
Reputation Management in P2P Networks:

The EigenTrust Algorithm

by
Adrian Alexa

supervised by
Anja Theobald

1 Introduction

Peer-to-Peer networks is a fast developing branch of Computer Science and many researchers
are developing new algorithms for such systems.

After the success of systems like Gnapster, Kazza, the use of such networks became a neces-
sity. Unfortunately the open and anonymous nature of these systems, makes the surveillance of
the network almost impossible, leaving many open doors for malicious individuals, who want to
profit from what the system is offering.

This lack of accountability opens new problems for P2P Systems, like: Anonymity, Scal-

ability, Incentives, Security, Trust, Load Management, Correctness, etc.

In this paper we will focus on the Trust Management for the P2P networks trying to
explore the possibilities of this kind of management in completely decentralized systems. We
will describe the EigenTrust Algorithm proposed in [Eigen 03] for this problem.

Our setup is a file-sharing peer-to-peer system (similar to Kazza). Our aim is to reduce the
number of inauthentic files that are shared in such a system. We also assume that we have
mainly two types of peers that are participating in the network:

• good peers: peers that join the network for receiving and offering services from/to others
peers. This peers will share mainly authentic files, and we can assume further that the
probability that an inauthentic file came from a good peer is low;

• malicious peers: peers that are joining the network just for destroying it or for taking
control of it. This peers will always share inauthentic files.

The assumption that all inauthentic files are coming from malicious peers is not a good one,
because mistakes can happen with good peers (for example a good peer will not delete the files it
downloads immediately, so this peers can share this files without knowing if them are authentic
or not). But we will think malicious peers as the source of inauthentic files.

Now our problem can be restated as:

minimize the number of inauthentic files spread by malicious peers in a P2P System.

Thus we will set our goal to identify sources of inauthentic files and bias other peers belief when

downloading from them. We will see that a nice and elegant way to do this is to assign peers

1



global trust values based on previous peer’s behavior.

But before going further into details we should clarify what for trustworthy peers, and what
is Trust Management?

Trust Management is a mechanism that allows to establish mutual trust (“allows
participants to a network to cooperate in a game-theoretic situation that corresponds
to the repeated prisoner dilemma and leads in the long term to an increase aggregated
utility for the participants” [MTrust 01]).

The best framework for explaining the notion of Trust Management is the e-commerce frame-
work and the most representative example is eBay online auction system. In eBay, users are
selling and buying products one from each other and accumulate experience with each transac-
tion made. When a user wants to buy a product, he will search for users who are selling that
product. He will decide to buy from a seller with a good experience. After the transaction is
done both parts will rate one each other depending on how the transaction finished and the
actual rating will be add to the previous experience. The same happens when a user wants
to sell a product. Thus in this kind of systems users are encouraged to behave nice because
otherwise they will be isolated by all other users and thus from the system.

In eBay the experience or reputation of an user, represents the trust that all other par-
ticipants puts in that user. It is worth noticing that this reputation score is unique per user,
so is a global trust score. We will follow this idea of user ratings after each transaction in the
development of the algorithm. The main problem with eBay Trust Management is that it is a
completely centralized system where the reputation score is managed by some servers (eBay
authority).

We want to solve exactly this centralized management problem. For this lets see what are
the main issues that we need to address when designing a P2P network:

• anonymity: peer’s reputation should be associated with an opaque ID. For example in
Gnutella peers know each other by a user-name and not by their IP address, which is an
external identity.

• self-policing: there is no central authority. Peers should define and impose shared ethics
between them.

• minimal overhead: peers should not spend too much time and bandwidth for computing
their reputation score.

• robust to malicious collectives: the system should try to isolate collectivities who want
to subvert it.

• newcomers are not privileged: malicious peers can’t gain anything by changing their
identity. Also newcomers should obtain their reputation by good behavior within the
system.

We can see that this issues are quite general and they should be considered for any P2P system,
not only for a file-sharing system.

2



2 Global Trust Values

Before starting to design our algorithm we will show how we can use global trust values in a P2P

system to asses different issues. First we examine in which way global trust values can help in
reducing the load over peers and how decisions on the peers to download from can be made.

