources that are likely to significantly change the values ofU(t) andL(t).

We combine this idea with our adaptation of the TA algorithm to define the TA-EP algorithm:

Algorithm TA-EP (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS: (t; s0) getNextS(q0).

2. Update thresholdT = U(t).

3. For eachR-SourceRi in decreasing order ofrankRi
:

(a) Retrieve scoresi for attributeAi and objectt via a random probe toR-SourceRi: si getScoreRi
(qi; t).

(b) If U(t) is lower than the lower bound of the current top-k object, skip to step 4.

4. If t’s score is one of the top-k scores seen so far, keep objectt along with its score.

5. (a) If thresholdT is lower than the scores of all current top-k objects, return those objects along with their
scores.

(b) Otherwise, get the next best objectt from S-SourceS: (t; s0) getNextS(q0) and return to step 2.

5 Evaluation Setting

In this section we describe the data sets (Section 5.1) and metrics and other settings (Section 5.2) that we use to

evaluate the strategies of Section 4.

5.1 Data Sets

Synthetic Sources: We generate different synthetic data sets. Objects in these data sets have attributes from a

single S-SourceS and fiveR-Sources. The data sets vary in their number of objects inObjects(S) and in the

correlation between attributes and their distribution. Specifically, given a query, we generate individual attribute

scores for each conceptual object in our synthetic database in three different ways:

15

� “Uniform” data set: We assume that attributes are independent of each other and that scores are uniformly

distributed (default setting).

� “Correlation” data set: We assume that attributes exhibit different degrees of correlation, modeled by a

correlation factorcf that ranges between -1 and 1. This parameter defines the correlation between theS-Source

and theR-Sourcescores. Specifically, whencf is zero, attributes are uncorrelated (i.e., they are independent of

each other). Higher values ofcf result in positive correlation between theS-Sourceand theR-Sourcescores,

with all scores being equal in the extreme case whencf= 1. In contrast, whencf< 0, theS-Sourcescores are

negatively correlated with theR-Sourcescores.

� “Gaussian” data set: We generate the multiattribute score distribution by producing five overlapping multi-

dimensional Gaussian bells [17].

The random-access cost for eachR-SourceRi (i.e., tR(Ri)) is a randomly generated integer ranging between 1 and

10, while the sorted-access cost forS-SourceS (i.e., tS(S)) is randomly picked fromf0:1; 0:2; : : : ; 1:0g.

Real Web-Accessible Sources: The real sources that we use are relevant to (an expanded version of) our running

example of Section 3. Users input a starting address, the type of cuisine in which they are interested (if any), and

importance weights for the followingR-Sourceattributes:SubwayTime(handled by the SubwayNavigator site6),

DrivingTime (handled by the MapQuest site),Popularity (handled by the AltaVista search engine7; see below),

ZFood, ZPrice, ZDecor, andZService(handled by the Zagat Review web site), andTRatingandTPrice (provided

by the New York Times at the New York Today web site). The Verizon Yellow Pages listing8, which returns

restaurants of the user-specified type sorted by shortest distance from a given address, is the onlyS-Source. Table 1

summarizes the real sources in our setting, together with details on their associated interface.

ThePopularityattribute requires further explanation. We approximate the “popularity” of a restaurant with the

number of web pages that mention the restaurant, as reported by the AltaVista search engine. (The idea of using web

search engines as a “popularity oracle” has been used before in the WSQ/DSQ system [9].) Consider, for example,

restaurant “Tavern on the Green,” which is one of the most popular restaurants in the United States. A query on

AltaVista on “Tavern on the Green” AND “New York” returns 1,972 hits. In contrast, the corresponding query for a

much less popular restaurant on New York City’s Upper West Side, “Caffe Taci” AND “New York,” returns only six

hits. Of course, the reported number of hits might inaccurately capture the actual number of pages that talk about

the restaurants in question, due to both false positives and false negatives. Also, in rare cases web presence might

not reflect actual “popularity.” However, anecdotal observations indicate that search engines work well as popularity

oracles in most cases.
6http://www.subwaynavigator.com
7http://www.altavista.com
8http://www.superpages.com

16

Source Type Attribute(s) Input

Verizon Yellow Pages S-Source Distance type of cuisine, user address

SubwayNavigator R-Source SubwayTime restaurant address, user address

MapQuest R-Source DrivingTime restaurant address, user address

AltaVista R-Source Popularity free-text query with restaurant name and address

Zagat Review R-Source ZFood, ZPrice restaurant name

ZDecor, ZService

NYT Review R-Source TRating, TPrice restaurant name

Table 1: The real web-accessible sources used in the experimental evaluation of the various techniques.

