
A Semantic Taxonomy-Based
Personalizable Meta-Search Agent

Larry Kerschberg1, Wooju Kim1, and Anthony Scime2
1) E-Center for E-Business, George Mason University

4400 University Drive, Fairfax, VA 22030, USA
kersch,wkim1@gmu.edu

2) Department of Computer Science, SUNY-Brockport
ascime@brockport.edu

Abstract

This paper addresses the problem of specifying,
retrieving, filtering and rating Web searches so
as to improve the relevance and quality of hits,
based on the user’s search intent and preferences.
We present a methodology and architecture for
an agent-based system, called WebSifter II, that
captures the semantics of a user’s decision-
oriented search intent, transforms the semantic
query into target queries for existing search
engines, and then ranks the resulting page hits
according to a user-specified weighted-rating
scheme. Users create personalized search
taxonomies via our Weighted Semantic-
Taxonomy Tree. The terms in the tree can be
refined by consulting a web taxonomy agent
such as Wordnet. The concepts represented in
the tree are then transformed into a collection of
queries processed by existing search engines.
Each returned page is rated according to user-
specified preferences such as semantic relevance,
syntactic relevance, categorical match, page
popularity and authority/hub rating.

1. Introduction
With the advent of Internet and WWW, the amount of
information available from the web grows exponentially
every day. However, having too much information at
one’s fingertips does not always mean good quality
information, and rather, it may often prevent a decision
maker from making sound decisions, usually degrading
the quality of decision. Helping decision makers to locate
relevant information in an efficient manner is very
important not only to a person but also to an organization
in terms of time, cost, data quality and risk management.

Although search engines assist users in finding
information, many of the results are irrelevant to the
decision problem. This is due in part, to the keyword
search approach, which does not capture the user’s intent,

what we call meta-knowledge. Search engines also have
their own ranking system, which a user’s criteria may
change over time as more information about the problem
is gathered. Thus, there is a “semantic gap” between the
user’s perception of the problem domain and the search
results provided by search engines.

To overcome these two major problems, we proposed
a semantic taxonomy-based personalizable meta-search
agent approach. We build upon the ideas presented by
Scime and Kerschberg [1]. We develop a tree-structured
search intent representation scheme with which users
describe their search intent. We call this representation
scheme the “Weighted Semantic Taxonomy Tree
(WSTT)”, in which each node denotes a concept that
pertains to the user’s problem-domain. To address the
second weakness, we present an elaborate user preference
representation scheme based on various components, each
of which represents a specific decision-criterion. Users
can easily and precisely express their preference in a
search using this representation scheme.

In order to rate the relevance of a page hit, we use a
rating mechanism combining the WSTT and the
component-based preference representation. Since web
page rating can itself be viewed as a decision-making
problem, where a decision maker (a user) must evaluate
various alternatives (web pages) for his/her problem
(user’s web search intention), we use decision-analytic
methods in the design of our rating mechanism.

Finally, we have designed and are presently
implementing a meta-search agent called WebSifter II that
cooperates with Wordnet for concept retrieval, and most
well-known search engines. For the empirical validation
of our approach, we also present some real world
examples of our system.

The remainder of the paper is organized as the
follows. Section 2 explains related previous issues and
related research. Section 3 presents the major aspects of
our semantic-based personalizable approach to the
representation of user intention, and the multi-component
rating of search hits. In Section 4, we discuss the system
architecture of WebSifter II, the search agent that

implements our methodology. We deal with some
collaboration issues too in this section. The results of
empirical studies are presented in Section 5.

2. Related Work
Most of current internet search engines such as Yahoo,
Excite, Altavista, WebCrawler, Lycos, Google, etc. suffer
from Recall and Precision problems [2]. The relatively
low coverage of individual search engines leads to the use
the concept of meta-search engines to improve the recall
of a query. Examples are MetaCrawler [3], SavvySearch
[4], NECI Metasearch Engine [5], and Copernic
(http://www.copernic.com). This meta-search engine
approach partly addresses the recall problem but still
suffers from the precision problem.

We can categorize research regarding the precision
problem into three major themes: content-based,
collaborative, and domain-knowledge approaches.

The content-based approach first represents a user’s
explicit preferences and then evaluates web page
relevance in terms of its content and user preferences.
Syskill & Webert [6], WebWatcher [7], WAWA [8], and
WebSail [9] fall into this category. Further, some research
takes into account not only web page content but also its
structure (e.g. hyperlinks) to evaluate relevance [10, 11].

The collaborative approach determines information
relevancy based on similarity among users rather than
similarity of information itself. Example systems are
Firefly and Ringo [12], Phoaks [13], and Siteseer [14]. In
addition, some hybrid approaches incorporate approaches
for example Fab [15], Lifestyle Finder [16], WebCobra
[17].

The third category is the domain knowledge approach
that uses user and organizational domain knowledge to
improve the relevancy of search results. One of the
popular domain knowledge approaches provides a
predefined taxonomy path, e.g., Yahoo!. So, classifying
web pages automatically into a pre-defined, or a
dynamically created taxonomy [18] is a related issue to
this approach. NorthernLight (www.northernlight.com) is
a search engine that supports this kind of dynamic
taxonomy service. Using NorthernLight’s Custom Search
Folder service, users can refine their search query to a
specific domain, when the search engine presents too
much information.

Some research incorporates users domain knowledge
in a more explicit way. For example, Aridor et al. [19]
represent user domain knowledge as a small set of
example web pages provided by users. Chakrabarti et al.
adopted both a pre-defined (but modifiable) taxonomy
and a set of example web pages provided by users as
domain knowledge [20].

From this survey of related research, we have
identified several aspects that merit further consideration.
First, most approaches force users to use a search engine
in a passive rather than active manner. Often, the user

cannot understand why extraneous and irrelevant results
are retrieved. There is a pressing need for users to control
search by specifying their intent. Second, current
approaches lack sufficient expressive power to capture a
users’ search intent and preferences, because most of the
representation schemes are based on a vector space model
[21] or its variants. Third, most approaches do not take
full advantage of domain-specific knowledge with which
to scope the search, interpret, and classify the query
result.

Regarding the first limitation, there is another related
research category, the ontology-based approach by which
users can express their search intent in a more semantic
fashion. Domain-specific ontologies are being developed
for commercial and public purposes [22] and OntoSeek
[23], On2Broker [24], GETESS [25], and WebKB [26]
are example systems.