2.1 Load Management

In a P2P network in which there is no notion of trust one peer is choosing the peer from which
to download the desired file randomly from all peers who respond to its query. In this manner
the total load of the system will be distributed uniformly among all peers.

This should not happen in a system in which we know that malicious peers exists. So lets see
how we can use the notion of global trust for this. Suppose peer i submits a query in the network
for searching a file, and receives acknowledgement for R peers with trust values: {t1, t2, . . . , tR}.
We can think at two strategies:

• choose deterministic: peer i chooses peer j which has the highest trust value: tj =
maxk (tk). As we can see this is not a wise strategy because there can be greedy good
peers that will share lots of files and will respond almost to all queries. This peers will
accumulate trust, increasing their global trust value, but the load on them will increase
even more leading to network congestion for that peer. We can say that this peers tend
to become local servers. Also this strategy blocks new peers in accumulating trust (they
will never be chosen as a download source).

• choose probabilistic: peer i chooses a peer j with probability:

P (i choose j) =

{

tj
P

k tk
, if tj 6= 0

0.1, if tj = 0

Thus we give a chance of 10% to new peers but also malicious peers to be chosen as a
download source. Here 10% is a magic number and usual is inferred from simulations. We
can easily see that this approach tries to balance the load per each peer, without giving
malicious peers too much chance.

A general algorithm for load distribution can look like this:

Load Distribution Algorithm

get T = {t1, t2, . . . , tR}

repeat

choose a peer j with tj ∈ T (deterministic or probabilistic)

if receive inauthentic file form j then

delete tj from T

until authentic file received

In Figure 2.1 is shown the performance of both strategies versus a P2P system in which
there is no notion of trust. It can be seen that the deterministic approach is performing poorly
favoring one peer. The probabilistic approach is more close to the non-trust based system. More
details on how these experiments were done can be found in [Eigen 03].

3



Figure 1: Different strategies for Load Distribution in trust based and non-trust based systems

2.2 Dealing with Malicious Peers

There are two ways in which we can use global trust values when dealing with malicious peers.
One is to use global trust values for isolating malicious peers and the other is to incent peers

to share. We explain shortly how these are done:

• Isolating Malicious Peers

As we state in Section 1 we will try to isolate (eliminate) malicious peers from the network
in order to minimize the number of inauthentic files spread in the network. In order to do
this we must not choose malicious peers as download source. Thus we fell mostly in the
same cases that were discussed at Load Management:

– Download from the most highly trusted peer. We have seen that this is a very bad
strategy, lifting the global trust for some peers, and not allowing newcomers to build
trust.

– Select peers from whom to download based on the distribution induced by peer’s
trust value. This seems more reasonable and the experiments have shown that this
policy isolate malicious peers without penalizing newcomers.

– But peers can be more conservative about the global trust. If a peer have had a bad
experience with some peer that has a high global trust, will try to choose another
peer from whom to download, thus combining local trust with the global trust:

t = atglobal + (1 − a)tlocal

Combining the last two strategies seems a good way to minimize the amount of inauthentic
files that a peer will receive.

• Incent Peers to Share Files

Also we want the system to be attractive for new peers that want to join and somehow
to “force” peers to share. The system can reword high trusted peers. As an example
these peers can receive greater bandwidth. Also rewording hight trusted peers can incent
them in deleting inauthentic files that they accidently downloaded. Another benefit of
rewording based on trust is that this policy will reduce the number of free-riders in the
network: either these peers will decide to share files or they will be isolated (their trust
will remain close to 0) from the network.

4



3 Local and Global Trust Values

We have seen above why we need global trust values. Now we will start to show how can
one obtain such global trust values in a P2P file-sharing network. We start from local trust
values modeled after eBay reputation management system and we show what modification need
to be made for aggregating these values without centralized management. Then we will see
that aggregating them can led to some global values, not surprisingly if we think our scores as
probabilities. Lets begin with local trust values.

