

Querying the Internet with PIER

Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau

Loo, Scott Shenker, Ion Stoica

Write up by Natalia Kozlova

Saarbrücken, 16 December 2003

Content

1 INTRODUCTION... 3

2 DESIGN PRINCIPLES.. 4

2.1 Relaxed Consistency... 5

2.2 Organic Scaling... 5

2.3 Natural Habitats for Data.. 5

2.4 Standard Schemas via Grassroots Software .. 6

3 PIER ARCHITECTURE... 6

4 DHT IMPLEMENTATION.. 7

4.1 CAN design.. 7

4.2 DHT layers .. 8

5 QUERY PROCESSOR.. 10

5.1 Core join algorithms... 10

5.2 Joins rewriting. ... 12

5.3 Grouping/Aggregation ... 13

5.4 Performance evaluating ... 13

5.5 Scalability simulation ... 14

6 CONCLUSION .. 16

7 LITERATURE ... 16

 2

1 Introduction

In our post-cyber revolution world the situation is changed very quickly. And the
cutting edge of research becomes broader in all directions. On the one hand, the
fundamental database system issues have changed dramatically in the last decade. As
such, there are ample new issues for database system research to investigate.

One can observe that there a couple of facts needed to be taken into account for
databases research community [1]:

1. The Web and the Internet make it easy and attractive to put all
information into cyberspace, and makes it accessible to almost everyone.

2. Ever more complex application environments have increased the need to
integrate programs and data.

3. Hardware advances invalidate the assumptions and design decisions in
current DBMS technology.

The Web and its associated tools have dramatically cut content creation cost, but the
real revolution is that the Web has made publishing almost free. The Web is the major
platform for delivery of applications and information. And the fact that hardware
becomes cheaper and cheaper, will only accelerates this process.

It can be said that the Web is one huge database. However, the database research
community has contributed little to the Web thus far. First, database systems are often
used as high-end Web servers, as webmasters with a million pages of content invariably
switch to a web site managed by database technology rather than using file system
technology. Second, major content publishers are using or evaluating database systems
for storing their content repositories. However, the largest of the web sites, especially
those run by portal and search engine companies, have not adopted database technology.
Also, smaller web sites typically use file system technology for content deployment,
using static HTML pages.

Another fact is that large enterprises have hundreds, sometimes thousands, of large-
scale, complex packaged and custom applications. Interoperation between these
applications is essential for the flexibility needed by enterprises to introduce new web-
based applications services, meet regulatory requirements, reduce time to market,
reduce costs, and execute business mergers. Advances in database technology will be
required to solve this application integration problem.

If technology trends continue, large organizations will have petabytes of storage
managed by thousands of processors - a hundred times more processors than today. The
database community is rightly proud of its success in using parallel processing for both
transaction processing and data analysis. However, current techniques are not likely to
scale up by two more orders of magnitude.

On the other hand we observe the Peer-to-peer (P2P) systems have recently become a
very active research area, due to the popularity and widespread use of P2P systems

 3

today, and their potential uses in future applications. It’s as a way to share huge
amounts of data, quite natural model for interaction between devices (e.g., via the web
services).

P2P systems are popular because of the many benefits they offer: adaptation, self-
organization, load-balancing, fault-tolerance, availability through massive replication,
and the ability to pool together and harness large amounts of resources. File-sharing
P2P systems distribute the main cost of sharing data - bandwidth and storage - across all
the peers in the network, thereby allowing them to scale without the need for powerful,
expensive servers.

However, P2P systems also present several challenges that are currently obstacles to
their widespread acceptance and usage - e.g., security, efficiency, and performance
guarantees like atomicity and transactional semantics. The P2P environment is
particularly challenging to work in because of the scale of the network and unreliable
nature of peers characterizing most P2P systems today. Many techniques previously
developed for distributed systems of tens or hundreds of servers may no longer apply;
new techniques are needed to meet these challenges in P2P systems. And one of the
main problems is search. Though data-sharing P2P systems are capable of sharing
enormous amounts of data, such a collection is useless without a search mechanism
allowing users to quickly locate a desired piece of data.

There are a number of approaches to incorporate search mechanisms in the existing P2P
system structure. Some of them use centralized index, but this architecture cannot
exploit the distributed nature of P2P systems efficiently. There is an obvious need in
techniques that provide an efficient distributed search mechanism with more advanced
functionality than simple keyword search.

