
1

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-1

6 Rank Aggregation and Top-k Queries

6.1 Fagin‘s Threshold Algorithm
6.2 Rank Aggregation
6.3 Mapping Top-k Queries onto Multidimensional Range Queries
6.4 Top-k Queries Based on Multidimensional Index Structures

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-2

6.1 Computational Model for Top-k Queries
over m-Dimensional Data Space

Assume sim. scoring of the form
with an aggregation function
(or N0 or R0

+ instead of [0,1]
with the monotonicity property

∑
=

=
m

i
ii dqsdqscore

1
),(),(

Key ideas:
1) process m index lists Li with sorted access to entries (d, si(q,d))

in descending order of si(q,d)
2) maintain for each candidate d a set E(d) of evaluated dimensions

and a set R(d) of remaining dimensions, and a partial score
3) for candidate d with non-empty E(d) and non-empty R(d) consider

looking up d in Li for all i∈R(d) by random access
4) total execution cost = cs * #sorted accesses + cr * #random accesses

}..1|),(max{),(midqsdqscore ii ==

}..1|),({),(midqsaggrdqscore ii ==
]1,0[]1,0[: →maggr

Examples:

())'',()',(:]..1[dqsdqsmi ii ≥∈∀
}..1|)'',({}..1|)',({ midqsaggrmidqsaggr ii =≥=⇒

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-3

Wide Applicability of Algorithms
Ranked retrieval on
• multimedia data: aggregation over features like color, shape, texture, etc
• product catalog data: aggregation over similarity scores for

cardinal properties such as year, price, rating, etc. and
categorial properties such as

• text documents: aggregation over term weights
• web documents: aggregation over (text) relevance, authority, recency
• intranet documents: aggregation over different feature sets such as

text, title, anchor text, authority, recency, URL length, URL depth,
URL type (e.g., containing „index.html“ or „~“ vs. containing „?“)

• metasearch engines: aggregation over ranked results from multiple
web search engines

• distributed data sources: aggregation over properties from different sites
e.g., restaurant rating from review site,
restaurant prices from dining guide, driving distance from streetfinder

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-4

Fagin’s Original Algorithm (FA) (PODS 96, JCSS 99)

Scan index lists in parallel (e.g. round-robin among L1 .. Lm)
for each doc dj encountered in some list Li do {

E(dj) := E(dj) ∪ {i};
lookup sh(q,dj) in all lists Lh with h ∉E(dj) by random access;
compute total score(q,dj); };

Stop when |{d | E(d)=[1..m]}| = k;
// we have seen k docs in each of the lists

Execution cost is with arbitrarily high probability

(for independently distributed Li lists)

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅Ω

−
mm

m

kn
11

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-5

Fagin’s Threshold Algorithm (TA) (PODS 01, JCSS 03)

Scan index lists in parallel (e.g. round-robin among L1 .. Lm)
for each doc dj encountered in some list Li do {

E(dj) := E(dj) ∪ {i};
highi := si(q,dj);
lookup sh(q,dj) in all lists Lh with h ∉E(dj) by random access;
compute total score(q,dj);
mink := minimum score among current top-k results;
threshold := aggr(high1, ..., highm);

};
Stop when mink ≥ threshold

// a hypothetical best document in the remainder lists
// would not qualify for the top-k results

TA has much smaller memory cost than FA

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-6

Approximation TA
A θ-approximation T‘ for top-k query q with θ > 1
is a set T‘ of docs with:
• |T‘|=k and
• for each d‘∈T‘ and each d‘‘∉T‘: θ *score(q,d‘) ≥ score(q,d‘‘)

Modified TA:
...
Stop when mink ≥ aggr(high1, ..., highm) / θ;

2

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-7

TA with Sorted Access Alone

Scan index lists in parallel (e.g. round-robin among L1 .. Lm)
for each doc dj encountered in some list Li do {

E(dj) := E(dj) ∪ {i};
highi := si(q,dj);
bestscore(dj) := aggr{x1, ..., xm}

with xi := si(q,dj) for i∈E(dj), highi for i ∉E(dj);
worstscore(dj) := aggr{x1, ..., xm)

with xi := si(q,dj) for i∈E(dj), 0 for i ∉E(dj);
current top-k := k docs with largest worstscore;
worstmink := minimum worstscore among current top-k; };

Stop when bestscore(d | d not in current top-k results) ≤ worstmink ;
Return current top-k;

computes only top k results
without necessarily knowing their total scores (cf. also Chapter 5)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-8

Instance Optimality of TA
Definition:
For a class A of algorithms and a class D of datasets,
let cost(A,D) be the execution cost of A∈A on D∈D .
Algorithm B is instance optimal over A and D if

for every A∈A on D∈D : cost(B,D) = O(cost(A,D)),
that is: cost(B,D) ≤ c*O(cost(A,D)) + c‘ with optimality ratio c.