Although the ontology-based approach is a promising
way to solve some aspects of the precision problem, it still
requires two major pre-requisites. First, the entire
collection of web pages must be transformed into
ontological form. Second, there is as yet no common
agreement on the representation of the ontology, nor the
query or reasoning mechanisms. Even if these two
prerequisites are satisfied, the precision problem in web
search will remain due to the huge amount of the
information on the web. That is, a user-centric
information relevancy evaluation scheme will
complement the above approaches.

3. Semantic Taxonomy-Tree-Based
Approach for Personalized Information
Retrieval

3.1 Weighted Semantic Taxonomy Tree

Usually a keyword-based search representation is
insufficient to express a user’s search intent. By
postulating a user’s decision-making process as depicted
in Figure 1, we can support readily query formulation and
search.

Figure 1 Four Phases of Decision Making Process
This process starts with a problem identification phase

and then a user seeks relevant information to solve the
identified problem. Based on the collected information,
listing alternatives, evaluating them, and selecting a
solution are the following steps. One implication of the
decision-making process is that the more we understand a
user’s problems, the better we can support a user’s
information search. In our approach, we represent a user’s
search intent by a hierarchical concept tree with weights
associated with each concept, thereby reflecting user-
perceived relevance of concepts to the search.

Let’s assume that a person has started a new business
and is looking for office equipment. He wants to search
for information about office equipment on the web.
Suppose he wants information about chairs, so he might
build a query using a single term, “chair”. If he is a more
skilled user of internet search engines, he might build a
query using two terms, “office” and “chair” to obtain
more precise results. He may also use ‘AND’ or ‘OR’
operator between them. In this case, the term “office”
provides added context for the search. However, this
formulation is still very implicit and passive. As we
mentioned earlier, one way to express this kind of context
information is by using a taxonomy tree as shown in
Figure 2. Figure 2(a) shows a simple taxonomy tree that
represents a search intention to find a chair in the context
of office, while a search for finding an office in the
context of chair is expressed by Figure 2(b). The
taxonomy tree provides more expressive semantics than
simple keyword-based representations used by most
current search engines.

Figure 2 A Simple Example of Taxonomy Tree

The taxonomy tree approach is already used in many
of search engines such as Yahoo! We have devised a tree-
based search representation model that allows users to
present their search intention by defining their own
taxonomy topology. We call this the Weighted Semantic
Taxonomy Tree (WSTT) model. Now, let us formally
define this model. The WSTT consists of a set of nodes
that is denoted as N in the sequel. Because it is a tree, all
nodes, except the root node, must have one parent node.
Every node should have one representative term and a
weight that represents the importance of this node for a
search. For a node n ∈ N, we denote a representative
term, or label, and its weight as rt(n) and w(n),
respectively. We restrict the feasible range of the value of
w(n) from 0 to 10. Figure 3 shows a realistic example of
the businessman’s search intention using our WSTT
scheme. Users can build their own hierarchical taxonomy
tree, and assign importance levels to each term within the
context of their antecedent terms. For example, we can
translate the upper sub-tree as that a businessman wants to
find information about chairs, desks, and phones within
the context of office furniture and office equipment where
the numbers that appear to the left to each term, 10, 9, and
6 denote the respective importance levels of chairs, desks,
and phones.

Figure 3 An Example of WSTT that represent a

businessman’s search intention
One drawback is that the terms may have multiple

meanings, and this is one of the major reasons that search
engines return irrelevant search results. To address this
limitation in using just simple terms, we introduce the
notion of “word senses” from Wordnet [27] into our
WSTT scheme to allow users to refine their search
intention. Wordnet is a linguistic database that uses sets of
terms that have same semantics (synsets) to represent
word senses. Each synset corresponds to a specific
meaning in English and so each word may be associated
with multiple synsets. In this paper, we rename this synset
as Concept for our own use and the user can choose one
of the concepts available from Wordnet for the term of a
specific node in WSTT. We denote an available concept,
that is, a set of terms for a node n as c(n). For example,
the “chair” term has the following four possible concepts
from Wordnet.

(1) {chair} // a seat for one person, with a support for
the back,

(2) {professorship, chair} // the position of professor,
or a chaired professorship,

(3) {president, chairman, chairwoman, chair,
chairperson} // the officer who presides at the
meetings of an organization, and

(4) {electric chair, chair, death chair, hot seat} // an
instrument of death by electrocution that resembles
a chair.

If the user wants to search for a chair to sit on, he
would choose the first concept. If the user selects the first
concept, then without loss of generality, we can assume
that the remaining concepts are not of interest, thereby
obtaining both positive and negative indicators of his
intent. Now, let’s distinguish the set of terms of selected
concept from the set of terms of the unselected concepts
as Positive Concept Terms and Negative Concept Terms,
and denote them as pct(n) and nct(n) for a node n,
respectively. If we denote a term as t and assume that a
user selects the k-th concept, then we can formalize the
definitions of them for a given node n as follows:

() (){ }ncttnpct k∈= (1)

() () (){ }nrtncttnnct
ki

i −

∈=
≠
� (2)

where ci(n) denotes the i-th concept available from
 Wordnet for a node n and
 rt(n) denotes the representative term of n.

If a user selects the second concept from our example,
according to the definitions from (1) and (2), pct(n) and
nct(n) are as follows: pct(n) = {professorship, chair} and
nct(n) = {president, chairman, chairwoman, chairperson,
electric chair, death chair, hot seat}.

Figure 4 shows an internal representation of the user’s
intention via the WSTT schema, after the concept
selection process has finished; the user however sees the
tree of Figure 3. Another advantage using the tree
structure is that it is possible to represent many concepts
at the same time. This allows the user to specify a broad
range of interests simultaneously.

Figure 4 An Example of Internal Representation of

User’s Search Intention

3.2 Multi-Attribute-Based Search Preference
Representation

The ranking of web search hits by users involves the
evaluation of multiple attributes, which reflect user
preferences and their conception of the decision problem.
In our approach, we pose the ranking problem as a multi-
attribute decision problem. Thus, we examine the search
results provided by multiple search engines, and rank the
pages, according to multiple decision criteria. Both Multi-
Attribute Utility Technology (MAUT) [28] and Repertory
Grid [29] are two major approaches that address our
information evaluation problem. Our ranking approach
combines MAUT and the Repertory Grid. We define six
search evaluation components as follows:
(1) Semantic component: represents a web page’s

relevance with respect to its content.
(2) Syntactic component: represents the syntactic

relevance with respect to its URL. This considers
URL structure, the location of the document, the
type of information provider, and the page type (e.g.,
home, directory, and content).