3.1 Local Trust Values

Like in eBay, in a P2P file-sharing system peers will rate each other after every transaction
made. If peer i downloaded a file from peer j then if the file was authentic it will set tr(i, j) = 1,
otherwise it sets tr(i, j) = −1. We set the local trust to sij =

∑

tr(i, j). More formally if:

• sat(i, j) = the number of satisfactory transaction

• unsat(i, j) = the number of unsatisfactory transaction

Definition 3.1 The local trust value that peer i have in peer j is:

sij = sat(i, j) − unsat(i, j)

The main problem with this values is that we cannot aggregate them. One reason will be
that the values of sij cannot be well interpreted. For example the fact that a peer i has sij = 10
for a peer j and another peer k (different from i and j) has skl = 1000 would not tell us too
much, because it is possible that peer i is new and have made only 10 transaction with peer
j, and peer k has made lots of transactions: sat(k, l) = 2000 and unsat(k, l) = 1000. Thus
aggregating these values would not help. Another drawback is that malicious peers can report a
very high local trust, subverting the system. To overcame this we will normalize the local trust
in the following manner:

Definition 3.2 The normalized local trust, cij that peer i has about peer j is

cij =
max(sij , 0)

∑

j max(sij , 0)
.

Remark 3.3 cij can be seen as a probability:

• 0 ≤ cij ≤ 1

• ci1 + ci2 + · · · + cin = 1

We will see later in next section how this interpretation can help us in developing an algorithm
for computing trust values.

There are some drawbacks even with this normalized trust. One is that now we cannot
distinguish between peers that have bad experience or did not interact at all with peer i (cij u

max(sij , 0)). Other is that cij is not defined if peer i doesn’t have any interaction with all its
neighbors or the neighbors with whom he interact gave him inauthentic files. Also this problem
will be addressed later.

Next step is to aggregate these normalized local trust values. From now on, we will use local
trust values for normalized local trust values.

5



3.2 Global Trust Values

One big problem with local trust values is that peer i doesn’t know all peers in the network and
usually only for few j the local trust is nonzero. Suppose now that peer i wants to download
from peer k that we have never seen, thus cik = 0. A natural way for peer i to know about
the trust of peer k is to ask all his friends (here friends means the peers with which peer i has
interact) what they are knowing about peer k. But because not all friends are trusty it will be
better to weight there opinion about peer k. This technique is called transitive trust. So the
trust that peer i will place in peer k is defined by:

tik =
∑

j

cijcjk

First of all we have seen that tij is also a probability: 0 ≤ tik ≤ 1 and
∑

j tij = 1. Thus tij is
similar to cij in properties, but also a bit more powerful.

Then we can see that we can write tij in matrix notation. If C = (cij) is the matrix of all
local trust values, then we write ~ti = CT ~ci, where ~ti is the vector containing all values tik.

We can generalize this notion of trust to include the opinion that friends of our friends have
about peer k. Thus if we ask friend’s friends peer i will have a broader view of the network.
The formula is not difficult to obtain, and it looks like: ~ti = (CT )2~ci. Going deeper with asking
we will reach a point when we have asked all peers in the network what is their opinion about
peer k (there is a chain of friends). So we obtain a trust vector for peer i which looks like this:
~ti = (CT )n~ci. Here n is the number of peers in the chain and not the number of peers in the
network. n can be the number of peers in the network, but this is highly improbably since we
don’t have a chain of such length (if there is such a chain than the use of a P2P system is
useless).

Remark 3.4 If n is large enough, than the trust vector ~ti will converge to the same vector ~t,

for all peers i:
~t = (CT )n~ci

This is a crucial point in the development of EigenTrust algorithm, because aggregating
local trust values using transitive trust, we can obtain a global trust value. More, we know that
~ti will converge from linear algebra, and we also know to what it converge: the left principal
eigenvector of matrix C. Its components ti represent the trust that all peers place in peer i.

In the rest of our paper we will show how we can compute this values. Will start with few
assumptions and we will add more complex features to our algorithm as stronger assumptions
are needed. But before this we will give the probabilistic idea behind all this notion of global
trust.

