

Semantic Overlay Networks

Arturo Crespo and Hector Garcia-Molina

Write-up by Pavel Serdyukov

Saarland University, Department of Computer Science

Saarbrücken, December 2003

Content

1 Motivation .. 3

2 Introduction to Semantic Overlay Networks.. 3

2.1 Formal definitions of SON .. 4

2.1.1 Definition, based on link structure ... 4

2.1.2 Definition, based on classification hierarchy 4

3 Generating SONs.. 6

3.1 Semantic routing indices ... 7

3.2 Exploiting super-peer network .. 8

4 Improving SON performance... 10

4.1 Evaluation of classification hierarchies... 10

4.2 Tolerance to classification errors .. 11

4.3 Peer assignment strategies... 11

5 Layered SONs .. 12

5.1 Searching with Layered SONs .. 12

6 Comparative experiments... 14

6.1 SONs vs. Layered SONs ... 14

6.2 Layered SONs vs. Gnutella ... 15

7 Summary .. 15

8 Literature .. 16

This paper was produced as a write-up to a presentation as part of the seminar “Peer-to-
peer Systems”, given by Prof. Dr. Gerhard Weikum, Chair for Database Systems and
Information Retrieval, in the winter semester 2003/2004. Presentation took place at
December 9th 2003. Topic of the presentation was “Semantic Overlay Network by Arturo
Crespo and Hector Garica-Molina”. Their paper of the same name [1] served as a basic
source for my presentation and this write-up.

 2

1 Motivation
Peer-to-peer (P2P) networks have become an important infrastructure during the last years,
and P2P networks have evolved from simple systems like Napster and Gnutella to more
sophisticated ones based on distributed hash tables, such as CAN and CHORD. Although,
schemes, based on hash functions, provide good performance for point queries (where the
search key is known exactly), they almost don’t work for approximate, range, or text
queries. In this case we must flood messages, like Gnutella does and loose scalability and
performance.
Obviously, for such queries we have to build some different infrastructure, seemingly,
based on semantic relations among peers and data, they contain. There are two main
intuitions that come to mind:

 queries can be routed only to a semantically chosen subset of peers, able to
answer queries. If a peer cannot answer a query fully enough, it forwards the
query only to its neighbors, which can also have answers and so on. Finally, the
amount of flooding messages is reduced.

 shared data in the P2P systems often has pronounced ontological structure,
because of its origin and relations to real world concepts (music, scientific papers,
and movies) and it’s possible to sort such data into parts, classify its content
somehow and identify semantically similar groups.

These guesses were realized in conception [1], and presented in this write-up with several
extensions from other papers.

2 Introduction to Semantic Overlay Networks
Conceptual idea, suggested in [1], consists of creating a flexible network organization,
improving query performance and based on the semantic relations among peers.
Main principles, incorporated in this approach are next:

 peers are clustered according to content, which they contain;
 these clusters overlap, because peers can contain different content and belong to

several clusters;
 query, coming into the network, is distributed to relevant clusters only and flooded

among relevant peers;
 so, clusters, irrelevant to query, don’t receive any messages;

So, to get such kind of network, we have to build system of alternative networks, built on
the top of the present physical network. Such network must contain only peers, relevant to
each other and represent one cluster of peers.
Such networks can be called Semantic Overlay Networks. Each Semantic Overlay
Network, or SON, represents virtual, abstract and independent layer of previously
clustered, classified peers. Such networks play roles of mediators between queries and
certain peers, they are responsible for “understanding” the meaning of query, establishing
semantic relations between query and peers and implementing query routing to relevant
peers and, finally, they significantly reduce overflooding of physical network

 3

2.1 Formal definitions of SON

2.1.1 Definition, based on link structure
Semantic Overlay Network can be represented as a set of links, or triples (ni, nj, L), where
ni and nj are the connected peers and L is the name of concept, in the conext of which these
peers are connected.

jazz
co

untry

rock

jazz
co

untry

rock

 Fig. 1: Peer in the scope of

different SONs

For example, at the beginning, we have only single overlay network (i.e., all links have the
same L). However, we can build alternative overlay networks on the top of physical
network with different L. For example, for peers, containing music, we can see at Figure 1
the following.
Peer can be connected to a set of neighbors through L = “ROCK” link in the scope of
“ROCK”-SON, and to a potentially different set of peers through L = “JAZZ” or L =
“COUNTRY” link in the scope of corresponding SONs. Connections can be bi-directional,
as showed on figure, of one-directional (usually).
The main goal, afterwards, is to gain the best distribution of peers among SONs, which can
increase performance of searching.