(3) Categorical Match component: represents the
similarity measure between the structure of user-

created taxonomy and the category information
provided by search engines for the retrieved web
pages.

(4) Search Engine component: represents the user’s
biases toward and confidence in search engine’s
results.

(5) Authority/Hub component: represents the level of
user preference for Authority or Hub sites and pages
[30].

(6) Popularity component: represents the user’s
preference for popular sites. Popularity can be
measured by the number of visitors or the number of
requests for the specific page or site.

Further, in this multi-component-based preference
representation scheme, the user can assign a preference
level to each of these components, and also to each
available search engine within the search engine
component. Then, these components and the assigned
preference level are eventually synthesized into a single
unified value resulting in the relevance measure for a
specific web page. Figure 5 conceptually depicts our
scheme. In this figure, each number assigned to an edge
denotes user’s preference level for that component. This
multi-component preference scheme allows users more
control over their searches and the determination of a
page’s relevance.

Figure 5 A Conceptual Model of User’s Preference

Representation Scheme
Thus far, we have discussed how to capture and

represent semantically the user’s search intention and
search preferences. Now, we turn our attention to deriving
a good estimate of the relevancy of a web page based on
these semantics. In the following sections, we will first
discuss how to obtain web information using existing
search engines and then address the derivation of
relevance estimates.

3.3 Gathering Web Information based on Search
Intention

Since we adopt a meta-search approach to web
information gathering to preserve the benefits of meta-
search engines discussed in [3, 4, 19], we neither create
nor maintain our own index database of web information.
At present, there is no search engine that accepts a search
request based on the WSTT. We have developed a
translation mechanism from our WSTT-based query, to
Boolean queries that most of current search engines can
process.

As already mentioned, we represent a user’s search
intention as a tree, as shown in Figure 4. The leaf nodes

denote the terms of interest to the user, and the antecedent
nodes for each node form a search context. We transform
the entire tree into a set of separate queries where each is
acceptable to existing search engines. To do this, first we
decompose the tree into a set of paths from the root to
each leaf node. Then for each path, we generate all
possible combinations of terms, when selecting one term
from the positive concept terms of each node in the path
from a root node to a leaf node. Finally, we pose each
query to search engines to obtain query results.

We now provide definitions to formalize the above
discussion. Let’s first define a Leaf Path as an ordered set
of nodes, {n0, n1, n2, …, nl-1, nl}, where n0 is a root node,
nl is a leaf node, and n1, n2, …, nl-1 are consecutive
intermediate nodes on the path from n0 to nl in the WSTT.
We denote a leaf path as lp. We also define a set of all
distinct leaf paths available from the WSTT as lpset. For
example, we have six leaf paths from the example WSTT
as in the Figure 3 and its lpset becomes {{Office
Equipment, Office Furniture, Chairs}, {Office
Equipment, Office Furniture, Desks}, {Office Equipment,
Office Furniture, Phones}, {Office Equipment, Office
Supplies, Paper}, {Office Equipment, Office Supplies,
Pen}, {Office Equipment, Computers}}. Now, let’s
define a Term Combination Set for a Leaf Path lp, as a set
of all possible combinations of terms by selecting one
term from each pct(n), where n ∈ lp and denote it as
tcslp(lp). We also denote a set of all term combinations
available from a given WSTT and each of its elements as
tcs and tc, respectively. Then, using the above definitions,
a tcslp(lp) and tcs can be formally represented
respectively as follows:

() () () () ()lnpctnpctnpctnpctlptcslp ××××= ...210 (3)
where symbol × denotes the Cartesian product of sets.

()�
lpsetlp

lptcslptcs
∈

= (4)

If lp is the first element, that is, {Office Equipment,
Office Furniture, Chairs} of the lpset in the case of Figure
3 and Figure 4, then according to equation (3), tcslp(lp) =
{{Office Equipment, Office Furniture, Chair}, {Office
Equipment, Office Furniture, Seat}, {Office Equipment,
Furniture, Chair}, {Office Equipment, Furniture, Seat},
{Office Equipment, Piece of Furniture, Chair}, {Office
Equipment, Piece of Furniture, Seat}, {Office Equipment,
Article of Furniture, Chair}, {Office Equipment, Article
of Furniture, Seat}}.

Once we get tcs, then we make each term
combination, tc ∈ tcs as a separate request and pose them
to each search engine for web information gathering.
Now, the problem is how to generate actual query
statements to each query engine based on each tc. We
have trade-offs between Precision and Coverage
depending on which logical operators we impose between
terms. Actually, each tc is a set of terms and so, it can be
represented as {t1, t2, …, tn} where t1, t2, …, tn ∈ tc. To

generate an actual query statement from a tc, we can have
two different alternative choices, “t1 ∧ t2 ∧ … ∧ tn” and “t1

∨ t2 ∨ … ∨ tn” where ∧ denotes AND and ∨ denotes OR.
The first one provides more precise search results, while
the second allows greater coverage.

Based on the fact that a general user tends to use the
AND operator between terms when considering additional
terms for the context of a search, we adopt the AND
operator in generating actual query statements. We leave
the more general scheme for future research. For the
illustration of our query generation method, let’s use the
case depicted in Figure 4 again. According to the
procedures mentioned thus far, the upper-most leaf path
of the WSTT in Figure 4 is translated into eight separate
query statements as follow. (1) “Office Equipment” AND
“Office Furniture” AND “Chair”, (2) “Office Equipment”
AND “Office Furniture” AND “Seat”, (3) “Office
Equipment” AND “Furniture” AND “Chair”, (4) “Office
Equipment” AND “Furniture” AND “Seat”, (5) “Office
Equipment” AND “Piece of Furniture” AND “Chair”, (6)
“Office Equipment” AND “Piece of Furniture” AND
“Seat”, (7) “Office Equipment” AND “Article of
Furniture” AND “Chair”, and (8) “Office Equipment”
AND “Article of Furniture” AND “Seat”.

