— - - - 2.1 Memory-efficient Incremental Page Importance
2 Efficient Personalized Authority Ranking

Goals:
« Compute Page-Rank-style authority measure online

2.1 Memory-efficient Incremental Page-Importance Computation without having to store the complete link graph

2.2 Personalized Page-Rank for Many Users » Recompute authority incrementally as the graph changes
Key idea:

« Each page holds some ,,cash* that reflects its importance
* When a page is visited, it distributes its cash among its successors
« When a page is not visited, it can still accumulate cash
« This random process has a stationary limit
that captures importance of pages
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OPIC Algorithm
(Online Page Importance Computation) OPIC Importance Measure
Maintain for each page i (out of n pages): At each step t an estimate of the importance of page i is:
C[i] - cash that page i currently has and distributes (H[i1+Ci1) /(G +1) (oralternatively: H[i]/G,)

HIi] - history of how much cash page has ever had in total
plus global counter

G - total amount of cash that has ever been distributed Izte;iml-.i,/ G, denote the vector of cash fractions
for each i do { C[i] := 1/n; H[i] :=0}; G := 0; accumulated by pages until step t.
do forever { The limit X = lim _,_ X, exists with |X|, = Z; X[i] = 1.
choose page i (e.g., randomly);
HIi] := H[i] + C[i];
for each successor j of i do C[j] := C[j] + C[i] / outdegree(i); with crawl strategies such as:
G =G+ Cil; « random
C[i]:=0; « greedy: read page i with highest cash C[i]
; (fair because non-visited pages accumulate cash until eventually read)

. . « cyclic (round-robin)
Note: 1) every page needs to be visited infinitely often (fairness)

2) the link graph L* is assumed to be strongly connected
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Adaptive OPIC for Evolving Link Graph Implementation and Experiments
Consider ,.time* window [now-T, now] where time is the value of G essentially a crawler distributed across 4 PCs
Estimated importance of page i is: X,,[i] = (H,y[i] —H i)/ T with hash-based partitioning of URLs
P pag rowl ] = (Fhouli] = Hoou.rl1]) uses Greedy-style crawl strategy and two-point interpolation
For fixed window size T maintain for every page i: can track ,,accumulated cash* of href targets without visiting them !

C[i] and G, for each time t that i was visited within the window

For variable window size k maintain for every page i:

C/[i] and G, for each time t of the last k visits of i Web crawl visited 400 Mio. pages and
computed importance of 1 Bio. pages
For two-point estimate (e.g., previous and current crawl): over several months.

» maintain two history vectors H[1..n] and G[1..n]
for accumulated cash H[i] in current crawl
and time GJi] of previous crawl

* set H[i]-w+c[i] if G=Gli]<T

C[i].% if G-G[i]2T
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2.2 Personalized Page-Rank for Many Users
Efficiently compute solution of personalized PR vector X,y With

user preference vector u with |u|;=1 and uz0 only for ieH, with |H|<<n,

and A;; = 1/outdegree(i) for edge i—j,0 else: X = (1— 8) AXx+eu

Key ideas:

1) consider only basis vectors u with u,=1 and u;=0 for i=p for hub p
and represent full user preference as linear combination

2) represent p-specific Page-Rank vectors in the form of
a hub skeleton and a set of partial vectors

3) factor out common parts of different random walks

Notation:

hub set H, preference setPcHcV ={1,2, .., n}
basis vector e, with single non-zero entry at p
p-specific PR vector r,

partial vector r, - "
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Basis Vectors for Hub Set H

Linearity Theorem:
For any preference vectors ul and u2, if vl and v2 are the
corresponding PR vectors, then for any constants o1 and a2 > 0
with a1 + a2 = 1 the following holds:

alvl+a2v2=(1-¢) A (alvl+a2v2)+e(alul +oa2u2)

Corollary:
For an arbitrary user prefence vector u and basis vectors e,
the following holds:
u =i“p e, for some constants o, through o, (m = |H|)
p=1

and v =Zap -r, for the corresponding PR vector v
p=1
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Hubs Skeleton and Partial Vectors (1)

Definition:
For pages p, g the inverse P-distance r‘,(q) from p to q is:
v — length(t) :
r = Pltle(1-¢ (prob. of surfing fromp to g
P @ 10%(;[ Je( ) before the next random jump)
p—q

k-1
where P[t :w;w,..w, of length k—1] = []1/outdegree(w;)
i=1
Theorem:
r*o(q) = ry(q) for all pages p, g (with the p-specific PR vector ry(q) )