Theorem:
TA is instance optimal over all algorithms that are based on
sorted and random access to (index) lists.

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-9

6.2 Rank Aggregation
Consider sorted index lists Li as permutations ri of documents 1..n
(ranked lists containing all documents, not necessarily with scores)

A Kendall-optimal aggregation is a permutation r of [1..n] that minimizes
the Kendall tau distance over all lists i∈[1..m]:

∑
=

m

i
irrK

1
),(with ())()'()'()(|)',{(:),(ddandddddK σσππσπ <<=

()})'()()()'(ddandddor σσππ <<

A footrule-optimal aggregation is a permutation r of [1..n] that minimizes
the footrule distance over all lists i∈[1..m]:

∑
=

m

i
irrF

1
),(with ∑

=
−=

n

j
jjF

1
)()(:),(σπσπ

Computing a Kendall-optimal aggregation is NP-hard,
computing a footrule-optimal aggregation is possible in polynomial time.

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-10

Relationship to Median Rank

For permutations r1, ..., rm of docs ∈ [1..n], let medrank(j) denote
the median of {r1(j), ..., rm(j)}, i.e., a rank ∈[1..n] with the property
|{i | ri(d) ≥ mr(d)}|=ceil(m/2) and |{i | ri(d) ≤ mr(d)}|=floor(m/2)

Theorem:
If the medranks of docs are all distinct, then medrank yields a
permutation that is footrule-optimal.
For permutations r1, ..., rm of [1..n] and a scoring function
f: [1..n] → [0,1], medrank minimizes ∑ ∑

= =
−

m

i

n

j
i jfjr

1 1
)()(

Theorem:
For permutations π, σ of [1..n]: K(π, σ) ≤ F(π, σ) ≤ 2K(π, σ).
A footrule-optimal aggregation is a 2-approximation to
a Kendall-optimal aggregation.

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-11

Fagin’s Median-Rank Algorithm (SIGMOD 03)

Find k documents d with highest median rank medrank(d) ∈[1..n]

Initialize count(d) := 0 for all d;
Scan index lists in parallel (e.g. round-robin among L1 .. Lm)
for each doc d encountered in some list Li do

count(d)++;
Stop when count(d) ≥ floor(m/2) +1 for at least k docs
// these are the top k results

The result of the Median-Rank algorithm satisfies the
Condorcet criterion for robust voting:

if a majority of voters prefers x over x‘
then x should be globally ranked higher than x‘

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-12

Properties of the Median-Rank Algorithm

For lists with independent rank distributions,
the expected scan depth of Median-Rank is O(n1 - 2/(m+2)).

The algorithm can be generalized to arbitrary quantiles
(other than the 50% quantile).

The Median-Rank algorithm is instance optimal over all algorithms
that are based on sorted and random access to (index) lists.

Consider n points D={d1, ..., dn} in Rd and a query point q.
Randomly choose different unit vectors v1, ..., vm.
Produce ranked lists r1, ..., rm by projecting points onto v1, ..., vm
and sorting d1, ..., dn by their distance to the projection of q.
Let z be the point with the best median rank over r1, ..., rm.
Then with probability at least 1-1/n we have:

Dxallforqxqz ∈−∈+≤− 22)1(
z is the ε-approximate nearest Euclidean-distance neighbor of q
with high probability.

