
1

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-1

7 Top-k Queries on Web Sources
and Structured Data

7.1 Top-k Queries over Autonomous Web Sources
7.2 Ranking of SQL Query Results

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-2

7.1 Computational Model for Top-k Queries
over Web Sources

Typical example:
Address = „2590 Broadway“ and Price = $ 25 and Rating = 30
issued against mapquest.com, nytoday.com, zagat.com

Major complication:
some sources do not allow sorted access

Major opportunity:
sources can be accessed in parallel

→ extension/generalization of TA
distinguish S-sources, R-sources, SR-sources

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-3

Source-Type-Aware TA
For each R-source Si ∈ Sm+1 .. Sm+r set highi := 1
Scan SR- or S-sources S1 .. Sm

Choose SR- or S-source Si for next sorted access
for object d retrieved from SR- or S-source Li do {

E(d) := E(d) ∪ {i}; highi := si(q,d);
bestscore(d) := aggr{x1, ..., xm) with xi := si(q,d) for i∈E(d), highi for i ∉E(d);
worstscore(d) := aggr{x1, ..., xm) with xi := si(q,d) for i∈E(d), 0 for i ∉E(d); };

Choose SR- or R-source Si for next random access
for object d retrieved from SR- or R-source Li do {

E(d) := E(d) ∪ {i};
bestscore(d) := aggr{x1, ..., xm) with xi := si(q,d) for i∈E(d), highi for i ∉E(d);
worstscore(d) := aggr{x1, ..., xm) with xi := si(q,d) for i∈E(d), 0 for i ∉E(d); };

current top-k := k docs with largest worstscore;
worstmink := minimum worstscore among current top-k;

Stop when bestscore(d | d not in current top-k results) ≤ worstmink ;
Return current top-k;

in contrast to Fagin‘s TA, keep complete list of candidate objects
Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-4

Strategies for Choosing the Source for Next Access

for next sorted acccess:
Escore(Si) := expected si value for next sorted access to Si

(e.g.: highi)
rank(Si) := wi * Escore(Si) / cs(Si) // wi is weight of Si in aggr
choose SR- or S-source with highest rank(Si)

for next random acccess (probe):
Escore(Si) := expected si value for next random access to Si

(e.g.: (highi − lowi) / 2)
rank(Si) := wi * Escore(Si) / cr(Si)
choose SR- or S-source with highest rank(Si)

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-5

The Upper Strategy for Choosing
Next Object and Source (Marian et al.: TODS 2004)

for next random acccess:
among all objects with E(d)≠∅ and R(d) ≠∅

choose d‘ with the highest bestscore(d‘);
if bestscore(d‘) < bestscore(d‘‘) for object d‘‘ with E(d‘‘)=∅ then

perform sorted access next (i.e., don‘t probe d‘)
else {

∆ := bestscore(d‘) − worstmin-k;
if ∆ > 0 then {

consider Si as „redundant“ for d‘ if for all Y ⊆ R(d‘) − {Si}
∑j∈Y wj * highj + wi * highi ≥ ∆ ⇒ ∑j∈Y wj * highj ≥ ∆ ;

choose „non-redundant“ source with highest rank(Si) }
else choose source with lowest cr(Si);
};

Alternative for early stage of algorithm:
could prioritize random access for objects in current top-k to improve worstmin-k

idea: eagerly prove that candidate objects cannot qualify for top-k

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-6

The Parallel Strategy pUpper (Marian et al.: TODS 2004)

idea: consider up to MPL(Si) parallel probes to the same R-source Si
choose objects to be probed based on
bestscore reduction and expected response time

for next random acccess:
probe-candidates := m objects d with E(d)≠∅ and R(d) ≠∅

such that d is among the m highest values of bestscore(d);
for each object d in probe-candidates do {
∆ := bestscore(d) − worstmin-k;

if ∆ > 0 then {
choose subset Y(d) ⊆ R(d) such that ∑j∈Y wj * highj ≥ ∆
and expected response time
∑Sj∈Y(d) (|{d‘|bestscore(d‘)>bestscore(d) and Y(d)∩Y(d‘)≠∅}|