3.3 PageRank Similarity

One can think cij as probabilities, as we saw previously. If there is an agent who wants to see
what peer is the more reputable peer in the network, then it can jump from peer i to peer j

with probability cij. After some numbers of jumps there will be a vector of probabilities for
each peer in the system, that is the agent will be at peer i with the probability found in the ith

component of this vector.

This is almost what PageRank ([PageR 98]) is doing, except that here we jump with a
different distribution, induced by the local trust values, versus PageRank, in which we jump

6



with an uniform distribution induced by the number of links that a page has. Thus our agent
is a Random-Surfer.

Another difference, that we will address later, is that in PageRank we force the network
matrix to be ergodic.

Finally a more closer look in [PageR 98] will show us that our global trust vector, ~t is the
stationary distribution defined by the local trust matrix C.

4 EigenTrust Algorithm

In this section we show how we can compute the global trust vector ~t without too much com-
putation.

First we begin with a simple setup in which we assume that there is some centralized server
for computing the trust vector. Also this centralized server knows the matrix C.

4.1 Basic EigenTrust

The first thing that we can see when we want to compute ~t = (CT )n~ci is that this equation does
not depend on i, because for all i we will obtain the same vector. So we can replace ~ci with any
distribution one can think, and because we want when starting all peers have the same chance,
we can put the uniform distribution: ~t = (CT )n~e, where ei = 1

m
for all i, and m is the number

of peers in the network.

Secondly, it will not be a good idea to compute the nth power of the matrix C, one reason
being the fact that we don’t know n. But we can use the probabilistic interpretation of cij and
looking at the PageRank computation we found that the following algorithm works perfectly.

Simple EigenTrust Algorithm

~t(0) = ~e, ei = 1
m

repeat

~t(k+1) = CT~t(k)

δ = ‖~t(k+1) − ~t(k)‖

until δ < ε

Figure 2: first attempt

There are some big drawbacks with this algorithm. The first is the lack of a prior notion of
trust, then newcomers cannot gain trust (the Random-Surfer will get stuck when reaching a peer
that has all cij = 0. Also a newcomer will not be known by the other peers). The third issue is
that malicious peers can form groups or collectivities and in such situation the Random-Surfer
can get stuck in these collectivities increasing the trust of these peers and decreasing the trust
of all other peers. We address in more detail these problems:

• Prior Notion of Trust

In the previous algorithm we choose to start with an uniform distribution over all peers,
but this strategy doesn’t hold if there can be malicious collectives , since if for example,
one quarter of the network is forming such a collective, then there is a probability of 1

4 to

7



choose them in the beginning, getting stuck later. Also is not good to choose a peer i and
start with ~ci.

Thus we need to know a trusty peer to start with. A natural way to choose a peer or
better a set of trusty peers is to consider the peers who first joined the network. We
will call these peers pre-trusted peers. The reader may think that we are trying to get
an excuse for introducing some special peers that look more like big authorities (servers).
This assumption is not true since these peers will not have special duties. The only thing
that is required is that there are peers in the network that can be trusted, and they will
never change their side, becoming malicious peers . The peers who join first (or build) the
network have no interest to subvert the network.

Thus if there are P pre-trusted peers , we can build a distribution ~p on them by setting:

pi =

{

1
P

, if i ∈ P

0, otherwise

The first way to use this distribution is by setting this value as the start value: ~t = (CT )n~p.
We describe other ways how this notion of pre-trusted peers can be used next.

• Inactive Peers

We have seen that newcomers have in the beginning the local trust undefined, since
∑

j max(sij, 0) = 0. Using pre-trusted peers we can force newcomers to trust them.
So we can redefine the normalized local trust as:

cij =

{

max(sij ,0)
P

j max(sij ,0) , if
∑

j max(sij , 0) 6= 0

pj , otherwise

In this way, if a peer doesn’t know any other peer, we put it, to trust the pre-trusted
peers . In this manner we let newcomers to build trust (every time the Random-Surfer
reach such a peer, it will jump to a pre-trusted peer ).

• Malicious Collectives

These collectives are groups of peers who know one each other, and each peer from these
groups give all peers in these groups high local trust values and for all other peers low
local trust. Thus if the Random-Surfer enters in such collectives, it will get stuck.