Definition:
For pages p, g and hub set H the hub-restricted inverse P-distance
H(g)is: »H length
W@ rE)=  FPIHe-g) O
tours t:p—>h—q
with heH
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Hubs Skeleton and Partial VVectors (2)
Partial vectors:
For many q: r(q) - (@) =0,
and the number of such g increases with |H|.
— store only sparse vectors r,(q) — r,(q)
Note: partial vectors become smaller when pages in H have high PR

Hubs skeleton: Compute ervector from partial vectors and a ,,skeleton*

Hubs theorem: For any page p and hub set H:

i =% T () -ze, () (- rt - ze,) and thus
heH

Ty =(rp - rpH)+ %Z(rp(h)—aep(h)) ((rh - th )_Eeh)

In addition to the partial vectors, we thus need to compute and store
the skeleton S = { r,(h) | h eH}
Note: r(h) for all h & H is much smaller than r(q) for all pages q
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Hubs Skeleton and Web Skeleton

Intuition behind Hub Theorem:
Distance from p to g through H is distance r,(h) from p to each heH
times the distance from r,(q) from h to q.

The hubs skeleton captures distances from hub to hub;
partial vectors capture distances from hub to arbitrary node
(without traveling through another hub).

Web skeleton:

In the hubs skeleton r,(h) is computed only for peH.

This can be generalized to compute r,(h) for all peV and heH.
With this kind of Web skeleton, r,"(q) would yield an
approximation of personalized Page-Rank distances

for arbitrary nodes p, q €V.
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Factorizing Random-Walk Computations

We need to precompute partial vectors r,(q) - r*,(q) and
the hubs skeleton S = {r,(h) | h eH}.
Invoking a power iteration for each p separately would be very slow.

Decomposition theorem:

Forany page p: r,= 1-¢

—_— r+ee
OUtdEQree( p) ieout(p) ' P

Algorithmic framework:
* run power iteration k=1, 2, ... until convergence
(for computing all full vectors r, or partial vectors)
* compute lower-approximation D [p] for r,: D,[p](q) < r,(a) for all g
and error measure E,[p].
« maintain invariance: D [pl+ X E([pl(@)ry =1y forall k
« start with Dy[p] =0 and Eq[p] = ¢, At
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Basic Dynamic Programming Algorithm

In round k+1:
compute approximation of r, from the round-k approximations
for the successors of p
— substitute D,[p]+E,[p] invariance equation
into decomposition theorem:

l1-¢

Dy..[p]= outdegree( p) leuuz‘(']?k[ll+€ep
1- .
Eualpl= ¢ S Eli]

outdegree(p) icout(p)

reduces the error by factor 1-¢ in each round
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Repeated Squaring Algorithm

Compute iteration 2k results from iteration k results
(based on Selective Expansion equations):

Do [pl=Dy[pl+ X E([pl(a)-Dyla]
qeQx(p)

Exlpl=Eclpl- X Ey[pl(a)-g,
qeQx (p)

+ Y E[pl(a)-Exlal

ieout(q)

The sets Q,(p) are again tunable.

Selective Expansion Algorithm

In round k+1:
choose set Q,(p) < V and for each page q € Q,(p)
,wdistribute the error to its successors

DyualPl=Dxlpl+ X &E([pl(a)-e,
qeQx(p)

Exalpl=Epl- X Ec[pla)-e
9eQk (p)

-8
+ —————— Y E[pl(a)-&
quzk:(p)OUtdeg ree(q) ieo%(q)k :

The sets Q,(p) are tunable
(e.g., choose m pages q with highest E,[p](q))
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Computing Partial Vectors instead of Full Vectors
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Partial vectors:
specialized selected expansion algorithm
by choosing Qy(p) = V and Q,(p) = V-H for k>1

— Dylp] + & E,[p] converges to r, —r,H

Hubs skeleton:

specialized repeated squaring algorithm

use results D, [p], E,[p] from partial-vector computation
apply repeated squaring step using Q,(p) = H
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Implementation and Experiments

Keep only two successive values for D,[*] and E,[*]
Partition disk-resident data structure into blocks P1, ..., Pm (e.g., m=10)
with Pi: Vi - nodes that reside in this block,
Ei — adjancency lists with edges (p,q) for p Vi,
Lk;; — intermediate results for D,[p](q) and E,[p](a)
with p eViand q eVj
In each iteration k compute results by partition (read into memory)

On Stanford WebBase with 120 Mio. pages,
using a 1.4 GHz CPU with 3.5 GB memory, with |H|=10000
the time for computing (for all basis vectors p)
the full PR vectors r, was about 10000 * 3 seconds =~ 8 hours,
for the partial vectors rp—rpH it was 10000 * 0.3 seconds = 50 minutes,
for the hubs skeleton r(H) it was about 10 hours.
A full PR vector (with > 14 Mio. non-zero entries) can be constructed
from partial vectors and hubs skeleton in 6 seconds.
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