These queries can now be submitted to each target
search engine, and the query results are stored for further
processing, as discussed in the next section.

3.4 Unified Web Information Rating Mechanism

In this section, we discuss a rating mechanism to evaluate
each resulting page hit from the target search engines for
the generated query statements. Through this mechanism,
each web page will have its own value representing the
relevance level from the user’s viewpoint. To accomplish
this goal, six relevance values of a web page are
computed, corresponding to each of the six components.
Then a composite value of these six relevance values is
computed based on a function of the multi-attribute-based
search preference representation scheme. In the following
sub-sections, we will first discuss how this composite
relevance value is computed, and then a set of methods to
compute each of component’s relevance values.

3.4.1 Composite Relevance Value Computation
Let’s first assume we evaluated six components’
relevance values for a web page retrieved from search
engines. Then we need to synthesize these six values into
one single composite relevance value to compare web
pages to each other and to list them to the user in an order
of relevance. This problem can be viewed as a multi-
attribute decision-making problem.

One of the popularly accepted approaches in decision
science community is AHP (Analytic Hierarchy Process)
[31] and it converts user’s subjective assessments of
relative importance between preference components into a
linear set of weights, which is further used to rank

alternatives. Although we adopt AHP approach as a basis
of our synthesizing mechanism, we have modified the
original AHP to fit to our weight acquisition scheme,
because it requires pair-wise comparisons between all
components to obtain importance ratios between each pair
of them. Actually in our approach, a user assigns an
absolute importance weight on each component rather
than relative ratios between components. However, since
we still need those relative ratios, we first approximate
them by dividing absolute importance weights of
components by each other. Then, we follow the same
remaining steps of AHP to compute the composite
relevance value for each web page.

We now provide notations to formalize the above
discussion as follows.
compset : denotes a set of preference components to be

considered in our scheme.
cwU(x) : denotes a weight provided by the user to

represent the importance of a component x.
rvc(x, pg): denotes a relevance value of a web page pg

with respect to a component x.
lr(x, y) : denotes a relative importance ratio of

component x compared to component y.
ns(z) : denotes a function that returns the number of

elements in a set z.
We first approximate lr(x, y) by the (5) based on the

user-provided importance weights for each pair of
components:

() () ()ycwxcwyxlr UU=, (5)
where x ∈ compset and y ∈ compset.

Then, the AHP computes normalized importance
weights for each component based on these relative ratios.
We denote the normalized importance weight for a
component com and the composite relevance value of a
web page pg as cwN(com) and rv(pg), respectively.
According to AHP, these two values can be calculated
respectively as follows:

() ()
() ()compsetns

yxlr
xcomlrcomcw

x
y

N

= ∑
∑ ,

, (6)

where x ∈ compset and y ∈ compset.

() () ()∑ ⋅=
x

N pgxrvcxcwpgrv , (7)

where x ∈ compset.
Finally, web pages are presented to users in

descending order of rv. This, together with the page
relevancy value indicates the relative importance of that
page to the user.

Thus far, we have discussed how to synthesize the
relevance values of a user’s preference components into a
single composite value, under the assumption that these
relevance values of the components have already been
computed. Now, we show how to compute relevance

values of each of the six preference components based on
the user’s preference, as well as the user’s search intent as
represented by the WSTT.

3.4.2 Semantic Component Relevancy Computation
The semantic component represents relevancy of a web
page to a user’s search intent represented by the WSTT
with respect to its content. To compute this relevance, we
conceptually follow the reverse steps that we performed
in the section 3.3 to generate separate queries from the
WSTT.

First, we evaluate the semantic relevancies of a
retrieved web page for each of term combinations; we
then combine the semantic measures for each leaf path;
and then we bind each of these semantic measures to the
corresponding leaf node; and finally we compute a
semantic component relevancy of the web page using an
AHP-based WSTT relevance value composition
mechanism that propagates the bound values on the leaf
nodes toward the root node, thereby providing a single
combined relevance value at the root node.

Now, let’s explain the details of this procedure in a
formal manner. We first define rvtcSM(tc, pg) as a
semantic relevance value of a web page pg to a term
combination tc and it is computed by a simple counting
method as follows:

()
()

()tcns

pgtappear
pgtcrvtc tctSM

∑
∈=

,
, (8)

where t is a term and the function appear(t, pg) returns 1
if t appears in pg and 0, otherwise.

Based on these rvtcSM values, we define rvlpSM(lp, pg)
as a semantic relevance value of a web page pg to a leaf
path lp. When we compute this rvlpSM, we have to
consider two aspects. First, we have to synthesize
multiple rvtcSM values obtained from equation (8) for a
leaf path into a single measure and we adopt a max
function for this. Second, we have to consider negative
concepts related to a leaf path. To incorporate these
negative concepts into computing rvlpSM, we first develop
a measure to evaluate irrelevancy of a web page pg in
terms of negative concept terms related to a leaf path lp
and we denote it as irv(lp, pg). The following equation (9)
shows its mathematical definition.

() ()∑=
t

pgtappearpglpirv ,, (9)

where t is a term and also t ∈ ()�
lpn

nnct
∈

.

Now, we can compute rvlpSM using the following
equation (10).

() ()() () ()pglpirvSM

tc

SM pgtcrvtcpglprvlp ,1,max, θ−⋅= (10)

where tc ∈ tcslp(lp) and θ is a given [0, 1] scale
degradation rate.

In equation (10), θ denotes the level of degradation
with respect to the irrelevance caused by negative

concepts. So if θ is close to 1, then a little irrelevancy
results in a big impact on rvlpSM. On the other hand, if it is
close to 0, the irrelevancy does not have any impact on
the rvp value. The user can control this rate and we set it
to a default of 0.1.