Of course, the real sources above do not fit our model of Section 3 perfectly. For example, some of these

sources return values for multiple attributes simultaneously (e.g., the Zagat Review site). Also, as we mentioned

before, information on a restaurant might be missing in some of these sources (e.g., a restaurant might not have an

entry at the Zagat Review site). In such a case, our system will give a default (expected) value to the score of the

corresponding attribute. We address these issues in Section 7.

5.2 Other Experimental Settings

Our query processing strategies attempt to minimize the total processing time for top-k queries, both for random

and sorted access to the various sources. To measure the relative performance of the techniques over anS-SourceS

andR-Sources R1; : : : ; Rn, we use the following metric:

ttotal = nS � tS(S) +
nX
i=1

ni � tR(Ri)

wherenS is the number of objects extracted fromS-SourceS, ni is the number of random-access probes for

R-SourceRi, and tS and tR are as specified in Definition 2.ttotal then approximates the total execution time

for a query. Where appropriate, we reporttS andtR, the sorted- and random-access components of this time, re-

spectively, together with the actual number of sorted (nS) and random accesses (nR =
Pn

i=1 ni) required. Finally,

ntotal = nS + nR.

For the synthetic data sets and for each setting of the experiment parameters, we generate 100 queries randomly,

with their associated weights, produce costs and attribute values for the sources, and compute the averagettotal, tS ,

tR, ntotal, nS , andnR values. We report results for top-k queries for different values ofk, jSj, cf and for various

assignments of weights and costs to sources. In the default setting,k is 10 (i.e., queries ask for the best 10 objects),

jSj = 5; 000, and we use theUniform data set.

17

Query k Address Cuisine w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

1 5 112th Street Any 10 5 5 5 1 1 1 1 1 1

2 5 73rd Street Any 10 5 5 5 1 1 1 1 1 1

3 5 112th Street Chinese 10 5 5 5 1 1 1 1 1 1

4 5 112th Street French 10 5 5 5 1 1 1 1 1 1

5 5 73rd Street Italian 10 5 5 5 1 1 1 1 1 1

6 10 73rd Street Italian 10 5 5 5 1 1 1 1 1 1

7 5 73rd Street French 10 1 2 5 4 0 0.2 0.2 1 3

Table 2: The seven queries for the experiments over our real data sets, including the weight for each attribute

(A0 =Distance, A1 =SubwayTime, A2 =DrivingTime, A3 =Popularity, A4 =ZFood, A5 =ZPrice, A6 =ZDecor,

A7 =ZService, A8 =TRating, andA9 =TPrice).

For the real data sets, we use seven queries, some specifying an address on E.73rd Street, and some others

specifying an address on W.112th Street. AttributesDistance, SubwayTime, DrivingTime, ZFood, ZDecor, ZService,

andTRatinghave “default” target values in the queries (e.g., aDrivingTimeof 0 and aZFoodrating of 30). The

target value forPopularity is 1,000 hits, whileZPriceandTPriceare set to the least expensive value in the scale. In

all seven queries, the weight of theS-Sourceattribute (i.e.,Distance) is roughly twice the weight of anyR-Source

attribute. See Table 2 for further details.

Next, we experimentally compare the algorithms that we discussed in Section 4, namelyTA-Adapt(Section 4.3.1),

TA-Opt (Section 4.3.1),TA-EP (Section 4.3.2), and our novel strategies,Upper (Section 4.2.2) andPick (Sec-

tion 4.2.3). We also report results for theOptimal technique of Section 4.2.1. As discussed, this technique is only

of theoretical interest, and serves as a lower bound for the time that any strategy without “wild guesses” would take

to process a given top-k query.

6 Evaluation Results

In this section we present the experimental results for the techniques of Section 4 using the data sets and general

settings described in Section 5.

6.1 Results for Synthetic Data Sets

The first results that we report are for thedefault settingof the experiment parameters (Section 5). Figure 3 shows

the average execution time for each technique and for both theUniformandGaussiansynthetic data sets. TheUpper

strategy consistently outperforms all other techniques, and has total execution time close to that of the lower bound,

18

0

20

40

60

80

100

120

140

Optimal Upper Pick TA-EP TA-Opt TA-Adapt

t to
ta

l

o

tt S

t R

(a)Uniform data set

0

20

40

60

80

100

120

140

Optimal Upper Pick TA-EP TA-Opt TA-Adapt

t to
ta

l

e

st S

t R

(b) Gaussian data set

Figure 3: Performance of the different strategies for the default setting of the experiment parameters, and for two

synthetic data-set distributions.