2.1.2 Definition, based on classification hierarchy
Also, there can be given another definition of semantic overlay network, more trivial and
useful. It would be better, eventually, incorporate the concept of hierarchy into the present
model, because of hierarchical nature of most of the present ontologies. Semantic Overlay
Network is an overlay network, associated with a concept of a classification hierarchy.
Thus, documents of the each peer must be assigned to concepts of used taxonomy, so that
this peer could be assigned to corresponding SONs. For example, in Figure 2, there is
shown two possible classification hierarchies for music documents. In the first one, music
documents are classified according to their style and substyle; in the second one, they are

 4

classified by tone. For example, in the leftmost hierarchy in Figure 2, we will define 9
SONs: 6 associated with the leaf nodes - substyles, 2 associated with intermediate nodes -
styles, and a final one associated with root node - music. The example with music files
will be used through all this write-up, because main experiments were carried out with
Napster database and with ontology of music styles exactly.

RockRock

Music by Style

Jazz

Soft

Dance

Pop

New Orlean

Fusion

Bop

Styles

Su
bs

ty
le

s

Music by Style

Jazz

Soft

Dance

Pop

New Orlean

Fusion

Bop

Styles

Su
bs

ty
le

s

Music by Tone

Warm Exciting Sweet

Tones

Music by Tone

Warm Exciting Sweet

Tones

 Fig. 2: Possible common-used classification hierarchies

 5

3 Generating SONs
To allow SON’s principles to start functioning, it is assumed, that it is necessary to
implement 3 basic functions:

• Join(ni), where one or more links of the form (ni, nj, l) are created;
• Search(q) that returns a set of peers with matches for request q;
• Leave(ni) where we drop all the links in SONs involving ni.

The implementation of the functions Join(ni), Search(q) and Leave(ni) will vary from
system to system. Additionally, these functions may be implemented by

• each peer of the network,
• a subset of it, or even
• be provided by a computer outside the network.

Implementation of these functions is the aim of the following research, which was founded
on the approach, stated here. As a whole, the process of building and using SONs is
depicted at Figure 3 and consists of the following steps and stages.

 Fig. 3: Generating Semantic Overlay Networks

 6

Preparation step:
 As it was said, at first we evaluate and determine some classification to be used

through out all the system. This hierarchy must be stored by all of the peers in the
system.

Peer joining steps:
 A peer, joining the system, first floods the network with requests for this hierarchy

in a Gnutella fashion.
 Then, the peer runs a document classifier based on the obtained hierarchy on all

its documents.
 Then, a peer classifier assigns the peer to specific SONs.
 The peer joins each SON by finding peers that belong to those SONs. This can be

done again in a Gnutella fashion (flooding the network until peers in that SON are
found) or by using a central directory.

Query answering steps:
 At first, peer issues a query (user does it);
 peer classifies query and build the list of SONs, to which query must be distributed;
 peer searches for appropriate SONs in a similar fashion as when the peer connected

to its SON;
 peer sends query to the appropriate SONs.
 After the query is sent to the appropriate SONs, peers within the SON try to find

matches by using some propagation mechanism (again, for example, Gnutella
flooding)

Further, I will present some more sophisticated approaches of creating SONs and
implementing basic functionality, stated in different papers.