3

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-13

6.3 Mapping Top-k Queries
onto Multidimensional Range Queries

1) Map top-k query for query point q into multidimensional range query
with center q and an appropriate radius/width ε

2) Execute range query
3) Check if at least k results are returned;

otherwise adjust ε and restart query
Key issue: how to estimate an appropriate radius/width ε
→ look up multidimensional histogram and

construct synthetic relation R‘ with one tuple per histogram bucket
cloned freq(bucket) times

from: N. Bruno, S. Chaudhuri, L. Gravano,
Top-k Selection Queries over Relational
Databases: Mapping Strategies and
Performance Evaluation, ACM TODS 2002

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-14

Deriving Range Queries from Histograms (1)
Conservative strategy (NoRestarts):
1) for R‘ choose representative tuple t for bucket b such that

t falls into b‘s region and has maximum distance to q
2) choose query width such that at least k tuples from R‘ are covered

Optimistic strategy (Restarts):
1) for R‘ choose representative tuple t for bucket b such that

t falls into b‘s region and has minimum distance to q
2) choose query width such that at least k tuples from R‘ are covered

q=(20,15)
k=10

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-15

Deriving Range Queries from Histograms (2)
Intermediate strategies (Inter1, Inter2):
set query width to: 2/3 width(NoRestarts) + 1/3 width(Restarts)
or to: 1/3 width(NoRestarts) + 2/3 width(Restarts)

Workload-adaptive strategy (Dynamic):
set query width to:

width(Restarts) + α (width(NoRestarts) − width(Restarts))
with α derived from (query-width, result-size) samples of the
recent workload history (e.g., using linear regression)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-16

Experimental Results
based on low-dimensional synthetic (Gauss, Array) and real data
(US Census, cartographic data on forest coverage)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-17

6.4 Multidimensional Index Structures
for Similarity Search: R-Trees

R-trees can manage multidimensional point data, as well as
extended objects (e.g., polygons) by considering their MBRs

An R-tree is a B+-tree-like,
page-structured, multiway search tree that manages
• multidimensional data points or rectangles as keys in leaves
• and minimum bounding rectangles (MBRs) as routers in inner nodes

(represented by their lower left and upper right corners)

The key invariant of an R-tree is:
• the router MBR for subtree t is
• the MBR of all data points or MBRs in t.

A multidimensional range („window“) query traverses all
subtrees whose MBRs intersect the query window.
The insertion of new data requires maintenance of the router MBRs,
including possible node splits.

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-18

R-Trees

node at
level 0
(root)

nodes at
level 1

nodes at
level 2
(leaves)

are MBRs
(Min. Bounding
Rectangles)
of data in leaf

contain routers:
(lower left,
upper right) of
child MBRs
with child pointers

4

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-19

Range Query Algorithm for R-Tree
Multidimensional range („window“) query
with query MBR q:

Find all data objects x that intersect with q
(or all objects that are contained in q).

Algorithm:
t := root of the R-tree;
search (q, t);

search (q, n):
if n is a leaf node then

return all data objects x of n that intersect with q
else

T:= the set of router MBRs in n that intersect with q
for each t in T do search (q, t) od;

fi

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-20

Range Queries on R-Trees

node at
level 0
(root)

nodes at
level 1

nodes at
level 2
(leaves)

Find all data
that intersect
a search window
(a hyperrectangle
that is parallel
to the axes)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-21

Bottom-Up Construction of R-Tree (1)
Given: n data points x1, ..., xn ∈[0,1]m

(e.g., the centers of the MBRs of the data objects)

Consider an m-dimensional grid R = {i/k | i=0, ..., k-1}m

with k cells per dimension, where k has the form 2d,
and a space-filling curve ψ: R→ {0, 1, ..., km},
where ψ is bijective and approximately preserves (Euclidean) distance

Bulk load algorithm:
1) Sort x1, ..., xn in descending order of ψ(x1), ..., ψ(xn)
2) Combine a suitable number of consecutive data points

into one leaf node.
3) Construct the inner nodes and the root of the tree from the leaves

in bottom-up manner.