Optimal. ForUniform, Pick andTA-EPexhibit similar overall execution times. However,Pickperforms better than

TA-EP for Gaussian. Pick gives better results forGaussianthan forUniform because theGaussiandistribution

allowsPick to retrieve fewer objects fromS-SourceS at initialization, which in turn results in fewer objects being

subjected to random-access probes. All techniques need the same number of sorted accesses, exceptPick, which

does slightly more accesses toS-SourceS since it initially needs to retrieve a large number of objects under sorted

access (Section 4.2.3). We can see that our optimizations overTA-Adapt, namelyTA-Optand TA-EP, result in

dramatic improvements in performance overTA-Adapt. We then removeTA-Adaptfrom further consideration in the

remaining discussion.

Effect of the Number of Objects Requestedk: We study the effect of varying the value ofk in Figure 4. We

report results for the default setting, as a function ofk and for both theUniform andGaussiansynthetic data sets.

As k increases, the time needed by each algorithm to return the top-k objects increases as well, since all techniques

need to retrieve and process more objects. The general drop in performance is substantial fromk = 1 to k = 10

but is less pronounced for higher values ofk. The relative performance of the different techniques remains similar

for a wide range of values ofk. Whenk increases,Pick performs better thanTA-EP, especially forGaussian. For

k > 10, UpperandPick show similar results. Observe that the difference between the execution time ofUpperand

Optimal is almost constant (and small) across differentk values.

Effect of the Number of Objects inS-SourceS: Figure 5 studies the impact of the size ofS-SourceS. For each

size, we report the average execution time for 50 randomly generated queries. As the number of objects increases,

the performance of each algorithm drops since more objects have to be evaluated before a solution is returned. The

19

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

k

t to
ta

l

Optimal

Upper

Pick

TA-Opt

TA-EP

(a)Uniform data set

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

k

t to
ta

l

Optimal

Upper

Pick

TA-Opt

TA-EP

(b) Gaussian data set

Figure 4: Performance of the different strategies for the default setting of the experiment parameters, as a function

of the number of objects requestedk, and for two synthetic data-set distributions.

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Number of objects in S-Source S

t to
ta

l

Optimal

Upper

Pick

TA-Opt

TA-EP

Figure 5: Performance of the different strategies for the default setting of the experiment parameters, as a function

of the number of objects inS-SourceS.

20

time needed by each algorithm is approximately linear in the number of objects inS. Uppergives better results and

scales better than other techniques.

Effect of Attribute Weights and Source Costs: We now report on the impact of attribute weights and source

access costs on the execution times. In particular, Figure 6(a) shows results for various assignments of weights to

the query attributes. (All other parameters of the experiments follow the default setting.) Also, Figure 6(b) shows

results for various combinations of costs for the various sources. The results in Figure 6(b) are presented in a

logarithmic scale.TA-Optperforms poorly when access to one of the sources is significantly more expensive than

to the other sources (see Figure 6(b) forc1 = 100). In contrast,TA-EP, which orders accesses toR-Sources taking

access costs into account, performs dramatically better.

0

10

20

30

40

50

60

70

80

Optimal Upper Pick TA-EP TA-Opt

t to
ta

l

S ,

S

S

wS=5, wi=1 for i in [1;5]

wS=1, wi=1 for i in [1;5]

wS=1, wi=1 for i in [1;4],

w5=5

(a) Effect of attribute weights

1

10

100

1000

Optimal Upper Pick TA-EP TA-Opt

t to
ta

l

all R-sources have cost 1

R0 has cost 10, all other
R-sources have cost 1

R0 has cost 100, all other
R-sources have cost 1

c S=1, c i=1 for i in [1;5]

c S=1, c 1=10,c i=1 for i
in [2;5]

c S=1, c 1=100,c i=1 for i
in [2;5]

(b) Effect of source access costs (logarithmic scale)

Figure 6: Performance of the different strategies for various attribute-weight and source access-cost combinations.