An important area of research therefore lies in developing mechanisms for richer query
languages. As a complex language defined over a rich data model, SQL is the most
difficult query language to support among the examples listed. Current research on
supporting SQL in P2P systems is very preliminary. The PIER project supports a subset
of SQL over a P2P framework.

Thus we came to the main goal of this work – to describe PIER and its features. PIER is
a distributed query engine based on overlay networks that can work on various data. It
is intended to bring database query processing facilities to new, widely distributed
environments. PIER tries to acquire advantages from both of its predecessors: P2P
systems bring scalability and flexibility when DB systems bring relational model and
query facilities.

2 Design Principles

There are a couple of principles, which guided PIER’s developers in their intention to
provide scalable architecture.

 4

2.1 Relaxed Consistency

When talking about modern distributed systems, there can be pointed three criteria we
need to balance between. They are Consistency, Availability and Partition tolerance or
CAP for short [3].

• Consistency: there has been significant research designing ACID databases, and
most of the new frameworks for building distributed web services depend on
these databases. Interactions are expected to behave in a transactional manner.

• Availability: every request should succeed and receive a response. When a
service goes down, it may well create significant real-world problems. The goal
is to be as available as the network on which they run: if any service on the
network is available, then the service should be accessible.

• Partition tolerance: when some nodes crash or some communication links fail, it
is important that the service still perform as expected on the survived (or
reachable) part of the network.

It was noticed, that modern systems usually choose consistency and prefer partition
tolerance to availability. By contrast, PIER developers want their system to become part
of the “integral fabric” of the Internet – thus it must be highly available, and work on
whatever subset of the network is reachable. In the absence of transactional consistency,
PIER will have to provide best-effort results.

2.2 Organic Scaling

The main idea here - the system should scale in a natural way when the number of
nodes changed. And it means that we should not limit ourselves with data, allocated in
the certain place. Data should be decentralized, distributed across nodes, participated in
the network. This also leads us to the cheaper architecture we discuss in the first part of
this work – to support this system we have no need to buy expensive servers or wide
Internet channel. As long as data is distributed, the system will organically scale when
nodes join and leave.

2.3 Natural Habitats for Data

One of the main barriers for distributing databases among usual users is the need to load
data they owned into database. And database have a schema thus you data can be
modified somehow to be available. Next, you can access data in the database only via

 5

DB interface or certain tools. And this is a serious limitation, because of the very
heterogeneous nature of the Internet. PIER allows data to be heterogeneous – file
system or live feed. Hence the business of “wrappers” is to provide necessary
information for query engine.

2.4 Standard Schemas via Grassroots Software

This principle leads us to the idea: why should we invent various tricky methods to
integrate data of the different users if we are already have many programs spread so
wide, that they become a de facto standards? For example, one of the challenging
applications of the PIER is network monitoring, and here you can find such programs as
TBIT or tcpdump. And the schemas they provide are well-known and wide used. The
ability to stitch local analysis tools and reporting mechanisms into a shared global
monitoring facility is both semantically feasible and extremely desirable. This is also
utilized by PIER.

3 PIER Architecture

Core
Relational
Execution

Engine

ProviderStorage
Manager

Overlay
Routing

Catalog
Manager

Query
Optimizer

Various User Applications

PIER

DHT

Apps

Figure 1. PIER Architecture

As far as we discussed
the motivation and the
design principles, we
will continue by
describing PIER’s
architecture. On the
picture you can see the
structure of the system.

As we discuss, PIER is
query engine, not a
Database system. And
we don’t focus on
storage and transactions,
but just querying
existing data.

PIER is a three-tier
system as shown in
Figure 1. Applications
interact with the PIER
Query Processor (QP),

 6

which utilizes an underlying DHT.

An instance of each DHT and PIER component is run on each participating node.

The next explanation will be organized as follows: first we’ll study the lowest DHT
layer; then we will go to the Query processor which is PIER itself, next section will be
devoted to the performance evaluation; we will talk a little about the applications and
after all I will summarize the topics, described above.