3.1 Semantic routing indices

It is assumed, that every node in the scope of one SON knows only its semantic neighbors.
And also, it is assumed, that, peer searches in the responsible SON in Gnutella like fashion.
Of course, this is extremely inefficient even when the amount of peers is significantly
reduced, using SON approach. Applying the same intuitions, it can be obvious, that peers
can differ, according to relevance to this SON and to certain query. It was proposed in [2],
to incorporate the neighborhood and goodness knowledge in the structure of routing
indices, kept at every node, so, that to find necessary results faster.
The main principle of semantic routing indices is to keep at every node not only
information about its relevant neighbors, but also the degree of relevance for every
neighbor. This degree, evidently, can be expressed by the number of documents, which
neighbor keeps on the category of SON in the scope of which nodes are connected. Of
course, if it is necessary to gain all relevant documents, then we still need to propagate the
messages through all the nodes, but if user tends to be satisfied with predefined number of
results, this approach significantly improves performance.
It was also proposed in [2] the more complex approach to such routing indices: hop-count
routing indices. To illustrate, let’s see at figure 4, there is node W with this hopcount
routing indices, that has three neighbors: X, Y and Z.

 7

Node 1 Hop
number of

docs

2 Hops
number of

docs

X 13 10

Y 0 31

Z 2 10

Fig. 4: Hop-count semantic routing index

With one hop via neighbor X, the node can find 13 relevant documents. The node can also
find 10 more documents through X with 2 hops (i.e., at X’s neighbors). Note, that we do
not have information beyond the predefined horizon (number of possible hopes). So, we
can define goodness of a neighbor as the ratio between the number of documents available
through that neighbor and the number of messages required to get those documents. Thus,
a neighbor that allows us to find 3 documents per message is better than a neighbor that
allows us to find 1 document per message.
In [], they apply simple model to compute this ratio - the regular-tree cost model. The
model assumes that document results are uniformly distributed across the network and that
the network is a regular tree with fan-out F. Under these assumptions, it takes Fh messages
to find all documents at hop h. Therefore, we can compute the number of documents per
message by dividing the expected number of result documents at each hop by the number
of messages, needed to find them. Formally, the goodness of Neighbori with respect to
query Q can be defined as:

() []
∑
=

−=
hj

j
i

i F
jN

QNeighborgoodness
..

,
1

1 (1)

where h is the predefined horizon, []jNi is the routing index entry for j hops through
. For example, if we assume F = 3, the goodness of X for a query would be

13+10/3 = 16.33 and for Y would be 0+31/3 = 10.33, so we would prefer X over Y. Of
course, F can depend on each peer (number of connections to other peers).

iNeighbor

3.2 Exploiting super-peer network

Super-peers can introduce hierarchy into the network in the form of super-peer nodes,
peers which have extra capabilities and duties in the network [3]. A super-peer is a node
that acts as a centralized server to a subset of clients, e.g. information provider and
information consumer. Clients submit queries to their super-peer node and receive results

 8

from it. However, superpeers are also connected to each other as peers in a pure system
are, routing messages over this overlay network, and submitting and answering queries on
behalf of their clients and themselves.

 Fig. 5: Super-peer Network

Each super-peer represents a separate semantic overlay network [4], [5], [6]. Super-peers,
typically computers with loads of memory and processing power, and subordinate peers,
providing information, are extended with following components (see Figure 5):

 information provider model. The model contains a semantic rich description of
the underlying peer, including information about classification aspects.

 clustering policies Policies describe constraints on information provider peers for
each cluster. Since policies are defined by an human expert, they have to be
formalized in some way, so algorithms can match suitable information provider
automatically.

 matching engines Information provider model and clustering policies are matched
against each other by a matching function. If a match occurs, a peer joins a
superpeer. Matching is detected by a matching engine which implements the
matching functions. Matches can either be exhaustive, partial, fuzzy or ontology
based. Of course, each super-peer can also keep information about relevance of
each peer to increase query search performance.

 model distribution engine Since each super-peer owns a separate implementation
of a ”personal” matching engine and its specific super-peer dependent clustering
policy, models of information provider peers, willing to join one or more
superpeers, are distributed to all super-peers in the in super-peer network (as long
as used classification hierarchies). This is done by a broadcast.

 9

4 Improving SON performance

4.1 Evaluation of classification hierarchies

As it was said, classification is extremely important and, in fact, it defines the properties of
SONs. It’s important to distinguish good and bad classification hierarchies. The next
features, or conditions, of good classification were proposed:

 According to good classification, SONs must have connections with small
number of peers, because the smaller the number of peers we need to search,
the better the query performance.