Now, we synthesize a single semantic relevancy value
of a web page according to the WSTT. Since AHP was
originally developed to derive a unified measure to
evaluate decision alternatives based on a tree like WSTT,
we easily apply this approach to our WSTT scheme by
combining our rvlpSM values for each leaf path into a
single semantic relevance value of a web page. However,
we need to normalize the user-provided weights for the
nodes of WSTT, for reason similar to those discussed in
the previous section. For this normalization, we apply
equation (5) to each hierarchical branch of the WSTT, and
we obtain a set of normalized weights for each node
within the scope of the branch to which the nodes belong.
We denote this normalized weight for a node n, wN(n).
With the normalized weights, let’s formalize the AHP-
based WSTT relevance value composition mechanism.
Equation (11) shows a relevance value determination rule
on each node of WSTT for a web page pg and we denote
a relevance value of a web page pg on a node n as rvn(n,
pg).
rvn(n, pg) =

()
() ()

()

⋅∑
∈

otherwise.,
.path leaf a of

node leaf a is if
,

nchildrenx

N pgxrvnxw
lp

n
pglpbndfn

 (11)

where children(n) is a set of nodes that is a child of n and
 bndfn(lp, pg) is an arbitrary value binding function

to leaf nodes.
To perform this mechanism, we first bind relevance

values from bndfn() to all corresponding leaf nodes and
then these values are propagated from leaf nodes to the
root node, finally obtaining a single composite relevance
value of a web page for the WSTT. In this semantic
component case, by setting bndfn(lp, pg) as rvlpSM(lp, pg)
in the equation (10), we can obtain a single composite
semantic relevance value of a web page pg as rvn(n0, pg),
where n0 is the root node of the WSTT. This obtained
value is then assigned to rvc(Semantic Component, pg)
for further computing of composite relevance value with
other preference components, discussed in the previous
section.

Figure 6 shows conceptually the entire flow of
computations from relevancy computing for a term
combination to relevancy computing across the WSTT,
which is required to compute a semantic relevance value
of a web page. In this figure, PageSet(tci, sj) denotes a set
of resulting pages from a search engine sj for a term
combination tci. Actually, we will use a similar method
when computing categorical match and search engine
components’ relevancies in the following sections.

Figure 6 Conceptual Flow of Computation of Semantic

Component Relevancy

3.4.3 Syntactic Component Relevancy Computation
The syntactic component of web document measures the
structural aspects of the page as a function of the role of
that page with the structure of a web site. Our approach
takes into account the location of the document, its role
(e.g., home, directory, and content), and the well
formedness of its URL.

We define three types of web pages:
•

Direct-Hit – the page may be a home page or a page
with significant content relevant to the search.

• Directory-Hit – this page has links to other pages
relevant to the search.

• Page-Hit – web pages that are subordinate to direct-hit
and directory-hit pages fall into this category. These
pages contain partial information related to the search.

Scime and Kerschberg [1] define a set of heuristics to
classify a web page returned from a search engine as
either a direct, directory, or page hit. Further, a page may
have more than one classification. In order to manipulate
syntactic relevancy, we assign a numeric value to each
type as a real number in the interval [0, 1]. Default values
for direct, directory, and page hits are 1.0, 0.6, and 0.4
respectively. The assumption is that users would prefer to
view direct hits over the other two.

Since a web page might be classified into more than
one class, we need to synthesize those multiple matches
into one measure. To do this, we introduce an averaging
mechanism and define some necessary notations and a
formula to compute the syntactic relevance value of a web
page pg, rvc(Syntatic Component, pg) as follows:
rset(cl) : denote a set of rules to classify a web page

into the class cl.
rsc(r) : denotes a score of a rule r and it returns 1.0 if

r ∈ rset(Direct Hit), 0.6 if r ∈ rset(Directory
Hit), and 0.4 if r ∈ rset(Page Hit).

mat(r, pg) : denotes a function that returns 1 if a rule r is
matched to a web page pg and 0, otherwise.

rvc(Syntatic Component, pg) =

() () ()∑∑

 ⋅
rr

pgrmatpgrmatrrsc ,, (12)

3.4.4 Categorical Match Component Relevancy
Computation

Categorical Match component represents the similarity
measure between the structure of user-created taxonomy
and the category information provided by search engines
for the retrieved web pages. Nowadays, many popular
search engines respond to the users query not only with a
list of URLs for web pages but also with their own
categorical information for each web page. For example,
the followings are some portion of search results provided
by Lycos for the query “chair”.

In the above search results, the left hand side numbers

are ranks of the corresponding web pages and the
associated lines below each title show the related category
information of web pages. Although different search
engines associate different category information to the
same web page, such categorical information helps users
filter out some of the returned search results without
actually visiting the URL. Actually, the categorical match
component is designed to provide the benefits of manual
filtering by automatic means; this is accomplished by
comparing the WWST terms with the categorical
information provided by search engines. This is one of
the major contributions of this paper.

Now, let’s discuss how to measure the relevancy
between the WSTT and the categorical information in
more detail. We first represent the category information
for a web page pg from a search engine s, as an ordered
set of category terms in a form like {cat1, cat2, …, catm},
where cati is the i-th category term and m is total number
of category terms in the set and we denote it catinfo(pg,
s). For example, catinfo(Chair Technologies, Lycos) in
the above case, can be represented as the ordered set of
category terms, {Business, Industries, Manufacturing,
Consumer Products, Furniture, Seating, Office Chairs}.
However, since it is hard to directly compare such catinfo
to the entire WSTT, here we adopt a similar approach
applied to Semantic Component case, where we first
measure the relevance of a catinfo to a single term

combination, and then, combine them up to a single
composite measure with respect to the entire WSTT.

So now, the relevance between a catinfo and a term
combination tc can be measured from two different
aspects, co-occurrence of terms and order consistency of
terms. To measure the co-occurrence, we devised a
following formula (13).
coccur(tc, catinfo) =

()
()

()
()

⋅

 ∑∑

catinfons

tccatmember

tcns

catinfotmember
catt

,,
 (13)

where t ∈ tc is a term, cat ∈ catinfo is a category term,
and member(x, y) is a function that returns 1 if x is
a member of y and 0, otherwise.

To consider the order consistency, let’s first denote the
precedence relationship of two arbitrary terms, tl and tr as
(tl , tr), and that means tl precedes tr in an ordered terms
set. We also define a set of all available precedence
relationships from an ordered set of terms x, as prelset(x).
Then we measure the consistency of catinfo with respect
to a precedence relationship, (tl , tr) as follows:
cons((tl, tr), catinfo) =

 ∈

otherwise0
.in precedes and , if1 catinfottcatinfott rlrl (14)

Now, let’s define a consistency of a category
information catinfo to a term combination tc as constc(tc,
catinfo) and the equation (15) shows how to compute it.
Because we want to focus only on order consistency
between catinfo and tc not depending on co-occurrence
between them, we additionally define an ordered
intersection set of tc and catinfo, where order of its
element terms follows tc, as isset(tc, catinfo) and then we
can remove co-occurrence effect by only considering the
precedence relationships in that set.
constc(tc, catinfo) =

() ()()

∑ 2

,
,

catinfotcissetns
catinfoprcons

pr
 (15)

where pr ∈ prelset(isset(tc, catinfo)), is a precedence
relationship.