4 DHT Implementation

4.1 CAN design

Before we will go into details I want to
see a few words about DHTs in
general. DHT provides a hash table
abstraction over multiple distributed
compute nodes. Each node in a DHT
can store data items, and each data
item is identified by a unique key. At
the heart of a DHT is an overlay
routing scheme that delivers requests
for a given key to the node currently
responsible for that key. This is done
without any global knowledge – or
permanent assignment – of the
mapping of keys to machines. Routing
proceeds in a multi-hop fashion; each
node maintains only a small set of
neighbors, and routes messages to the
neighbor that is in some sense

“nearest” to the correct destination.

Figure 2. One of the possible CAN spaces

In particular, this implementation of PIER based on the CAN, a DHT architecture
described in [4]. I will not explain here in details how CAN works, just a little
description. It should be said that PIER can also use another DHT architectures.

CAN based on d-dimensional Cartesian coordinate space. Space is partitioned into
zones – hyper-rectangles. Each node owns a distinct zone, maintains routing table with
neighbors. Uniform hash function maps a key onto a point, on the Figure 2 there is a
key K1 mapped to example zone P1. Pair (K1, V1) is stored at the node A, which owned
the zone with P1. We can issue Insertion, lookup, and deletion of (key, value) pairs.
Lookup processes by forwarding the message along a path that approximates the

 7

straight line in the coordinate space from the sender to the node storing the key; here it
will be the shortest line form A to B, if A is interested in V2.

The average number of the hops for message to get from point to point is 4
1

4
nd where d

is the number of dimensions and n is the number of nodes. In PIER d = 4.

4.2 DHT layers

Remember Figure 1. Here we will discuss the details of the lowest layer
implementation.

The first layer is the routing layer and its business is to map a key into the IP address of
the node currently responsible for that key. The API for this layer is simple; it’s shown

on Figure 3.

lookup is an asynchronous function which
will issue a callback when the node has been
located. The locationMapChange callback
is provided to notify higher levels
asynchronously when the set of keys mapped
locally has changed. The join and leave
calls provide for creating a new overlay

network, attaching to an existing network, and gracefully leaving the network. For
preexisting networks, the join method requires the socket address of any node already
in the network (or NULL to start a new network).

lookup(key) ipaddr
join(landmarkNode)
leave()
locationMapChange

Figure 3. Routing layer API

The next part of the DHT is the Storage Manager. Its task is to store and retrieve
records, which consist of key/value pairs. Keys are used to locate items and can be any

data type or structure supported. This means
that you are not limited in you choice of storing
data – it can be main memory structures or
indexing systems like Berkley DB or even a file
system. PIER uses main memory structures for
simplicity now. API is shown on Figure 4. We
can store a key in DHT using store, obtain an
item by a key using retrieve and remove

and item from DHT table issuing remove.

Figure 4. Storage Manager API

store(key, item)
retrieve(key) item
remove(key)

The last part of DHT we need to discuss is Provider. Surprisingly, it provides an
interface to higher levels and manages routing and storage tasks using proper
components.

Each object in DHT characterized with namespace, resourceID, and instanceID. We
apply a hash function to namespace, resourceID to obtain DHT key. The namespace

 8

identifies the
application or group
an object belongs
to; for query
processing each

namespace
corresponds to a

relation.
Namespaces do not
need to be
predefined.

When the
namespace is what object belongs to, the resourceID is generally intended to be a value
that can tell what is object itself, some identifier. Usually it can be the primary key for
base tuples, although any attribute (or combination) could be used for this purpose. The
instanceID is an integer randomly assigned by the user application, which serves to
allow the storage manager to separate items with the same namespace and resourceID
(which can occur when items are not stored based on the primary key). The API is
shown on the Figure 5.

get(namespace, resourceID) item
put(namespace, resourceID, item,
lifetime)
renew(namespace, resourceID, instanceID,
lifetime) bool
multicast(namespace, resourceID, item)
lscan(namespace) items
newData(namespace, item)

Figure 5. Provider API

get issued to obtain an item, put called to insert an item into DHT. Lifetime
parameter is necessary to tell DHT during which time should it store this object, this is
adherence to principle of “relaxed consistency”. And when this time will pass, the item
will be deleted from DHT. Thus node that owns data should periodically call renew to
show that it is alive and this item is up to date.