* cR(Sj) / MPL(Sj))
is minimum };

};
enqueue probe(d) to queue(Si) for all Si∈Y(d)

with expected response time as priority;

2

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-7

Experimental Evaluation
pTA:
parallelized TA
(with asynchronous probes,
but same probe order as TA)

real Web sources
SR: superpages (Verizon

yellow pages)
R: subwaynavigator
R: mapquest
R: altavista
R: zagat
R: nytoday

synthetic data

from: A. Marian et al., TODS 2004

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-8

7.2 Ranking of SQL Query Results
motivated by applications such as:
realtor databases (e.g., homeadvisor.msn.com) with attributes

City, Datebuilt, Price, Sqft, Bedrooms, Bathrooms,
Deck, Fenced, Culdesac, Pool, Spa, ...

SQL queries such as
Select * From Homes Where City In (‚Redmond‘, ‚Bellevue‘) And

Bedrooms >= 3 And Bathrooms >= 2 And Price < 300000
often return too many answers or empty answers
Similar examples are car sales databases, customer support data, etc.

Straightforward idea:
apply Fagin‘s TA algorithm, treating indexed attributes as SR-sources
and non-indexed attributes as R-sources, implemented in SQL
Less obvious issue:
similarity measures on numerical and categorical attributes

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-9

IDF Based Similarities
for query condition Ai=qi with categorical attribute Ai
the score of tuple t with t.Ai=tj is:

si(tj,qi) := idf(tj) for qi=tj, 0 else
with idf(tj) := log (|R| / |{t|t∈R and t.Ai=tj}|)

the total score for a query over multiple categorical attributes then is:
s(t,q) := ∑i si(t.Ai,qi)

Example: q: Type=‚Convertible‘ And Make=‚Nissan‘
ranks non-Nissan convertibles higher than Nissan standard cars, 4WDs, etc.

for (practically continuous) numerical attributes A (e.g., price) define:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

Rt

h
tAit

j

j

eRtidf

2.(
2
1

/log)()(),(

2(
2
1

j
h

tq

ij tidfeqtsi

ji

⋅=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

for conditions Ai In (qi1, ..., qik) set si(tj, qi) := maxj=1..k si(tj, qij)
Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-10

QF Based Similarities
idf can be misleading about importance
(e.g., old houses are infrequent, new houses are usually looked for)

Query frequency (qf), as reflected in the current workload,
can indicate importance, too:

si(tj,qi) := qf(tj) for qi=tj, 0 else

Workloads can also reveal correlations in user preferences
(e.g., frequent queries with Make In (‚Honda Accord‘, ‚Toyota Camry‘)
or City In (‚Redmond‘, ‚Bellevue‘, ‚Kirkland‘))

W(t): set of previous queries with In predicate containing value t
For query value q and tuple with value t define:
si(q,t) := J(W(q),W(t))*qf(t)
with Jaccard coefficient

)()(
)()(

))(),((
tWqW
tWqW

tWqWJ
∪
∩

=

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-11

Experimental Evaluation
4000 tuples about homes for sale in the Seattle Eastside area
80 queries each with 2-5 attributes specified
human relevance assessment by 5 colleagues

Ranking quality metric:
weighted precision R
for top n (n=10)

∑
=

−=
ni

ni
irR

..1

/)1(2/

with ri=1 if rank is relevant,
0 otherwise

from: S. Agrawal et al., CIDR 2003

Winter Semester 2003/2004 Selected Topics in Web IR and Mining 7-12

Literature
• Amelie Marian, Nicolas Bruno, Luis Gravano: Evaluating Top-k

Queries over Web-Accessible Databases,
to appear in ACM TODS 2004

• Nicolas Bruno, Luis Gravano, Amélie Marian: Evaluating Top-k
Queries over Web-Accessible Databases, ICDE Conf. 2002

• Ronald Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation
Algorithms for Middleware, Journal of Computer and System Sciences
Vol. 66, 2003

• Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, Aristides Gionis:
Automated Ranking of Database Query Results, CIDR Conf. 2003

• Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis,
Nick Koudas, Divesh Srivastava: Ranked Join Indices,
ICDE Conf. 2003