For example, let a term combination tc be {a, b, c, d,
e} and a category information catinfo be {a, e, c, f}. Then
isset(tc, catinfo) becomes {a, c, e} and also
prelset(isset(tc, catinfo)) becomes {(a, c), (a, e), (c, e)}.
According to the formula (14), cons((a, c), catinfo),
cons((a, e), catinfo), and cons((c, e), catinfo) have their
value as 1, 1, and 0, respectively. Since ns(isset(tc,
catinfo)) is 3 in this case, the denominator of the equation
(15) becomes 3, and finally constc(tc, catinfo) becomes
(1+1+0)/3 = 2/3. Also in this case, coccur(tc, catinfo)
becomes 3/5×3/4=9/20, because 3 of 5 terms of tc appear
in catinfo and 3 of 4 terms of catinfo appear in tc.

(1) Donald B. Brown Research Chair on Obesity
 Health > Mental Health > Disorders
 > Eating Disorders > Obesity
(2) Steel Chair Wrestling
 Sports > Fantasy > Pro Wrestling
 …
(3) Chair Technologies
 Business > Industries > Manufacturing
 > Consumer Products > Furniture
 > Seating > Office Chairs
 …

To synthesize both the above aspects of categorical
match between a term combination and a category
information, we define the following measure, rvtcc(tc,
catinfo).
rvtcc(tc, catinfo) =

() () ()catinfotcconstccatinfotccoccur ,1, ⋅−+⋅ αα (16)
where α is a [0, 1] scale factor to represent the relative

importance of co-occurrence to order consistency.
Actually since a web page can have several category

labels from different search engines for a given term
combination, we need to further synthesize to obtain a
single categorical match relevance value of a web page pg
for a term combination tc, rvtcCM(tc, pg) and it is
formalized in (17).

() () ()()∑ ⋅=
s

CM spgcatinfotcrvtccsswpgtcrvtc ,,, (17)

where s is a search engine and sw(s) is a normalized
preference weight for the search engine s.

As in the case of Semantic Component, we adopt the
max function to synthesize rvtcCMs to obtain a categorical
match relevance value of a web page pg for a leaf path lp,
rvlpCM(lp, pg) as follows:

()
()

()pgtcrvtcpglprvlp CM

lptcslptc

CM ,max,
∈

= (18)

We also can obtain a single composite categorical
match relevance value of a web page pg, rvc(Categorical
Match Component, pg) using the AHP-based WSTT
relevance value composition mechanism that is
formalized in (11). To do this, we first set bndfn(lp, pg) in
the equation (11) as rvlpCM(lp, pg), then we propagate
values from leaf nodes to the root node. At the root node
n0, we obtain a single composite categorical match
relevance value of a web page pg as rvn(n0, pg) and we
finally assign this value to rvc(Categorical Match
Component, pg), which will be used to obtain a composite
relevance value with other preference components.

3.4.5 Search Engine Component Relevancy
Computation

The Search Engine component represents the user’s biases
toward and confidence in a search engine’s results. To
measure this search engine component, let’s first define a
basic unit information, that is, rank of a web page pg by
search engine s for the request from term combination tc
as rank(tc, pg, s) and also define the number of resulting
web pages from search engine s for term combination tc
as npgs(tc, s). In order to synthesize the search engine
component with other components, we transform the rank
information to a [0, 1] scale normalized rank, rankN(tc,
pg, s) according to the following equation.

() ()()
()stcnpg

spgtcrankspgtcrank N

,
1,,1,, −−= (19)

The above normalization implies our intention to
further discriminate the similarly-ranked pages depending

on the size of populations of those pages. For example, it
transforms the second rank of ten results to a larger value
than the same second of five results. Now, to obtain a
composite search engine relevance value of a web page pg
for a term combination tc, rvtcSE(tc, pg), we adopt a
weighted average method based on user’s search engine
preference as follows:

() () ()∑ ⋅=
s

NSE spgtcranksswpgtcrvtc ,,, (20)

To synthesize this in terms of a leaf path, we also
define a search engine relevance measure of a web page
pg for a leaf path lp as rvlpSE(lp, pg) and formalize it as
the equation (21).

()
()

()
()lpns

pgtcrvtc
pglprvlp lptcslptc

SE

SE
∑

∈=
,

, (21)

Finally to obtain a search engine relevance value of a
web page with respect to WSTT, we also adopt AHP-
based WSTT relevance value composition mechanism
and so, we set bndfn(lp, pg) in the equation (11) as
rvlpSE(lp, pg). After value propagation process, we obtain
a single synthesized search engine relevance value at the
root node n0 and assign its value, rvn(n0, pg) to rvc(Search
Engine Component, pg).

3.4.6 Authority/Hub Component Relevancy
Computation

Authority/Hub component: represents the level of user
preference for Authority or Hub sites and pages [30]. At
present, no such authority or hub ranking service exists on
the Web. Therefore, we have not incorporated this
component into our proof-of-concept prototype..

3.4.7 Popularity Component Relevancy Computation
Our final component to be considered is Popularity
component and it represents the user’s preference for
popular sites. Popularity can be measured by the number
of visitors or the number of requests for the specific page
or site and there exist some publicly available services for
this popularity information like www.yep.com. To
compute the relevance value of a web page pg in terms of
popularity component, let’s introduce some definitions as
follows.
pop(pg) : denotes the average number of daily visitors to

the web page pg.
pgset : denotes the set of whole web pages retrieved.

Based on the definitions, we formalize the popularity
relevance measure of a web page pg as follows:

() ()
()xpop

pgpoppgrvc
pgsetx∈

=
max

,Component Popularity (22)

So far, we have presented our approach for users to
express their search intent, their search preference in
terms of six preference components, have proposed a
series of rating methods to compute each of relevance
values for the components, and provide a mechanism to

combine them into a single measure of relevance. Finally
we use this single measure to provide the users more
relevant information with a list of resulting web pages in a
descending order of relevance value.