So, if some of the concepts of our ontology is really more popular than other, than almost
every peer will have documents of this concept and will be connected to its concept SON.
So, SON will consist of many, many peers. To illustrate, consider a classification hierarchy
for a music-sharing system that it is based on the decade the music piece was originally
created. In such a system, we may expect that a large number of peers will have “90’s or
current” music. If that is the case, there is little advantage to create a SON for “90’s or
current” music, as this SON will have almost all peers in the system and it will not produce
any benefit benefit (but the system will still be incurring on the cost of an additional
connection at each node and of having to classify nodes and queries).

 According to good classification, peers must have connections with small
number of SONs, as each connection with each SON needs to be maintained in
some way by the peer. The greater the number of SONs, the greater the cost
for a peer to keep track of all of them.

So, if classification hierarchy has very high granularity, than peer seems to have many
categories of documents and, therefore, be connected to many SONs. For example,
consider a classification hierarchy for a music-sharing system that is based on a random
hash of the music file. If we assume that nodes have a lot more files than there are hash
buckets, then we can expect with a high probability that a node will have to join all SONs
in the system. In this case, the node will have to process every single query sent into the
system eliminating all the benefits of SONs.

 it allows to use easy-to-implement classification algorithms that make a low
number of errors (or no errors at all).

To illustrate, consider an image sharing system with a classification hierarchy with the
concept “has a person smiling.” This concept may generate a good number of small SONs,
but it requires a very sophisticated classification engine that may generate a large number
of erroneous results.

 10

4.2 Tolerance to classification errors

Indeed, there are many sources of errors when using document classifier.
 the format of the files may not follow the expected standard, so the extraction of the

author and song title may return erroneous values;
 it was assumed that all files were, for example, music files for experiments with

mp3 files, but, Napster, for example, allows to share other kinds of files;
 users make misspellings in the name of artist and/or song.

To evaluate the document classifier, there was measured the number of incorrect
classifications. Automatic classification was compared to manual. It was considered, that
classification is incorrect for a given document if the document classifier returned one or
more substyles to which the document should not belong. So, experiments with Napster
database showed, that 25% of the files were classified incorrectly.
Of course, these errors add additional unnecessary overhead to the system of SONs,
because peers become members of improper SON’s and query is distributed to additional
unnecessary amount of peers and so on. But, it is more important for peer to be classified
at least to proper SONs, in addition to improper ones, because serious level of data
inaccessibility will make this approach almost useless. But, however, it turned out, that, a
peer can still be correctly classified even if some of its documents are misclassified
because other peer’s documents from the same category can be classified properly
and, finally, peer can be properly classified.
To evaluate the true effect of document misclassification, authors began to consider a
classification to be incorrect for a given peer (but not to document already) if the peer was
not assigned to one or more substyles to which the peer should belong. And so, from this
point of view, it was found that only 4% of the peers were classified incorrectly and, thus,
this approach still makes sense.

4.3 Peer assignment strategies

It was also discovered, that other features of good classification strongly depend on the
strategies of peer joining.

 Most obvious strategy is the conservative strategy, when we place a peer in SONc
if it has any document classified in c. Main drawback – peer usually has
connections to many SONs and have to maintain these connections.

 A less conservative strategy will place a peer in SONc only if peer have
“significant” number of document of concept c. In this case, we can:

• reduce the number of peers in each SON and
• reduce the number of SONs to which a peer belongs.

Main drawback – we can’t find documents if some relevant peers are not connected
to relevant SONs.

So, final solution, which authors suggested is to use more sophisticated approach –
Layered SON’s.