The next function, multicast addresses the propagation of information between
particular nodes. For details see [5]. A multicast message contains the location prefix
(corresponding to the namespace), mask, and a payload, which is the data to be
delivered to each node. Using the prefix and mask, the lower and upper bounds of the
location identifier space can be determined. A multicast message is sent to a multicast
zone, described by two coordinates (the lower and upper bounds of the multicast range),
in the logical space where all identifiers of interest are mapped. This zone can intersect
one or more nodes.

Flooding of the multicast message begins by the message being delivered to any node in
the multicast zone. This can be achieved by issuing a lookup for a random identifier
within the multicast range. There are some algorithms, but we more interested in
general idea. Each node iterates through its neighbors and decides whether to forward
the message. This decision based on the fact if the neighbor is not the node the message
came from and if the neighbor’s zone intersects with the multicast zone.

The fifth function from Figure 5 is lscan. Each node calls lscan to iterate through
its local data. And the last function, newdata, is a callback issued when the data,
stored on a particular node changed. This callback addressed to the all nodes in its
namespace.

 9

5 Query Processor

Let’s return back to the Figure 1. The next layer on the top of DHT is PIER itself. It also
consists of three components but it’s a kind of idea. Now the upper level contains only
query engine… but it’s enough for the moment!

The PIER Query Processor is a “boxes-and-arrows” dataflow engine, supporting the
simultaneous execution of multiple operators that can be pipelined together to form
traditional query plans. In our initial prototype, we started by implementing operators
for selection, projection, distributed joins, grouping, and aggregation.

It’s important for distributed systems to hide somehow network latencies, so in PIER
operators produce results as quickly as possible (push) and enqueue the data for the next
operator (pull).

The next task is modification of data. But as you remember here we always emphasize
the fact that data is heterogeneous. And in fact the data is stored separately from the
query engine; it is not a standard DB practice. PIER is not a Database, and the
difference is we don’t focus on storage and transactions, just querying existing data.
Modification performed using functions of DHT-level Provider.

And the last but not less important question: OK, we have a network, QP and data. But
what data should we choose to push into selection procedure? In P2P networks there
are usual situations when some of nodes failed. It can be fatal for usual DB, but here the
“relaxed consistency” principle was claimed.

PIER defines reachable snapshot to select data from nodes that are alive at the time the
query was sent. But there are problems with network latency and time synchronization
so dilated reachable snapshot defines data which are available at the time the query
arrives at the reachable nodes.

This is a short description of the PIERs QP. And now I want to show you most
interesting things from this outline in details. We will talk about joins – the core of
query processing.

These join algorithms are adaptations known ones, but with leveraging DHTs whenever
possible. PIER uses DHTs in both of the senses used in the literature – as “content-
addressable networks” for routing tuples by value, and as hash tables for storing tuples.
DHTs provide hash indexes and the hash tables that underlie many parallel join
algorithms and the main point here that the set of nodes these algorithms running on is
volatile. This was not available in earlier database.

5.1 Core join algorithms

Imagine that we have two relations R and S, distributed in the network and we want to
join them on some attributes. The related namespaces are NR and NS. It should be

 10

mentioned, that of course, data is already hashed by resourceID in the hash table so
there we are talking about rehashing. And this rehashing performed by join attributes.

The first algorithm is symmetric hash join.

It works as follows:

 Someone initiates query, query is multicasted to the nodes in NR and NS.

 Each node starts to lscan its own piece of relation (Figure 6 a).

 When the tuple, that satisfy join condition is found (in R or S), it must be copied
in the new temporary namespace for join result. It copies only necessary
columns. The resourceID of this copy is hashed concatenation of its join
attributes. To distinguish tuples they are tagged with their source table name. In
other words, when tuple is found, we rehash it by join attributes and call put to
insert it into namespace (say N) defined by hash function (Figure 6 b). Q

 When the tuple is put into NQ node, responsible for the zone, it’s put in issues
newData to notify that it has a new candidate to join (say from table R).

 Each node in NQ calls get to find matches for this tuple (from R) in Q from
another table (S).

 Matches are joined and sent to the next stage of the query (if exist) or to initiator.