4. System Architecture of A Semantic
Taxonomy-Based Personalizable Meta-
Search Agent System: WebSifter II

In this section we present the architecture of
WebSifter II, a semantic taxonomy-based personalizable
meta-search agent system. Figure 7 shows the overall
architecture of WebSifter II and its components. Major
information flows are also depicted. WebSifter II consists
of eight subsystems and four major information stores.
Currently we have finished the detailed system design of
each subsystem and the information stores; we are
implementing them in the Java language.

Figure 7 System Architecture of WebSifter II

Now let’s briefly introduce each of the components,
their roles, and related architectural issues.
1) WSTT Elicitor
The WSTT elicitor supports the entire processes required
in the section 3.1 to build a WSTT in a GUI environment.
A user can express his search intent as a WSTT through
interactions with the WSTT elicitor. This includes
building a taxonomy tree, assigning weights on each
node, and choosing a concept from available list of
Wordnet concepts. To achieve this goal, the WSTT
elicitor also cooperates with an Ontology agent, a
Stemming agent, and a Spell Check agent. Once a user
finishes building a WSTT, then WSTT elicitor stores the
WSTT information into the WSTT base in XML format.
2) Ontology Agent
The ontology agent is responsible for requesting available
concepts of a given term via a web version of Wordnet
(http://www.cogsci.princeton.edu/cgi-bin/webwn/) and
also interpreting the corresponding HTTP based results.
The agent receives requests for the concepts from WSTT
elicitor and returns available concepts in an
understandable form. Although WebSifter presently

supports cooperation only with Wordnet, its design can be
easily extended to cooperate with other ontology servers
such as CYC [32] and EDR [33].
3) Stemming Agent
Our stemming agent is developed based on Porter’s
algorithm [34]. It has two major roles:1) to cooperate with
WSTT elicitor in transforming the terms in a concept to
the stemmed terms, and 2) to transform the content of web
pages into the stemmed terms internally through
cooperation with a page request broker. As a result, the
terms in concepts and the terms in web pages can be
compared to each other via their stemmed versions.
4) Spell Check Agent
Spell check agent monitors user’s text input to the WSTT
elicitor and checks and suggests correct words to the user
in real time.
5) Search Preference Elicitor
Search preference elicitor, via a GUI, supports the process
required in section 3.2 to capture the user’s search
preferences. A user can express his search preference
through interaction with this search preference elicitor by
assigning their preference weights to each of preference
components and also to their favorite search engines.
Moreover, it allows the user to modify the default values
assigned to each syntactic URL class such as Direct Hit,
Directory Hit and Page Hit. Whenever the user modifies
them, it instantly updates the related information stored in
the Personalized Evaluation Rule Base, the Search Engine
Preference Base, and the Component Preference Base.
6) Search Broker
Search broker performs the processes required in section
3.3. It first interprets the XML-based WSTT and then
generates all corresponding query statements. Using this
set of queries, it requests information from a set of
popular search engines simultaneously. Finally, it
interprets the results returned from the search engines and
then stores parsed information in a temporary data store.
When it finishes its works, it activates web page rater so
as to begin the rating process.
7) Page Request Broker
Page request broker is responsible for requesting the
content of a specific URL and it cooperates with both the
stemming agent and the web page rater.
8) Web Page Rater
Web page rater supports the entire web page evaluation
process required in section 3.4 and also is responsible for
displaying the evaluation result to the users. This
subsystem is the most complex and computationally
intensive module of WebSifter II, and it uses all of four
major information stores and also communicates with
search broker and page request broker.

5. Empirical Results on Implementation
We are currently developing our meta-search agent
system, WebSifter II. Some of sub-systems such as the
ontology agent, stemming agent, search broker and page
request broker are already developed and are operational.
We have almost finished the development of the WSTT
elicitor, while the search preference elicitor and the web
page rater are still under development. We also plan to
incorporate a commercial spell check agent into our
system.

So, at this time, what we can show explicitly are some
of our user interface screen to guide the user to express
their search intent as WSTT. Figure 8 shows an
illustrative screen where the user is building WSTT using
WSTT elicitor. Figure 9 shows another screen of the
WSTT elicitor supporting the selection of an intended
concept from available concepts for a given term that
have been obtained through cooperation with the ontology
agent.

We are currently doing empirical experiments on our
approach and we expect to include empirical results to
support our approach when we submit the final Camera
Ready Paper.

Figure 8 An Illustrative Screen of WSTT Elicitor

Figure 9 An Illustrative Screen for Concept Creation

6. Conclusions
We have proposed a semantic taxonomy-based
personalizable meta-search agent approach to achieve two

important and complementary goals: 1) allowing users
more expressive power in formulating their web searches,
and 2) improving the relevancy of search results based on
the user’s real intent. In contrast to the previous research,
we have focused not only on the search problem itself, but
also on the decision-making problem that motivates users
to search on the web. .

Now, let’s briefly summarize what we have done with
three concluding remarks as follows.

First, to enhance user’s search intent and preference
expressional power, we propose a search-intention
representation scheme, the Weighted Semantic-Taxonomy
Tree, by which users express their real search intentions
by specifying domain-specific concepts, assigning
appropriate weights to each concept, and expressing their
decision problem as a structured tree of concepts. We also
allow users to express their search result evaluation
preferences as a function of six preference components.

Second, to enhance the precision of the retrieved
information, we present a hybrid rating mechanism which
considers both the user’s search intent represented by the
WSTT and user’s search preference represented by multi-
preference components such as semantic relevance,
syntactic relevance, categorical match, page popularity,
and authority/hub rating.

Third, we have designed and are presently
implementing a meta-search agent system called
WebSifter II that cooperates with Wordnet for concept
retrieval, and most well known search engines for web
page retrieval. For the empirical validation of our
approach, we are also doing some real world experiments
of our system.

References

[1] Scime, A. and L. Kerschberg, "WebSifter: An
Ontology-Based Personalizable Search Agent for the
Web," International Conference on Digital
Libraries: Research and Practice, Kyoto Japan,
2000, pp. 493-446.