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-22

Bottom-Up Construction of R-Tree (2)
Suitable space-filling curves (fractals):

Peano curve (Z curve):
For point x with binary encoding
of its grid coordinates
x11, ..., x1d (in 1st dimension), ...
xm1, ..., xmd (in mth dimension):
ψ(x) = x11 x21 ... xm1 x12 ... xm2

... xm1 ... xmd
(bitwise interleaving)

Hilbert curve:

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

00 01 10 11

00

01

10

11

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

H1 for 2x2 grid:

Hi for 2ix2i grid:
H1 curve for top level with
suitably rotated or mirrored
H(i-1) curve in each quadrant

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-23

Insertion into R-Tree (1)
Insertion of MBR b (of a new data object):

t := root of the R-tree;
insert (b, t);

insert (b, n):
if n is a leaf node then

Insert b into n, recompute the MBR of n, and
update the router MBR in the parent node of n;
If n overflows, then split n into two nodes;

else
Determine among all router MBRs of n
the most suitable MBR t (e.g., with regard to the volume or
perimeter of the MBR for t ∪ b versus t);
insert (b, t);
Update the MBR of n if necessary;

fi
Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-24

Insertion into R-Tree (2)

node at
level 0
(root)

nodes at
level 1

nodes at
level 2
(leaves)

5

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-25

Split of R-Tree Node

Divide MBRs of node n (data objects or routers)
onto two nodes n and n‘ such that
1) the sum of the volumes or perimeters of n and n‘

is minimal and
2) the storage utilization of n and n‘ does not drop below

some specified threshold.

Heuristics:
Perform cluster analysis for the MBRs of n with 2 target clusters
or:
Determine among all MBRs of n two seed MBRs s and s‘
(e.g., those with maximum distance among all pairs) and
assign MBR x to s or s‘ based on shorter distance
Store all MBRs assigned to s in n and
all MBRs assigned to s‘ in n‘

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-26

ε-Neighborhood Search on R-Tree

node at
level 0
(root)

nodes at
level 1

nodes at
level 2
(leaves)

QueryTop-down search
of all subtrees
that intersect with
a hypersphere with
center q and radius ε
(possibly approximated
by searching the MBR
of the hypersphere)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-27

N-Nearest-Neighbor Search on R-Trees (1)
Find the N nearest neighbors of data point q

Algorithm:
NN: array [1..N] of record point: pointtype; dist: real end;
for i:=1 to N do NN[i].dist := ∞ od;
priority queue Q := root t;
repeat

node n := first(Q);
if n is a leaf node then

for each p in n do if dist(p,q) < max(NN[1..N].dist)
then add p to NN fi od;

else
for each router MBR b of n do

lowerbound := dist (q, closest point of MBR(n));
if lowerbound < max(NN[1..N].dist)
then insert(Q, b) fi

od;
until Q is empty or dist(q, first(Q)) > max(NN[1..N].dist)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-28

N-Nearest-Neighbor Search on R-Trees (2)

node at
level 0
(root)

nodes at
level 1

nodes at
level 2
(leaves)

Queryb1 b2

b3

b21

b22

b31
b32

b11

N = 4

NN: ---

a b c
e d

oh gf
n

ml
kj

p

r
q

t

s

zyx
w vu

Q: b2 b3 b1
NN: --- Q: b3 b22 b21 b1
NN: --- Q: b31 b22 b21 b32 b1
NN: t r s q Q: b22 b21 b32 b1
NN: t n r p Q: b21 b32 b1
NN: t n r p Q: b32 b1
NN: t n r p Q: ---

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 6-29

Literature
• R. Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation

Algorithms for Middleware, Journal of Computer and System
Sciences Vol.66 No.4, 2003

• R. Fagin, R. Kumar, D. Sivakumar: Efficient Similarity Search and
Classification via Rank Aggregation, SIGMOD Conf., 2003

• Ronald Fagin, Ravi Kumar, and D. Sivakumar: Comparing Top k
Lists, SIAM Journal on Discrete Mathematics Vol.17 No.1, 2003

• R. Fagin, R. Kumar, K.S. McCurley, J. Novak, D. Sivakumar,
J.A. Tomlin, D.P. Williamson: Searching the Workplace Web,
WWW Conf., 2003

• R. Fagin: Combining Fuzzy Information: an Overview,
ACM SIGMOD Record Vol.31 No.2, 2002

• N. Bruno, S. Chaudhuri, L. Gravano: Top-k Selection Queries over
Relational Databases: Mapping Strategies and Performance
Evaluation, ACM TODS Vol.27 No.2, 2002

• G. Hjaltason, H. Samet: Distance Browsing in Spatial Databases,
ACM TODS Vol.24 No.2, 1999

• W. Kießling: Foundations of Preferences in Database Systems,
VLDB Conf., 2002