This a
predic

The s
alread

It wor

NQ

NQ
NR

NS

NR

NS

lscan(NR)

lscan(NS)lscan(NR)

lscan(NS)

NQ

NQ
NR

NS

lscan(NR)
NR

NS lscan(NS)
newData

put(Stup)

put(Rtup)

lscan(NR) lscan(NS)

)

Figure 6. SHJ a) b
lgorithm send projected tuples matching some predicates, but can’t pre-check join
ate. It requires a lot of rehashing and produces high traffic.

econd algorithm is fetch matches. It works when one of the tables (say S) is
y hashed on the join attributes.

ks as follows:

11

 Each node in opposite table R starts to lscan its own piece of relation.

 When the tuple, that satisfy join condition is found (in R), node issues get for
corresponding S tuple (Figure 7 a).

 get returns matched tuple(s), they are joined with R tuple (Figure 7 b).

 Matches are joined and sent to the next stage of the query (if exist) or to initiator.

get(rID) get(rID)
hashedhashed

NRNR
NRNR

This algorithm only retrieve tuples matching join predicate, but entire tuple must be
fetched and may not match some predicates.

5.2 Joins rewriting.

As we noticed, previous two algorithms, especially first one requires a lot of network
resources. In real network there is no guarantee that you can consume as much as you
want. Thus there is an obvious need in less traffic-consuming algorithms.

Well, there is another algorithm, called symmetric semi-join. It exploits the first two to
produce a better results (we are speaking about traffic) in a price of latency in obtaining
final result. It works as follows: first locally project both R and S to their resourceIDs
and join keys, and perform a SHJ on the two projections. The resulting tuples are
pipelined into FM joins on each of the tables’ resourceIDs .Doing this we minimize
initial communication.

The second rewriting strategy is to use Bloom Filters.

hashed

NX
NX

NS

NS

hashed

NX
NX

NS

Stup
NS Stup

Figure 7. Fetch Matches a) b)

 12

Abstractly a Bloom filter is a
mutable object that maps
strings onto bits. Given a
string it returns a bit. It is
allowed false positives. A
creation time parameter trades
off the frequency of false
positives against storage costs.
A bloom filter can also have
strings added which causes the
filter to respond true to that
string in the future. Several
Bloom filters can be OR-ed
together. The merged filter
will respond positively at least
whenever each of the inputs
would have.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 10

Selectivity of predicat on relation S

A
ve

ra
ge

 n
et

w
or

k
tr

af
fic

SHJ FM SSJ BF

Figure 8. Aggregate network traffic for each strategy

0

The Bloom join works as follows: at first each node creates Bloom Filter for its R and S
fragments and publish it into a temporary DHT namespace for each table. Filters are
OR-ed together and then multicasted to all nodes storing the opposite table. Node
lscans corresponding table fragment, but rehashing only tuples matched the filter.
This strategy reduces rehashing.

5.3 Grouping/Aggregation

Here I briefly describe the Grouping/Aggregation techniques. These techniques are not
presented in the source paper; however I want just to show that the method they use is
similar.

To perform aggregation operation, each node:

 lscan it’s fragment of the source table and determine the group tuple belongs
in

 adds tuple’s data to that group’s partial summary

 for each group represented at the site, rehash the summary tuple with hash key
based on group-by attribute. put tuple into temporary grouping namespace.

 nodes in grouping namespace use newData to get partial summaries, combine
and produce final result

5.4 Performance evaluating

 13

After we discussed join algorithms,
it’s time to look on the evaluating of
performance. In simulation setup
inbound capacity of the node is equal
to 10 mbps. Size of relations R plus S

is 25 GB. System has 1024 nodes.

SHJ Fetch
Matches

symmetric
semi-join

Bloom
Filter

3.73 sec 3.78 sec 4.47 sec 6.85 sec

On Figure 8 you can see the
bandwidth requirements for each strategy as a function of the selectivity of the predicate
on S. As you can see, the symmetric hash join uses the most network resources since
both tables are rehashed. The number of results increases with the selectivity of the
selection on S.

Table 1. Average time to receive last tuple

Fetch Matches strategy basically uses a constant amount of network resources because
the selection on S cannot be pushed down in the query plan. This means that regardless
of how selective the predicate is, the S tuple must still be retrieved and then evaluated
against the predicate at the computation node.

In the symmetric semi-join rewrite, the second join transfers only those tuples of S and
R that match. As a result, the total inbound traffic increases linearly with the selectivity
of the predicate on S.