[2] Lawrence, S. and C. L. Giles, "Accessibility of
Information on the Web," Nature, vol. 400, 1999, pp.
107-109.

[3] Selberg, E. and O. Etzioni, "The MetaCrawler
architecture for resource aggregation on the Web,"
IEEE Expert, vol. 12, no. 1, 1997, pp. 11-14.

[4] Howe, A. E. and D. Dreilinger, "Savvy Search: A
Metasearch Engine That Learns Which Search
Engines to Query," AI Magazine, vol. 18, no. 2,
1997, pp. 19-25.

[5] Lawrence, S. and C. L. Giles, "Context and page
analysis for improved Web search," IEEE Internet
Computing, vol. 2, no. 4, 1998, pp. 38-46.

[6] Ackerman, M., et al., "Learning Probabilistic User
Profiles - Applications for Finding Interesting Web
Sites, Notifying Users of Relevant Changes to Web
Pages, and Locating Grant Opportunities," AI
Magazine, vol. 18, no. 2, 1997, pp. 47-56.

[7] Armstrong, R., et al., "WebWatcher: A Learning
Apprentice for the World Wide Web," Proceedings
of the 1995 AAAI Spring Symposium on Information
Gathering from Heterogeneous, Distributed
Environments, 1995.

[8] Shavlik, J. and T. Eliassi-Rad, "Building intelligent
agents for web-based tasks: A theory-Refinement
approach," Proceedings of the Conference on
Automated Learning and Discovery: Workshop on
Learning from Text and the Web, Pittsburgh, PA,
1998.

[9] Chen, Z., et al., "WebSail: from on-line learning to
Web search," Proceedings of the First International
Conference on Web Information Systems
Engineering, vol. 1, 2000, pp. 206-213.

[10] Chakrabarti, S., et al., "Enhanced hypertext
categorization using hyperlinks," Proceedings of
ACM SIGMOD International Conference on
Management of Data, Seattle, Washington, 1998, pp.
307-318.

[11] Li, Y., "Toward a qualitative search engine," IEEE
Internet Computing, vol. 2, no. 4, 1998, pp. 24-29.

[12] Maes, P., "Agents that reduce work and information
overload," Communications of the ACM, vol. 37, no.
7, 1994, pp. 30-40.

[13] Terveen, L., et al., "PHOAKS: a system for sharing
recommendations," Communications of the ACM,
vol. 40, no. 3, 1997, pp. 59-62.

[14] Bollacker, K. D., et al., "Discovering Relevant
Scientific Literature on the Web," IEEE Intelligent
Systems, vol. 15, no. 2, 2000, pp. 42-47.

[15] Balabanovic, M. and Y. Shoham, "Content-Based,
Collaborative Recommendation," Communications
of the ACM, vol. 40, no. 3, 1997, pp. 66-72.

[16] Krulwich, B., "Lifestyle Finder," AI Magazine, vol.
18, no. 2, 1997, pp. 37-46.

[17] de Vel, O. and S. Nesbitt, "A Collaborative Filtering
Agent System for Dynamic Virtual Communities on
the Web," Working notes of Learning from Text and
the Web, Conference on Automated Learning and
Discovery CONALD-98, Carnegie Mellon
University, Pittsburgh, 1998.

[18] Chen, H. and S. Dumais, "Bringing order to the
Web: automatically categorizing search results,"
Proceedings of the CHI 2000 conference on Human
factors in computing systems, The Hague
Netherlands, 2000, pp. 145-152.

[19] Aridor, Y., et al., "Knowledge Agent on the Web,"
Proceedings of the 4th International Workshop on
Cooperative Information Agents IV, 2000, pp. 15-26.

[20] Chakrabarti, S., et al., "Focused Crawling: A New
Approach to Topic-Specific Web Resource
Discovery," Proceedings of the Eighth International
WWW Conference, 1999, pp. 545-562.

[21] Salton, G., et al., "A Vector Space Model for
Automatic Indexing," Communications of the ACM,
vol. 18, no. 11, 1975, pp. 613-620.

[22] Clark, D., "Mad cows, metathesauri, and meaning,"
IEEE Intelligent Systems, vol. 14, no. 1, 1999, pp.
75-77.

[23] Guarino, N., et al., "OntoSeek: content-based access
to the Web," IEEE Intelligent Systems, vol. 14, no. 3,
1999, pp. 70-80.

[24] Fensel, D., et al., "On2broker: Semantic-Based
Access to Information Sources at the WWW,"
Proceedings of the World Conference on the WWW
and Internet (WebNet 99), Honolulu, Hawaii, USA,
1999, pp. 25-30.

[25] Staab, S., et al., "A System for Facilitating and
Enhancing Web Search," Proceedings of IWANN '99
- International Working Conference on Artificial and
Natural Neural Networks, Berlin, Heidelberg, 1999.

[26] Martin, P. and P. W. Eklund, "Knowledge retrieval
and the World Wide Web," IEEE Intelligent Systems,
vol. 15, no. 3, 2000, pp. 18-25.

[27] Miller, G. A., "WordNet a lexical database for
English," Communications of the ACM, vol. 38, no.
11, 1995, pp. 39-41.

[28] Klein, D. A., Decision-Analytic Intelligent Systems:
Automated Explanation and Knowledge Acquisition,
Lawrence Erlbaum Associates, 1994.

[29] Boose, J. H. and J. M. Bradshaw, "Expertise
Transfer and Complex Problems: Using AQUINAS
as a Knowledge-acquisition Workbench for
Knowledge-Based Systems," Int. J. Man-Machine
Studies, vol. 26, 1987, pp. 3-28.

[30] Kleinberg, J. M., "Authoritative sources in a
hyperlinked environment," Journal of the ACM, vol.
46, no. 5, 1999, pp. 604-632.

[31] Saaty, T. L., The Analytic Hierarchy Process, New
York, McGraw-Hill, 1980.

[32] Lenat, D. B., "Cyc: A Large-Scale Investment in
Knowledge Infrastructure," Communications of the
ACM, vol. 38, no. 11, 1995, pp. 33-38.

[33] Yokoi, T., "The EDR Electronic Dictionary,"
Communications of the ACM, vol. 38, no. 11, 1995,
pp. 45-48.

[34] Porter, M., "An Algorithm for Suffix Stripping,"
available at ttp://www.muscat.co.uk/~martin/def.txt.