Effect of Attribute Correlation: We now turn to theCorrelationdata set (Section 5) and evaluate the effect that

attribute correlation has on the performance of the query processing techniques. Figure 7(a) is for the case when all

R-Sources are negatively correlated withS-Source(i.e., when correlation factorcf< 0; see Section 5). In contrast,

Figure 7(b) is for the positive-correlation case (i.e.,cf> 0). As seen in Figure 7(b), whencf is high the performance

of all techniques, with the exception ofPick, improves dramatically: All techniques other thanPickaccessS-Source

S on demand and when needed. In contrast,Pick extracts a batch of objects during initialization, which results

in a substantial number of candidate objects in need of random probes. This way,Pick does not benefit from all

attribute scores being positively correlated as the other techniques do. Interestingly, a negative correlation between

theR-Sources and theS-Sourceattribute scores does not affect the performance of the algorithms significantly.

21

0

10

20

30

40

50

60

70

-1 -0.8 -0.6 -0.4 -0.2 0

cf

t to
ta

l

Optimal

Upper

Pick

TA-Opt

TA-EP

(a) Negative attribute correlation

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

cf

t to
ta

l

Optimal

Upper

Pick

TA-Opt

TA-EP

(b) Positive attribute correlation

Figure 7: Performance of the different strategies for theCorrelationsynthetic data set and the default setting of the

experiment parameters, as a function of the correlation factorcf.

6.2 Results for Real Web-Accessible Data Sets

Our final set of results are for the real data sets that we described in Section 5 and summarized in Table 1. There

are six web-accessible sources, handling 10 attributes. To model the access cost for each source, we measured the

response time for a number of queries and computed their average. We then issued the seven queries in Table 2

to these sources and timed their execution. Figure 8(a) shows the execution time for each of the queries, and for

the Upper, TA-EP, andTA-Optstrategies. SinceUpper gives consistently better results thanPick in the synthetic

data experiments, we choose to focus on it in the real data experiments. We compare ourUpper technique per-

formance withTA-EPandTA-Optresults, and ignoredTA-Adapt, whose results in the synthetic data experiments

were significantly worse than those for other techniques. Figure 8(b) shows the number of random-access probes

that each technique requires for each query. In contrast with the synthetic-data results,TA-EPdoes not outperform

TA-Opt. We conjecture that this discrepancy is due to our rough estimates for the source access costs, to which the

TA-EPstrategy would be particularly sensitive. In general, just as we observed for the synthetic data sets, ourUpper

strategy performs significantly better than the two versions of theTAalgorithm that we tried.

In summary, our experimental results consistently show thatUpperoutperforms all other methods, with perfor-

mance close to that of theOptimal technique, for both synthetic and real data sets. Furthermore, our modifications

to theTA algorithm,TA-EPin particular, resulted in significant improvements in performance.

22

0

1000

2000

3000

4000

5000

6000

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

t to
ta

l

Upper

TA-EP

TA-Opt

(a) ttotal

0

1000

2000

3000

4000

5000

6000

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

n
R

Upper

TA-EP

TA-Opt

(b) nR

Figure 8: Experimental results for the real web-accessible data sets relevant to our New York City restaurant sce-

nario.

7 Variations to our Model and Future Work

In this section we present some simple variations to our data and query models of Section 3, and some interesting

directions we plan to investigate in the future.

Boolean (Filter) Conditions: Top-k queries can naturally incorporate Boolean (or filter) conditions over some

attributes. Our algorithms can adapt to such conditions in a straightforward way if the conditions are over an

S-Source: we can discard tuples, if appropriate, as soon as they are retrieved (or even in some cases theS-Sources

might process the filter directly, as does the Yellow Pages source of Section 6). However, our algorithms need to

be slightly modified to handle conditions overR-Sources. Specifically, we should probe theR-Sources for a filter

predicatebeforeprobing the otherR-Sources, to avoid “wasting” probes on objects that might be later discarded by

the filter. If there are several filter predicates, we can probe them inrank order [11, 12].

Dealing with Real Web R-Sources: As mentioned above, some web sources might not fit our model perfectly.

For instance, anR-SourceR might not have information about some object returned by theS-Source. In such cases,

we approximate the missing score with an expected value, which can be determined in a number of ways, including

for example as an average of past scores observed from that source. A similar approach can be followed to handle

sources that are down at query-processing time.

23

S-Sources that Return Several Objects at a Time: Some sources (e.g., web search engines) returnn > 1matches

at a time for a given query. Throughout our discussion, we assumed thatS-Sources returned one object at a time.

