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2 Efficient Personalized Authority Ranking

2.1 Memory-efficient Incremental Page-Importance Computation
2.2 Personalized Page-Rank for Many Users
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2.1 Memory-efficient Incremental Page Importance 
Goals: 
• Compute Page-Rank-style authority measure online 

without having to store the complete link graph
• Recompute authority incrementally as the graph changes

Key idea: 
• Each page holds some „cash“ that reflects its importance
• When a page is visited, it distributes its cash among its successors
• When a page is not visited, it can still accumulate cash
• This random process has a stationary limit

that captures importance of pages
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OPIC Algorithm
(Online Page Importance Computation) 

Maintain for each page i (out of n pages):
C[i] – cash that page i currently has and distributes
H[i] – history of how much cash page has ever had in total

plus global counter
G – total amount of cash that has ever been distributed 

for each i do { C[i] := 1/n; H[i] := 0 }; G := 0;
do forever {

choose page i (e.g., randomly);
H[i] := H[i] + C[i];
for each successor j of i do C[j] := C[j] + C[i] / outdegree(i);
G := G + C[i]; 
C[i] := 0;

};

Note: 1) every page needs to be visited infinitely often (fairness)
2) the link graph L‘ is assumed to be strongly connected
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OPIC Importance Measure
At each step t an estimate of the importance of page i is:

( Ht[i] + Ct[i] ) / (Gt + 1)    (or alternatively:  Ht[i] / Gt )

Theorem:
Let Xt = Ht / Gt denote the vector of cash fractions 
accumulated by pages until step t.
The limit X = lim t→∞ Xt exists with |X|1 = Σi X[i] = 1.

with crawl strategies such as:
• random
• greedy: read page i with highest cash C[i]

(fair because non-visited pages accumulate cash until eventually read)
• cyclic (round-robin)
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Adaptive OPIC for Evolving Link Graph
Consider „time“ window [now-T, now] where time is the value of G

For fixed window size T maintain for every page i:
Ct[i] and Gt for each time t that i was visited within the window

Estimated importance of page i is:  Xnow[i] = ( Hnow[i] – Hnow-T[i] ) / T

For variable window size k maintain for every page i:
Ct[i] and Gt for each time t of the last k visits of i

For two-point estimate (e.g., previous and current crawl):
• maintain two history vectors H[1..n] and G[1..n]

for accumulated cash H[i] in current crawl 
and time G[i] of previous crawl

• set 
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Implementation and Experiments

essentially a crawler distributed across 4 PCs 
with hash-based partitioning of URLs
uses Greedy-style crawl strategy and two-point interpolation
can track „accumulated cash“ of href targets without visiting them !

Web crawl visited 400 Mio. pages and 
computed importance of 1 Bio. pages
over several months.
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2.2 Personalized Page-Rank for Many Users 
Efficiently compute solution of personalized PR vector x(n×1) with
user preference vector u with |u|1=1 and ui≠0 only for i∈H, with |H|<<n,
and Aij = 1/outdegree(i) for edge i→j,0 else: uxAx εε +−= )1(

Key ideas:
1) consider only basis vectors u with up=1 and ui=0 for i≠p for hub p

and represent full user preference as linear combination
2)  represent p-specific Page-Rank vectors in the form of 

a hub skeleton and a set of partial vectors 
3)  factor out common parts of different random walks

Notation:
hub set H, preference set P ⊆ H ⊂ V = {1, 2, ..., n}
basis vector ep with single non-zero entry at p
p-specific PR vector rp
partial vector rp - rp

H
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Basis Vectors for Hub Set H
Linearity Theorem:
For any preference vectors u1 and u2, if v1 and v2 are the
corresponding PR vectors, then for any constants α1 and α2 ≥ 0
with α1 + α2 = 1 the following holds:

α1 v1 + α2 v2 = (1-ε) A (α1 v1 + α2 v2) + ε (α1 u1 + α2 u2) 

Corollary:
For an arbitrary user prefence vector u and basis vectors ep
the following holds:

for some constants α1 through αm (m = |H|)

and                                    for the corresponding PR vector v
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Hubs Skeleton and Partial Vectors (1)
Definition:
For pages p, q the inverse P-distance r‘p(q) from p to q is:
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Theorem:
r‘p(q) = rp(q) for all pages p, q (with the p-specific PR vector rp(q) )