Another idea from PageRank is to jump every time to another peer in the network with
some probability. But we can be smarter than this. We can jump to one pre-trusted peer
with some probability. This should enforce the trust that peers have in pre-trusted peers .
We can see that this is simple done by weighting the trust vector in the following manner:

~t = (1 − a)~t + a~p

Again the value a is a magic number (0 < a < 1), obtained from simulation. This convex
combination helps in making the matrix C ergodic (for more details see [PageR 98] and
[GoogleMat 03]).

Thus by choosing this strategy the system should be able to break collectives.

Now we are ready to give a enhanced version of the algorithm from Figure 4.1. The algo-
rithm is shown in Figure 4.1. We emphasize again the power of pre-trusted peers and that
such an assumption is not against the notion of P2P systems. Moreover, we can search for

8



Basic EigenTrust Algorithm

~t(0) = ~p

repeat

~t(k+1) = (1 − a)CT~t(k) + a~p

δ = ‖~t(k+1) − ~t(k)‖

until δ < ε

Figure 3: second attempt

algorithms that choose pre-trusted peers and not only at the beginning, but also can change
them dynamically.

Next we will see a nice trick to transform the Basic EigenTrust algorithm in a distributed
one.

4.2 Distributed EigenTrust

The algorithm above has one good part and one bad part. The good part is that it converges
and is somehow robust to malicious peers as we wanted. Unfortunately is using a server to
compute the trust vector. So apparently we have not improve in what eBay is doing (moreover
we have complicated it).

But there is a way out from this, leading to a completely distributed algorithm. Before giving
the main idea we emphasize that for a while we will assume that malicious peers are malicious
in the sense that they only give inauthentic files and do not lie about what they are computing.

Looking again at the Basic EigenTrust algorithm we see that every peer can store C and ~t,
thus eliminating the need of a server. But this is way too redundant and the computation and
storage will crash the network. Again there is a way out from this, and this looks like:

• put every peer i to store its local trust vector ~ci

• put every peer i to store its own global trust value ti

We see here that the assumption about malicious peers not lying is very important.
The main idea is to write the equation

~t(k+1) = (1 − a)CT~t(k) + a~p

component wise. A simple calculation give us the following formula:

ti = (1 − a)(c1it1 + c2it2 + . . . cnitn) + api

Thus each peer need only its local trust vector and its global trust value. More important is
th fact that a big part of cji from the above formula are zero, since in a real P2P network only
very few peers have interacted with peer i, thus the computation for peer i will be not so time
consuming.

This observation leads us to the algorithm from Figure 5.
Another thing worths mentioning here, and this is that pre-trusted peers remain anonymous

during the computation. Its no need for other peers to know the value pi. To see this we look

9



Notations:

• Ai: set of peers which have downloaded files form peer i

• Bi: set of peers from which peer i has downloaded files

Distributed EigenTrust Algorithm

foreach peer i

ask peer j ∈ Ai for cji and tj
(0) = pj

repeat

t
(k+1)
i = (1 − a)(c1it

(k)
1 + c2it

(k)
2 + . . . cnit

(k)
n ) + api

send your opinion cij and trust value t
(k+1)
i to all peers j ∈ Bi

wait for all peers j ∈ Ai, to respond with their opinion cji and

trust value t
(k+1)
j

until |t
(k+1)
i − t

(k)
i | < ε

Figure 4: distributed attempt

more careful at the algorithm. We see that pi is appearing in two places. One is in the beginning,
were peer i will ask all the peers which has transacted with about their opinion. Here we set
things in such manner that only pre-trusted peers will respond and so peer i will obtain the

pi directly from them. The second case is in the computation of t
(k+1)
i in which the term pi

appears. But we see that if peer i is not a pre-trusted peer than pi = 0. So this assure us that
no other peers will know the identity of pre-trusted peers .

Another strange issue is what means convergence for a distributed algorithm. In our case
is not so difficult, because we know that the vector ~t converge, so this will do its components.
But may happen that some ti converge faster than others. This is not a problem since after a ti

has reached convergence it will stay there not modifying its value until others components will
converge. The authors give more details about this. Also [GoogleMat 03] is explaining why we
have this phenomena.