 11

5 Layered SONs

 cu

m
en

ts
 in

 p
ee

r

0

5

10

15

20

25

30

35

40

45

50

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8

Concepts

C 12

C 9 C 10 C 11

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8
 d

o

 t
of

 ce
n

 Pe
r

≥ 15 %
≥ 15 %

≥ 15 %≥ 15 %
≥ 15 %

C 12

C 9 C 10 C 11

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8

C 12

C 9 C 10 C 11

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8

 Fig. 6: Layered SONs generating stages. To the left: Apply less conservative strategy with

threshold parameter; To the right: Consider combination of “non-assigned” concepts

Here (Figure 6, left), we can see the distribution of concepts in one peer. For example, peer
has documents of 8 concepts. We assume, that peer can join SON of concept C, if it has at
least 15% of documents of concept C, i.e we apply less conservative strategy. However,
this would prevent the system from finding the documents in the node that do not belong to
categories c1 and c2. How could they be found?
To let other documents of the rest of SONs to be found, we then consider the combination
of “non-assigned” categories and try to join peer, at least, to “upper-level” SONs. For
example, If the combination of the non-assigned nodes c3 and c4 is higher than 15%, the
peer joins SONc9. However, the peer does not join the SONc10 as the combination of c5 and
c6 are not above 15%. Similarly the peer does not join the SONc11 as c7 and c8 are not
above 15%. But, combination of c5, c6, c7, c8 is above 15%, so peer joins SONc12 Now,
we can be sure, that all the documents can be eventually found. Let’s look at searching
procedure on detail.
Note, that the conservative assignment is equivalent to a Layered SON where the threshold
for joining a SON has been set to 0%. In this case, the node will join the SONs associated
with all the base concepts for which it has one or more documents.

5.1 Searching with Layered SONs

Searches in Layered SONs are done by first classifying the query (Figure 7a). Then, the
query is sent to the SON (or SONs) associated with the base concept (or concepts) of the
query classification. Finally, the query is progressively sent higher up in the hierarchy,
because, upper levels still can contain relevant results and, as we saw already, nodes can
join non-leaf SONs, because of lack of necessary documents. In case more than one

 12

concept is returned by the classifier, we do a sequential search in all the concepts returned
before going higher up in the hierarchy.

a c

query

b

query

a c

query

b

query

c

query

c

queryquery

b

query

b

queryquery

Fig. 7: Query classification examples

In practice, classification procedures may be imprecise and classify query at some
intermediate node of ontology. In this case, we loose in performance, because we have to
search more nodes at the very beginning of searching procedure (Figure 7b). For example,
if we classify query at the root of ontology (Figure 7c), query results can actually be in any
of the leaf concepts in the hierarchy and therefore documents classified in any category in
the system can match the query. In this case, we don’t receive any advantages, comparing
to Gnutella-like approach, and we have to propagate query through all the peers.
So, the more precise the classification of query is, the smaller the number of concepts that
need not be considered for a match. In addition, the more precise the classification of
documents and peers is, the smaller the number of documents that will be classified in the
intermediate nodes of the hierarchy, thus also reducing the number of documents that need
to be considered for a match.

 13

6 Comparative experiments

6.1 SONs vs. Layered SONs

0
2
4
6
8

10
12
14
16
18

Fr
eq

ue
nc

y
0 100 200 300 400 500 600 700 800

Music style SON size

0% SON

35% SON

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of SONs

N
um

be
r o

f P
ee

rs 35% SON
0% SON

Fig. 9: Distribution of SONs and SON size

So, now, let’s move to some interesting experiments, which authors produced. In left
Figure, it is shown the distribution of 1800 peers among 16 music styles SONs. For
Layered SONs they used threshold of 35% and conservative assignment was done with 0%
threshold. We can see, from the graph, that using Layered SONs, we decrease the number
of SON’s with which peers need to maintain connections.

 For example, we can see that more than 600 peers (about 34% of the total peers)
need to belong to just one style, when we use Layered SON approach and using the
conservative approach we have only 24% of the peers, which need to belong to one
style. Moreover, 97% of the peers need to belong to four or less style categories,
versus 90% when doing conservative assignments. So, layered approach help peers
belong to less SONs.

 Right Figure shows a histogram for the size of the SONs. From the graph we can
see that by using Layered SONs we have a larger number of small SONs.
Obviously, this reduction will lead to significant improvements in query
performance. So, using layered SONs also helps reduce the number of peers per
SON.