In the Bloom Filter case, as
long as the selection on S has
low selectivity, the Bloom
Filters are able to significantly
reduce the rehashing on R, as
many R tuples will not have an
S tuple to join with. However,
as the selectivity of the
selection on S increases, the
Bloom Filters are no longer
effective in eliminating the
rehashing of R tuples, and the
algorithm starts to perform
similar to the symmetric join
algorithm.

This algorithms show similar
trend during measurement of
the time, needed to receive last
tuple. Thus there is no real
need to show the full plot. In
the table you can see the average time to receive last tuple.

Figure 9. Time for the 30th tuple

5.5 Scalability simulation

 14

The main idea of the PIER is that it is distributed query processor that scales well. Let’s
study how it scales. The conditions are: |R| =10 |S, constants produce selectivity of 50%,
each node is responsible for 1 MB of source data. On the Figure 9 you can see the
response time for the 30th tuple. This value was chosen to be after the first tuple
received and well before the last.

The number of overlay hops for each lookup increases as the network size increases,
this leads to an increase in the lookup latency. In CAN the lookup length increases in
n0,25 with d = 4.

When the number of computation nodes is kept small by constraining the join
namespace NQ the bottleneck moves to the inbound links of the computation nodes, and
as a result the performance of the system degrades significantly as the total number of
nodes and therefore the load per computation node increases.

In summary, PIER scales well as long as the number of computation nodes is large
enough to avoid network congestion at those nodes.

The query, used in evaluation, is:

SELECT R.key, S.key, R.pad
FROM R,S
WHERE R.n1 = S.key
 AND R.n2 > const1
 AND S.n2 > const2
 AND f(R.n3,S.n3) > const3

At Figure 10 you can see the plot with experimental results of running prototype
implementation on a cluster of 64
PCs connected by an 1 Gbps
network. It is also a time to receive
30th tuple when number of nodes
scales from 2 to 64.

As expected the time to receive the
30-th result tuple practically remains
unchanged as both the system size
and load are scaled up. The reason
that the plot is not smooth is because
the cluster we used to run our
experiments was typically shared
with other competing applications,
and was particularly heavily loaded
during the period we ran these tests.
Developers believe the peak in
response time at 32 nodes is due to
an artifact in their CAN
implementation.

Figure 10. Time for the 30th tuple

 15

6 Conclusion

Well, we discussed PIER - a structured query system intended to run at large scale. Due
to its design, it can perform queries on heterogeneous data. The scalability of PIER
derives from a small set of relaxed design principles, which led to some of key
decisions, including: the adoption of soft state and dilated-reachable snapshot
semantics; use of DHTs as a core scalability mechanism for indexing, routing and query
state management.

We should not take into account that presented system is the first draft and requires a lot
of work. There are some common issues:

 Caching – Both at DHT and QP levels

 Using Replication – for speed and fault tolerance (both in data and computation)

 Security

And also there are some related to databases issues:

 Pre-computation of (intermediate) results

 Continuous queries/alerters

 Query optimization (Is this like network routing?)

 More algorithms, Dist-DBMS have more tricks

 Performance Metrics for P2P QP Systems

7 Literature

Main paper: Querying the Internet with PIER (2003) Ryan Huebsch, Joseph M.
Hellerstein, Nick Lanham Boon, Thau Loo, Scott Shenker, Ion Stoica. Proceedings of
19th International Conference on Very Large Databases (VLDB)
http://citeseer.nj.nec.com/huebsch03querying.html

1. The Asilomar Report on Database Research. Phil Bernstein, Michael Brodie, Stefano
Ceri et al.

2. Open Problems in Data-Sharing Peer-to-Peer Systems. Neil Daswani, Hector Garcia-
Molina, and Beverly Yang

3. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of Consistent,
Available, Partition-tolerant web services. ACM SIGACT News, 33(2), June 2002.

 16

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proc. 2001 ACM SIGCOM Conference, Berkeley, CA, August
2001.

5. R. Huebsch. Content-based multicast: Comparison of implementation options.
Technical Report UCB/CSD-03-1229, UC Berkeley, Feb. 2003.

6. M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.
Complex queries in dht-based peer-to-peer networks. In 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), March 2002.

 17