For our experiments with real web sources, we approximated the cost to retrieve each object by dividing the cost

to retrieve a batch ofn objects byn. However, there might be opportunities to refine the current algorithms by

exploiting the fact that we can “look ahead” in theS-Sourceranking at no extra cost.

Relaxing the Source Model: In Section 4 we focused on the case where exactly oneS-Sourceand multiple

R-Sources were available. In the general case, with more than oneS-Source, we can divide the evaluation in two

(pipelined) phases. First, we consider allS-Sources at a time and use the NRA algorithm [7] (which is instance

optimal) to produce a stream of tuples sorted by the partial score of theS-Sources. Then, we treat this output as a

new singleS-Sourceand use theUpperalgorithm of Section 4 to produce the final answer. Another direction is to

combine these two phases into a single, more efficient algorithm. We are currently evaluating different alternatives

for the latter approach.

Other Issues: Our model assumes that only one source can be accessed at a time, which is is too restrictive in the

context of web sources. As explained in Section 2, we can incorporate the ideas in [9] to include parallelism and

speed up the process. Another interesting problem is how to adapt our algorithms so that they take into consideration

S-Sources that return just the rank of objects without the actual associated scores.

8 Conclusion

We studied techniques to efficiently evaluate top-k queries over web-accessible autonomous databases with a variety

of access interfaces. In particular, we focused on web sources that can only be accessed via random accesses. We

proposed extensions to existing algorithms for top-k queries so that they can handle random-access sources, and

also introduced two novel strategies,Upper andPick, which are designed specifically for our query model. We

conducted a thorough experimental evaluation of these techniques using both synthetic and real web-accessible data

sets. Our evaluation showed thatUpperproduces the best processing plans in terms of execution time for a variety

of data and query parameters, and for both synthetic and real data sets.

References

[1] M. J. Carey and D. Kossmann. On saying “Enough Already!” in SQL. InProceedings of the 1997 ACM International

Conference on Management of Data (SIGMOD’97), May 1997.

[2] M. J. Carey and D. Kossmann. Reducing the braking distance of an SQL query engine. InProceedings of the Twenty-

fourth International Conference on Very Large Databases (VLDB’98), Aug. 1998.

24

[3] S. Chaudhuri and L. Gravano. Optimizing queries over multimedia repositories. InProceedings of the 1996 ACM

International Conference on Management of Data (SIGMOD’96), pages 91–102, 1996.

[4] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. InProceedings of the Twenty-fifth International

Conference on Very Large Databases (VLDB’99), 1999.

[5] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of topn queries. InProceedings of the Twenty-fifth

International Conference on Very Large Databases (VLDB’99), pages 411–422, 1999.

[6] R. Fagin. Combining fuzzy information from multiple systems. InProceedings of the Fifteenth ACM Symposium on

Principles of Database Systems, pages 216–226, 1996.

[7] R. Fagin, A. Lotem, and M. Laor. Optimal aggregation algorithms for middleware. InProceedings of the Twentieth ACM

Symposium on Principles of Database Systems, 2001.

[8] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of limited access patterns. In

Proceedings of the 1999 ACM International Conference on Management of Data (SIGMOD’99), 1999.

[9] R. Goldman and J. Widom. WSQ/DSQ: A practical approach for combined querying of databases and the web. In

Proceedings of the 2000 ACM International Conference on Management of Data (SIGMOD’00), pages 285–296, 2000.

[10] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for image databases. InProceedings of the

Twenty-sixth International Conference on Very Large Databases (VLDB’00), pages 419–428, 2000.

[11] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with expensive predicates. InProceedings

of the 1993 ACM International Conference on Management of Data (SIGMOD’93), pages 267–276, 1993.

[12] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunctive queries with expensive predicates. In

Proceedings of the 1994 ACM International Conference on Management of Data (SIGMOD’94), pages 336–347, 1994.

[13] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information sources using source descriptions. In

Proceedings of the Twenty-second International Conference on Very Large Databases (VLDB’96), 1996.

[14] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) databases. InProceedings of the 15th

International Conference on Data Engineering, pages 22–29, 1999.

[15] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T. S. Huang. Supporting ranked boolean similarity

queries in MARS.TKDE, 10(6):905–925, 1998.

[16] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates with binding patterns. InProceedings of

the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25, 1995, San

Jose, California, 1995.

[17] S. A. Williams, H. Press, B. P. Flannery, and W. T. Vetterling.Numerical Recipes in C: The art of scientific computing.

Cambridge University Press, 1993.

25