Authors had also done their experiments with SONs for leaf nodes of classification
hierarchy - for music substyles. In this case, layered approach doesn’t give much in the
sense of reducing number of connections between peers and SONs. But, it still
significantly reduces the size of SON’s.

 14

6.2 Layered SONs vs. Gnutella

0

20

40

60

80

100

0
60

0
12

00
18

00
24

00
30

00
36

00

Messages

R
ec

al
l Gnutella

SON

 Fig. 10:Number of messages for one query

At the chart, we can see, that Layered SON system were able to obtain the same level of
matches with significantly fewer messages than the Gnutella-like system. And this is the
main achievement of SON approach, indeed. Nevertheless, there are few drawbacks,
restricting usage of SONs in some way:

 At first, it must be realized, that search algorithm, based on SON’s can’t reach the
100% recall level. If we to find all documents for a query, our only option is an
exhaustive search among all peers in the network. However, when we have 25% of
misclassified documents, it is still possible to find more than 93% of the
documents that match a query. So, this is excellent recall level, nevertheless

 And, this search algorithm may result in duplicate results. Specifically, duplication
can happen when a peer belongs, at the same time, to a SON associated with a
substyle and to the SON, associated with the parent style of that substyle (peer
can have some, but not many, documents on some other substyles of this style). In
this case, a query that is sent to both SONs will search the peer twice and thus it
will find duplicate results. But, obviously, technically this is solvable problem.

7 Summary
Presented papers show how to improve the efficiency of a peer-to-peer system by
clustering nodes with similar content in Semantic Overlay Networks (SONs). SONs can
efficiently process queries while preserving a high degree of node autonomy. There were
also introduced Layered SONs, an approach that improves query performance even more,
at a cost of a slight reduction in the maximum achievable recall level. From experiments,
it’s can be seen, that SONs offer significant improvements versus random overlay
networks, while keeping costs low. Also, there are other contributions. It was shown well,
that the super-peer topology, consisting of a super-peer backbone with powerful computers
and smaller clients which are linked to these super-peers, is very suitable for this approach.
Also, the method of using semantic routing indices for robust search within clusters was
presented. Tracing last publications on this topic, it is possible to conclude, that these two
sub-researches are most actual among all attempts of developing presented ideas.

 15

8 Literature
[1] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks. 2003. Submitted

for publication.
http://www-db.stanford.edu/peers/
Extended version, 2002:
http://citeseer.nj.nec.com/garcia02semantic.html

[2] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems.

Proceedings of the International Conference on Distributed Computing Systems
(ICDCS). 2002.

[3] B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proccedings

of the ICDE, March 2003.

[4] W. Nejdl, M. Wolpers, W. Siberski, A. Loser, I. Bruckhorst, M. Schlosser, and

C. Schmitz. Super-Peer-Based Routing and Clustering Strategies for RDF-Based
Peer-To-Peer Networks. In Proceedings of the Twelfth International World
Wide Web Conference (WWW2003), Budapest, Hungary, May 2003.

[5] A. Loser, F. Naumann, W. Siberski, W. Nejdl, U. Thaden. Semantic Overlay

Clusters within Super-Peer Networks. Proceedings of the International
Workshop on Databases, Information Systems and Peer-to-Peer Computing in
Conjunction with the VLDB. 2003.

[6] A. Loser, M. Wolpers. Efficient data store and discovery in a scientific P2P

network. Technische Universitat Berlin, Learning Lab Lower Saxony Hannover.
Submitted for publication. 2003.

 16

http://www-db.stanford.edu/peers/
http://citeseer.nj.nec.com/garcia02semantic.html

	Motivation
	Introduction to Semantic Overlay Networks
	Formal definitions of SON
	Definition, based on link structure
	Definition, based on classification hierarchy

	Generating SONs
	Semantic routing indices
	Exploiting super-peer network

	Improving SON performance
	Evaluation of classification hierarchies
	Tolerance to classification errors
	Peer assignment strategies

	Layered SONs
	Searching with Layered SONs

	Comparative experiments
	SONs vs. Layered SONs
	Layered SONs vs. Gnutella

	Summary
	Literature