5 What about Security?

In the previous section, we assume some restriction on malicious peers in order to find some
algorithms for computing the global trust values of peers.

The most restrictive assumption was that a malicious peer will not lie about his global trust
value. With this assumption a malicious peer will not more be a malicious peer ! Unfortunately
in practise we encounter malicious peers that can do more than just uploading inauthentic files.
So we must consider this scenario in which malicious peers can report false trust values.

We will give only the basic ideas behind securing the Distributed EigenTrust algorithm,
leaving the reader to consult [Eigen 03] for a deeper understanding of the method.

One idea is easy to see: if some peers will lie about the values they compute, than maybe is
better to put another peer to compute and store one peer’s trust value. We will call such peers
Score Managers. Other idea is to put more peers to compute one peer’s trust.

10



In this way we can eliminate malicious peers who act as a Score Manager and it will also
return wrong values. Thus having more peers that compute one peer’s trust, every time peer
i wants its trust value, it will ask all its Score Managers for this value, and if it receives more
different trust values, it will vote which one to choose.

Now the real problem begins. In which manner should we chose the Score Managers? How
can we guarantee that there will be as few malicious peers as possible? How can we assign Score
Managers for one peer, without them knowing for whom they compute?

The answer to this questions can vary allot, and one can think at different strategies for
assessing the issues razed by these questions. The authors give a very nice way to solve these
issues.

Thus for assigning Score Managers we will use Distributed Hash Tables. There were some
nice results in this area of research in P2P systems and the results are very promising. The
most known DHT are Chord and CAN. We will not discuss them here, but we will use some of
their properties here. So the dynamics of the system will relay on the dynamics of the DHT.
One property of a well design DHT is that it will spread the keys uniformly in the hashed space.
Second property is that it should be almost impossible to revert a hashed value. That is: a
Score Manager should not know the identity of peers for whom is computing. In this manner
malicious peers are not encouraged to report wrong values, because they can report wrong values
for a malicious peer decreasing its trust. Such behavior is not wanted by malicious peers. Other
observation is that every peer is a Score Manager for some peer (in fact one peer is computing
more trust values, for more peers).

Next we present the secure version of the algorithm seen in the previous section. Again more
details can be found in [Eigen 03].

Notations:
each peer has a number M of SM ~posi the hash mapping of peer i

Di - the set of peers for whom i is SM for each d ∈ Di, ci
d is LTV of d maintained by i

Secure EigenTrust Algorithm

foreach peer i do

submit local trust values to score managers

collect local trust values

submit local trust values cdj to score managers

foreach daughter peer d ∈ Di do

ask peer j ∈ Ai
d for cjdpj

repeat

t
(k+1)
d = (1 − a)(c1dt

(k)
1 + c2dt

(k)
2 + . . . cndt

(k)
n ) + apd

send your opinion cdj and trust value t
(k+1)
d to all peers j ∈ Bi

d

wait for all peers j ∈ Ad
i , to respond with their opinion cjd and

trust value t
(k+1)
j

until |t
(k+1)
d

− t
(k)
d

| < ε

Figure 5: Secure EigenTrust

11



We resume some highs that this secure algorithm shown above has:

• anonymity: every peer doesn’t know for which peer is computing the trust value.

• hashing: newcomers cannot select where in the hash space they should be mapped. In
this way peers cannot place themselves at the same location where their ID will be hashed.

• redundancy: for every peer there are more Score Managers that compute its trust.

6 Results of Simulations

We have now completed the description of the EigenTrust algorithm. We have shown that we
can compute global trust values in a distributed and secure way, without imposing too many
restriction on the peers.

We recall that in Section 2 we emphasized the roll of global trust in P2P networks. The
first was that using them we can be very close to a P2P system where the download source is
chosen randomly (system which is the best one can gets), when talking about Load Managing.
Also these policies reduce the number of inauthentic files spread in the network.