Definition:
For pages p, q and hub set H the hub-restricted inverse P-distance 
rp

H (q) is: ∑
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(prob. of surfing from p to q
before the next random jump)
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Hubs Skeleton and Partial Vectors (2)
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Partial vectors:
For many q: rp(q) – rH

p(q) = 0, 
and the number of such q increases with |H|.
→ store only sparse vectors  rp(q) – rH

p(q)
Note: partial vectors become smaller when pages in H have high PR

Hubs skeleton: Compute rH
p vector from partial vectors and a „skeleton“

Hubs theorem:  For any page p and hub set H:

In addition to the partial vectors, we thus need to compute and store
the skeleton S = { rp(h) | h ∈H} 
Note: rp(h)  for all h ∈ H is much smaller than rp(q)  for all pages q

and thus
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Hubs Skeleton and Web Skeleton
Intuition behind Hub Theorem:
Distance from p to q through H is distance rp(h) from p to each h∈H
times the distance from rh(q) from h to q.

The hubs skeleton captures distances from hub to hub;
partial vectors capture distances from hub to arbitrary node
(without traveling through another hub).

Web skeleton:
In the hubs skeleton rp(h) is computed only for p∈H.
This can be generalized to compute rp(h) for all p∈V and h∈H.
With this kind of Web skeleton, rp

H(q) would yield an 
approximation of personalized Page-Rank distances
for arbitrary nodes p, q ∈V.
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Factorizing Random-Walk Computations
We need to precompute partial vectors rp(q) – rH

p(q)  and 
the hubs skeleton S = { rp(h) | h ∈H}.
Invoking a power iteration for each p separately would be very slow.

Decomposition theorem:
For any page p: ∑
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Algorithmic framework:
• run power iteration k=1, 2, ... until convergence

(for computing all full vectors rp or partial vectors)
• compute lower-approximation Dk[p] for rp: Dk[p](q) ≤ rp(q) for all q

and error measure Ek[p].
• maintain invariance:                                           for all k 
• start with D0[p] =     and E0[p] = ep0
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Basic Dynamic Programming Algorithm
In round k+1:
compute approximation of rp from the round-k approximations 
for the successors of p
→ substitute Dk[p]+Ek[p] invariance equation 

into decomposition theorem:
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reduces the error by factor 1-ε in each round
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Selective Expansion Algorithm
In round k+1:
choose set Qk(p) ⊆ V and for each page q ∈ Qk(p) 
„distribute the error“ to its successors
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The sets Qk(p) are tunable 
(e.g., choose m pages q with highest Ek[p](q))
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Repeated Squaring Algorithm

∑
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Compute iteration 2k results from iteration k results
(based on Selective Expansion equations):

The sets Qk(p) are again tunable.
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Computing Partial Vectors instead of Full Vectors

Partial vectors:
specialized selected expansion algorithm 
by choosing Q0(p) = V and Qk(p) = V−H for k≥1

→ Dk[p] + ε Ek[p] converges to rp − rp
H

Hubs skeleton:
specialized repeated squaring algorithm 
use results Dk[p], Ek[p] from partial-vector computation
apply repeated squaring step using Qk(p) = H
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Implementation and Experiments

On Stanford WebBase with 120 Mio. pages,
using a 1.4 GHz CPU with 3.5 GB memory, with |H|=10000
the time for computing (for all basis vectors p) 

the full PR vectors rp was about 10000 * 3 seconds ≈ 8 hours, 
for the partial vectors rp−rp

H it was 10000 * 0.3 seconds ≈ 50 minutes,
for the hubs skeleton rp(H) it was about 10 hours. 

A full PR vector (with > 14 Mio. non-zero entries) can be constructed 
from partial vectors and hubs skeleton in 6 seconds.

Keep only two successive values for Dk[*] and Ek[*]
Partition disk-resident data structure into blocks P1, ..., Pm (e.g., m=10)
with Pi:    Vi – nodes that reside in this block,

Ei – adjancency lists with edges (p,q) for p ∈Vi,
Lkij – intermediate results for Dk[p](q) and Ek[p](q) 

with p ∈Vi and q ∈Vj 
In each iteration k compute results by partition (read into memory)
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