The article [Eigen 03] is half full with experiments, showing that the authors intensively test
their system. We will not discuss here in detail the experiments, but we will summarize some
of it. The reader is encouraged to look in the article for details. One more thing that worth
mentioning is that the authors simulate the experiments, thus we can think that results are
biased. For seeing how the simulation is done in more details, one can look in [SimulP2P 03]

There were four scenarios discussed for achieving the performance of the algorithm in mini-
mizing the number of inauthentic files spread in the network. A nice thing about these scenarios
is that they are really worst case scenarios, thus the authors try to cover almost all cases that
can happen in practice.

• Malicious Individuals

In this scenario we deal with peers that always will provide inauthentic files. There is no
interaction between these peers. It is easy to see that if these peers will replace the notion
of authentic file with the notion of inauthentic file, then these peers will trust more peers
which upload inauthentic files, so helping themselves.

Figure 6: Malicious Individuals

The experiments are shown the plot in the Figure 6, and it can be seen that the system is
robust for this scenario, even for a huge 70% of peers to be malicious peers .

12



• Malicious Collectives

Other scenario is the one in which we have peers that always provide inauthentic files, but
this time they know one each other. Thus the malicious peers can give one each other
good opinions, and give other good peers bad feedback.

Figure 7: Malicious Colectives

Again the experiments give the graph in Figure 6. The system remain quite robust for
70% of the peers being malicious peers .

• Camouflaged Collectives

Now we begin to assume that malicious peers are more intelligent. Thus we have some
peers that provide authentic files some of the time to trick good peers. In this way good
peers can be tricked and malicious peers can achieve good feedback.

Figure 8: Malicious Colectives

The system begins to fall, if there are more than 40% of malicious peers in the network,
that know each other. This is still a very pessimistic assumption, so we can say that the
system performs well even in these conditions.

• Malicious Spies: In this scenario, some members of the malicious collectives give good
files all the time, but give good feedback to malicious peers. In this way they construct
a bridge between the malicious collective and the rest of the network, assuring that the
Random-Surfer will have a high probability to crawl their collective. This is a more
pessimistic scenario and the authors sustain that the algorithm will remain robust to this
scenario for not more than 40% of the peers being malicious peers .

13



7 Conclusion

In this paper we have presented the EigenTrust algorithm, an algorithm who reduces the number
of inauthentic files spread in the network, by isolating malicious peers from it. The assumption
was that by eliminating the malicious peers from the network we will drastically reduce the
numbers of inauthentic files in the network. Then we started to construct a reputation manage-
ment based on the idea behind eBay. We have seen that we can compute global trust values in
a distributed and secure way.

The experiments weren’t so bad, and we have seen that this method really works (at least
in the simulation). Also the overhead imposed by the computation was acceptable.

We don’t say that this algorithm is perfect, but it can be the base of future research in the
field of Trust Management for P2P systems.

One thing is not clear. What happens with a dynamically changing network? This issue
should be addressed in most P2P systems. Of course that the robustness of the DHT will play
an important role in this, but we should think also about the computation. Is not trivial to see
what is the best strategy to choose when a peer leaves the network.

We think that this area of Trust Management will bring new enhancements in P2P networks,
and the use of such networks will spread in more applications like e-commerce, ad-hoc networks,

etc.

References

[Eigen 03] S. Kamvar, M. Schlosser, H. Garcia-Molina, The EigenTrust Algorithm for

Reputation Management in P2P Networks, WWW Conference 2003

[MTrust 01] K. Aberer, Z. Despotovic, Managing Trust in a Peer-2-Peer Information

System, ACM CIKM, New York, 2003

[PageR 98] L. Page, S. Brin, R. Motwani, T. Winograd, PageRank Citation Ranking:

Bringing Order to the Web, Technical Report, Stanford Digital Library
Technologies Project, 1998

[GoogleMat 03] T.H. Haveliwala, S. Kamvar, The Second Eigenvalue of a Google Matrix,
Technical Report, Stanford University, 2003

[SimulP2P 03] M.T. Schlosser, S. Kamvar, The Second Eigenvalue of a Google Matrix,
Technical Report, Stanford University, 2003

14


